ISSN 0304-9892 (Print) www.vijnanaparishadofindia.org/jnanabha Jñānābha, Vol. 53(1) (2023), 196-201 (Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

A COMMON FIXED POINT THEOREM FOR FOUR LIMIT COINCIDENTLY COMMUTING SELFMAPS OF A S-METRIC SPACE V. Kiran

Department of Mathematics, Osmania University, Hyderabad, Telangana, India-500007 Email: kiranmathou@gmail.com

(Received : May 19, 2022; In format: June 02, 2022; Revised: March 11, 2023; Accepted: March 16, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53122

Abstract

In this paper we prove a common fixed point theorem for four selfmaps of a S-metric space. Also we deduce a common fixed point theorem for four selfmaps of a complete S-metric space. Moreover we show that a common fixed point theorem for four selfmaps of a metric space proved by Brian Fisher follows as a particular case.

2020 Mathematical Sciences Classification: 47H10; 54H25.

Keywords and Phrases: S-metric space, Fixed point, Contractive modulus, Associated sequence for four selfmaps.

1 Introduction

Fixed point theorems are extensively studied in the literature for several reasons and one of the reason is that there are a quite number of problems in integral and differential equations, for which solutions can be equivalently formulated as a fixed point of some operator on a suitable space. In an attempt to generalize fixed point theorems proved for selfmaps of metric spaces, Dhage [2,3] has introduced generalized metric spaces called *D*-metric space in his *Ph.D.* thesis [1] in the year 1984 which is a landmark in the history of metric fixed point theory in higher dimensional metric spaces. As a probable modification to *D*-metric spaces, Sedghi, Shobe and Zhou [11] introduced D^* -metric spaces. In 2006, Mustafa and Sims [10] initiated *G*-metric spaces; while Sedghi, Shobe and Aliouche [12] considered *S*-metric spaces in 2012. Hereafter we consider, in this paper, only *S*-metric spaces and common fixed point theorems on such spaces.

The notion of commutativity of self maps on a metric space has been generalized to weakly commuting by Sessa [13], which is further generalized to compatibility by Jungck [9]. These common fixed point theorems on the lines of Sessa [13] and Jungck [9] are further extended to D-metric spaces by Dhage [4,5] and Dhage et al. [6] under the meaningful terminology "coincidently commuting mappings" and "limit coincidently commuting mappings."

In this paper, we establish a common fixed point theorem for four limit coincidently commuting selfmaps of a S-metric space. Further we generalize a common fixed point theorem of Fisher [8].

2 Preliminaries

Definition 2.1 ([12]). Let X be a non empty set. By S-metric we mean a function $S: X^3 \to [0, \infty)$ which satisfies the following conditions for $x, y, z, w \in X$ (a) $S(x, y, z) \ge 0$. (b) S(x, y, z) = 0 if and only if x = y = z. (c) $S(x, y, z) \le S(x, x, w) + S(y, y, w) + S(z, z, w)$. An ordered pair (X, S) is called a S-metric space.

Remark 2.1. It was shown in ([12], Lemma 2.5) that S(x, x, y) = S(y, y, x) for all $x, y \in X$.

Definition 2.2 ([12]). Let (X, S) be a S-metric space. A sequence $\{x_n\}$ in X is said to converge, if there is $a \ x \in X$ such that $S(x_n, x_n, x) \to 0$ as $n \to \infty$; that is, for $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, we have $S(x_n, x_n, x) < \epsilon$ and in this case we write $\lim_{n \to \infty} x_n = x$.

Definition 2.3 ([12]). Let (X, S) be a S-metric space. A sequence $\{x_n\}$ in X is called a Cauchy sequence if for $\epsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that $S(x_n, x_n, x_m) < \epsilon$ for all $n, m \ge n_0$.

Definition 2.4 ([12]). A S-metric space (X, S) is said to be complete if every Cauchy sequence in it converges to some point in X.

Definition 2.5 ([1]). Let (X, d) be any metric space then $S_d(x, y, z) = d(x, y) + d(y, z) + d(z, x)$ is a S-metric on X. We call this S-metric as the S-metric induced by d (we denote this by S_d).

