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Abstract

A Fibonacci coding method is introduced using Extended Generalized Fibonacci Polynomials in this
paper. A new square matrix Qn

m(a, b), the nth power of Qm(a, b) of order m × m is defined whose
elements are based on extended Generalized Fibonacci Polynomial. Matrix Qn

m(a, b) for integer x ≥ 1,
a ≥ 1 and b ≥ 1 is considered as the encoding matrix and a matrix Q−n

m (a, b) is considered as decoding
matrix. An error-detection and error-correction method is also defined in Extended Generalized Fibonacci
polynomials.
2020 Mathematical Sciences Classification: 11C08, 11C20, 11H71.
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1 Introduction
The Fibonacci sequence is one of the most well-known sequences, with numerous intriguing aspects and major
applications in a variety of fields including Mathematics,Statistics, Biology, Physics, Finance, Architecture
and Computer Sciences. The Fibonacci sequences and golden ratio have rich history, features and uses. This
sequence has been modified in a variety of ways.
The Fibonacci Polynomial [5] and the Extended Generalized Fibonacci Polynomial [8] are two such extensions
that will be used in this paper. The Fibonacci Polynomial Fn(x) is defined by the recurrence relation shown
below,

fn(x) =





1 n = 1;

x n = 2;

xfn−1(x) + fn−2(x) n ≥ 3.

(1.1)

There is no restriction on Fibonacci Polynomials for n ≤ 0.
one such extension of Fibonacci Polynomial is the Extended Generalized Fibonacci Polynomial which is
defined by the recurrence relation

gn(x) =





1 n = 1;

a(x) n = 2;

a(x)gn−1(x) + b(x)gn−2(x) n ≥ 3.

(1.2)

where a(x), b(x), g0(x) and g1(x) are arbitrary real Polynomials and n ≥ 0. A non-recursive expression for
gn(x), given below is introduced in [14].

gn+1(x) =

bn2 c∑

i=0

(
n− i
i

)
an−2ibi n ≥ 0. (1.3)
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This expression will appear several times in this paper. The first five Extended Generalized Fibonacci
Polynomials are shown below.

gn(x) =





1 n = 1;

a(x) n = 2;

[a(x)]2 + b(x) n = 3;

[a(x)]3 + 2a(x)b(x) n = 4;

[a(x)]4 + 3[a(x)]2b(x) + [b(x)]2 n = 5.

(1.4)

There is no restriction on Extended Generalized Fibonacci Polynomial for n ≤ 0. In this paper, we set
g0(x) = 0 and gn(x) = 1 for n ≤ −1. It’s worth nothing that the classical Fibonacci Polynomial can be
created by substituting a(x) = x and b(x) = 1 in the Extended Generalized Fibonacci Polynomial and the
classical Jacobsthal Polynomial can be created by substituting a(x) = 1 and b(x) = x in the Extended
Generalized Fibonacci Polynomial. A Square matrices Qnm of order m ×m, n ≥ 1, Properties, coding and
decoding method, relation between code elements of message matrix and error-detection error-correction
method has been introduced in Extended Generalized Fibonacci polynomials. This result,s is an extension
of the result’s [5]. For simplicity, we denote gn(x),a(x), b(x), g0(x) and g1(x) by gn, a, b, g0 and g1

respectively.

2 Main Results
2.1 Extended Generalized Fibonacci Polynomial matrices of order m
The Extended Generalized Fibonacci Polynomials generated by the matrix given below.

Q2(a, b) =

(
a b
1 0

)
. (2.1)

For any a and b, we have det(Q2(a, b)) = −b. Setting g0 = 0 and applying induction on n ≥ 1, it is easily
verified that

Qn2 (a, b) =

(
gn+1 bgn
gn bgn−1

)
. (2.2)

By using the determinant theorem, we see that det(Qn2 (a, b)) = (−b)n. The following defines the m × m
matrix Qm(a, b) .

