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Abstract

In this paper we prove a common fixed point theorem for four selfmaps of a S -metric space. Also we
deduce a common fixed point theorem for four selfmaps of a complete S-metric space. Moreover we show
that a common fixed point theorem for four selfmaps of a metric space proved by Brian Fisher follows
as a particular case.
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1 Introduction
Fixed point theorems are extensively studied in the literature for several reasons and one of the reason is
that there are a quite number of problems in integral and differential equations, for which solutions can be
equivalently formulated as a fixed point of some operator on a suitable space. In an attempt to generalize
fixed point theorems proved for selfmaps of metric spaces, Dhage [2,3] has introduced generalized metric
spaces called D-metric space in his Ph.D. thesis [1] in the year 1984 which is a landmark in the history
of metric fixed point theory in higher dimensional metric spaces. As a probable modification to D-metric
spaces, Sedghi, Shobe and Zhou [11] introduced D∗-metric spaces. In 2006, Mustafa and Sims [10] initiated
G-metric spaces; while Sedghi, Shobe and Aliouche [12] considered S-metric spaces in 2012. Hereafter we
consider, in this paper, only S-metric spaces and common fixed point theorems on such spaces.

The notion of commutativity of self maps on a metric space has been generalized to weakly commuting by
Sessa [13], which is further generalized to compatibility by Jungck [9]. These common fixed point theorems
on the lines of Sessa [13] and Jungck[9] are further extended to D-metric spaces by Dhage [4,5] and Dhage
et al. [6] under the meaningful terminology “coincidently commuting mappings” and “limit coincidently
commuting mappings.”

In this paper, we establish a common fixed point theorem for four limit coincidently commuting selfmaps
of a S-metric space. Further we generalize a common fixed point theorem of Fisher [8].

2 Preliminaries
Definition 2.1 ([12]). Let X be a non empty set. By S-metric we mean a function
S : X3 → [0,∞) which satisfies the following conditions for x, y, z, w ∈ X
(a) S(x, y, z) ≥ 0.
(b) S(x, y, z) = 0 if and only if x = y = z.
(c) S(x, y, z) ≤ S(x, x, w) + S(y, y, w) + S(z, z, w).
An ordered pair (X,S) is called a S-metric space.

Remark 2.1. It was shown in ([12], Lemma 2.5) that S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Definition 2.2 ([12]). Let (X,S) be a S-metric space. A sequence {xn} in X is said to converge, if there is
a x ∈ X such that S(xn, xn, x) → 0 as n → ∞; that is, for ε > 0, there exists an n0 ∈ N such that for all
n ≥ n0, we have S(xn, xn, x) < ε and in this case we write lim

n→∞
xn = x.

Definition 2.3 ([12]). Let (X,S) be a S-metric space. A sequence {xn} in X is called a Cauchy sequence if
for ε > 0, there exists an n0 ∈ N such that S(xn, xn, xm) < ε for all n,m ≥ n0.
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Definition 2.4 ([12]). A S-metric space (X,S) is said to be complete if every Cauchy sequence in it converges
to some point in X.

Definition 2.5 ([1]). Let (X, d) be any metric space then Sd(x, y, z) = d(x, y)+d(y, z)+d(z, x) is a S-metric
on X. We call this S-metric as the S-metric induced by d ( we denote this by Sd).

Remark 2.2. Let (X, d) be any metric space and Sd be the S-metric induced by d. For any sequence {xn} in
(X,Sd) is a Cauchy sequence if and only if {xn} is a Cauchy sequence in (X, d). Thus (X,Sd) is complete
if and only if (X, d) is complete.

Definition 2.6. Let (X,S) be a S-metric space. If there exists sequences {xn} and {yn} such that lim
n→∞

xn =

x and lim
n→∞

yn = y then lim
n→∞

S(xn, xn, yn) = S(x, x, y), then we say that S(x, y, z) is continuous in x and y.

