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Abstract

In this paper we prove a common fixed point theorem for four selfmaps of a S -metric space. Also we
deduce a common fixed point theorem for four selfmaps of a complete S-metric space. Moreover we show
that a common fixed point theorem for four selfmaps of a metric space proved by Brian Fisher follows
as a particular case.
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1 Introduction

Fixed point theorems are extensively studied in the literature for several reasons and one of the reason is
that there are a quite number of problems in integral and differential equations, for which solutions can be
equivalently formulated as a fixed point of some operator on a suitable space. In an attempt to generalize
fixed point theorems proved for selfmaps of metric spaces, Dhage [2,3] has introduced generalized metric
spaces called D-metric space in his Ph.D. thesis [1] in the year 1984 which is a landmark in the history
of metric fixed point theory in higher dimensional metric spaces. As a probable modification to D-metric
spaces, Sedghi, Shobe and Zhou [11] introduced D*-metric spaces. In 2006, Mustafa and Sims [10] initiated
G-metric spaces; while Sedghi, Shobe and Aliouche [12] considered S-metric spaces in 2012. Hereafter we
consider, in this paper, only S-metric spaces and common fixed point theorems on such spaces.

The notion of commutativity of self maps on a metric space has been generalized to weakly commuting by
Sessa [13], which is further generalized to compatibility by Jungck [9]. These common fixed point theorems
on the lines of Sessa [13] and Jungck[9] are further extended to D-metric spaces by Dhage [4,5] and Dhage
et al. [6] under the meaningful terminology “coincidently commuting mappings” and “limit coincidently
commuting mappings.”

In this paper, we establish a common fixed point theorem for four limit coincidently commuting selfmaps
of a S-metric space. Further we generalize a common fixed point theorem of Fisher [8].

2 Preliminaries

Definition 2.1 ([12]). Let X be a non empty set. By S-metric we mean a function
S : X3 — [0,00) which satisfies the following conditions for x,y,z,w € X

(a) S(z,y,2) > 0.

(b) S(z,y,2) =0 if and only if x =y = z.

(¢) S(z,y,2) < S(x,z,w) + S(y,y, w) + S(z, z,w).

An ordered pair (X, S) is called a S-metric space.

Remark 2.1. Tt was shown in ([12], Lemma 2.5) that S(x,z,y) = S(y,y,x) for all z,y € X.

Definition 2.2 ([12]). Let (X,S) be a S-metric space. A sequence {xy} in X is said to converge, if there is
ax € X such that S(x,,Tn,x) — 0 as n — oo; that is, for € > 0, there exists an ng € N such that for all

n > ng, we have S(x,,Tn,x) < € and in this case we write lim xz, = .
n— oo

Definition 2.3 ([12]). Let (X, S) be a S-metric space. A sequence {x,} in X is called a Cauchy sequence if
for e > 0, there exists an ng € N such that S(xy, Tn, ) < € for all n,m > ng.
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Definition 2.4 ([12]). A S-metric space (X, S) is said to be complete if every Cauchy sequence in it converges
to some point in X.

Definition 2.5 ([1]). Let (X, d) be any metric space then Sq(x,y,z) = d(x,y)+d(y, z)+d(z,x) is a S-metric
on X. We call this S-metric as the S-metric induced by d ( we denote this by Sq).

Remark 2.2. Let (X,d) be any metric space and Sy be the S-metric induced by d. For any sequence {z,} in

(X,S4) is a Cauchy sequence if and only if {z,} is a Cauchy sequence in (X,d). Thus (X,Sy) is complete

if and only if (X, d) is complete.

Definition 2.6. Let (X, S) be a S-metric space. If there exists sequences {x,} and {yn} such that lim z, =
n—oo

xz and lim y, =y then Um S(x,,xn,yn) = S(z,x,y), then we say that S(x,y, z) is continuous in x and y.
n—oo n—oo

Definition 2.7. If g and f are self maps of a S-metric space (X, S) such that for every sequence {x,} in X
with lim gx, = lim fz, =t for somet € X we have
n—oo n—oo

lim S(gfxn,gfen, fgr,) =0 then g and f are said to be limit coincidently commuting.
n—oo

Trivially commuting self maps of a S-metric space are limit coincidently commuting but not conversely.

Definition 2.8 ([7]). An upper semi-continuous nondecreasing function ¢ : [0,00) — [0,00) is called D-
function if $(0) = 0.¢ is called contractive if ¢(t) <t fort > 0.

Definition 2.9. Let g, f, h and p be self maps of a S-metric space such that g(X) C p(X) and f(X) C h(X).
Then for any xo € X, if {x,} is a sequence in X such that gxa, = prant1 and frapi1 = hXanye forn >0,
then {z,} is called an associated sequence of xo relative to self maps g, f, h and p.

