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Abstract

In this paper, We established a new class of convex function (φ1, φ2) − β-convex, which includes
many well-known classes as its subclasses. We defined (φ1, φ2)−β-convex function and discussed various
properties with non-differentiable and differentiable cases.
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1 Introduction

Convexity has been of great importance in both applied and pure mathematics for the purpose of generalizing

existing results in work over the past 60 years. In recent years, several extensions of the concept of convexity

of a set and a function have been introduced. There are several inequalities introduced by Minkowski [14],

Dragomir [10] and Ardic et al. [4] etc. using convexity. A class of convex functions introduced by Bector

and Singh [5] called b-vex functions with differentiable and nondifferentiable cases were presented.

Hanson [11] introduced mathematical Programming Problem for invex functions with inequality

constraints. He considered differentiable functions and then proved that instead of assumption of convexity,

the objective function and each of the constraints function involved satisfy inequality with respect to the same

function. Then Craven [8], inspired by Hanson’s work, first systematically introduced the term ”invariant

convex”. After that Craven and Glover [9], Ben Israel and Mond [6] and Martin [13] showed that the class

of invex functions is equivalent to the class of functions whose stationary points are points of global minima.

Mishra [15] obtained optimality and duality results by combining the concepts of type I, type II, pseudo-

type I, quasi-type I, quasi-pseudo-type I, pseudo-quasi-type I, strictly pseudo-quasi-type I, and univex

functions. Mishra and Rueda [16] also introduced and discussed SFJ -univex programming problems then

Ojha [18] extended the SFJ -univex programming problems in complex spaces. Antczak [1] introduced several

nonlinear programming problems of (p, r)-invexity type. Antczak [2] elongated the idea of p-invex set and

defined (p, r)-pre-invex function (non-differentiable) and (p, r)-invex function (differentiable) and obtained

optimality conditions for nonlinear programming problem under the idea of those functions. Antczak [3]

defined r -preinvexity, r -invexity and obtained optimality criteria and duality relations for these functions in

programming problem. Antczak [3] also designed duality theorems for modified r -invex functions based on

function η.

Weir, Mond and Craven [25] and also [26, 27] showed that how and where pre-invex functions can replace

convex functions in multiple objective optimization. Then Bector - singh [5] and Suneja, Singh and Bector

[24] introduced a class of functions, called b-vex functions which forms a subset of the sets of both semi-

strictly quasi-convex and quasi-convex functions also.

Pini [19] introduced relations between invexity and generalized properties of convexity also gave a new

class of generalized convex sets. Pini and Singh [21, 22] established duality results also defined (φ1, φ2)−
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convexity which is an extremely powerful principle for characterization of generalized convexity from an

integrated point of view. Where φ1 is a continuous deformation of straight line segments and φ2 identifies

generalized convex combinations of values. So after that other type of convexity can be introduced.

φ1 : D ×D × [0, 1]→ <n, φ1 = φ1(x, y, λ),

φ1(x, y, 0) = y, φ1(x, x, λ) = x, ∀x, y ∈ D, λ ∈ [0, 1],

φ2 : D ×D × [0, 1]× F → Re, φ2 = φ2(x, y, λ, f),

φ2(x, y, 0, f) = f(y), φ2(x, x, λ, f) = f(x), ∀x, y ∈ D,λ ∈ [0, 1], f ∈ F.
In this paper, (φ1, φ2) − β− convexity is defined. It is a very powerful new principle for characterizing

the generalized convexity of sets and functions from a unified perspective.

In section 2, the definition of (φ1, φ2)−β−convex function is given; we show that to appropriate selection

of functions φ1 and φ2, some of the well-known classes of generalized convex functions are particular cases

of this new class. An example of a (φ1, φ2) − β−convex function is also provided that does not belong to

any of the known classes. We present some properties of nondifferentiable (φ1, φ2) − β−convex functions.

In this section, we also examine some properties of the solution of a mathematical programming problem

involving.(φ1, φ2)− β−convex functions; moreover, we state a senstivity result.

In section 3, we consider the differentible case. Here we state a natural necessary condition for

differentiable (φ1, φ2)−β−convex functions; in particular, we provided criteria under which the differentiable

and the nondifferentiable conditions are equivalent. we state a second order sufficient condition for

(φ1, φ2)− β−convexity.

2 The Nondifferentiable Case

Let G be a vector space of real valued functions defined on a set D ⊆ <n. We are assuming two maps φ1, φ2

which satisfy the following assumptions:

φ1 : D ×D × [0, 1]→ <n, φ1 = φ1(x, y, λ),

φ1(p, q, 0) = q, φ1(p, p, λ) = p, ∀p, q ∈ D, λ ∈ [0, 1],

φ2 : D ×D × [0, 1]× F → <, φ2 = φ2(p, q, λ, g),

φ2(p, q, 0, g) = g(y), φ2(p, p, λ, g) = g(p), ∀p, q ∈ D,λ ∈ [0, 1], g ∈ G,
φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β , if β 6= 0,

φ2(p, q, λ, g) = λgφ1(p, p, λ) + (1− λ)gφ1(p, q, 0), if β = 0,

φ2(p, q, λ, g) = λg(p) + (1− λ)g(q), if β = 0. (2.1)

We will also assume that φ1 is continuous with respect to λ. We give the following definitions and

preliminaries:

Definition 2.1 (φ1-convex set). A set D is said to be φ1-convex if φ1(p, q, λ) ∈ D for all p, q ∈ D, λ ∈ [0, 1].