Qm(a, b) =




a b 0 0 · · · 0
0 a b 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 a b

0 0
... 0 1 0



m×m

.

Thus Qm(a, b) has a recursive expression and det(Qm(a, b)) = −am−2b. The nth, n ≥ 2, power of Qm(a, b)
is given by the following theorem.

Theorem 2.1. For n ≥ 2 and m ≥ 2, we have
Qnm(a, b)

=



(n
0

)
an

(n
1

)
an−1b · · ·

( n
m−3

)
an−m+3bm−3

bn−m+2
2

c∑
i=0

( n−i
i+m−2

)
an−m+2−2ibi+m−2

bn−m+1
2

c∑
i=0

(n−1−i
i+m−2

)
an−m+1−2ibi+m−1

0
(n
0

)
an · · ·

( n
m−4

)
an−m+4bm−4

bn−m+3
2

c∑
i=0

( n−i
i+m−3

)
an−m+3−2ibi+m−3

bn−m+2
2

c∑
i=0

(n−1−i
i+m−3

)
an−m+2−2ibi+m−2

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.

0 0 · · ·
(n
0

)
an

bn−1
2
c∑

i=0

(n−i
i+1

)
an−1−2ibi+1

bn−2
2
c∑

i=0

(n−1−i
i+1

)
an−2−2ibi+2

0 0 · · · 0
bn

2
c∑

i=0

(n−i
i

)
an−2ibi

bn−1
2
c∑

i=0

(n−1−i
i

)
an−1−2ibi+1

0 0 · · · 0
bn−1

2
c∑

i=0

(n−1−i
i

)
an−1−2ibi

bn−2
2
c∑

i=0

(n−2−i
i

)
an−2−2ibi+1



.

(2.3)
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Proof. For the sake of simplicity, assume m = 4. The proof is based on induction. The following equality
shows that eq.(2.3) holds for n = 1.

Q1
4(a, b) =




(
1
0

)
a
(

1
1

)
b

−1∑
i=0

(
1−i
i+2

)
a−1−2ibi+2

−1∑
i=0

( −i
i+2

)
a−2−2ibi+3

0
(

1
0

)
a

0∑
i=0

(
1−i
i+1

)
a2ibi+1

−1∑
i=0

( −i
i+1

)
a−1−2ibi+2

0 0 g2(x) bg1(x)
0 0 g1(x) bg0(x)




=




a b 0 0
0 a b 0
0 0 a b
0 0 1 0


 .

Suppose the statement holds for n = k. Therefore, for n = k + 1 we have,

Q
k+1
4 (a, b) =

a b 0 0
0 a b 0
0 0 a b
0 0 1 0




(k
0

)
ak

(k
1

)
ak−1b

b k−2
2
c∑

i=0

(k−i
i+2

)
ak−2−2ibi+2

b k−3
2
c∑

i=0

(k−1−i
i+2

)
ak−3−2ibi+3

0
(k
0

)
ak

b k−1
2
c∑

i=0

(k−i
i+1

)
ak−1−2ibi+1

b k−2
2
c∑

i=0

(k−1−i
i+1

)
ak−2−2ibi+2

0 0 gk+1 bgk
0 0 gk bgk−1



=



(k
0

)
ak+1

(k
1

)
akb+

(k
0

)
akb q1,3 q1,4

0
(k
0

)
ak+1 a

b k−1
2
c∑

i=0

(k−i
i+1

)
ak−1−2i + bgk+1 a

b k−2
2
c∑

i=0

(k−1−i
i+1

)
ak−2−2ibi+2 + b2gk

0 0 agk+1 + bgk b(agk + bgk−1)
0 0 gk+1 bgk

 ,

where,





q1,3 = a
b k−2

2 c∑
i=0

(
k−i
i+2

)
ak−2−2ibi+2 + b

b k−1
2 c∑
i=0

(
k−i
i+1

)
ak−1−2ibi+1

q1,4 = a
b k−3

2 c∑
i=0

(
k−1−i
i+2

)
ak−3−2ibi+3 + b

b k−2
2 c∑
i=0

(
k−1−i
i+1

)
ak−2−2ibi+2.