3 Main Result

Theorem 3.1. Let g, f,h and p be self maps of a S- metric space (X, S) satisfying the following conditions
(i) 9(X) C p(X) and f(X) C h(X),
(i) S(gz, gz, fy) < d(u(x,y)) for oll x,y € X where ¢ is a contractive D-function and p(z,y) =

max{S(hx, ha,py), S(hz, hz, g), S(py, py, fy)} for z,y € X,
(iii) one of g, f,h and p is continuous

and

(iv) the pairs (g, h) and (f,p) are limit coincidently commuting.
Further if

(v) there exists a point xo € X and an associated sequence {x,} relative to selfmaps such that
gxo, fr1,9x9, frs, -+, 9Tan, front1 -+ converges to some z € X,

then g, f,h and p have a unique common fixed point z € X. Also there is no other common fized point for g
and h; and that there is no other common fixed point for f and p.

Before proving the theorem, we establish some Lemmas which are noteworthy.

Lemma 3.1. Suppose that g, f,h and p are self maps of a S-metric space satisfying the conditions (i), (ii)
and (v) of Theorem 3.1 with the pair (g,h) is limit coincidently commuting. Then
(a) lim p(hxon, xont1) = S(hz, hz, z) whenever h is continuous,

n—oo

(b) lim p(gzan,xont1) = S(gz, 9z, z) whenever g is continuous.
n— 00
Proof. In view of (v), the sequences {gx2,} and {fzo,41} converge to some z € X and
since gra, = pron41 and fro,41 = hTon42, we have
9Ton, fTan+1, MTan, Pant1 — Z 88 N — 00. (3.1)

(a) If h is continuous, then we have

h2x9y, — hz, hgza, — hz as n — oo. (3.2)

Also the limit coincidently commutativity of the pair (g, k) implies
ILm S(ghxan, ghtay, hgray,) = 0. (3.3)



From (3.2) and (3.3) we get
ghxo, — hz as n — oo. (3.4)

Now from (ii), we have
11(hay, Tont1) = max{S(h*z2y, K> Ton, PT2n41),

S(h2$2n7 h2x2n7 ghx2n), S(px2n+1vp$2n+lv fm2n+1)}'
Letting n — oo in (3.5) and using the continuity of S(z,y, z) in « and y and (3.1), (3.2) and (3.4), we get
li_>m w(hap, xont1) = max{S(hz, hz,z),S(hz, hz,hz),S(z,z,2)} = S(hz, hz, z)

This proves (a).

(3.5)

(b) If g is continuous, by (3.1) we have
G*xon — g2, ghxan — gz as n — oo. (3.6)
Therefore in view of (3.3), we get
hgzon, — gz. (3.7)
Now we have
1(922n, Tant1) = max{S(hgzan, hgton, PTon+1), S(hgon, hgTan, 9Toni1), S(PT2n41, PT2n+1, fT2n41)}
= max{S(9z, 9z, 2),5(92,92,2),S(z, 2,2)}
= S(gz,9%,2).
(3.8)
This proves (b). O

Lemma 3.2. Suppose that g, f,h and p are self maps of a S-metric space (X,S) such that the pair (f,p) is
limit coincidently commuting and the conditions (i),(ii) and (v) of Theorem 3.1, then
(a) lim p(xon, prant1) = S(z,2,pz) whenever p is continuous,

n—oo

(b) im p(zan, fronti) = S(z, 2, fz) whenever f is continuous.

n—oo
Proof. The proof of Lemma 3.2 is similar to the proof of Lemma 3.1 with appropriate changes. O
Proof of Theorem 3.1.

We first establish the existence of a common fixed point in case if h is continuous.

The proof is similar in other cases of condition (iii) of Theorem 3.1 with suitable changes.
Suppose that A is continuous.

Taking x = hxs, and y = xa,+1 in condition (ii) of Theorem 3.1, we have

S(ghon, ghtan, front1) < ¢(u(hvan, Tan+1))- (3.9)
Also the continuity of S(z,y, z) in 2 and y gives

S(hz,hz,z) = li_>m S(ghon, ghan, fTont1).