The intersection of φ1-convex sets is also φ1-convex.

From now onwards, we take D as a φ1-convex set [21].

Definition 2.2 ((φ1, φ2)-convex(concave) function). A function g ∈ G is (φ1, φ2)-convex(concave) if

f(φ1(p, q, λ)) ≤ φ2(p, q, λ, f) (≥),

for all p, q ∈ D and 0 ≤ λ ≤ 1.

If g = (g1, g2, ..., gk) : D → <k, gi ∈ G , and gi is (φ1, φ2)-convex(concave) for i=1,2,...,k, then the vector

valued function g is said to be (φ1, φ2)-convex(concave) [21].
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Definition 2.3 ((φ1, φ2) − β-convex(concave) function). A function g ∈ G is said to be (φ1, φ2) − β-

convex(concave) if

g(φ1(p, q, λ)) 5 φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β

if β 6= 0 (≥),

f(φ1(p, q, λ)) 5 φ2(p, q, λ, g) = λg(p) + (1− λ)g(q)

if β = 0 (≥),
(2.2)

for all p, q ∈ D and 0 ≤ λ ≤ 1.

If g = (g1, g2, ..., gk) : D → <k, gi ∈ G , and gi is (φ1, φ2)−β-convex(concave) for i=1,2,...,k, then the vector

valued function g is said to be (φ1, φ2)− β-convex(concave).

Definition 2.4 (φ1-quasi-convex function). A function g ∈ G is said to be φ1-quasi-convex [21] on D if for

every p, q ∈ D,λ ∈ [0, 1]

g(φ1(p, q, λ)) 5 max{g(p), g(q)}.

Definition 2.5 (φ1 − β-quasi-convex function). A function g ∈ G is said to be φ1 − β-quasi-convex on D if

for every p, q ∈ D,λ ∈ [0, 1]

g(φ1(p, q, λ)) 5 φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β

5 max{g(p), g(p)} if β 6= 0,

g(φ1(p, q, λ)) 5 φ2(p, q, λ, g) = λg(p) + (1− λ)g(q) 5 max{g(p), g(p)} if β = 0. (2.3)

Remark 2.1. We say that this definition is independent on the vector or topological structure on D; In fact,

D can be any set.

Remark 2.2. If φ1, φ2 satisfy the assumptions of (2.1), then every (φ1, φ2) − β- convex function is φ1 − β-

quasi-convex. We give some examples below.

Example 2.1. Let D be a convex subset of <n, and define φ1(p, q, λ) = λp + (1 − λ)q, φ2(p, q, λ, g) ≤
ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β if β 6= 0 and φ2(p, q, λ, g) = λg(p) + (1− λ)g(q) if β = 0,

then the convex function on D is (φ1, φ2)− β-convex.

Example 2.2. If η : <n × <n → <n, D is a pre-invex set with respect to η, then an η-pre-invex function

g : D → < is (φ1, φ2) − β-convex with φ1(p, q, λ) = λη(p, q) + q and φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1 −
λ)eβg(φ1(p,q,0))1/β if β 6= 0 also φ2(p, q, λ, g) = λg(p) + (1 − λ)g(q) if β = 0, where η(p, q) = p − q
[27].

Example 2.3. Let D ⊆ N where N is an Euclidean manifold and D is geodesically convex. A geodesically

convex function on D is (φ1, φ2)− β-convex, with φ1(p, q, λ) = γp,q(λ) and φ2(p, q, λ, g) ≤ ln(λeβg(γp,p(λ) +

(1−λ)eβg(γp,q(0))1/β if β 6= 0 also φ2(p, q, λ, g) = λg(γp,p(λ))+(1−λ)g(γp,q(0)) if β = 0, where γp,q

is the geodesic from q to p [23].

Example 2.4. Let D be a convex subset of <n, φ1(p, q, λ) = λη(p, q) + q and

φ2(p, q, λ, g) ≤ ln(a1(p, q, λ)eβg(φ1(p,p,a1(p,q,λ) + (1− a1(p, q, λ))eβg(φ1(p,q,0))1/β if β 6= 0

also

φ2(p, q, λ, g) = a1(p, q, λ)g(p) + (1− a1(p, q, λ))g(q) if β = 0.

Then every B-vex function on D (with respect to a1) is (φ1, φ2)− β-convex [5, 24].
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Example 2.5. Let I be a one - to - one mapping from D ⊆ <n to <n, and Φ a strictly monotone increasing

function mapping a subset
∑

of < onto <. A function g : D → ∑
is called (I,Φ) − β-convex if, for any

p, q ∈ D and λ ∈ [0, 1]

f(NI([p, q], λ)) 5 nΦ[(g(p), g(q)), λ],

provided that rangeg ⊂ domΦ. Here

NI([p, q], λ) ≤ I−1(ln(λeβI(φ(p,p,λ) + (1− λ)eβI(φ(p,q,0))1/β if β 6= 0,

also

NI([p, q], λ) = λI(p) + (1− λ)I(q) if β = 0,

nΦ[(g(p), g(q)), λ] ≤ Φ−1(ln(λeβΦ(g(φ(p,p,λ) + (1− λ)eβΦ(g(φ(p,q,0))1/β if β 6= 0,

nΦ[(g(p), g(q)), λ] = Φ−1(λΦ(g(p) + (1− λ)Φ(g(q)) if β = 0.

