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Abstract

Using combinatorial methods, we obtain some identities, involving binomial coefficients, for Fibonacci
and Lucas numbers. We define a set and show that the cardinality of this set equals Fibonacci number.
We discuss some properties of this set. Technique has been extended to obtain results for Lucas numbers.
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1 Introduction
A recursively defined sequence of positive integers that has been extensively studied is the well-known
Fibonacci sequence {Fn}. Fibonacci sequence has been extended in many directions depending upon its
recurrence relation as well as seed values[6, 8]. This sequence has wonderful and amazing properties and
has found to be useful in different fields of knowledge[2, 4, 5, 7]. In this paper we look at the following
application of Fibonacci numbers in a different manner.

Let us suppose that there are six steps with ground being first step and top being sixth. A person
standing on the top (sixth step) wants to come down on the ground (first step) with the restriction that at
a time he can take either one or two steps only. In how many ways he can come to the ground ? It is known
that this can be done in F6 ways. In [1], this has been established by the method of tilng. We shall arrive
at the answer by using a novel approach.

We first introduce some terms and notations to be used.
Terms and Notations.

1.1 For a positive integer n, let Ωn denotes set of tuples (u1, u2, · · · , uk) of natural numbers with the
property that u1 = n, uk = 1 and 0 < ui − ui+1 ≤ 2, 1 ≤ i ≤ k − 1.

1.2 Let |Ωn| denotes the cardinality of the set Ωn.
1.3 Let Rank Ωn denotes the number of tuples (u1, u2, · · · , uk) in Ωn such that exactly even number of u′is

are odd.
1.4 For λ = (u1, u2, · · · , uk) ∈ Ωn, let Sign λ = (−1)(u1+u2+···+uk).
1.5 Let ∧n denotes a set of all elements η which is obtained by replacing 1 by 0 in elements of the type

(n, · · · , 2, 1) ∈ Ωn.
We illustrate the above defined terms by following example.

Example 1.1 Let n = 6. Then
Ω6 = {(6, 5, 4, 3, 2, 1), (6, 5, 4, 3, 1), (6, 5, 3, 1), (6, 5, 3, 2, 1), (6, 4, 2, 1), (6, 4, 3, 1),
(6, 4, 3, 2, 1), (6, 5, 4, 2, 1)}. Thus |Ω6| = 8 and Rank Ω6 = 3.
For λ = (6, 5, 4, 3, 1) ∈ Ω6, Sign λ = −1.
∧6 = {(6, 5, 4, 3, 2, 0), (6, 5, 3, 2, 0), (6, 4, 2, 0), (6, 4, 3, 2, 0), (6, 5, 4, 2, 0)};
| ∧6 | = 5, Rank ∧6 = 2 and for η = (6, 5, 3, 2, 0) ∈ ∧6, Sign η = 1.

2 Identities involving Fibonacci numbers

In this section, we shall obtain some identities for Fibonacci numbers. The well-known Fibonacci sequence
{Fn} is defined by F0 = 0, F1 = 1 and for n ≥ 2, Fn = Fn−1 +Fn−2. Fn is called the nth Fibonacci number.
We first have the following proposition.
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Proposition 2.1. For n ≥ 1, |Ωn| = Fn.

Proof. Let in = 1,∀ n ≥ 0. For λ = (u1, u2, · · · , uk) ∈ Ωn, let iλ denote the product iu1
iu2
· · · iuk .Using

Fibonacci recurrence relation, we have for n ≥ 2,

Fn = in−1Fn−1 + in−2Fn−2. (2.1)

So that inFn = inin−1Fn−1 + inin−2Fn−2. Using (2.1) with n replaced by n− 1 and n− 2 on the right
hand side, we get
inFn = inin−1in−2Fn−2 + inin−1in−3Fn−3 + inin−2in−3Fn−3 + inin−2in−4Fn−4.

Continuing this way, using (2.1) repeatedly, we get

inFn =
∑

(λ∈Ωn)

iλF1 +
∑

(λ∈Ωn)

iλF0. (2.2)

From definitions and seed values, it follows that Fn =
∑
λ∈Ωn

1 = |Ωn|.
This completes the proof.

Remark 2.1 Observe that Ω6 is the set of all possible ways in which the task, given in our question, can be
carried out. Hence the number of ways is equal to |Ω6| = 8 = F6.

Let
(
n
r

)
denote the binomial coefficient, that is

(
n
r

)
= n!

(n−r)!r! . We give an alternative proof of the

following result in ([1, 3, 8]) by using above arguments.

Proposition 2.2. For n ≥ 1, Fn =
∑[n−1

2 ]

(s=0)

(
n−1−s

s

)
.

Proof. For n ≥ 1 and λ = (u1, u2, · · · , uk) ∈ Ωn, let εi = ui − ui+1, (1 ≤ i ≤ k − 1).
From the construction of Ωn, it is clear that εi = 1 or 2 and that

n− 1 = ε1 + ε2 + · · ·+ εk−1.

