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Abstract

In this paper, we consider the Diophantine equations x2 + 139m = yn and x2 + 499m = yn n ≥ 3,
m > 0 and determine solutions of the equations.
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1 Introduction
The problem of solving the equation x2 +7 = 2n was proposed by Ramanujan [13] in 1913. This equation was
solved perfectly by Nagell [11] in 1960 using techniques from algebraic number theory. In the generalized
form, this equation is called generalized Ramanujan- Nagell equation x2 + k = yn, k, x, y, n belongs to
integers, n ≥ 3, a kind of exponent type equation. This equation has been studied extensively. When n = 3,
it is an elliptic curve. Mordell studied this type of equation carefully and collected most of the important
results in his book [10]. However, when n ≥ 3, it is a hyperelliptic curve which seems to be more difficult to
study, but there is now a vast body of literature on it also.

For some small positive integers k, the solutions have been determined. Lebesgue [8] and Nagell [12]
showed that there are no non-trivial solutions when k = 1 and k = 3, 5, respectively.

Ljungrren [7] proved in the case of k = 2 that the equation has only one positive solution. Several special
case of the Diophantine equation x2 + qm = yn where q is a prime and m,n, x and y are positive integers
have been studied in the last few years. When q = 2 and m is an odd integer, it was proved by Cohn [5] that
this equation has exactly three families of solutions. When q = 3, and m is an odd integer, the equation has
three families of solution as proved by Arif and Abu Muriefah [1]. It was shown by Luca [9] that there exists
only one family of solution when q = 3 and m is an even integer. Tao [14] solved the equation when q = 5
and showed that there is no solution. J. H. E. Cohn [6] refined the earlier elementary approaches and solved
the equation for 77 values of q under 100. Using advanced methods, Bugeaud et al. [4] solved this kind of
equation for 1 ≤ k ≤ 100.

In this short communication, we consider the Diophantine equations x2 +139m = yn and x2 +499m = yn,
n ≥ 3, m > 0 and determine solutions of the equations.

2 Main Results
Theorem 2.1. Let m be odd. Then the Diophantine equation

x2 + 139m = yn, (2.1)

has only one solution in positive integers x, y, m and the unique solution is given by x = 322, y = 47, m = 1
and n = 3.

We start by stating the following lemma which will be used further.

Lemma 2.1. The equation 139x2 + 1 = yn where n is an odd integer ≥ 3 has no solution in integers x and
y for y odd and ≥ 1.

The proof of the Theorem 2.1 is divided into two cases (139, x) = 1 and 139|x. It is sufficient to consider
x a positive integer.
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Proof. Suppose m = 2k + 1, k ≥ 0. Then equation (2.1) becomes

x2 + 1392k+1 = yn, n ≥ 3. (2.2)

If x is odd and y is even, then x2 +1392k+1 ≡ 4(mod 8), but yn ≡ 0(mod 8), which is not possible. Thus
x is even and y is odd.

Case (i) Let (139, x) = 1. Let n be odd , then there is no loss of generality in considering n = p, an odd
prime.Then from [Theorem 6, [6]] we have only two possibilities and they are

x+ 139k
√
−139 = (s+ t

√
−139)p, (2.3)

where y = s2 + 139t2, for some rational integers s and t and

x+ 139k
√
−139 = (

s+ t
√
−139

2
)3, (2.4)

because 139 ≡ 3(mod 8), s ≡ t ≡ 1(mod 2) where y = (s2 + 139t2)/4 for some rational integers s and

t and x = | s3−417st2

8 |.
In (2.3), since y = s2 + 139t2 and y is odd and so only one of s or t is odd and other is even. Equating
imaginary parts of 2.3, we get

139k = t

p−1
2∑

r=0

(
p

2r + 1

)
sp−2r−1(−139t2)

r
. (2.5)

So t is odd and s is even. Since 139 does not divide the term inside summation, we get t = ±139k.