Choosing φ1(p, q, λ) = NI([p, q], λ) and φ2(p, q, λ, g) = nΦ[(g(p), g(q)), λ], we see that an (I,Φ) − β-convex

function is a particular (φ1, φ2)− β-convex function [7].

Remark 2.3. The functions φ1, φ2 of the Examples 1 - 5 satisfy (2.1).

Example 2.6. A function g : <n → <̄1 = < ∪ {−∞} is called G-convex on the convex set D if, for every

p, q ∈ D, p 6= q, λ ∈ (0, 1),

g((1− λ)q + λp) 5 G(g(p), g(q), ‖p− q‖, λ),

where G(m1,m2, δ, α) : <̄1 × <̄1 × <+ × <+ → <̄1 is continuous and non-decreasing in

(m1,m2) and ‖.‖ is an arbitrary norm on <n. If we take φ1(p, q, λ) = λp + (1 − λ)q and

φ2(p, q, λ, g) = G(g(p), g(q), ‖p − q‖, λ) ≤ ln(λeβg(φ1(p,p,λ) + (1 − λ)eβg(φ1(p,q,0))1/β , we get that a G-

convex function is an example of (φ1, φ2)− β-convex function [12].

Now we will give some examples of (φ1, φ2)− β-convex function that justify our results.

Example 2.7. Let D ⊂ < be the set D = (−∞,∞), and g : D → < be the function defined as follows:

g(p) =

{
4p, ifp > 0

p2 − p+ 1, ifp < 0
.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]×G as follows:

φ1(p, q, λ) =

{
(1− λ)q + λp, ifpq > 0

q, ifpq < 0
,

φ2(p, q, λ, g) =

{
g(q), ifλ = 0

max{g(p), g(q)}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex and also justify our results.
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Example 2.8. Let D ⊂ < be the set D = (−∞,−1) ∪ (1,∞), and g : D → < be the function defined as

follows:

g(p) =

{
|p| − 1, if |p| < 1

1, if |p| > 1
.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]×G as follows:

φ1(p, q, λ) =

{
(1− λ)q + λp, ifpq > 0

q, ifpq < 0
,

φ2(p, q, λ, g) =

{
g(q), ifλ = 0

max{g(p), g(q)}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex and also justify our results.

Now for suitable assumptions on φ1 and/or φ2, we will discuss some properties of the class of (φ1, φ2)−β-

convex functions.

Observation (a). We are assuming that, φ2 issuperlinear with respect to g ∈ G, that is φ2 is superadditive

and positively homogeneous. Then the class of (φ1, φ2)− β-convex functions is a convex cone. (Practically,

if g,h are (φ1, φ2)− β-convex, and α > 0.

(g + h)(φ1(p, q, λ)) 5 φ2(p, q, λ, g) + φ2(p, q, λ, h) 5 φ2(p, q, λ, g + h)

(g + h)(φ1(p, q, λ)) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β

+ln(λeβh(φ1(p,p,λ) + (1− λ)eβh(φ1(p,q,0))1/β

≤ ln(λeβ(g+h)(φ1(p,p,λ) + (1− λ)eβ(g+h)(φ1(p,q,0))1/β if β 6= 0

(g + h)(φ1(p, q, λ)) ≤ φ2(p, q, λ, g) + φ2(p, q, λ, h)

= λg(p) + (1− λ)h(q) + λg(p) + (1− λ)h(q) = λ(g + h)(p) + (1− λ)(g + h)(q)

if β = 0

(αg)(φ1(p, q, λ)) = α(g(φ1(p, q, λ)) 5 αφ2(p, q, λ, g) = φ2(p, q, λ, αg)

≤ ln(λeβαg(φ1(p,p,λ) + (1− λ)eβαg(φ1(p,q,0))1/β if β 6= 0

(αg)(φ1(p, q, λ)) = α(g(φ1(p, q, λ)) 5 αφ2(p, q, λ, g)

= φ2(p, q, λ, αg) = λ(αg)(p) + (1− λ)(αg)(q) if β = 0.

Observation (b). We are also assuming that, g : D → < is (φ1, φ2)− β-convex, h : < → < is an increasing

function and (φ3, φ4)− β-convex and hog ∈ G. Then, if

φ2(p, q, λ, g) 5 φ3(g(p), g(q), λ),

φ4(g(p), g(q), λ, h) 5 φ2(p, q, λ, hog),

the function hog is (φ1, φ2)− β-pre convex.(Practically, we have that)

(hog)(φ1(p, q, λ)) 5 h(φ2(p, q, λ, g))

5 h(φ3(g(p), g(q), λ))

5 φ4(g(p), g(q), λ, h)

5 φ2(p, q, λ, hog)

≤ ln(λeβα(hog)(φ1(p,p,λ) + (1− λ)eβα(hog)(φ1(p,q,0))1/β if β 6= 0

= λ(hog)(p) + (1− λ)(hog)(q) if β = 0.
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Remark 2.4. In Examples 2.1 - 2.4, we see that φ2 is linear with respect to g. In Example 2.5, if Φ is

superlinear then φ2 will be superlinear.

