ISSN 0304-9892 (Print)
(Received: April 17, 2022; In format July 23, 2022; Revised; April 02, 2023; Accepted : April 10, 2023)
DOI: https://doi.org/10.58250/jnanabha.2023.53124

Abstract

In this paper, we consider the Diophantine equations $x^{2}+139^{m}=y^{n}$ and $x^{2}+499^{m}=y^{n} n \geq 3$, $m>0$ and determine solutions of the equations. 2020 Mathematical Sciences Classification: 11D41, 11D61. Keywords and Phrases: Exponential Diophantine equations, integer solutions.

1 Introduction

The problem of solving the equation $x^{2}+7=2^{n}$ was proposed by Ramanujan [13] in 1913. This equation was solved perfectly by Nagell [11] in 1960 using techniques from algebraic number theory. In the generalized form, this equation is called generalized Ramanujan- Nagell equation $x^{2}+k=y^{n}, k, x, y, n$ belongs to integers, $n \geq 3$, a kind of exponent type equation. This equation has been studied extensively. When $n=3$, it is an elliptic curve. Mordell studied this type of equation carefully and collected most of the important results in his book [10]. However, when $n \geq 3$, it is a hyperelliptic curve which seems to be more difficult to study, but there is now a vast body of literature on it also.

For some small positive integers k, the solutions have been determined. Lebesgue [8] and Nagell [12] showed that there are no non-trivial solutions when $k=1$ and $k=3,5$, respectively.

Ljungrren [7] proved in the case of $k=2$ that the equation has only one positive solution. Several special case of the Diophantine equation $x^{2}+q^{m}=y^{n}$ where q is a prime and m, n, x and y are positive integers have been studied in the last few years. When $q=2$ and m is an odd integer, it was proved by Cohn [5] that this equation has exactly three families of solutions. When $q=3$, and m is an odd integer, the equation has three families of solution as proved by Arif and Abu Muriefah [1]. It was shown by Luca [9] that there exists only one family of solution when $q=3$ and m is an even integer. Tao [14] solved the equation when $q=5$ and showed that there is no solution. J. H. E. Cohn [6] refined the earlier elementary approaches and solved the equation for 77 values of q under 100. Using advanced methods, Bugeaud et al. [4] solved this kind of equation for $1 \leq k \leq 100$.

In this short communication, we consider the Diophantine equations $x^{2}+139^{m}=y^{n}$ and $x^{2}+499^{m}=y^{n}$, $n \geq 3, m>0$ and determine solutions of the equations.

2 Main Results

Theorem 2.1. Let m be odd. Then the Diophantine equation

$$
\begin{equation*}
x^{2}+139^{m}=y^{n} \tag{2.1}
\end{equation*}
$$

has only one solution in positive integers x, y, m and the unique solution is given by $x=322, y=47, m=1$ and $n=3$.

We start by stating the following lemma which will be used further.
Lemma 2.1. The equation $139 x^{2}+1=y^{n}$ where n is an odd integer ≥ 3 has no solution in integers x and y for y odd and ≥ 1.

The proof of the Theorem 2.1 is divided into two cases $(139, x)=1$ and $139 \mid x$. It is sufficient to consider x a positive integer.

Proof. Suppose $m=2 k+1, k \geq 0$. Then equation (2.1) becomes

$$
\begin{equation*}
x^{2}+139^{2 k+1}=y^{n}, \quad n \geq 3 \tag{2.2}
\end{equation*}
$$

If x is odd and y is even, then $x^{2}+139^{2 k+1} \equiv 4(\bmod 8)$, but $y^{n} \equiv 0(\bmod 8)$, which is not possible. Thus x is even and y is odd.

Case (i) Let $(139, x)=1$. Let n be odd, then there is no loss of generality in considering $n=p$, an odd prime.Then from [Theorem 6, [6]] we have only two possibilities and they are

$$
\begin{equation*}
x+139^{k} \sqrt{-139}=(s+t \sqrt{-139})^{p} \tag{2.3}
\end{equation*}
$$

where $y=s^{2}+139 t^{2}$, for some rational integers s and t and

$$
\begin{equation*}
x+139^{k} \sqrt{-139}=\left(\frac{s+t \sqrt{-139}}{2}\right)^{3}, \tag{2.4}
\end{equation*}
$$

because $139 \equiv 3(\bmod 8), s \equiv t \equiv 1(\bmod 2)$ where $y=\left(s^{2}+139 t^{2}\right) / 4$ for some rational integers s and t and $x=\left|\frac{s^{3}-417 s t^{2}}{8}\right|$.
In (2.3), since $y=s^{2}+139 t^{2}$ and y is odd and so only one of s or t is odd and other is even. Equating imaginary parts of 2.3 , we get

$$
\begin{equation*}
139^{k}=t \sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} s^{p-2 r-1}\left(-139 t^{2}\right)^{r} . \tag{2.5}
\end{equation*}
$$