Remark 2.2. Let (X, d) be any metric space and S_d be the S-metric induced by d. For any sequence $\{x_n\}$ in (X, S_d) is a Cauchy sequence if and only if $\{x_n\}$ is a Cauchy sequence in (X, d). Thus (X, S_d) is complete if and only if (X, d) is complete.

Definition 2.6. Let (X, S) be a S-metric space. If there exists sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$ then $\lim_{n \to \infty} S(x_n, x_n, y_n) = S(x, x, y)$, then we say that S(x, y, z) is continuous in x and y.

Definition 2.7. If g and f are self maps of a S-metric space (X, S) such that for every sequence $\{x_n\}$ in X with $\lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_n = t$ for some $t \in X$ we have

 $\lim_{n \to \infty} S(gfx_n, gfx_n, fgx_n) = 0 \text{ then } g \text{ and } f \text{ are said to be limit coincidently commuting.}$

Trivially commuting self maps of a S-metric space are limit coincidently commuting but not conversely.

Definition 2.8 ([7]). An upper semi-continuous nondecreasing function $\phi : [0, \infty) \to [0, \infty)$ is called D-function if $\phi(0) = 0.\phi$ is called contractive if $\phi(t) < t$ for t > 0.

Definition 2.9. Let g, f, h and p be self maps of a S-metric space such that $g(X) \subseteq p(X)$ and $f(X) \subseteq h(X)$. Then for any $x_0 \in X$, if $\{x_n\}$ is a sequence in X such that $gx_{2n} = px_{2n+1}$ and $fx_{2n+1} = hx_{2n+2}$ for $n \ge 0$, then $\{x_n\}$ is called an associated sequence of x_0 relative to self maps g, f, h and p.

3 Main Result

Theorem 3.1. Let g, f, h and p be self maps of a S- metric space (X, S) satisfying the following conditions (i) $g(X) \subseteq p(X)$ and $f(X) \subseteq h(X)$,

- (ii) $S(gx, gx, fy) \leq \phi(\mu(x, y))$ for all $x, y \in X$ where ϕ is a contractive D-function and $\mu(x, y) = \max\{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)\}$ for $x, y \in X$,
- (iii) one of g, f, h and p is continuous and
- (iv) the pairs (g,h) and (f,p) are limit coincidently commuting. Further if
- (v) there exists a point $x_0 \in X$ and an associated sequence $\{x_n\}$ relative to selfmaps such that $gx_0, fx_1, gx_2, fx_3, \dots, gx_{2n}, fx_{2n+1} \dots$ converges to some $z \in X$,

then g, f, h and p have a unique common fixed point $z \in X$. Also there is no other common fixed point for g and h; and that there is no other common fixed point for f and p.

Before proving the theorem, we establish some Lemmas which are noteworthy.

Lemma 3.1. Suppose that g, f, h and p are self maps of a S-metric space satisfying the conditions (i), (ii)and (v) of Theorem 3.1 with the pair (g, h) is limit coincidently commuting. Then $(a) \lim_{n \to \infty} \mu(hx_{2n}, x_{2n+1}) = S(hz, hz, z)$ whenever h is continuous,

(b) $\lim_{n \to \infty} \mu(gx_{2n}, x_{2n+1}) = S(gz, gz, z)$ whenever g is continuous.

Proof. In view of (v), the sequences $\{gx_{2n}\}$ and $\{fx_{2n+1}\}$ converge to some $z \in X$ and since $gx_{2n} = px_{2n+1}$ and $fx_{2n+1} = hx_{2n+2}$, we have

$$gx_{2n}, fx_{2n+1}, hx_{2n}, p_{2n+1} \to z \text{ as } n \to \infty.$$
 (3.1)

(a) If h is continuous, then we have

$$h^2 x_{2n} \to hz, hg x_{2n} \to hz \text{ as } n \to \infty.$$
 (3.2)

Also the limit coincidently commutativity of the pair (g, h) implies

$$\lim_{n \to \infty} S(ghx_{2n}, ghx_{2n}, hgx_{2n}) = 0.$$
(3.3)

From (3.2) and (3.3) we get

$$ghx_{2n} \to hz \text{ as } n \to \infty.$$
 (3.4)