Consider the first row of the last matrix. We need to show that the following four cases





(
k
0

)
ak+1 =

(
k+1

0

)
ak+1

(
k
1

)
akb+

(
k
0

)
akb = kakb+ akb =

(
k+1

1

)
akb

q1,3 =
b k−1

2 c∑
i=0

(
k+1−i
i+2

)
ak−1−2ibi+2

q1,4 =
b k−2

2 c∑
i=0

(
k−i
i+2

)
ak−2−2ibi+3

, (2.4)

hold.
The first two cases of eq.(2.4)are easily verified. We will prove the third case of equation (2.4); fourth case
is proved in a similar way. For the third case, there are two cases arise.
Case 1. Suppose k is even, so that k = 2l.Therefore

⌊
k − 2

2

⌋
=

⌊
2l − 2

2

⌋
= l − 1,

⌊
k − 1

2

⌋
=

⌊
2l − 1

2

⌋
= l − 1. (2.5)

By substituting these relations in the L.H.S. of third case of equation (2.4), we get

q1,3 = a

l−1∑

i=0

(
2l − i
i+ 2

)
a2l−2−2ibi+2 + b

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

=

l−1∑

i=0

[(
2l − i
i+ 2

)
+

(
2l − i
i+ 1

)]
a2l−1−2ibi+2

=

l−1∑

i=0

(
2l + 1− i
i+ 2

)
a2l−1−2ibi+2
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=

⌊
k−1
2

⌋
∑

i=0

(
k + 1− i
i+ 2

)
ak−1−2ibi+2.

Case 2. Now assuming k = 2l + 1, we have

⌊
k − 2

2

⌋
=

⌊
2l − 1

2

⌋
= l − 1,

⌊
k − 1

2

⌋
=

⌊
2l

2

⌋
= l. (2.6)

By substituting these relations in the L.H.S. of third case of equation (2.4), we get

q1,3 = a

l−1∑

i=0

(
2l + 1− i
i+ 2

)
a2l−1−2ibi+2 + b

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+1

=

l−1∑

i=0

(
2l + 1− i
i+ 2

)
a2l−2ibi+2 +

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+2

=

l−1∑

i=0

[(
2l + 1− i
i+ 2

)
+

(
2l + 1− i
i+ 1

)]
a2l−2ibi+2 + bl+2

=

l−1∑

i=0

(
2l + 2− i
i+ 2

)
a2l−2ibi+2 + bl+2

=

l∑

i=0

(
2l + 2− i
i+ 2

)
a2l−2ibi+2

=

⌊
k−1
2

⌋
∑

i=0

(
k + 1− i
i+ 2

)
ak−1−2ibi+2.

Further, other rows of Qk+1
4 (a, b) can also be solved using above process.

This completes the proof.

Example 2.1. For m = 6 and n=5 we have

Q5
6(a, b) =




a5 5a4b 10a3b2 10a2b3 5ab4 b5

0 a5 5a4b 10a3b2 10a2b3 + b4 4ab4

0 0 a5 5a4b 10a3b2 + 4ab3 6a2b3 + b4

0 0 0 a5 5a4b+ 6a2b2 + b3 4a3b2 + 3ab3

0 0 0 0 a5 + 3a3b+ a2b+ 3b2 a4b+ 3a2b2 + b2

0 0 0 0 a4 + 3a2b2 + b2 a3b+ 2ab2



.

2.2 Properties of Extended Generalized Fibonacci Polynomial
Lemma 2.1. For n ≥ k and k ≥ 1 we have

gn =
1

an−k

n−k∑

i=0

(−1)i
(
n− k
i

)
g2n−k−2ib

i, (2.7)

where gn is the nth Extended Generalized Fibonacci Polynomial.