So t is odd and s is even. Since 139 does not divide the term inside summation, we get $t= \pm 139^{k}$.

$$
\begin{equation*}
\pm 1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} s^{p-2 r-1}\left(-139^{2 k+1}\right)^{r} . \tag{2.6}
\end{equation*}
$$

This is equation (1) in [6] and Lemmas 4 and 5 in [6] show that both the signs are impossible. Hence (2.3) gives rise to no solution.

Now let us consider equation (2.4). By equating imaginary parts, we obtain,

$$
\begin{equation*}
8 \cdot 139^{k}=t\left(3 s^{2}-139 t^{2}\right) \tag{2.7}
\end{equation*}
$$

If $t= \pm 1$ in (2.7), we have

$$
\begin{equation*}
\pm 8 \cdot 139^{k}=3 s^{2}-139 \tag{2.8}
\end{equation*}
$$

When we consider $k=0$, then $\pm 8=3 s^{2}-139$.
First we consider negative sign,

$$
-8=3 s^{2}-139
$$

Then

$$
3 s^{2}=131
$$

which is not possible.
Now we consider the positive sign,

$$
\begin{equation*}
8=3 s^{2}-139 \tag{2.9}
\end{equation*}
$$

This implies that

$$
3 s^{2}=147
$$

or,

$$
s= \pm 7
$$

This equation has only solution when

$$
t= \pm 1, s= \pm 7, k=0 \text { and } y=\frac{s^{2}+139 t^{2}}{4}=47
$$

Hence from (2.4), we have $x=\left|\frac{s^{3}-417 s t^{2}}{8}\right|=322$.
Finally if $t= \pm 139^{k}$, then from equation (2.7), we have

$$
\begin{equation*}
\pm 8=3 s^{2}-139^{2 k+1} \tag{2.10}
\end{equation*}
$$

where $k>0$, which is impossible modulo 139 . Hence there is no solution of this equation.
Now if n is even, then it is sufficient to consider $n=4$, hence the equation (2.2) becomes

$$
x^{2}+139^{2 k+1}=y^{4}
$$

or,

$$
y^{4}-x^{2}=139^{2 k+1}
$$

or,

$$
\left(y^{2}-x\right)\left(y^{2}+x\right)=139^{2 k+1}
$$

Since $(139, x)=1$, we have

$$
\begin{equation*}
y^{2}+x=139^{2 k+1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{2}-x=1 \tag{2.12}
\end{equation*}
$$

Eliminating x from equations (2.11) and (2.12), we get

$$
2 y^{2}=139^{2 k+1}+1
$$

Then $2 y^{2} \equiv 4(\bmod 8)$ i.e. $y^{2} \equiv 2(\bmod 4)$ as y is odd, which is impossible.
Case (ii) Suppose that $139 \mid x$, then $x=139^{u} \cdot X$; so that, $139 \mid y$, then $y=139^{v} \cdot Y$, where $u>0, v>0$ and $(139, X)=(139, Y)=1$. Then

$$
139^{2 u} X^{2}+139^{2 k+1}=139^{n v} Y^{n}
$$

There are following possibilities for solving this equation as discussed below:

1) $2 u=\min (2 u, 2 k+1, n v)$. Then by cancelling $139^{2 u}$, we get

$$
X^{2}+139^{2(k-u)+1}=139^{n v-2 u} Y^{n}
$$

If $n v-2 u=0$, then we get $X^{2}+139^{2(k-u)+1}=Y^{n}$ with $(139, X)=1$. If $k-u=0$, this equation has the only solution $x=322$ and $n=3$. If $k-u>0$, then it has no solution.
2) $2 k+1=\min (2 u, 2 k+1, n v)$. Then $139^{2 u-2 k-1} \cdot X^{2}+1=139^{n v-2 k-1} Y^{n}$ and considering this equation modulo 139 , which is not possible. Hence this equation has no solution.
3) $n v=\min (2 u, 2 k+1, n v)$. Then $139^{2 u-n v} \cdot X^{2}+139^{2 k+1-n v}=Y^{n}$. This is possible modulo 139 only if $2 u-n v=0$ or $2 k+1-n v=0$ and both cases are not possible. This completes the proof of the theorem.