Therefore by Lemma 3.1, we get
S(hz, hz, z) = limsup S(ghw2n, ghran, froni1)

n—roo

< limsup ¢(p(hxon, Tont1))

n—oo

= ¢(hmbup ,u(thn,xQn-l-l)) (310)

n—oo
= ¢(n1er;O pw(hzon, Tani1))

= ¢(S(hz, hz,2)).
Hence
S(hz,hz,z) < ¢(S(hz, hz, z). (3.11)

We now claim that hz = z.
In fact, if hz # z, then S(hz, hz,z) > 0 so that ¢(S(hz, hz,z)) < S(hz, hz, z) and this contradicts (3.11),
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therefore hz = z.
Now the continuity of S(z,y, z) in z and y gives

S(gZ, gz, Z) = nh~>nolo S(gZ, gz, foTH-l)
= limsup S(g7. 97, fr2001).
n—oo
Using condition (ii) of Theorem 3.1 and the upper semicontinuity of ¢ in the above, we get
5(92, 9%, 2) < limsup ¢(u(2, T2n41))
e (3.12)
= ¢(limsup pu(2, T2n+1))-
n—oo
But
lim pu(z,22,11) = lim max{S(hz, hz, prani1,S(hz, hz, g2), S(prani1, PTant1, fT2nt1)}
n—00 n—00
= max{S(hz, hz,z),S(z, z,9z2),5(z, 2,2)}
= S(z,2,92) = S(92,92, 2), since hz = z,prap+1 — z and fro,t1 — 2 as n — 0.
Therefore we get
S(g9z,92,2) < ¢(S(9z, 92, 2)). (3.13)
If gz # z then S(gz,gz,z) > 0 and by the definition of ¢ we get ¢(S(gz,9z,2) < S(gz, gz, z), contradicting
(3.13),hence gz = z
Thus we have gz = hz = z.
Now since g(X) C p(X), there is a u € X with z = gz = pu and we have gz = hz = pu = 2.
We now claim that fu = z.
In fact if fu # z, then S(z, z, fu) > 0 and therefore by (ii) of Theorem 3.1 we get
S(z, 2, fu) = S(gz, 92, fu) < ¢(u(z,u))
= ¢(max{S(gz, gz,pu), S(hz, hz, gz), S(pu, pu, fu)})
= 0(8(z,2. fu),
since gz = hz = pu = z and above result implies S(z,z, fu) < &(S(z,z, fu)) < S(z,z, fu) which is
contradiction. Therefore fu = z.
Hence we have gz = hz = pu = fu = z.
Now taking y, = u for all n > 1, it follows that fy, — fu = z and py, — pu =z as n — oo.
Also since the pair (f,p) is limit coincidently commuting,
we have 1i_>m S(fpyn, foYn, 0fyn) = 0 which gives S(fpu, fpu,pfu) = 0 implies fpu = pfu so that fz = pz.
n (oo}
Now by condition (ii) of Theorem 3.1, we have
S(2,2, f2) = S(g2, 92, f2) < Blu(=2))
= ¢(max{S(hz, hz,pz),S(hz, hz,9z),S(pz,pz, f2)} (3.14)
= ¢(S(hz,hz, f2)) = ¢(S(z, 2, f2)),

since gz = hz = z and pz = fz.

Therefore we get S(z, z, f2) < ¢(S(z, 2, fz)) which yields fz = z.

Hence gz = hz = pz = fz = z, proving z is a common fixed point of g, f, h and p.
Now we prove uniqueness of common fixed point.

If possible let 2/(# z) be another common fixed point of g, f, h and p.

Then from condition (ii) of Theorem 3.1 we have

S(z,2,2') = S(g2,92,92") < d(u(z,2)). (3.15)
Since p(z,z") = S(z,z,2’) from (ii) of Theorem 3.1, (3.15) gives S(z, z,2") < ¢(S(z, 2, 2')) and this will be a
contradiction if z # 2’
Hence z is unique common fixed point of f, g, h and p.
Now we prove that z is unique common fixed point of g and h and of f and p.
Let w be another fixed point of g and h. Then z = hz = fz = gz = pz and w = hw = gw.
Now from condition (ii) of Theorem 3.1 we have

S(z,z,w) = S(w,w, z) = S(gw, gw, fz) < ¢(u(w, z)), (3.16)
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since p(w, z) = S(w,w, z). Therefore (3.16) gives S(w,w, z) < ¢(S(w,w, z)) and this will be a contradiction
if w# z.

Hence w =z

Therefore z is unique common fixed point of g and h. Similarly we can show that z is unique common fixed
point of f and p.

Hence Theorem 3.1 is completely proved.

4 Common fixed point Theorem for four self maps of a complete S-metric space
Before proving the main result in this section, first we establish a preparatory Lemma.

Lemma 4.1. Let (X, S) be a S- metric space and g, f,h and p be self maps of X such that
(1) 9(X) € p(X) and f(X) C h(X),
(ii) S(gz,gx, fy) < c.u(z,y) for all z,y € X where 0 < ¢ < 1 and
pu(z,y) = max{S(hz, hx, py), S(hz, hz, gz), S(py, py, fy)}-

Further if
(iii) (X,S) is complete, then for any xg € X and for any associated sequence {x,,} relative to four self maps
the sequence gxo, fr1, g2, frs, -+ ,g%on, fTony1 -+ converges to some z € X.