Proof. Let k be a fixed number. The proof is by induction on n ≥ k. Suppose that the equation holds for
k ≤ n ≤ l. we show that (2.7) holds for n = l + 1.
Then by the recurrence relation, we have

gl+1 = agl + bgl−1

= a

(
1

al−k

l−k∑

i=0

(−1)i
(
l − k
i

)
g2l−k−2ib

i

)
+ b

(
1

al−k−1

l−1−k∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−2−k−2ib

i

)
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=
1

al−k−1

( l−k∑

i=1

(−1)i
(
l − k
i

)
g2l−k−2ib

i +

l−1−k∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−1∑

i=0

(−1)i+1

(
l − k
i+ 1

)
g2l−2−k−2ib

i+1 +

l−1−k∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−1∑

i=0

(−1)i
((

l − 1− k
i

)
−
(
l − k
i+ 1

))
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−2∑

i=0

(−1)i+1

(
l − 1− k
i+ 1

)
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−1∑

i=1

(−1)i
(
l − 1− k

i

)
g2l−k−2ib

i + g2l−k

)

=
1

al−k−1

l−k−1∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−k−2ib

i.

Expanding this relation using (1.2), we get

=
ak+1

al

l−k−1∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−k−2ib

i

=
ak−1

al

l−k−1∑

i=0

(−1)i
(
l − k − 1

i

)(
g2l−k−2i+2b

i − 2g2l−k−2ib
i+1 + g2l−k−2−2ib

i+2

)

=
ak−1

al

( l−k−1∑

i=2

(−1)i
((

l − k − 1

i

)
+ 2

(
l − k − 1

i− 1

)
+

(
l − k − 1

i− 2

))
g2l+2−k−2ib

i + g2l+2−k

− (l − k − 1)g2l−kb− 2g2l−kb− 2(−1)l−k+1gk+2b
l−k − (−1)l−k+1(l − k − 1)gk+2b

l−k

+ (−1)l−k+1gkb
l+1−k

)

=
1

al+1−k

l+1−k∑

i=0

(−1)i
(
l + 1− k

i

)
g2l+2−k−2ib

i.

This completed the proof.

Lemma 2.2. Binet formula:- The nth Extended generalized Fibonacci polynomial is given by

gn =
zn1 − zn2
z1 − z2

,

where z1, z2 are the roots of the characteristic equation (1.2) and z1 > z2.

Proof. We can express the recurrence relation (1.2) into the function of roots of z1 and z2 and the
characteristic equation of recurrence relation (1.2) is z2 = az + b. The roots of the characteristic equation

are z1 = a+
√
a2+4b
2 and z2 = a−

√
a2+4b
2 .

Note that z2 < 0 < z1 and |z2| < |z1|.Also z1 + z2 = a, z1z2 = −b and z1 − z2 =
√
a2 + 4b.

Therefore, the general terms of Extended Generalized Fibonacci Polynomial may be expressed in the form
gn = P1z

n
1 +P2z

n
2 , for some coefficient P1 and P2, for the value n = 0 and n = 1, we have P1 = 1

z1−z2 = −P2,

so that gn =
zn1−z

n
2

z1−z2 .

Lemma 2.3. lim
n→∞

gn
gn−1

= z1

Where z1 is the positive root of characteristic equation (1.2).
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Proof. By using Binet formula (see, Lemma 2.2), we have

lim
n→∞

gn
gn−1

= lim
n→∞

(
zn1 − zn2
z1 − z2

× z1 − z2

zn−1
1 − zn−1

2

)
= lim
n→∞

1− ( z2z1 )n

1
z1
− ( z2z1 )n( 1

z2
)

and taking into account that lim
n→∞

( z2z1 )n = 0, Since |z2| < |z1| then we get our result.

2.3 The inverse Extended Generalized Fibonacci polynomial matrices
Now, by use of lemma 2.1, the next theorem establishes the structure of the inverse Extended Generalized
Fibonacci Polynomial Matrix Q−nm (a, b).