Now from (ii), we have

$$\mu(hx_{2n}, x_{2n+1}) = \max\{S(h^2x_{2n}, h^2x_{2n}, px_{2n+1}), \\S(h^2x_{2n}, h^2x_{2n}, ghx_{2n}), S(px_{2n+1}, px_{2n+1}, fx_{2n+1})\}.$$
(3.5)

Letting $n \to \infty$ in (3.5) and using the continuity of S(x, y, z) in x and y and (3.1), (3.2) and (3.4), we get $\lim_{n \to \infty} \mu(hx_{2n}, x_{2n+1}) = \max\{S(hz, hz, z), S(hz, hz, hz), S(z, z, z)\} = S(hz, hz, z)$ This proves (a).

(b) If g is continuous, by (3.1) we have

$$g^2 x_{2n} \to gz, gh x_{2n} \to gz \text{ as } n \to \infty.$$
 (3.6)

Therefore in view of (3.3), we get

$$hgx_{2n} \to gz.$$
 (3.7)

 \square

Now we have

$$\mu(gx_{2n}, x_{2n+1}) = \max\{S(hgx_{2n}, hgx_{2n}, px_{2n+1}), S(hgx_{2n}, hgx_{2n}, gx_{2n+1}), S(px_{2n+1}, px_{2n+1}, fx_{2n+1})\}$$

= $\max\{S(gz, gz, z), S(gz, gz, z), S(z, z, z)\}$
= $S(gz, gz, z).$ (3.8)

This proves (b).

Lemma 3.2. Suppose that g, f, h and p are self maps of a S-metric space (X,S) such that the pair (f,p) is limit coincidently commuting and the conditions (i),(ii) and (v) of Theorem 3.1, then (a) $\lim_{n\to\infty} \mu(x_{2n}, px_{2n+1}) = S(z, z, pz)$ whenever p is continuous, (b) $\lim_{n\to\infty} \mu(x_{2n}, fx_{2n+1}) = S(z, z, fz)$ whenever f is continuous.

Proof. The proof of Lemma 3.2 is similar to the proof of Lemma 3.1 with appropriate changes. \Box

Proof of Theorem 3.1.

We first establish the existence of a common fixed point in case if h is continuous. The proof is similar in other cases of condition (iii) of Theorem 3.1 with suitable changes. Suppose that h is continuous.

Taking $x = hx_{2n}$ and $y = x_{2n+1}$ in condition (ii) of Theorem 3.1, we have

S

$$(ghx_{2n}, ghx_{2n}, fx_{2n+1}) \le \phi(\mu(hx_{2n}, x_{2n+1})).$$
(3.9)

Also the continuity of S(x, y, z) in x and y gives

$$S(hz, hz, z) = \lim_{n \to \infty} S(ghx_{2n}, ghx_{2n}, fx_{2n+1}).$$

Therefore by Lemma 3.1, we get

$$S(hz, hz, z) = \limsup_{n \to \infty} S(ghx_{2n}, ghx_{2n}, fx_{2n+1})$$

$$\leq \limsup_{n \to \infty} \phi(\mu(hx_{2n}, x_{2n+1}))$$

$$= \phi(\limsup_{n \to \infty} \mu(hx_{2n}, x_{2n+1}))$$

$$= \phi(\lim_{n \to \infty} \mu(hx_{2n}, x_{2n+1}))$$

$$= \phi(S(hz, hz, z)).$$

(3.10)

Hence

$$S(hz, hz, z) \le \phi(S(hz, hz, z)). \tag{3.11}$$

We now claim that hz = z.

In fact, if $hz \neq z$, then S(hz, hz, z) > 0 so that $\phi(S(hz, hz, z)) < S(hz, hz, z)$ and this contradicts (3.11),

therefore hz = z.