First let us consider the case when all εi’s are equal to 1. Here we have

n− 1 = 1 + 1 + · · ·+ 1, (n− 1 summands) (2.3)

and there is exactly 1(=
(
n−1

0

)
) way to write this. Next suppose exactly one of εi is 2. Now in this case, we

have n− 2 positions with one 2 and so there are
(
n−2

1

)
ways to choose position of that 2. Next, there will be

(n− 3) positions with two 2 ’s. This can be achieved in
(
n−3

2

)
ways.

Proceeding this way we get, in general, that exactly s number of positions will be there with (n− 1− s)
2’s and is obtained in

(
n−1−s

s

)
ways. Also

(
n−1−s

s

)
will be non zero for (n− 1− s) ≥ s; that is (n− 1) ≥ 2s.

Thus, we have |Ωn| =
∑[n−1

2 ]
s=0

(
n−1−s

s

)
. Now the result follows from Proposition 2.1.

Next we have the following result.

Proposition 2.3. For n ≥ 1, | ∧n | = Fn−1 .

Proof. For n ≥ 1 and λ = (u1, u2, · · · , uk) ∈ ∧n, let εi = ui − ui+1, (1 ≤ i ≤ k − 1). From the construction
of ∧n, it is clear that εi = 1 or 2 and that

n− 2 = ε1 + ε2 + · · ·+ εk−1.

First consider the case when all εi’s are equal to 1. We shall have

n− 2 = 1 + 1 + · · ·+ 1, (n− 2 summands) (2.4)

and there is exactly 1 (=
(
n−2

0

)
) way to write this. Next suppose exactly one of εi is 2. Now in this case we

have n− 3 positions with one 2 and so there are
(
n−3

1

)
ways to choose position of that 2. Next there will be

(n− 4) positions with two 2’s. This can be achieved in
(
n−4

2

)
ways.

Proceeding this way we get, in general, that exactly s number of positions will be there with (n− 2− s)
2’s and is obtained in

(
n−2−s

s

)
ways. Also

(
n−2−s

s

)
will be non zero for (n− 2− s) ≥ s; that is (n− 2) ≥ 2s.

Thus we have | ∧n | =
∑[n−2

2 ]
s=0

(
n−2−s

s

)
= Fn−1 (by Proposition 2.3).
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3 Identities involving Lucas numbers
In this section, we shall obtain some identities involving Lucas numbers. Lucas sequence {Ln} is defined by
L0 = 2, L1 = 1 and for n ≥ 2, Ln = Ln−1 + Ln−2. Ln is called the nth Lucas number. We first give the
following result proved alternatively in [6, 8].

Proposition 3.1. For n ≥ 1, Ln = Fn + 2Fn−1.

Proof. Let in = 1 for all n ≥ 0. For λ = (u1, u2, · · · , uk) ∈ Ωn or ∧n, let i denote the product iu1
iu2
· · · iuk .

Now we have Ln = Ln−1 + Ln−2, (n ≥ 2), which may be written as

Ln = in−1Ln−1 + (n− 2)Ln−2, (3.1)

so that, using (3.1) with n replaced by n− 1 and n− 2, we get

inLn = inin−1Ln−1 + inin−2Ln−2

= inin−1in−2Ln−2 + inin−1in−3Ln−3 + inin−2in−3Ln−3 + inin−2in−4Ln−4.

Continuing this way, using (3.1) repeatedly, we get

inLn =
∑

λ∈Ωn

iλL1 +
∑

λ∈∧n

iλL0, (3.2)

Using seed values for Lucas sequence, we get

inLn =
∑

λ∈Ωn

1 + 2
∑

λ∈∧n

1,

= |Ωn|+ 2| ∧n |
= Fn + 2Fn−1 (Using Propositions 2.1 and 2.4 ).

(3.3)

Hence the result.

Next if Gn is the nth generalized Fibonacci or Gibonacci number satisfying the relation
Gn = Gn−1 +Gn−2, (n ≥ 2) with G0 = a and G1 = b, then arguing as in Proposition 3.1, we get

Proposition 3.2. For n ≥ 1, Gn = bFn + aFn−1.

4 Some Properties of Ωn and ∧n
In this section we discuss some properties of Ωn and ∧n. First we define a Fibonacci type sequence {Sn}.

Let jn = (−1)n, ∀ n ≥ 0. For λ = (u1, u2, · · · , uk) ∈ Ωn or ∧n, let jλ denote the product ju1
ju2
· · · juk .

Define a sequence

Sn = jn−1Sn−1 + jn−2Sn−2, (n ≥ 2) with S0 = 2 and S1 = 1, (4.1)

which implies

jnSn = jnjn−1Sn−1 + jnjn−2Sn−2

= jnjn−1jn−2Sn−2 + jnjn−1jn−3Sn−3 + jnjn−2jn−3Sn−3 + jnjn−2jn−4Sn−4,

where last expression is obtained by using (4.1) with n replaced by n− 1 and n− 2.
Continuing this way, using (4.1) repeatedly, we get

jnSn =
∑

λ∈Ωn

jλS1 +
∑

λ∈∧n

jλS0. (4.2)

Using seed values, we get

jnSn =
∑

λ∈Ωn

(Sign λ) + 2
∑

λ∈∧n

(Sign λ). (4.3)

In view of (3.3), this gives the following:

Proposition 4.1. For n ≥ 1, Ln + (−1)nSn = 2(Rank Ωn) + 4(Rank ∧n).