Theorem 2.2. For m ≥ 2, n ≥ 1 ,a 6= 0and b 6= 0, the matrix Q−nm (a, b) is in the form
Q−nm (a, b) = (AB)m×m
where

A =



(
n−1
0

)
an

−
(
n
1

)
b

an+1 −
(
n+1
2

)
b2

an+2 · · ·
(
n+m−4
m−3

)
bm−3

an−m+3

0

(
n−1
0

)
an

−
(
n
1

)
b

an+1 · · ·
(
n+m−5
m−4

)
bm−4

an−m+4

...
...

. . .
. . .

...

0 0 · · · · · ·
(
n−1
0

)
an

0 0 · · · · · · 0
0 0 · · · · · · 0


m×m−2

,

B =



(−a)m−2a(m−3)(n−2)

(−am−2)n

n−2∑
i=0

(−1)i
(n+m−4

i

)
g2n−3−2ib

i+m−n−1 (am−3)n−1

(−am−2)n

n−1∑
i=0

(−1)i
(n+m−3

i

)
g2n−1−2ib

i+m−n−1

(−a)m−3a(m−4)(n−2)

(−am−3)n

n−2∑
i=0

(−1)i
(n+m−5

i

)
g2n−3−2ib

i+m−n−2 (am−4)n−1

(−am−3)n

n−1∑
i=0

(−1)i
(n+m−4

i

)
g2n−1−2ib

i+m−n−2

...
...

−a
(−a)n

n−2∑
i=0

(−1)i
(n−1

i

)
g2n−3−2ib

i+2−n 1
(−a)n

n−1∑
i=0

(−1)i
(n
i

)
g2n−1−2ib

i+2−n

(−1)ngn−1b1−n (−1)n−1gnb1−n

(−1)n−1gnb−n (−1)ngn+1b−n


m×2

.

Proof. For the simplicity we prove the statement for m = 3. We show that Qn3 (a, b)×Q−n3 (a, b) = I3×3 holds
for any n, where I3×3 is the identity matrix of order 3.

Qn3 (a, b)×Q−n3 (a, b) =




(
n
0

)
an

bn−1
2 c∑
i=0

(
n−i
i+1

)
an−1−2ibi+1

bn−2
2 c∑
i=0

(
n−1−i
i+1

)
an−2−2ibi+2

0 gn+1 bgn
0 gn bgn−1




×




(n−1
0 )
an

−a
(−a)n

n−2∑
i=0

(−1)i
(
n−1
i

)
g2n−3−2ib

i+2−n 1
(−a)n

n−1∑
i=0

(−1)i
(
n
i

)
g2n−1−2ib

i+2−n

0 (−1)n

bn−1 gn−1
(−1)n−1

bn−1 gn

0 (−1)n−1

bn gn
(−1)n

bn gn+1


 .

Using the relation gn+1gn−1−g2
n = (−1)nbn−1, it is easily verified that all the diagonal entries of this matrix

are one. Now we have to show that all the other entries of this matrix are zero.for this, consider the elements
of first row and second column.

q(1,2) =

(
n

0

)
an
−a

(−a)n

n−2∑

i=0

(−1)i
(
n− 1

i

)
g2n−3−2ib

i+2−n +
(−1)n

bn−1
gn−1

bn−1
2 c∑

i=0

(
n− i
i+ 1

)
an−1−2ibi+1

+
(−1)n−1

bn
gn

bn−2
2 c∑

i=0

(
n− 1− i
i+ 1

)
an−2−2ibi+2.
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For an even integer n = 2l, using (2.5) and (2.7), we have

q(1,2) = (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l−1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

− g2l

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−2−2ibi+2

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l−1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

− g2l−1

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−1−2ibi+2 − g2l−2

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−2−2ibi+3

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l

l−1∑

i=0

(
2l − 1− i

i

)
a2l−1−2ibi+2

− g2l−2

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−2−2ibi+3

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l−2

l−1∑

i=0

(
2l − 1− i

i

)
a2l−1−2ibi

− g2l−2

b2l−2

(
g2l+1 − a2l

)

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1g2l

b2l−2
− g2l−2g2l+1

b2l−2
+
g2l−2a

2l

b2l−2

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l + a+
g2l−2a

2l

b2l−2

= a

(
1− 1

b2l−2

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i

)
+
g2l−2a

2l

b2l−2

= a

(
1− a2l−1g2l−2

b2l−2
− 1

)
+
g2l−2a

2l

b2l−2

= 0.