±1 =

p−1
2∑

r=0

(
p

2r + 1

)
sp−2r−1(−1392k+1)

r
. (2.6)

This is equation (1) in [6] and Lemmas 4 and 5 in [6] show that both the signs are impossible. Hence
(2.3) gives rise to no solution.

Now let us consider equation (2.4). By equating imaginary parts , we obtain,

8 · 139k = t(3s2 − 139t2). (2.7)

If t = ±1 in (2.7), we have
±8 · 139k = 3s2 − 139. (2.8)

When we consider k = 0, then ±8 = 3s2 − 139.

First we consider negative sign,
−8 = 3s2 − 139.

Then
3s2 = 131,

which is not possible.

Now we consider the positive sign,

8 = 3s2 − 139. (2.9)

This implies that
3s2 = 147

or,
s = ±7.

This equation has only solution when

t = ±1, s = ±7, k = 0 and y = s2+139t2

4 = 47.
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Hence from (2.4), we have x = | s3−417st2

8 | = 322.

Finally if t = ±139k, then from equation (2.7), we have

±8 = 3s2 − 1392k+1, (2.10)

where k > 0, which is impossible modulo 139. Hence there is no solution of this equation.

Now if n is even, then it is sufficient to consider n = 4, hence the equation (2.2) becomes

x2 + 1392k+1 = y4

or,

y4 − x2 = 1392k+1

or,
(y2 − x)(y2 + x) = 1392k+1.

Since (139, x) = 1, we have
y2 + x = 1392k+1 (2.11)

and
y2 − x = 1. (2.12)

Eliminating x from equations (2.11) and (2.12), we get

2y2 = 1392k+1 + 1.

Then 2y2 ≡ 4 (mod 8) i.e.y2 ≡ 2 (mod 4) as y is odd, which is impossible.

Case (ii) Suppose that 139|x, then x = 139u ·X ; so that, 139|y, then y = 139v · Y , where u > 0, v > 0
and (139, X) = (139, Y ) = 1. Then

1392uX2 + 1392k+1 = 139nvY n.

There are following possibilities for solving this equation as discussed below:

1) 2u = min(2u, 2k + 1, nv). Then by cancelling 1392u, we get

X2 + 1392(k−u)+1 = 139nv−2uY n.

If nv− 2u = 0, then we get X2 + 1392(k−u)+1 = Y n with (139, X) = 1. If k−u = 0, this equation
has the only solution x = 322 and n = 3. If k − u > 0, then it has no solution.

2) 2k + 1 = min(2u, 2k + 1, nv). Then 1392u−2k−1 · X2 + 1 = 139nv−2k−1Y n and considering this
equation modulo 139, which is not possible. Hence this equation has no solution.

3) nv = min(2u, 2k + 1, nv). Then 1392u−nv ·X2 + 1392k+1−nv = Y n. This is possible modulo 139
only if 2u− nv = 0 or 2k + 1− nv = 0 and both cases are not possible. This completes the proof
of the theorem.

Theorem 2.2. The equation
x2 + 499m = yn, n ≥ 3, m > 0 (2.13)

has only one solution in positive integers (x, y,m) and the solution is given by

x = 2158, y = 167, m = 1, n = 3.

Lemma 2.2. The equation 499x2 + 1 = yn where n is an odd integer ≥ 3 has no solution in integers x and
y for y odd and ≥ 1

The proof of the theorem is divided into two cases (499, x) = 1 and 499|x. It is sufficient to consider x a
positive integer.