Definition 2.7. If g and f are self maps of a S-metric space (X,S) such that for every sequence {xn} in X
with lim

n→∞
gxn = lim

n→∞
fxn = t for some t ∈ X we have

lim
n→∞

S(gfxn, gfxn, fgxn) = 0 then g and f are said to be limit coincidently commuting.

Trivially commuting self maps of a S-metric space are limit coincidently commuting but not conversely.

Definition 2.8 ([7]). An upper semi-continuous nondecreasing function φ : [0,∞) → [0,∞) is called D-
function if φ(0) = 0.φ is called contractive if φ(t) < t for t > 0.

Definition 2.9. Let g, f, h and p be self maps of a S-metric space such that g(X) ⊆ p(X) and f(X) ⊆ h(X).
Then for any x0 ∈ X, if {xn} is a sequence in X such that gx2n = px2n+1 and fx2n+1 = hx2n+2 for n ≥ 0,
then {xn} is called an associated sequence of x0 relative to self maps g, f, h and p.

3 Main Result
Theorem 3.1. Let g, f, h and p be self maps of a S- metric space (X,S) satisfying the following conditions

(i) g(X) ⊆ p(X) and f(X) ⊆ h(X),
(ii) S(gx, gx, fy) ≤ φ(µ(x, y)) for all x, y ∈ X where φ is a contractive D-function and µ(x, y) =

max{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)} for x, y ∈ X,
(iii) one of g, f, h and p is continuous

and
(iv) the pairs (g, h) and (f, p) are limit coincidently commuting.

Further if
(v) there exists a point x0 ∈ X and an associated sequence {xn} relative to selfmaps such that

gx0, fx1, gx2, fx3, · · · , gx2n, fx2n+1 · · · converges to some z ∈ X,
then g, f, h and p have a unique common fixed point z ∈ X. Also there is no other common fixed point for g
and h; and that there is no other common fixed point for f and p.

Before proving the theorem, we establish some Lemmas which are noteworthy.

Lemma 3.1. Suppose that g, f, h and p are self maps of a S-metric space satisfying the conditions (i),(ii)
and (v) of Theorem 3.1 with the pair (g, h) is limit coincidently commuting. Then
(a) lim

n→∞
µ(hx2n, x2n+1) = S(hz, hz, z) whenever h is continuous,

(b) lim
n→∞

µ(gx2n, x2n+1) = S(gz, gz, z) whenever g is continuous.

Proof. In view of (v), the sequences {gx2n} and {fx2n+1} converge to some z ∈ X and
since gx2n = px2n+1 and fx2n+1 = hx2n+2, we have

gx2n, fx2n+1, hx2n, p2n+1 → z as n→∞. (3.1)

(a) If h is continuous, then we have

h2x2n → hz, hgx2n → hz as n→∞. (3.2)

Also the limit coincidently commutativity of the pair (g, h) implies

lim
n→∞

S(ghx2n, ghx2n, hgx2n) = 0. (3.3)
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From (3.2) and (3.3) we get
ghx2n → hz as n→∞. (3.4)

Now from (ii), we have

µ(hx2n, x2n+1) = max{S(h2x2n, h
2x2n, px2n+1),

S(h2x2n, h
2x2n, ghx2n), S(px2n+1, px2n+1, fx2n+1)}.

(3.5)

Letting n→∞ in (3.5) and using the continuity of S(x, y, z) in x and y and (3.1), (3.2) and (3.4), we get
lim
n→∞

µ(hx2n, x2n+1) = max{S(hz, hz, z), S(hz, hz, hz), S(z, z, z)} = S(hz, hz, z)

This proves (a).

(b) If g is continuous, by (3.1) we have

g2x2n → gz, ghx2n → gz as n→∞. (3.6)

Therefore in view of (3.3), we get
hgx2n → gz. (3.7)

Now we have
µ(gx2n, x2n+1) = max{S(hgx2n, hgx2n, px2n+1), S(hgx2n, hgx2n, gx2n+1), S(px2n+1, px2n+1, fx2n+1)}

= max{S(gz, gz, z), S(gz, gz, z), S(z, z, z)}
= S(gz, gz, z).