Now for odd number n = 2l + 1, using the equations (2.6) and (2.7), we have

q(1,2) = (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2l

b2l

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+1

+
g2l+1

b2l+1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+2

= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2l

b2l

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+1

+
g2l

b2l+1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−2ibi+2 +

g2l−1

b2l+1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+3

= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2l

b2l−1

l∑

i=0

(
2l − i
i

)
a2l−2ibi +

g2l−1

b2l−1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2lg2l+1

b2l−1
+
g2l−1

b2l−1

(
g2l+2 − a2l+1

)
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= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l + a− g2l−1a
2l+1

b2l−1

= (a)

(
1 +

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l

)
− g2l−1a

2l+1

b2l−1

= a

(
1 +

a2lg2l−1

b2l−2
− 1

)
− g2l−1a

2l+1

b2l−1

= 0.

Similarly, we can shown that any other non-diagonal entries of the matrix is also zero.
This completes the proof.

2.4 The Extended Generalized Fibonacci Polynomial based coding algorithm
The Extended Generalized Fibonacci Polynomial coding algorithm is described in detail in this section.For
coding and decoding algorithm Extended Generalized Fibonacci polynomials is converted into integer, for
that we choose a 6= 0 and b 6= 0 for integer x such that a and b also gives non zero integer values. The initial
message needs to be represented in the form of a square matrix M of order m, referred as the message-matrix,
in order to employ this type of coding. This representation has no constraints and the user is free to arrange
it how they want. For instance, the message 283954267 can be represented by the message matrix of order
2:

M =

(
283 95
42 67

)
.

The encoding matrix Qnm(a, b) is obtained from (2.3). Once the sender and receiver agree on above parameters
and an integer n. To get the message matrix E, multiply the encoding matrix by the message matrix M
from right side. For example, for m = 3 and n = 2 we have
E = Q2

3(a, b)M3×3

=



a2 2ab b2

0 a2 + b ab
0 a b





m11 m12 m13

m21 m22 m23

m31 m32 m33


 =



e11 e12 e13

e21 e22 e23

e31 e32 e33



.

The elements of E are delivered by the channel in the following order e11, e12, e13, · · · , e33, followed by the
value of det(M). Assuming that the send sequence is received without error, the original message matrix is
produced by multiplying E and Q−2

3 (a, b):
M = Q−2

3 (a, b)E

=




1
a2 − 1

a 1− b
a2

0 1
b −ab

0 − a
b2

a2+b
b2





e11 e12 e13

e21 e22 e23

e31 e32 e33


 =



m11 m12 m13

m21 m22 m23

m31 m32 m33



.

2.5 A relation among the elements of a code message-matrix
Inside this part, we develop a fascinating relationship between the components of a code message matrix E,
which plays an important role in the error-correction process. Let m = 3 for the sake of simplicity. Assume
that all values of M are positive and a, b ≥ 1 for (x ≥ 1). Therefore,

M = Q
−n
3 (a, b)× E

=


(
n−1
0

)
an

−a
(−a)n

n−2∑
i=0

(−1)i
(n−1
i

)
g2n−3−2ib

i+2−n 1
(−a)n

n−1∑
i=0

(−1)i
(n
i

)
g2n−1−2ib

i+2−n

0
(−1)n

bn−1 gn−1
(−1)n−1

bn−1 gn

0
(−1)n−1

bn gn
(−1)n

bn gn+1

×
e11 e12 e13
e21 e22 e23
e31 e32 e33



=

m11 m12 m13

m21 m22 m23

m31 m32 m33

 .