Now we will consider a scalar value optimization problem, which can be expressed as

(P ) ming(p) s.t. h(p) ≤ 0,

where g : D → <, h : D → <k Denote the feasible set by D0, where

D0 = {p ∈ D : h(p) ≤ 0}.
Then the following holds:

Proposition 2.1. Suppose that

(i) h = (h1, h2, ..., hk) is (φ1, φ2) - β- convex(see Definition (2.3):

(ii) g is (φ1, φ2) - β- convex.

Then the set of solutions of problem (P) will be φ1- β- convex.

Proof. The feasible set D0 is φ1- β-convex; Practically, if p1, p2 ∈ D0, from (i) and (2.1) we have

hi(φ1(p1, p2, λ)) ≤ φ2(p1, p2, λ, hi) ≤ ln(λeβhi(φ1(p,p,λ) + (1− λ)eβhi(φ1(p,q,0))1/β

≤ max{hi(φ1(p1, p2, λ)), hi(φ1(p1, p2, 0))} ≤ 0

for any i = 1, 2, ..., k. Next, let minp∈D0
g(p) be attained at p0

1 and p0
2. By the hypothesis (ii) and (2.1)

f(φ1(p0
1, p

0
2, λ)) ≤ φ2(p0

1, p
0
2, λ, g) ≤ ln(λeβg(φ1(p01,p

0
1,λ) + (1− λ)eβg(φ1(p01,p

0
2,0))1/β

≤ max{g(φ1(p0
1, p

0
1, λ)), g(φ1(p0

1, p
0
2, 0))} = g(p0

1)

But g(p0
1) = g(p0

2) = minp∈D0
g(p), hence g(φ1(p0

1, p
0
1, λ)) = g(p0

1) which completes the proof.

Definition 2.6 ((φ1, φ2)−β - pre-strictly convex(concave) function). Let p0 ∈ D. We say that g is (φ1, φ2)−β
strictly convex(concave) at p0 if

g(φ1(q, p0, λ)) < φ2(q, p0, λ, g) (>)

≤ ln(λeβg(φ1(q,q,λ) + (1− λ)eβg(φ1(q,p0,0))1/β (>), (2.4)

we say that g is weakly (φ1, φ2)− β strictly convex(concave) at p0 if (4) holds for some λ ∈ (0, 1). If (4) is

satisfied at any p0 ∈ D, then g is (φ1, φ2)− β strictly convex(concave) on D.

Proposition 2.2. Suppose that D0 is a φ1 − β convex set, and

(i) g is (φ1, φ2)− β strictly convex at p0 ∈ D0.

(ii) p0 is a solution of problem (P).

Then p0 is the unique solution of problem (P).

Proof. Let p∗ be another solution of (P). p∗ 6= p0. Then, for all λ ∈ (0, 1)

g(φ1(p∗, p0, λ)) ≤ φ2(p∗, p0, λ, g) ≤ ln(λeβg(φ1(p∗,p∗,λ) + (1− λ)eβg(φ1(p∗,p0,0))1/β

≤ max{g(φ1(p∗, p∗, λ)), g(φ1(p∗, p0, 0))} = g(p0)

which contradicts hypothesis(ii).

In case of (φ1, φ2)− β concave functions(see Definition 3 ), we have the following:

Theorem 2.1. Suppose that

(i) g is (φ1, φ2)− β strictly concave in D;
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(ii) ∀p0 ∈ int(D0)∃p, q ∈ D0, p 6= q, λ ∈ (0, 1] such that φ1(p, q, λ) = p0;

(iii) D0 is φ1 − β convex;

(iv) φ2(p, q, λ, g) ≥ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β ≥ min{g(φ1(p, p, λ)), g(φ1(p, q, 0))} for every

p, q ∈ D0, λ ∈ [0, 1].

Then there are no interior points of D0 which are solution of (P), i.e. if p0 is a solution of (P), then p0 is

a boundary point of D0.

Proof. If the solution set of (P ) is empty, or int(D0) is empty, there is nothing to prove. Let p0 is a solution

of (P), and p0 ∈ int(D0). Then by (ii) there exist p, q ∈ D0, p 6= q and λ ∈ (0, 1] such that p0 = φ1(p, q, λ).

By (i) we have that

g(p0) = g(φ1(p, q, λ)) > φ2(p, q, λ, g)

≥ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β ≥ min{g(φ1(p, p, λ)), g(φ1(p, q, 0))} ≥ g(p0).

Contradiction, so it is concluded that p0 is not a solution of (P ). Let µδ(p0) denote a neighbourhood of p0

of radius δ.

Theorem 2.2. Suppose that

(i) g is (φ1, φ2)− β strictly convex;

(ii) p0 ∈ D0 is a local minimum of (P);

(iii) ∀δ1 > 0, and ∀p ∈ D0,∃λ ∈ (0, 1] such that φ1(p0, p, λ) ∈ µδ1(p0);

(iv) D0 is φ1 − β convex;

Then p0 is a strict global minimum of (P).

Proof. By hypothesis (iv), for every p ∈ D0, and for every λ ∈ [0, 1], φ1(p0, p, λ) ∈ D0. Since p0 is a local

minimum of (P ), there exists µδ2(p0) such that for every p ∈ µδ2(p0) ∩D0, g(p0) ≤ g(p). Now let p ∈ D0,

p 6= p0. Then, by hypothesis (ii) and (iii), with δ1 = δ2 we have that g(p0) ≤ φ1(p0, p, λ)) for some λ ∈ (0, 1].