Now the continuity of S(x, y, z) in x and y gives

$$S(gz, gz, z) = \lim_{n \to \infty} S(gz, gz, fx_{2n+1})$$
$$= \limsup_{n \to \infty} S(gz, gz, fx_{2n+1}).$$

Using condition (ii) of Theorem 3.1 and the upper semicontinuity of ϕ in the above, we get

$$S(gz, gz, z) \leq \limsup_{n \to \infty} \phi(\mu(z, x_{2n+1}))$$

= $\phi(\limsup_{n \to \infty} \mu(z, x_{2n+1})).$ (3.12)

But

$$\lim_{n \to \infty} \mu(z, x_{2n+1}) = \lim_{n \to \infty} \max\{S(hz, hz, px_{2n+1}, S(hz, hz, gz), S(px_{2n+1}, px_{2n+1}, fx_{2n+1})\}$$

= max{S(hz, hz, z), S(z, z, gz), S(z, z, z)}
= S(z, z, gz) = S(gz, gz, z), since hz = z, px_{2n+1} \to z and fx_{2n+1} \to z as n \to \infty.

Therefore we get

$$S(gz, gz, z) \le \phi(S(gz, gz, z)). \tag{3.13}$$

If $gz \neq z$ then S(gz, gz, z) > 0 and by the definition of ϕ we get $\phi(S(gz, gz, z) < S(gz, gz, z)$, contradicting (3.13),hence gz = z

Thus we have gz = hz = z.

Now since $g(X) \subseteq p(X)$, there is a $u \in X$ with z = gz = pu and we have gz = hz = pu = z. We now claim that fu = z.

In fact if $fu \neq z$, then S(z, z, fu) > 0 and therefore by (ii) of Theorem 3.1 we get

$$\begin{split} S(z, z, fu) &= S(gz, gz, fu) \leq \phi(\mu(z, u)) \\ &= \phi(\max\{S(gz, gz, pu), S(hz, hz, gz), S(pu, pu, fu)\}) \\ &= \phi(S(z, z, fu)), \end{split}$$

since gz = hz = pu = z and above result implies $S(z, z, fu) \leq \phi(S(z, z, fu)) < S(z, z, fu)$ which is contradiction. Therefore fu = z.

Hence we have gz = hz = pu = fu = z.

Now taking $y_n = u$ for all $n \ge 1$, it follows that $fy_n \to fu = z$ and $py_n \to pu = z$ as $n \to \infty$. Also since the pair (f, p) is limit coincidently commuting, we have $\lim S(fpy_n, fpy_n, pfy_n) = 0$ which gives S(fpu, fpu, pfu) = 0 implies fpu = pfu so that fz = pz.

Now by condition (ii) of Theorem 3.1, we have

$$S(z, z, fz) = S(gz, gz, fz) \le \phi(\mu(z, z)) = \phi(\max\{S(hz, hz, pz), S(hz, hz, gz), S(pz, pz, fz)\} = \phi(S(hz, hz, fz)) = \phi(S(z, z, fz)),$$
(3.14)

since gz = hz = z and pz = fz.

Therefore we get $S(z, z, fz) \le \phi(S(z, z, fz))$ which yields fz = z.

Hence gz = hz = pz = fz = z, proving z is a common fixed point of g, f, h and p.

Now we prove uniqueness of common fixed point.

If possible let $z'(\neq z)$ be another common fixed point of g, f, h and p.

Then from condition (ii) of Theorem 3.1 we have

$$S(z, z, z') = S(gz, gz, gz') \le \phi(\mu(z, z')).$$
(3.15)

Since $\mu(z, z') = S(z, z, z')$ from (ii) of Theorem 3.1, (3.15) gives $S(z, z, z') \le \phi(S(z, z, z'))$ and this will be a contradiction if $z \ne z'$.

Hence z is unique common fixed point of f, g, h and p.

Now we prove that z is unique common fixed point of g and h and of f and p.

Let w be another fixed point of g and h. Then z = hz = fz = gz = pz and w = hw = gw. Now from condition (ii) of Theorem 3.1 we have

$$S(z, z, w) = S(w, w, z) = S(gw, gw, fz) \le \phi(\mu(w, z)),$$
(3.16)

since $\mu(w, z) = S(w, w, z)$. Therefore (3.16) gives $S(w, w, z) \le \phi(S(w, w, z))$ and this will be a contradiction if $w \ne z$.

Hence w = z

Therefore z is unique common fixed point of g and h. Similarly we can show that z is unique common fixed point of f and p.

Hence Theorem 3.1 is completely proved.

4 Common fixed point Theorem for four self maps of a complete *S*-metric space Before proving the main result in this section, first we establish a preparatory Lemma.