(3.8)
This proves (b).

Lemma 3.2. Suppose that g, f, h and p are self maps of a S-metric space (X,S) such that the pair (f,p) is
limit coincidently commuting and the conditions (i),(ii) and (v) of Theorem 3.1, then
(a) lim

n→∞
µ(x2n, px2n+1) = S(z, z, pz) whenever p is continuous,

(b) lim
n→∞

µ(x2n, fx2n+1) = S(z, z, fz) whenever f is continuous.

Proof. The proof of Lemma 3.2 is similar to the proof of Lemma 3.1 with appropriate changes.

Proof of Theorem 3.1.

We first establish the existence of a common fixed point in case if h is continuous.
The proof is similar in other cases of condition (iii) of Theorem 3.1 with suitable changes.
Suppose that h is continuous.
Taking x = hx2n and y = x2n+1 in condition (ii) of Theorem 3.1, we have

S(ghx2n, ghx2n, fx2n+1) ≤ φ(µ(hx2n, x2n+1)). (3.9)

Also the continuity of S(x, y, z) in x and y gives

S(hz, hz, z) = lim
n→∞

S(ghx2n, ghx2n, fx2n+1).

Therefore by Lemma 3.1, we get

S(hz, hz, z) = lim sup
n→∞

S(ghx2n, ghx2n, fx2n+1)

≤ lim sup
n→∞

φ(µ(hx2n, x2n+1))

= φ(lim sup
n→∞

µ(hx2n, x2n+1))

= φ( lim
n→∞

µ(hx2n, x2n+1))

= φ(S(hz, hz, z)).

(3.10)

Hence
S(hz, hz, z) ≤ φ(S(hz, hz, z). (3.11)

We now claim that hz = z.
In fact, if hz 6= z, then S(hz, hz, z) > 0 so that φ(S(hz, hz, z)) < S(hz, hz, z) and this contradicts (3.11),
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therefore hz = z.
Now the continuity of S(x, y, z) in x and y gives

S(gz, gz, z) = lim
n→∞

S(gz, gz, fx2n+1)

= lim sup
n→∞

S(gz, gz, fx2n+1).

Using condition (ii) of Theorem 3.1 and the upper semicontinuity of φ in the above, we get

S(gz, gz, z) ≤ lim sup
n→∞

φ(µ(z, x2n+1))

= φ(lim sup
n→∞

µ(z, x2n+1)).
(3.12)

But

lim
n→∞

µ(z, x2n+1) = lim
n→∞

max{S(hz, hz, px2n+1, S(hz, hz, gz), S(px2n+1, px2n+1, fx2n+1)}

= max{S(hz, hz, z), S(z, z, gz), S(z, z, z)}
= S(z, z, gz) = S(gz, gz, z), since hz = z, px2n+1 → z and fx2n+1 → z as n→∞.

Therefore we get
S(gz, gz, z) ≤ φ(S(gz, gz, z)). (3.13)

If gz 6= z then S(gz, gz, z) > 0 and by the definition of φ we get φ(S(gz, gz, z) < S(gz, gz, z), contradicting
(3.13),hence gz = z
Thus we have gz = hz = z.
Now since g(X) ⊆ p(X), there is a u ∈ X with z = gz = pu and we have gz = hz = pu = z.
We now claim that fu = z.
In fact if fu 6= z, then S(z, z, fu) > 0 and therefore by (ii) of Theorem 3.1 we get

S(z, z, fu) = S(gz, gz, fu) ≤ φ(µ(z, u))

= φ(max{S(gz, gz, pu), S(hz, hz, gz), S(pu, pu, fu)})
= φ(S(z, z, fu)),

since gz = hz = pu = z and above result implies S(z, z, fu) ≤ φ(S(z, z, fu)) < S(z, z, fu) which is
contradiction. Therefore fu = z.
Hence we have gz = hz = pu = fu = z.
Now taking yn = u for all n ≥ 1, it follows that fyn → fu = z and pyn → pu = z as n→∞.
Also since the pair (f, p) is limit coincidently commuting,
we have lim

n→∞
S(fpyn, fpyn, pfyn) = 0 which gives S(fpu, fpu, pfu) = 0 implies fpu = pfu so that fz = pz.