Therefore, using (i) and (2.1), we have

g(p0) ≤ g(φ1(p0, p, λ)) < φ2(p0, p, λ, g)

≤ ln(λeβg(φ1(p0,p0,λ) + (1− λ)eβg(φ1(p0,p,0))1/β ≤ max{g(φ1(p0, p0, λ)), g(φ1(p0, p, 0))}

Obviously, max{g(φ1(p0, p0, λ)), g(φ1(p0, p, 0))} 6= g(p0) since g(p0) ≮ g(p0). Therefore g(p0) < g(p). Since

p is an arbitrary member of D0, the proof is complete.

On the basis of Theorem 2.2, the following results can be obtained.

Theorem 2.3. Suppose that

(i) g is (φ1, φ2)− β convex;

(ii) p0 ∈ D0 is a strict local minimum of (P);

(iii) ∀δ1 > 0, and ∀p ∈ D0,∃λ ∈ (0, 1] such that φ1(p0, p, λ) ∈ µδ1(p0) \ {p0};
(iv) D0 is φ1 − β convex;

Then p0 is a strict global minimum of (P).

Theorem 2.4. Suppose that

(i) g is (φ1, φ2)− β convex;

(ii) p0 ∈ D0 is a local minimum of (P);

(iii) ∀δ1 > 0, and ∀p ∈ D0,∃λ ∈ (0, 1] such that φ1(p0, p, λ) ∈ µδ1(p0);

(iv) D0 is φ1 − β convex;
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(v) φ2(p0, p, λ, g) ≤ ln(λeβg(φ1(p0,p0,λ) +(1−λ)eβg(φ1(p0,p,0))1/β 5 max{g(φ1(p0, p0, λ)), g(φ1(p0, p, 0))} for

every p ∈ D0 with g(p) 6= g(p0), and for all λ ∈ (0, 1).

Then p0 is a global minimum of (P).

Example 2.9. Let D ⊂ < be the set D = (−∞,−3) ∪ (3,∞), and g : D → < be the function defined as

follows:

g(p) =

{
|p| − 3, if |p| < 3

1, if |p| = 3
.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]×G as follows:

φ1(p, q, λ) =

{
(1− λ)q + λp, ifpq > 0

q, ifpq < 0
,

φ2(p, q, λ, g) =

{
g(q), ifλ = 0

max{g(p), g(q)}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex which verifies our results.

Now we will study a regularity property of the product of (φ1, φ2) − β convex functions (i=2,3). First,

we say the following

Lemma 2.1. Suppose that g,h are satisfying the conditions and also real valued functions defined on D,

(i) g(p) = 0, h(p) = 0

(ii) g(p)− g(q))(h(p)− h(q)) = 0 ∀ p, q ∈ D.

Then for every p, q ∈ D, either

g(p)h(p) = g(q)h(p) and g(p)h(p) = g(p)h(q)

or

g(q)h(q) = g(p)h(q) and g(q)h(q) = g(q)h(p).

Proof. Since, by (ii),

g(p)− g(q))(h(p)− h(q)) = 0 ∀p, q ∈ D

it follows that either

g(p) = g(q) and h(p) = h(q)

or

g(q) = g(p) and h(q) = h(p)

which further implies(in view of (i)) that either

g(p)h(p) = g(q)h(p) and g(p)h(p) = g(p)h(q)

or

g(q)h(q) = g(p)h(q) and g(q)h(q) = g(q)h(p).

Proposition 2.3. Suppose that

(i) g,h are nonnegative functions defined on D and satisfying the inequality

(g(p)− g(q))(h(p)− h(q)) = 0, ∀p, q ∈ D;

(ii) g is (φ1, φ2)− β convex, h is (φ1, φ2)− β convex.
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Then pq is φ1 − β quasi-convex.

Proof. For any p, q ∈ D and λ ∈ [0, 1],

(gh)(φ1(p, q, λ)) = g(φ1(p, q, λ))h(φ1(p, q, λ))

5 φ2(p, q, λ, g)φ2(p, q, λ, h)

≤ {ln(λeβf(φ1(p,p,λ) + (1− λ)eβf(φ1(p,q,0))1/β}

×{ln(λeβh(φ1(p,p,λ) + (1− λ)eβh(φ1(p,q,0))1/β}

5 max{g(p), g(q)}.max{h(p), h(q)}.

Now max{g(p), g(q)}.max{h(p), h(q)}, in view of lemma, is less than or equal to

max{g(p), g(q)}.max{h(p), h(q)}; hence it follows that

(gh)(φ1(p, q, λ)) ≤ ln(λeβ(gh)(φ1(p,p,λ) + (1− λ)eβ(gh)(φ1(p,q,0))1/β

≤ max{g(p)h(p), g(q)h(q)}

= max{(gh)(p), (gh)(q)}.

Therefore gh is φ1 − β-quasi-convex.

Now we will consider the following family of problems:

min g(p) s.t. h(p) 5 ε,

where g : <n → <, h : <n → <k, ε ∈ <k. Denote by g∗(ε) the function

g∗ : <k → <, g∗(ε) = inf{g(p) : h(p) 5 ε} ([25]).