Lemma 4.1. Let (X, S) be a S- metric space and g, f, h and p be self maps of X such that

(i) $g(X) \subseteq p(X)$ and $f(X) \subseteq h(X)$,

- (ii) $S(gx, gx, fy) \leq c.\mu(x, y)$ for all $x, y \in X$ where $0 \leq c < 1$ and $\mu(x, y) = \max\{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)\}$. Further if
- (iii) (X, S) is complete, then for any $x_0 \in X$ and for any associated sequence $\{x_n\}$ relative to four self maps the sequence $gx_0, fx_1, gx_2, fx_3, \dots, gx_{2n}, fx_{2n+1} \dots$ converges to some $z \in X$.

Proof. Suppose that g, f, h and p are self maps of a S-metric space (X, S) for which conditions (i) and (ii) holds. Let a point $x_0 \in X$ and $\{x_n\}$ be any associated sequence of x_0 relative to four selfmaps. Then since $gx_{2n} = px_{2n+1}$ and $fx_{2n+1} = hx_{2n+2}$ for all $n \ge 0$. Note that

$$\mu(x_{2n}, x_{2n+1}) = \max\{S(hx_{2n}, hx_{2n}, px_{2n+1}), S(hx_{2n}, hx_{2n}, gx_{2n}), S(px_{2n+1}, px_{2n+1}, fx_{2n+1})\}$$

= max{S(hx_{2n}, hx_{2n}, gx_{2n}), S(hx_{2n}, hx_{2n}, gx_{2n}), S(px_{2n+1}, px_{2n+1}, fx_{2n+1})}
= max{S(hx_{2n}, hx_{2n}, gx_{2n}), S(px_{2n+1}, px_{2n+1}, fx_{2n+1})}
= max{S(hx_{2n}, hx_{2n}, gx_{2n}), S(gx_{2n}, gx_{2n}, fx_{2n+1})}
= max{S(gx_{2n}, gx_{2n}, fx_{2n-1}), S(gx_{2n}, gx_{2n}, fx_{2n+1})}.

This together with (ii) of Lemma 4.1 gives

$$S(gx_{2n}, gx_{2n}, fx_{2n+1}) \le c\mu(x_{2n}, x_{2n+1})$$

$$\leq c \max\{S(gx_{2n}, gx_{2n}, fx_{2n-1}), S(gx_{2n}, gx_{2n}, fx_{2n+1})\}\$$

and since $0 \le c < 1$, it follows from the above inequality that

 $\max\{S(gx_{2n}, gx_{2n}, fx_{2n-1}), S(gx_{2n}, gx_{2n}, fx_{2n+1})\} = S(gx_{2n}, gx_{2n}, fx_{2n-1}).$

Therefore

$$S(gx_{2n}, gx_{2n}, fx_{2n+1}) \le cS(gx_{2n}, gx_{2n}, fx_{2n-1}).$$

$$(4.1)$$

Similarly

$$S(gx_{2n}, gx_{2n}, fx_{2n-1}) \le cS(gx_{2n-2}, gx_{2n-2}, fx_{2n-3}).$$

$$(4.2)$$

From (4.1) and (4.2), we get

$$S(gx_{2n}, gx_{2n}, fx_{2n+1}) \leq c^2 S(gx_{2n-2}, gx_{2n-2}, fx_{2n-1})$$

$$\leq c^4 S(gx_{2n-4}, gx_{2n-4}, fx_{2n-3})$$

$$\dots \qquad \dots$$

$$\leq c^{2n} S(gx_0, gx_0, fx_1) \to 0,$$

as $c^{2n} \to 0$ as $n \to \infty$ (because c < 1), therefore the sequence $gx_0, fx_1, gx_2, fx_3, \dots, gx_{2n}, fx_{2n+1} \dots$ is a Cauchy sequence in (X, S) and since X is complete, it converges to a point say $z \in X$, proving lemma.

Theorem 4.1. Suppose that (X, S) is a S-metric space satisfying conditions (i) to (v) of Theorem 3.1. Further if

(v)'(X,S) is complete,

then g, f, h and p have a unique common fixed point $z \in X$. Also there is no other common fixed point for g and h and that there is no other common fixed point for f and p.