Theorem 2.2. The equation

$$
\begin{equation*}
x^{2}+499^{m}=y^{n}, \quad n \geq 3, m>0 \tag{2.13}
\end{equation*}
$$

has only one solution in positive integers (x, y, m) and the solution is given by

$$
x=2158, y=167, m=1, n=3
$$

Lemma 2.2. The equation $499 x^{2}+1=y^{n}$ where n is an odd integer ≥ 3 has no solution in integers x and y for y odd and ≥ 1

The proof of the theorem is divided into two cases $(499, x)=1$ and $499 \mid x$. It is sufficient to consider x a positive integer.

Proof. Let us suppose that $m=2 k+1$. We shall assume that $k>0, n>3$.
If x is odd and y even, we get $x^{2}+499^{2 k+1} \equiv 4(\bmod 8)$, but $y^{n} \equiv 0(\bmod 8)$. Hence, we suppose that x is even and y is odd.

Case (i) Let $(499, x)=1$. Let n be odd, then there is no loss of generality in considering $n=p$, an odd prime.Then from [[6], Theorem 6] we have only two possibilities and they are

$$
\begin{equation*}
x+499^{k} \sqrt{-499}=(a+b \sqrt{-499})^{p}, \tag{2.14}
\end{equation*}
$$

where

$$
y=a^{2}+499 b^{2}
$$

and

$$
\begin{equation*}
x+499^{k} \sqrt{-499}=(a+b \sqrt{-499} / 2)^{3}, \tag{2.15}
\end{equation*}
$$

because $499 \equiv 3(\bmod 8), a \equiv b \equiv 1(\bmod 2)$, where $y=\frac{a^{2}+499 b^{2}}{4}$ for some rational integers a and b and $x=\left|\frac{a^{3}-1497 a b^{2}}{8}\right|$.
In (2.14), since $y=a^{2}+499 b^{2}$ and y is odd and so only one of a or b is odd and other is even. Equating imaginary parts, we get

$$
\begin{equation*}
499^{k}=b \sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} a^{p-2 r-1}\left(-499 b^{2}\right)^{r} \tag{2.16}
\end{equation*}
$$

So b is odd and a is even. Since 499 does not divide the term inside summation, we get $b= \pm 499^{k}$.

$$
\begin{equation*}
\pm 1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} a^{p-2 r-1}\left(-499 b^{2 k+1}\right)^{r} \tag{2.17}
\end{equation*}
$$

This is Cohn [6, eqn (1)]. Therefore, Lemmas 4 and 5 due to Cohn [6] show that both the signs are impossible. Hence (2.14) gives rise no solution.

Now let us consider equation (2.15). By equating imaginary parts, we obtain,

$$
\begin{equation*}
8 \cdot 499^{k}=b\left(3 a^{2}-499 b^{2}\right) \tag{2.18}
\end{equation*}
$$

If $b= \pm 1$ in (2.18), we have

$$
\begin{equation*}
\pm 8 \cdot 499^{k}=3 a^{2}-499 \tag{2.19}
\end{equation*}
$$

When we consider $k=0$, we get $\pm 8=3 a^{2}-499$. We consider negative sign

$$
-8=3 a^{2}-499
$$

or,

$$
3 a^{2}=-8+499
$$

or,

$$
3 a^{2}=491
$$

which is not possible.
Now we consider positive sign

$$
\begin{equation*}
8=3 a^{2}-499 \tag{2.20}
\end{equation*}
$$

or,

$$
3 a^{2}=507
$$

or,

$$
a= \pm 13
$$

This equation has only solution when $b= \pm 1, a= \pm 13, k=0$ and $y=\frac{a^{2}+499 b^{2}}{4}=167$. Hence from (2.15), we have $x=\left|\frac{a^{3}-1497 a b^{2}}{8}\right|=2158$. Hence $x=2158$.