Assume that g is (φ1, φ2)− β convex, where φ2(p1, p2, λ, g) = φ4(g(p1), g(p2), λ) and the vector function

h is (φ1, φ2)− β convex, where

φ̄2 : <n ×<n × [0, 1]×Gk → <k, φ̄2(p, q, λ, h) = φ3(h(p), h(q), λ),

and φ3(b1, b2, λ) is nondecreasing in (b1, b2) with respect to the component wise order (if bi1 5 ci1 and bj2 5 cj2,

∀i, j, then φ3(b1, b2, λ) 5 φ3(c1, c2, λ), for every λ ∈ [0, 1])

We have the following

Theorem 2.5. The function g∗ is a (φ3, φ4)−βconvex on <k (i.e. g∗(φ3(ε1, ε2, λ)) 5 φ4(g∗(ε1), g∗(ε2), λ)).

Proof. Notice that if h(p1) 5 ε1, h(p2) 5 ε2 then

h(φ1(p1, p2, λ)) 5 φ3(h(p1), h(p2), λ) 5 φ3(ε1, ε2, λ);

in particular,

{(p1, p2) : h(p1) 5 ε1, h(p2) 5 ε2} ⊆ {(p1, p2) : h(φ1(p1, p2, λ)) 5 φ3(ε1, ε2, λ)}
Hence

g∗(φ3(ε1, ε2, λ)) = inf{g(p) : h(p) 5 φ3(ε1, ε2, λ)}
5 inf{g(φ1(p1, p2, λ)) : h(φ1(p1, p2, λ)) 5 φ3(ε1, ε2, λ)}
5 inf{φ2(p1, p2, λ, g) : h(p1) 5 ε1, h(p2) 5 ε2} (from(2.6))

≤ inf{ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β : h(p1) 5 ε1, h(p2) 5 ε2}
= φ4(g∗(ε1), g∗(ε2), λ).
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3 The Differentiable Case

Let us assume that φ1, φ2 have right partial derivative with respect to λ at λ = 0, for all p, q ∈ D, for all

g ∈ G. If we consider a differentiable (φ1, φ2)−β convex function g, defined on D ⊆ <n, taking into account

(1), for p, q ∈ D and λ ∈ (0, 1] we get that

g(φ1(p, q, λ) 5 φ2(p, q, λ, g)

=⇒ g(φ1(p, q, λ)− g(q) 5 φ2(p, q, λ, g)− g(q)

=⇒ g(φ1(p, q, λ)− g(φ1(p, q, 0) 5 φ2(p, q, λ, g)− φ2(p, q, 0, g)

=⇒ 1
λ (g(φ1(p, q, λ)− g(φ1(p, q, 0)) 5 1

λ (φ2(p, q, λ, g)− φ2(p, q, 0, g))

=⇒ 1
λ (g(φ1(p, q, λ)− g(φ1(p, q, 0))

=⇒ 5 1
λ (ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p, q, 0))1/β − φ2(p, q, 0, g))

and, taking the limit of both sided for λ→ 0+ (and since φ1(p, q, 0) = q), we have

∇qg(φ1(p, q, 0))
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

5
∂+φ2

∂λ
(p, q, λ, g)

∣∣∣∣
λ=0

∇qg(φ1(p, q, 0))
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

5
∂+(ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β)

∂λ

∣∣∣∣
λ=0

We therefore have the following.

Proposition 3.1. We are assuming that φ1, φ2 have right partial derivative with respect to λ at λ = 0.

Then a differentiable (φ1, φ2)− β convex function g satisfies the inequality

φ2(p, q, g) = ∇qg(q)φ1(p, q),

for every p, q ∈ D, where

φ1(p, q) =
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

, φ2(p, q, f) =
∂+φ2

∂λ
(p, q, λ, g)

∣∣∣∣
λ=0

φ1(p, q) =
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

,

φ2(p, q, g) =
∂+(ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β)

∂λ

∣∣∣∣
λ=0

.

Remark 3.1. The same result holds in a more general setting, where D is a subset of a Riemannian manifold,

and the r.h.s. of (2.4) is defined as dgq(φ1(p, q)).

It is easy to verify that a φ1 − β quasi-convex function h satisfies the condition

h(p) 5 h(q) =⇒ ∇qh(q)φ1(p, q) 5 0,

for every p, q ∈ D.

Definition 3.1. Let ψ : D×D → D. We say that ψ is skew-symmetric on D×D if ψ(p, q) = −ψ(q, p) for

every (p,q) ∈ D ×D.

Corollary 3.1. (To Proposition 3.1) Suppose that g is differentiable and (φ1, φ2) − β convex; if φ1, φ2

are related to φ1, φ2 as in (Proposition 3.1), and skew-symmetric for any (p,q) ∈ D × D, then ∇g is

φ1 − β−monotone on D, i.e.

(∇pg(p)−∇qg(q))φ1(p, q) = 0 ∀(p, q) ∈ D ×D.

Proof. By (Proposition 3.1) we have that

φ2(p, q, g) = ∇qg(q)φ1(p, q) φ2(q, p, g) = ∇pg(p)φ1(q, p)

and the conclusion follows from the skew-symmetry.

The local condition expressed by (Proposition 3.1) is usually not sufficient to guarantee the (φ1, φ2) − β−
convexity of g, unless we specify some more restrictive and global properties of the functions φ1 and φ2.

Indeed, consider φ1(p, q, λ) = q + λη(p, q), φ2(p, q, λ, g) = (1− λ)g(q) + λg(p)
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In Mohan and Neogy provided a counterexample, showing that the condition

f(x)− f(y) = ∇yf(y)η(x, y)

does not imply in general that

g(q + λη(p, q)) 5 (1− λ)g(q) + λg(p) ∀λ ∈ [0, 1].