Proof. Suppose that g, f,h and p are self maps of a S-metric space (X, .S) for which conditions (i) and (ii)
holds. Let a point 2o € X and {x,} be any associated sequence of z( relative to four selfmaps. Then since
gTon = PTopt1 and fro,41 = hZa,qo for allm >0 .

Note that
w(Zon, ont1) = max{S(hxan, hton, proni1), S(htan, htan, 9Tan), S(PTant1, Pront1, fTont1)}
= max{S(hxan, hxon, gTan), S(hton, hton, gran), S(PTant1, PTont1, fTont1)}
= max{S(hxan, hon, gT2n), S(PTon+1, DTon+1, fTon+1)}
= max{S(hxan, hTaon, 9T2n), S(9Zon, gTan, fTon+1)}

= max{S(972n, 9T2n, fTan-1), S(9%2n, 9Ton, fTon+1)}
This together with (ii) of Lemma 4.1 gives
S(922n, 9T2n, fron+1) < cp(Tan, Tant1)
< emax{S(9r2n, 9Ton, fTan-1), S(9%2n, gT2n, fT2n+1)}
and since 0 < ¢ < 1, it follows from the above inequality that
max{S(9Tan, 9Ton, fTan—-1), S(9Tan, 9Ton, fTont1)} = S(9Tan, 9Ton, fTan—1).
Therefore
S(gxon, gTon, front1) < ¢S(9Tan, 9Ton, [Tan—1). (4.1)
Similarly
S(922an, 9T2n, fron—1) < cS(92an—2, gTon—2, fTon—3). (4.2)
From (4.1) and (4.2), we get
S(922n, 9T2n, frons1) < AS(gT2n—2, 9Ton—2, fT2n—1)

< C4S(gx2n—4a gTon—4, fx2n—3)

2
S & ns(gx()vngv fl'l) — 07
as ¢ — 0 as n — oo (because ¢ < 1), therefore the sequence gxo, fr1, grs, fT3, -+, 9Ton, fToni1 - 1S a

Cauchy sequence in (X, 5) and since X is complete, it converges to a point say z € X, proving lemma.
O

Theorem 4.1. Suppose that (X,S) is a S-metric space satisfying conditions (i) to (v) of Theorem 3.1.
Further if

(v)’ (X, S) is complete,

then g, f, h and p have a unique common fized point z € X. Also there is no other common fired point for g
and h and that there is no other common fized point for f and p.
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Proof. In view of Lemma 4.1, the condition (v) of the Theorem follows from Theorem 3.1 because of (v)’,
hence Theorem 4.1 follows from Theorem 3.1. O

Corollary 4.1 ([8] Theorem 2). Let g,f,h and p be self maps of a metric space (X,d) satisfying the
conditions
(i) 9(X) C p(X) and F(X) C h(X),
(ii) d(gz, fy) < c.po(x,y) for all x,y € X where
po(z,y) = max{d(hz, py), d(hz, gx),d(py, fy)} for all z,y € X and 0 < ¢ < 1,
(iii) one of g, f,h and p is continuous and
(i) gh = hg and fp=pf.
Further if
(v) X is complete.
Then the four self maps g, f,h and p have a unique common fized point. Also there is no other common
fixed point for g and h and that there is no other common fixed for f and p.

Proof. Given that (X, d) is a metric space satisfying conditions (i) to (v) of Corollary 4.1.

Defining S(x,y,z) = d(x,y) +d(y, z) + d(z, x) for z,y, z € X, it follows that (X, S) is a S-metric space. Also
condition (ii) can be written as S(gz, gz, fy) < cu(z,y) for all z,y € X,

where p(x,y) = max{S(hx, hx,py), S(hx, hz,gx),S(py,py, fy)} which is the same as condition(ii) of
Theorem 4.1.

Since (X, d) is complete, we have (X, S) is complete by Remark 2.2.

Now g, f,h and p are self maps of S-metric space (X,.5) satisfying conditions of Theorem 4.1 and hence
Corollary 4.1 follows from Theorem 4.1. O

5 Conclusion

we proved a common fixed point theorem for four limit coincidently commuting selfmaps of a S-metric space.
Also we deduced a common fixed point theorem for four limit coincidently commuting selfmaps of a complete
S-metric space. Moreover a common fixed point theorem for four self maps of a metric space proved by Brian
Fisher follows as a particular case of our theorem.
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