Finally if $b= \pm 499^{k}$, then we have

$$
\begin{equation*}
\pm 8=3 a^{2}-499^{2 k+1} \tag{2.21}
\end{equation*}
$$

where $k>0$, which is impossible modulo 499. Hence there is no solution of this equation.
Now if x is even, then from the equation (2.13), it is sufficient to consider $n=4$, hence

$$
\left(y^{2}+x\right)\left(y^{2}-x\right)=499^{2 k+1}
$$

Since $(499, x)=1$, we have

$$
\begin{equation*}
y^{2}+x=499^{2 k+1} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{2}-x=1 \tag{2.23}
\end{equation*}
$$

Eliminating x from both equations (2.22) and (2.23), we get

$$
2 y^{2}=499^{2 k+1}+1
$$

Then $2 y^{2} \equiv 4(\bmod 8)$ i.e. $y^{2} \equiv 2(\bmod 4)$, which is impossible.
Case (ii) Let 499|x. Then, of course, 499|y. Suppose that $x=499^{u} \cdot X, y=499^{v} \cdot Y$, where $u>0, v>0$ and $(499, X)=(499, Y)=1$. Then

$$
499^{2 u} \cdot X^{2}+499^{2 k+1}=499^{n v} \cdot Y^{n}
$$

i) $2 u=\min (2 u, 2 k+1, n v)$. Then by cancelling $499^{2 u}$, we get

$$
X^{2}+499^{2 k+1-2 u}=499^{n v-2 u} Y^{n}
$$

If $n v-2 u=0$, then we get $X^{2}+499^{2(k-u)+1}=Y^{n}$, with $(499, X)=1$. If $k-u=0$, this equation has only solution $x=2158$ and $n=3$. If $k-u>0$, then it has no solution.
ii) $2 k+1=\min (2 u, 2 k+1, n v)$. Then $499^{2 u-2 k-1} \cdot X^{2}+1=499^{n v-2 k-1} Y^{n}$ and considering this equation modulo 499 , we get $n v-2 k-1=0$, so n is odd, $499\left(499^{k-u-1} X\right)^{2}+1=Y^{n}$. By the Lemma 2.2 this equation has no solution.
iii $n v=\min (2 u, 2 k+1, n v)$. Then $499^{2 u-n v} \cdot X^{2}+499^{2 k+1-n v}=Y^{n}$. This is possible modulo 499 only if $2 u-n v=0$ or $2 k+1-n v=0$ and both cases are not possible. Hence this completes the proof of the Theorem $\mathbf{2 . 2}$.

Acknowledgement. The authors thank to the Editor and anonymous referees for their valuable suggestions and comments to improve the paper.

References

[1] S. A. Arif and F. S. A. Muriefah, The Diophantine equation $x^{2}+3^{m}=y^{n}$, Int. J. Math. Sci., 21 (1998), 619-620.
[2] S. Asthana and M. M. Singh, On the Diophantine equation $x^{2}+37^{l}=y^{n}$, JP J. Algebra, Number theory and application, 44 (1) (2019), 15-30.
[3] S. Asthana and M. M. Singh, On the Diophantine equation $3^{x}+117^{y}=z^{2}$, GANITA, 70 (2) (2020), 43-47.
[4] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equation II. The Lebesgue- Nagell equation. Compos. Math., 142 (2006), 31-62.
[5] J. H. E. Cohn, The Diophantine equation $x^{2}+2^{k}=y^{m}$, Arch. Math.(Basel), 59(4) (1992), 341-344.
[6] J. H. E. Cohn, The Diophantine equation $x^{2}+C=y^{n}$, Acta Arith., 65(4) (1993), 367-381.
[7] W. Ljunggren, On the Diophantine equation $x^{2}+p^{2}=y^{n}$, Norske Vid. Seisk Porh. Trondheim, 16(8) (1943), 27-30.
[8] V. A. Lebesgue, SurI'impossibilite'en nombres entieres de I'l equation $x^{m}=y^{2}+1$, Nouvelles Ann. des. Math., 9(1) (1850), 178- 181.
[9] F. Luca, On a Diophantine equation, Bull. Australia. Math. Soc., 61 (2000), 241-246.
[10] L. J. Mordell, Diophantine equations, Academic Press, London (1969).
[11] T. Nagell, The Diophantine equation $x^{2}+7=2^{m}$, Arkiv Mat., 4 (1960), 185-187.
[12] T. Nagell, Sur I'l impossibilite de quelques equations a deure indetermindees Norsk. Math. Forehings Skrifter, Kristiania. Ser. I, 13 (1923), 65-82.
[13] S. Ramanujan, Question 464., J. Indian Math. Soc., 5 (1913), 120.
[14] L. Tao., On the Diophantine equation $x^{2}+5^{m}=y^{n}$, Ramanujan Journal, 19 (2009), 325-338.
[15] H. L. Zhu and M. H. Le, On Some generalized Lebesgue- Nagell equations, J. Number Theory, 131 (2011), 458-469.