We will assume that the function g is differentiable on D. The following results relate the necessary condition

for a differentiable φ1, φ2)−β-convex function g, and the definition of φ1, φ2)−β−convexity. In the first result

we assume that a ”regularity condition” is satisfied by φ1, whereas φ2 is the usual r.h.s. of the definition of

convexity, providing a slight extension of the ordinary convex case.

Proposition 3.2. Assume that φ1 is differentiable with respect to λ in [0, 1]: if the following are satisfied

(i) φ1(p, q, 0) = q, φ1(p, q, 1) = p;

(ii) ∂φ1

∂v (p, q, v)(t′ − v) = φ1(φ1(p, q, t′), (φ1(p, q, v));

(iii) φ2(p, q, λ, g) = (1− λ)g(q) + λg(p)

for every p, q ∈ D, v, t′, λ ∈ [0, 1], then a function f satisfying (Proposition 3.1) is φ1, φ2 − β-convex.

Proof. By Proposition 3.1 and condition (i), it follows that g(p) − g(q) = ∇qg(q)φ1(p, q), and for every

p, q ∈ D, we get that the function h(w) = f(φ1(p, q, w)) is convex ; indeed

h(t′)− h(v) = g(φ1(p, q, t′))− g(φ1(p, q, v))

= ∇φ1
g(φ1(p, q, v))φ1(φ1(p, q, t′), (φ1(p, q, v)) (by Proposition 3.1 )

= ∇φ1
g(φ1(p, q, v))

∂φ1

∂v
(p, q, v)(t′ − v) (by (ii))

h′(v)(t′ − v).

It follows that h is convex. Hence, h(λ) 5 (1− λ)h(0) + λh(1). Now by hypotheses (i) and (ii) we get that

g(φ1(p, q, λ) 5 (1− λ)g(q) + λg(p) = φ2(p, q, λ, g),

(see [26], where a special case of the Proposition 3.2 is proved).

More generally, the following result relating Proposition 3.1 and φ1, φ2 − β−convexity holds.

Theorem 3.1. We are assuming that, g is a differentiable function on D, where D is a φ1− convex subset

of <n. Let φi(i = 1, 2) be the function associated with φi as in (Proposition 3.1). Then we are assuming that

there exists a function H ′ : <×<× [0, 1]→ <, H ′ = H ′(w, t′, λ), and the following conditions are satisfied:

(i) H ′(φ2(p, φ1(p, q, λ), g), φ2(q, φ1(p, q, λ), g), λ) 5 φ2(p, q, λ, g)− g(φ1(p, q, λ));

(ii) H’ is non decreasing in (w,t’), for every λ fixed (if w1 5 w2, t
′
1 5 t′2. we have that H ′(w1, w1, λ) 5

H ′(w2, t
′
2, λ));

(iii) H ′(∇φ1(g(φ1(p, q, λ))φ1(p, φ1(p, q, λ)),∇φ1(g(φ1(p, q, λ))φ1(q, φ1(p, q, λ)) = 0 for every λ ∈ [0, 1], g ∈
G, p, q ∈ D;

(iv) φ2(p, r, g) = ∇rg(r)φ1(p, r), ∀p, r ∈ D.
Then g is (φ1, φ2)− β−convex on D.

Proof. From (iv), with r = φ1(p, q, λ) we have that

φ2(p, φ1(p, q, λ), g) = ∇φ1
(g(φ1(p, q, λ))φ1(p, φ1(p, q, λ)),

φ2(q, φ1(p, q, λ), g) = ∇φ1
(g(φ1(p, q, λ))φ1(q, φ1(p, q, λ)).

Let w = φ2(p, φ1(p, q, λ), g), t′ = φ2(q, φ1(p, q, λ), g); from (ii) and (iii), we get that

H ′(w, t′, λ) = H ′(∇φ1
g(φ1(p, q, λ))φ1(p, φ1(p, q, λ)),
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∇φ1g(φ1(p, q, λ))φ1(q, φ1(p, q, λ)), λ) = 0,

Finally, by (i), we have that

φ2(p, q, λ, g)− g(φ1(p, q, λ)) = 0, ∀p, q ∈ D,λ ∈ [0, 1],

that is g is (φ1, φ2)− β−convex. Notice that Condition C in [27] is a particular case of Theorem 3.1 where

φ1(p, q, λ) = q + λη(p, q), φ2(p, q, λ, g) = (1− λ)g(q) + λg(p), and H ′(w, t′, λ) = λw + (1− λ)t′.

Example 3.1. Let D ⊂ < be the set D = [0, 2], and f : D → [0, 1] be the function defined as follows:

f(x) =

{√
x, ifx ∈ [0, 1]√
2− x, ifx ∈ (1, 2]

.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]× F as follows:

φ1(x, y, λ) =

{
(1− λ)(2(2−√y)) + λ(2−√x), ifxy > 0

2(2−√y), ifxy < 0
,

φ2(x, y, λ, f) =

{
f(2(2−√y)), ifλ = 0

max{f(2−√x), f(2(2−√y))}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex which verifies our results.

Proposition 3.3. If g : D → < is differentiable, and Φ1 satisfies assumptions (ii) and (iii) in Theorem 3.1,

then g is Φ1-quasi-convex if and only if (Remark 3.1) holds.

Proof. Similar to the proof given in [27].