For the elements of the first columns of M , we have



m11 = e11 + (−1)n−1ae21

n−2∑
i=0

(−1)i
(
n−1
i

)
g2n−3−2ib

i+2−n + (−1)ne31

n−1∑
i=0

(−1)i
(
n
i

)
g2n−1−2ib

i+2−n ≥ 0;

m21 = (−1)n

bn−1 e21gn−1 + (−1)n−1

bn−1 e31gn ≥ 0;

m31 = (−1)n−1

bn e21gn + (−1)n

bn e31gn+1 ≥ 0.
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Using (2.7) for an even integer n = 2l, we obtain the following inequalities.





e11 − ae21

(
a2l−1g2l−2

b2l−2 + 1
)

+ be31

(
a2lg2l−1

b2l−1 − 1
)
≥ 01 (a)

e21g2l−1

b2l−1 − e31g2l
b2l−1 ≥ 0 (b)

− e21g2l
b2l

+ e31g2l+1

b2l
≥ 0 (c)

. (2.8)

From (2.8)(b) and (2.8)(c), we have
g2l

g2l−1
≤ e21

e31
≤ g2l+1

g2l
. (2.9)

It follows from 2.8(a) that

e11

e31
≥ ae21

e31

(a2l−1g2l−2

b2l−2
+ 1
)
− b
(a2lg2l−1

b2l−1
− 1
)
.

This together with (2.9) gives

e11

e31
≥ a g2l

g2l−1

(a2l−1g2l−2

b2l−2
+ 1
)
− b
(a2lg2l−1

b2l−1
− 1
)

≥ a2l

b2l−2g2l−1

(
g2lg2l−2 − g2

2l−1

)
+

ag2l

g2l−1
+ b

≥ − a2lb

g2l−1
+
ag2l + bg2l−1

g2l−1

e11

e31
≥ g2l+1 − a2lb

g2l−1
. (2.10)

Similarly, dividing (2.8)(a) by e11 results in

b
e31

e11

(a2lg2l−1

b2l−1
− 1
)
≥ ae21

e11

(a2l−1g2l−2

b2l−2
+ 1
)
− 1.

It follows from this and (2.9) that

b
e31

e11

(a2lg2l−1

b2l−1
− 1
)
≥ a g2l

g2l−1

(a2l−1g2l−2

b2l−2
+ 1
)
− 1 (2.11)

and hence

e11

e31
≤ g2l+1 − a2lb

g2l−1
. (2.12)

Using (??) and (2.12), we get

e11

e31
=
g2l+1 − a2lb

g2l−1
. (2.13)

For l large enough, we have from equation (2.9) and (2.13)
e11

e31
≈ σ2,

e21

e31
≈ σ,

where,

σ =
a+
√
a2 + 4b

2
.

Therefore,
e11

e21
≈ σ.

Similarly, assuming that (2.8) for n = 2l + 1, we obtain,
g2l+2

g2l+1
≤ e21

e31
≤ g2l+1

g2l

g2l+2 − a2l+1b

g2l
≤ e11

e31
≤ g2l+2 − a2l+1b

g2l
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For l large enough, we have
e11

e31
≈ σ2,

e21

e31
≈ σ.

Therefore,
e11

e21
≈ σ.

The result is that for large values of n, the following equation holds.
e11

e21
≈ e21

e31
≈ σ.