Now by condition (ii) of Theorem 3.1, we have

S(z, z, fz) = S(gz, gz, fz) ≤ φ(µ(z, z))

= φ(max{S(hz, hz, pz), S(hz, hz, gz), S(pz, pz, fz)}
= φ(S(hz, hz, fz)) = φ(S(z, z, fz)),

(3.14)

since gz = hz = z and pz = fz.
Therefore we get S(z, z, fz) ≤ φ(S(z, z, fz)) which yields fz = z.
Hence gz = hz = pz = fz = z, proving z is a common fixed point of g, f, h and p.
Now we prove uniqueness of common fixed point.
If possible let z′( 6= z) be another common fixed point of g, f, h and p.
Then from condition (ii) of Theorem 3.1 we have

S(z, z, z′) = S(gz, gz, gz′) ≤ φ(µ(z, z′)). (3.15)

Since µ(z, z′) = S(z, z, z′) from (ii) of Theorem 3.1, (3.15) gives S(z, z, z′) ≤ φ(S(z, z, z′)) and this will be a
contradiction if z 6= z′.
Hence z is unique common fixed point of f, g, h and p.
Now we prove that z is unique common fixed point of g and h and of f and p.
Let w be another fixed point of g and h. Then z = hz = fz = gz = pz and w = hw = gw.
Now from condition (ii) of Theorem 3.1 we have

S(z, z, w) = S(w,w, z) = S(gw, gw, fz) ≤ φ(µ(w, z)), (3.16)
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since µ(w, z) = S(w,w, z). Therefore (3.16) gives S(w,w, z) ≤ φ(S(w,w, z)) and this will be a contradiction
if w 6= z.
Hence w = z
Therefore z is unique common fixed point of g and h. Similarly we can show that z is unique common fixed
point of f and p.
Hence Theorem 3.1 is completely proved.

4 Common fixed point Theorem for four self maps of a complete S-metric space
Before proving the main result in this section, first we establish a preparatory Lemma.

Lemma 4.1. Let (X,S) be a S- metric space and g, f, h and p be self maps of X such that
(i) g(X) ⊆ p(X) and f(X) ⊆ h(X),

(ii) S(gx, gx, fy) ≤ c.µ(x, y) for all x, y ∈ X where 0 ≤ c < 1 and
µ(x, y) = max{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)}.
Further if

(iii) (X,S) is complete, then for any x0 ∈ X and for any associated sequence {xn} relative to four self maps
the sequence gx0, fx1, gx2, fx3, · · · , gx2n, fx2n+1 · · · converges to some z ∈ X.

Proof. Suppose that g, f, h and p are self maps of a S-metric space (X,S) for which conditions (i) and (ii)
holds. Let a point x0 ∈ X and {xn} be any associated sequence of x0 relative to four selfmaps. Then since
gx2n = px2n+1 and fx2n+1 = hx2n+2 for all n ≥ 0 .
Note that

µ(x2n, x2n+1) = max{S(hx2n, hx2n, px2n+1), S(hx2n, hx2n, gx2n), S(px2n+1, px2n+1, fx2n+1)}
= max{S(hx2n, hx2n, gx2n), S(hx2n, hx2n, gx2n), S(px2n+1, px2n+1, fx2n+1)}
= max{S(hx2n, hx2n, gx2n), S(px2n+1, px2n+1, fx2n+1)}
= max{S(hx2n, hx2n, gx2n), S(gx2n, gx2n, fx2n+1)}
= max{S(gx2n, gx2n, fx2n−1), S(gx2n, gx2n, fx2n+1)}.