Under appropriate assumptions on Φ2, a differentiable (φ1, φ2)− β−convex function, turns out to be invex,

and we can guarantee that a stationary point is a global minimum. Here is a sufficient condition. Assume

that φ2 satisfies the inequality

c(p, q, λ, g)φ2(p, q, λ, g) 5 (1− λ)g(q) + λg(p), (3.1)

for all p, q ∈ D,λ ∈ [0, 1], g ∈ G, and for some function c = c(p, q, λ, g) : D × D × [0, 1] × G → <, with

c(p, q, 0, g) = 1, ∂c
∂λ (p, q, λ, g)

∣∣
λ=0

= 0. Then we have the following.

Proposition 3.4. Let g be a differentiable (φ1, φ2)− β−convex function, where φ1 and φ2 are differentiable

with respect to λ at λ = 0, for every p, q ∈ D. Assume that condition (3.1) holds. Then g is invex with

respect to η(p, q) = φ1(p, q). In particular, every stationary point of g is a global minimum.

Proof. From (3.1), we have that

(1− λ)g(q) + λg(p)− g(q) = c(p, q, λ, g)φ2(p, q, λ, g)− c(p, q, 0, g)φ2(p, q, 0, g).

Adding and subtracting c(p, q, 0, g)φ2(p, q, λ, g) to the right hand side of the above inequality and then

dividing both sides by λ and taking the limit λ→ 0+, we get

g(p)− g(q) =
∂c

∂λ
(p, q, λ, t′)

∣∣∣∣
λ=0

φ2(p, q, 0, g) + c(p, q, 0, g)φ2(p, q, g) = φ2(p, q, g)

Since, by Proposition 3.1, φ2(p, q, g) = ∇qg(q)φ1(p, q), we have that

g(p)− g(q) = φ2(p, q, g) = ∇qg(q)φ1(p, q).

This proves that g is φ1(p, q)− invex and hence every stationary point is a global minimum point.

Now we will assume that g : D → R and φ1 : D ×D × [0, 1]→ D satisfy the assumptions

(i) g ∈ C2(D);

(ii) φ1(p, q) ∈ C2([0, 1]).
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After that we have the following sufficient condition for (φ1, φ2)− β− convexity:

Proposition 3.5. In our previous assumptions, g is (φ1, φ2) − β− convex for every φ2(p, q, t′, g) =∫ t′
0
g(p, q, w)dw + g(q), where h is any solution of the differential inequality

∂h

∂t′
(p, q, t′) =

(
∂φ1

∂t′

)T ′
(p, q, t′)H ′φ1

g(φ1(p, q, t′))
∂φ1

∂t′
(p, q, t′)

+∇φ1g(φ1(p, q, t′))
∂2φ1

∂t′
(p, q, t′)

h(p, q, 0) = ∇qg(q)φ1(p, q) (3.2)

(
H ′φ1

denotes the Hessian of the function φ1, and

(
∂φ1

∂t′

)T ′
the transpose of

(
∂φ1

∂t′

))

Proof. Consider, for every p, q ∈ D,

s(t′) = g(φ1(p, q, t′))− φ2(p, q, t′, g),

where φ2(p, q, t′, g) =
∫ t′

0
h(p, q, w)dw + g(q), and h satisfies (Proposition 3.4). We prove that s(t′) 5 0 for

every t′ ∈ [0, 1]. We have that

s(0) = g(q)− g(q) = 0,

s
′
(0) = ∇qg(q)φ1(p, q)−∇qg(q)φ1(p, q) = 0,

s
′′
(t′) =

(
∂φ1

∂t′

)T ′
(p, q, t′)H ′φ1

f(φ1(p, q, t′))
∂φ1

∂t′

+∇φ1
g(φ1(p, q, t′))

∂2φ1

∂t′
(p, q, t′)− h′(t′) 5 0.

Therefore, s(t) 5 0 for every t′ ∈ [0, 1], and g(φ1(p, q, t′) 5 φ2(p, q, t′, g) for every p, q ∈ D, t′ ∈ [0, 1].

4 Conclusions

In this paper, we established a new class of convexity named (φ1, φ2)−β-convexity. Our new class is a super

class of many well-known classes.

• When we take φ1(p, q, λ) = λη(p, q) + q and φ2(p, q, λ, g) = λg(p) + (1 − λ)g(q) then it shows the

result of [16]

• When we take φ1(p, q, λ) = γp,q(λ) and φ2(p, q, λ, g) = λg(γp,p(λ)) + (1 − λ)g(γp,q(0)) then it shows

the result of [23]

• If a1(p, q, λ) = λ then it shows the result of [4, 19]

• When we take φ1(p, q, λ) = NI([p, q], λ) and φ2(p, q, λ, g) = nΦ[(g(p), g(q)), λ], we see that an (I,Φ)−β-

convex function is a particular (φ1, φ2)− β-convex function, which shows the result of [24]

• If we take φ1(p, q, λ) = λp+ (1− λ)q and φ2(p, q, λ, g) = G(g(p), g(q), ‖p− q‖, λ) ≤ ln(λeβg(φ1(p,p,λ) +

(1− λ)eβg(φ1(p,q,0))1/β , we get that a G-convex function is an example of (φ1, φ2)− β-convex function,

which shows the result of [25]

• If we take β = 0 then this function is convert into (φ1, φ2)-convex function, which shows the result of

[22]

We can extend results of our paper for interval-valued function under the assumptions of (φ1, φ2) − β-

convexity.
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