In general, for 1 ≤ i ≤ m we get

e1,i

e2,i
≈ e2,i

e3,i
≈ · · · ≈ em−1,i

em,i
≈ σ, (2.14)

where ei,j is the element of ith row and jth column of message matrix.
2.6 Error-detection and error-correction
The Fibonacci Polynomial based coding error-correction technique has been developed in [5]. This approach
is used in Extended Generalized Fibonacci Polynomial based coding method described. We will start with
error detection.From E = Qnm(a, b)M we have,

det(E) = det(M)× (−am−2b)n (2.15)

Using determinant theorem, we have det(Qnm(a, b)) = (−am−2b)n. Relation (2.15) is controlled when an
estimation matrix Ê is rebuilt using the received elements. If the relation is satisfied, we claim there was no
error. otherwise, either the components of E or det(M) are incorrect. We may presume that the number
det(M) was received correctly after sending it many times and utilising majority logic decoding. As a result,
relation (2.15) is regarded as criterion for detecting errors. Assume that some of elements of E are incorrect.
Of course, this matrix might have one-fold, two-fold,· · · , or m2-fold errors.
For simplicity consider a 2× 2 receiving matrix to demonstrate how to remedy these problem. Three cases
are examined.
Case1. Assume that one of the elements was delivered incorrectly. Then one of the four cases below is
feasible, where p, q, r and s are the incorrect elements.(

p e12

e21 e22

) (
e11 q
e21 e22

) (
e11 e12

r e22

) (
e11 e12

e21 s

)
.

It follows from (2.15) and det(Qn2 (a, b)) = (−b)n that
pe22 − e12e21 = (−b)ndet(M),
e11e22 − qe21 = (−b)ndet(M),
e11e22 − re12 = (−b)ndet(M),
se11 − e12e21 = (−b)ndet(M),
or equivalently

p =
(−b)ndet(M) + e12e21

e22
,

q =
−(−b)ndet(M) + e11e22

e21
,

r =
−(−b)ndet(M) + e11e22

e12
,

s =
(−b)ndet(M) + e12e21

e11
.

The above equation provides four alternative single-error variations, but we must select the right variant
only from the instance of integer solutions p, q, r and s; moreover, we must select solutions that satisfy the
relation (2.14). Note that only numbers that are integers and satisfy (2.14) are the elements of E.If no such
elements is obtained from these equations, we must conclude that our single-error hypothesis is false and we
have to consider multiple-fold error cases.
Case 2. Suppose that two elements of E was delivered incorrectly as shown below:

235



(
p e12

q e22

)
.

From (2.15) we have pe22−e12q = (−b)ndet(M). Since above equation has many solutions, we have to choose
solutions of p and q, which satisfy (2.14). Again only integer solutions are acceptable. It’s worth nothing
that if the two errors occur in the same row or in one of the matrix’s two diagonals, they may be readily
fixed by just applying (2.14). Two-fold error do not arise if no integer solution is discovered. If none of
the cases above produce solutions that fulfil the criteria, then all of the elements of E have been received
incorrectly. Errors cannot be remedied in this case.
Case 3. Assume that three elements of E was delivered incorrectly as shown below(
p q
r e22

)
.

From (2.14), q can be obtained. Now remaining errors can be corrected by case2 solution.
If none of the cases above produce solutions that fulfil the criteria, then all of the elements of E have been
received incorrectly. Errors cannot be remedied in this case.
According to the method described in [11], there are consequently 15 error conditions in the elements
of E. Since 14 cases between them can be corrected, the approach’s correctable probability is equal to
14
15 = 0.9333 = 93.33%. Capability to fix errors: Because only m2-fold faults may notbe rectified, As in

[2], the method’s error-correction capacity is 2m
2
−2

2m2−1
, where m is the message-matrix order. As a result, the

probability of decoding mistake is nearly nil for large values of m.

3 Conclusion
We presented a coding scheme based on Extended Generalized Fibonacci polynomials. The encoder matrix
for integers m ≥ 2, a, b ≥ 1 and n ≥ 1 is a matrix Qnm(a, b), the nth power of Qm(a, b) with Extended
Generalized Fibonacci polynomial elements.Further, established some properties of Extended Generalized
Fibonacci polynomial. Each source word is represented by a matrix M that has been encoded into a code
message matrix E = MQnm(a, b). The suggested coding scheme was given a basic error-correcting algorithm.

We demonstrated that this approach can correct up to 2m
2
−2

2m2−1
mistakes, implying that the chance of decoding

error is nearly nil for large values of m.
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