Next we have ,

Proposition 4.2. For m ≥ 0, S2m+1 = S2m+4.
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Proof. Note that equation (4.1) can be rewritten as

Sn = (−1)n(Sn−2 − Sn−1). (4.4)

So that S2m+4 = S2m+2 − S2m+3 and S2m+3 = −S2m+1 + S2m+2, which in turn gives
S2m+1 = S2m+4.

Proposition 4.3. For m ≥ 0, S2m+1 = (−1)mFm−1 and S2m+4 = (−1)mFm−1.

Proof. First note that if S2m+1 = (−1)m Fm−1 is true then, by Proposition 4.2,
S2m+4 = (−1)mFm−1.

For m = 0, since F−1 = 1, S1 = 1 which is true.
Suppose S2m+1 = (−1)mFm−1,∀ m < n.Then

S2n+1 = S2n − S2n−1

= S2(n−2)+4 − S2(n−1)+1

= (−1)n−2Fn−3 − (−1)n−1Fn−2

= (−1)n[Fn−3 + Fn−2] = (−1)nFn−1.

This completes the proof.

5 Computation of Rank Ωn and Rank ∧n
In this section, we shall obtain some recurrence relations for Rank Ωn and Rank ∧n.

Proposition 5.1. For m ≥ 2,
(a) Rank Ω2m = Rank Ω2m−1+ Rank Ω2m−2.
(b) Rank Ω2m−1 = F2m−1 − ( Rank Ω2m−2+ Rank Ω2m−3).

Proof. Define An = {(u1, u2, · · · , uk) ∈ Ωn | u1 = n and u2 = n− 1} and
Bn = {(u1, u2, · · · , uk) ∈ Ωn | u1 = n and u2 = n− 2}.
Note that Ωn is a disjoint union of An and Bn.

(a) If n = 2m , then Rank An = Rank Ωn−1 and Rank Bn = Rank Ωn−2.
Hence Rank Ωn = Rank An+ Rank Bn = Rank Ωn−1+ Rank Ωn−2 as required.

(b) If n = 2m− 1, then Rank An = |Ωn−1|− Rank Ωn−1 and
Rank Bn = |Ωn−2|− Rank Ωn−2. Then

Rank |Ωn| = Rank An + Rank Bn

= (Fn−1 − Rank Ωn−1 + (Fn−2 − Rank Ωn−2)

= Fn − (Rank Ωn−1 + Rank Ωn−2).

as required.

Proceeding in the same way as above, we can prove the following relations for Rank ∧n.

Proposition 5.2. For m ≥ 2,
(a) Rank ∧2m = Rank ∧2m−1+ Rank ∧2m−2.
(b) Rank ∧2m−1 = F2m−2 − ( Rank ∧2m−2+ Rank ∧2m−3).

Next we have following representation for Rank Ωn.

Proposition 5.3. For m ≥ 2,

(a) Rank Ω2m =
∑[

(2m−1)
4 ]

s=0

(
2m−2−2s

2s+1

)
.

(b) Rank Ω2m−1 =
∑[

(2m−2)
4 ]

s=0

(
2m−1−2s

2s

)
.
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Proof. (a) If m ≥ 2, and λ = (u1, u2, · · · , uk) ∈ Ω2m, let εi = ui − ui+1, (1 ≤ i ≤ k − 1). From the
construction of Ω2m it is clear that εi = 1 or 2 and that

2m− 1 = ε1 + ε2 + · · ·+ εk−1.

First consider the case when all εi’s are equal to 1. In this case we will have

2m− 1 = 1 + 1 + · · ·+ 1, (n− 2 summands) (5.1)

and there is exactly 1 (=
(

2m−1
0

)
) way to write this. In this case there are odd number of odd entries. So we

do not count this case. Next suppose exactly one of εi is 2. Now in this case we have n − 2 positions with
one 2 and so there are

(
n−2

1

)
ways to choose position of that 2. Here there are even number of odd entries.

Counting this we have the required result.
Similarly we can prove (b).

Arguing as in above proposition, we can prove the following:

Proposition 5.4. For m ≥ 2,

(a) Rank ∧2m =
∑[

(2m−2)
4 ]

s=0

(
2m−3−2s

2s+1

)
.

(b) Rank ∧2m−1 =
∑[

(2m−3)
4 ]

s=0

(
2m−2−2s

2s

)
.

6 Conclusion
In this paper we have used simple combinatorial arguments to prove some known results. For this purpose
we have defined two sets and some properties of these sets are discussed. The technique can be extended to
other Fibonacci like numbers to obtain the known results in a simple way.
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of the paper.
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