Proof. Let us suppose that m = 2k + 1. We shall assume that k > 0, n > 3 .
If x is odd and y even, we get x2 + 4992k+1 ≡ 4 (mod 8), but yn ≡ 0 (mod 8). Hence, we suppose that x

is even and y is odd.
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Case (i) Let (499, x) = 1. Let n be odd , then there is no loss of generality in considering n = p, an odd
prime.Then from [ [6], Theorem 6] we have only two possibilities and they are

x+ 499k
√
−499 = (a+ b

√
−499)p, (2.14)

where
y = a2 + 499b2,

and
x+ 499k

√
−499 = (a+ b

√
−499/2)3, (2.15)

because 499 ≡ 3(mod 8), a ≡ b ≡ 1(mod 2), where y = a2+499b2

4 for some rational integers a and b

and x = |a3−1497ab2

8 |.
In (2.14), since y = a2 +499b2 and y is odd and so only one of a or b is odd and other is even. Equating
imaginary parts, we get

499k = b

p−1
2∑

r=0

(
p

2r + 1

)
ap−2r−1(−499b2)

r
. (2.16)

So b is odd and a is even. Since 499 does not divide the term inside summation, we get b = ±499k.

±1 =

p−1
2∑

r=0

(
p

2r + 1

)
ap−2r−1(−499b2k+1)

r
. (2.17)

This is Cohn [6, eqn (1)]. Therefore, Lemmas 4 and 5 due to Cohn [6] show that both the signs are
impossible. Hence (2.14) gives rise no solution.

Now let us consider equation (2.15). By equating imaginary parts, we obtain,

8 · 499k = b(3a2 − 499b2). (2.18)

If b = ±1 in (2.18), we have
±8 · 499k = 3a2 − 499. (2.19)

When we consider k = 0, we get ±8 = 3a2 − 499. We consider negative sign

−8 = 3a2 − 499

or,
3a2 = −8 + 499

or,
3a2 = 491,

which is not possible.
Now we consider positive sign

8 = 3a2 − 499 (2.20)

or,
3a2 = 507

or,
a = ±13.

This equation has only solution when b = ±1, a = ±13, k = 0 and y = a2+499b2

4 = 167. Hence from (2.15),

we have x = |a3−1497ab2

8 | = 2158. Hence x = 2158.
Finally if b = ±499k, then we have

±8 = 3a2 − 4992k+1, (2.21)

where k > 0, which is impossible modulo 499. Hence there is no solution of this equation.
Now if x is even, then from the equation (2.13), it is sufficient to consider n = 4, hence

(y2 + x)(y2 − x) = 4992k+1.
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Since (499, x) = 1, we have
y2 + x = 4992k+1, (2.22)

and
y2 − x = 1. (2.23)

Eliminating x from both equations (2.22) and (2.23), we get

2y2 = 4992k+1 + 1.

Then 2y2 ≡ 4 (mod 8) i.e. y2 ≡ 2 (mod 4), which is impossible.

Case (ii) Let 499|x. Then, of course, 499|y. Suppose that x = 499u ·X, y = 499v · Y , where u > 0, v > 0
and (499, X) = (499, Y ) = 1. Then

4992u ·X2 + 4992k+1 = 499nv · Y n,
i) 2u = min(2u, 2k + 1, nv). Then by cancelling 4992u, we get

X2 + 4992k+1−2u = 499nv−2uY n

If nv−2u = 0, then we get X2 +4992(k−u)+1 = Y n, with (499, X) = 1. If k−u = 0, this equation
has only solution x = 2158 and n = 3. If k − u > 0, then it has no solution.

ii) 2k + 1 = min(2u, 2k + 1, nv). Then 4992u−2k−1 · X2 + 1 = 499nv−2k−1Y n and considering this
equation modulo 499, we get nv − 2k − 1 = 0, so n is odd, 499(499k−u−1X)2 + 1 = Y n. By the
Lemma 2.2 this equation has no solution.

iii nv = min(2u, 2k + 1, nv). Then 4992u−nv ·X2 + 4992k+1−nv = Y n. This is possible modulo 499
only if 2u− nv = 0 or 2k + 1− nv = 0 and both cases are not possible. Hence this completes the
proof of the Theorem 2.2.
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