This together with (ii) of Lemma 4.1 gives

S(gx2n, gx2n, fx2n+1) ≤ cµ(x2n, x2n+1)

≤ cmax{S(gx2n, gx2n, fx2n−1), S(gx2n, gx2n, fx2n+1)}
and since 0 ≤ c < 1, it follows from the above inequality that

max{S(gx2n, gx2n, fx2n−1), S(gx2n, gx2n, fx2n+1)} = S(gx2n, gx2n, fx2n−1).

Therefore
S(gx2n, gx2n, fx2n+1) ≤ cS(gx2n, gx2n, fx2n−1). (4.1)

Similarly
S(gx2n, gx2n, fx2n−1) ≤ cS(gx2n−2, gx2n−2, fx2n−3). (4.2)

From (4.1) and (4.2), we get

S(gx2n, gx2n, fx2n+1) ≤ c2S(gx2n−2, gx2n−2, fx2n−1)

≤ c4S(gx2n−4, gx2n−4, fx2n−3)

· · · · · · · · ·
· · · · · · · · ·

≤ c2nS(gx0, gx0, fx1)→ 0,

as c2n → 0 as n → ∞ (because c < 1), therefore the sequence gx0, fx1, gx2, fx3, · · · , gx2n, fx2n+1 · · · is a
Cauchy sequence in (X,S) and since X is complete, it converges to a point say z ∈ X, proving lemma.

Theorem 4.1. Suppose that (X,S) is a S-metric space satisfying conditions (i) to (v) of Theorem 3.1.
Further if
(v)’ (X,S) is complete,
then g, f, h and p have a unique common fixed point z ∈ X. Also there is no other common fixed point for g
and h and that there is no other common fixed point for f and p.
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Proof. In view of Lemma 4.1, the condition (v) of the Theorem follows from Theorem 3.1 because of (v)’,
hence Theorem 4.1 follows from Theorem 3.1.

Corollary 4.1 ([8] Theorem 2). Let g, f, h and p be self maps of a metric space (X, d) satisfying the
conditions

(i) g(X) ⊆ p(X) and f(X) ⊆ h(X),
(ii) d(gx, fy) ≤ c.µ0(x, y) for all x, y ∈ X where

µ0(x, y) = max{d(hx, py), d(hx, gx), d(py, fy)} for all x, y ∈ X and 0 ≤ c < 1,
(iii) one of g, f, h and p is continuous and
(iv) gh = hg and fp = pf .

Further if
(v) X is complete.

Then the four self maps g, f, h and p have a unique common fixed point. Also there is no other common
fixed point for g and h and that there is no other common fixed for f and p.

Proof. Given that (X, d) is a metric space satisfying conditions (i) to (v) of Corollary 4.1.
Defining S(x, y, z) = d(x, y) + d(y, z) + d(z, x) for x, y, z ∈ X, it follows that (X,S) is a S-metric space. Also
condition (ii) can be written as S(gx, gx, fy) ≤ cµ(x, y) for all x, y ∈ X,
where µ(x, y) = max{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)} which is the same as condition(ii) of
Theorem 4.1.
Since (X, d) is complete, we have (X,S) is complete by Remark 2.2.
Now g, f, h and p are self maps of S-metric space (X,S) satisfying conditions of Theorem 4.1 and hence
Corollary 4.1 follows from Theorem 4.1.

5 Conclusion
we proved a common fixed point theorem for four limit coincidently commuting selfmaps of a S-metric space.
Also we deduced a common fixed point theorem for four limit coincidently commuting selfmaps of a complete
S-metric space. Moreover a common fixed point theorem for four self maps of a metric space proved by Brian
Fisher follows as a particular case of our theorem.
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