Proof. In view of Lemma 4.1, the condition (v) of the Theorem follows from Theorem 3.1 because of (v)', hence Theorem 4.1 follows from Theorem 3.1.

Corollary 4.1 ([8] Theorem 2). Let g, f, h and p be self maps of a metric space (X, d) satisfying the conditions

- (i) $g(X) \subseteq p(X)$ and $f(X) \subseteq h(X)$,
- (*ii*) $d(gx, fy) \le c.\mu_0(x, y)$ for all $x, y \in X$ where $\mu_0(x, y) = \max\{d(hx, py), d(hx, gx), d(py, fy)\}$ for all $x, y \in X$ and $0 \le c < 1$,
- (iii) one of g, f, h and p is continuous and
- (iv) gh = hg and fp = pf. Further if
- (v) X is complete.

Then the four self maps g, f, h and p have a unique common fixed point. Also there is no other common fixed point for g and h and that there is no other common fixed for f and p.

Proof. Given that (X, d) is a metric space satisfying conditions (i) to (v) of Corollary 4.1.

Defining S(x, y, z) = d(x, y) + d(y, z) + d(z, x) for $x, y, z \in X$, it follows that (X, S) is a S-metric space. Also condition (ii) can be written as $S(gx, gx, fy) \le c\mu(x, y)$ for all $x, y \in X$,

where $\mu(x,y) = \max\{S(hx,hx,py), S(hx,hx,gx), S(py,py,fy)\}$ which is the same as condition(ii) of Theorem 4.1.

Since (X, d) is complete, we have (X, S) is complete by Remark 2.2.

Now g, f, h and p are self maps of S-metric space (X, S) satisfying conditions of Theorem 4.1 and hence Corollary 4.1 follows from Theorem 4.1.

5 Conclusion

we proved a common fixed point theorem for four limit coincidently commuting selfmaps of a S-metric space. Also we deduced a common fixed point theorem for four limit coincidently commuting selfmaps of a complete S-metric space. Moreover a common fixed point theorem for four self maps of a metric space proved by Brian Fisher follows as a particular case of our theorem.

References

- B. C. Dhage, A study of some fixed point theorems, Ph.D thesis, Marathwada University, Aurangabad, India, 1984.
- [2] B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull.Calcutta.Math.Soc., 84(4) (1992), 329-336.
- [3] B. C. Dhage, A common fixed point principle in D-metric spaces, Bull. Calcutta. Math. Soc., 91(6) (1999), 475-480.
- [4] B. C. Dhage, On common fixed points of pairs of coincidentally commuting mappings in D-metric spaces, *Indian J.Pure Appl.Math.*, 30(4) (1999), 395-406.
- [5] B. C. Dhage, A common fixed point theorem for a pair of limit coincidentally commuting mappings in D-metric spaces, *Math.Sci.Res.Hot-line*, 4(2) (2000), 45-55.
- [6] B. C. Dhage, A. Jenifer and S. M. Kang, On common fixed points of a pairs of a single and a multi-valued coincidentally commuting mappings in D-metric spaces, *Inter.J. Math.Sci.*, 40 (2003), 2519-2539.
- [7] B. C. Dhage and S. B. Dhage, Hybrid fixed point theory for nonincreasing mappings in partially ordered metric spaces and applications, *Journal of Nonlinear Analysis and Applications*, 5(2) (2014), 71-79.
- [8] B. Fisher, Common fixed points of four mappings, Bull.Inst.Math.Academia.Sinica., 11 (1983), 103-113.
- [9] G. Jungck, Compatible mappings and common fixed points, Int J.Math.Math.Soc., 9 (1986), 771-779.
- [10] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Non linear and convex Analysis., 7(2) (2006), 289-297.
- [11] S. Shaban, S. Nabi and Z. Haiyun, A common fixed point theorem in D^{*}- metric spaces, Fixed point Theory Appl. 2007 027906(2007), 1-3.
- [12] S. Shaban, S. Nabi and A. Abdelkrim, A generalization of fixed point theorems in S-metric space, Mat. Vesnik., 64(3) (2012), 258-266.
- [13] S. Sessa, On a week commutativity condition of mappings in a fixed point considerations, *Publ.Inst.Math.*, **32** (1982), 149-153.