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Abstract

In this paper, we shall prove the generalized Hyers-Ulam stability of the additive-quartic functional
equation introduced by C. Muthamilarasi et al. [11] in Random Normed spaces by using direct and
fixed-point methods.
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1 Introduction
In the field of stability of functional equations, a type of stability named after the Mathematician Ulam
[15] is often considered. In 1940, Ulam [15], triggered the study of stability problems for various functional
equations. He presented a number of unsolved problems. Since then, this question has attracted the attention
of many researchers. In the next year, Hyers [9] gave answer of Ulams question in the case of approximately
additive mappings. Thereafter, Hyers result was generalized by Aoki [3] and improved for additive mappings,
and subsequently improved by Rassias [[6],[7]] for linear mappings by allowing the Cauchy difference to be
unbounded.
Since then, stability of functional equation had been discussed in various spaces by researchers [[2],[4],[5]].
In 1963, Serstnev [13] introduced the theory of random normed spaces (briefly, RN-spaces) which is
generalization of deterministic result of normed spaces and also in the study of random operator equations.
A number of papers and research monographs have been published on generalizations of the stability of
different functional equations in RN- spaces [12]. Recently, in 2017, Abdou et al. [1] discussed the stability
of a quintic functional equations in random normed space. In this paper, we shall discuss about the stability
of A-Quartic functional equation in random normed space.
To prove our main results, we need some notions and definitions from the literature as follows: A function
F : R ∪ {−∞,+∞} → [0, 1] is called a distribution function if it is nondecreasing and left -continuous with
F (0) = 0 and F (∞) = 1. The class of all probability distribution functions F with F (0) = 0 is denoted by
A.D+ is a subset of A consisting of all functions F ∈ A for which F (∞) = 1 , where l−F (x) = limt→x− F (t).
For any a ≥ 0, εa is the element of D+ , which is defined as{

0, if t ≤ 0

1, otherwise.

Definition 1.1 ([14]). A function T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm (briefly, a
t-norm) if T satisfies the following conditions:

1. T is commutative and associative,
2. T is continuous,
3. T (a, 1) = 1 for all a[0, 1],
4. T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

The examples of continuous t-norm are as follows:
TM (a, b) = min{a, b}, TP (a, b) = minab, TL(a, b) = max{a+ b− 1, 0}
Recall that, if T is a t-norm and {xn} is a sequence of number in [0, 1], then Tni=1xi is defined recurrently by
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T 1
i=1xi = x1andT

n
i=1xi = T (Tn−1

i=1 xi, xn) = T (x1, x2, , ..., xn) for each n ≥ 2 and T∞i=nxn is defined as
T∞i=1xn+i.

Definition 1.2 ([13]). Let X be a real linear space, µ be a mapping from X into D+(foranyxX, µ(x) is
denoted by µx and T be a continuous t norm. The triple (X,µ, t) is called a random normed space (briefly
RN -space) if µ satisfies the following conditions:

(RN 1) µx = ε0(t) for all t > 0 if and only if x = 0;

(RN 2) µαx(t) = µx( t
|α| ) for all x ∈ X,α 6= 0 and all t ≥ 0;

(RN 3) µx + y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and all t, s > 0.

Example 1.3. Every normed space (X, ‖.‖) defines a RN-space (X,µ, TM ), where µx(t) = t
t+‖x‖ , for all

t > 0 and TM is the minimum t-norm. This space is called induced random normed space.

Definition 1.3 ([13]). Let (X,µ, T ) be a RN-space.
1. A sequence {xn} in X is said to be convergent to a point x ∈ X if, for all t > 0 and λ > 0 there exists

a positive integer N such that µ(xn−x)(t) > 1− λ, whenever n ≥ N . In this case, x is called the limit
of the sequence {xn} and we denote it by limn→∞ µxn−x = 1.

2. A sequence {xn} in X is called a Cauchy sequence if, for all t > 0 and λ > 0, there exists a positive
integer N such that µxn−xm(t) > 1− λ, whenever n ≥ m ≥ N .

3. The RN -space (X,µ, T ) is said to be complete if every Cauchy sequence in X is convergent to a point
in X.

Theorem 1.1 ([14]). If (X,µ, T ) is a RN-space and {xn} is a sequence of X such that xn → x then
limn→∞ µxn(t) = µx(t) almost everywhere.

Recently in 2021, Muthamilarasi et al. [11] proved the general solution and generalized Hyers-Ulam
stability of additive quartic functional equation.

f(ax+ a2y + a3z) + f(−ax+ a2y + a3z) + f(ax− a2y + a3z) + f(ax+ a2y − a3z)

= 2[f(ax+ a2y) + f(a2y + a3z) + f(ax+ a3z)

+ f(ax− a2y) + f(a2y − a3z) + f(a3z − ax)]

− 2[a4(f(x) + f(−x)) + a8(f(y) + f(−y))

+ a12(f(z) + f(−z))]− [a(f(x)− f(−x))

+ a2(f(y)− f(−y)) + a3(f(z)− f(−z))]. (1.1)
for fixed a ∈ Z+ in Banach spaces.

Lemma 1.1. Let W and X be real vector spaces. If an odd mapping f : W → X satisfies (1.1), then f is
additive.

Lemma 1.2. Assume that W and X are real vector spaces. If an even mapping f : W → X satisfies the
quartic functional equation
f(2w + x) + f(2w − x) = 4f(w + x) + 4f(w − x) + 24f(w) − 6f(x), if and only if f : W → X satisfies the
functional equation (1.1) for all x, y, z, w ∈W.Throughout this paper,let X be a real linear space, (Z, µ′, TM )
be an RN -space and (Y, µ, TM ) be a complete RN -spaces. For mapping f : X → Y , we define

Df(x, y, z) = f(ax+ a2y + a3z) + f(−ax+ a2y + a3z) + f(ax− a2y + a3z)

+ f(ax+ a2y − a3z)− 2[f(ax+ a2y) + (a2y + a3z) + f(ax+ a3z)

+ f(ax− a2y) + f(a2y − a3z) + f(a3z − ax)]

+ 2[a4(f(x) + f(−x)) + a8(f(y) + f(−y)) + a12(f(z) + f(−z))]
+ [a(f(x)− f(−x)) + a2(f(y)− f(−y)) + a3(f(z)− f(−z))], (1.2)

(1.3)
for all x, y, z ∈ X.
In this paper, using the direct and fixed-point methods, we investigate the generalised Hyers -Ulam stability
of the A-Quartic functional equation (1.1) in random normed spaces under the minimum t-norm.

174



2 Random stability of the functional equation
In this section, we investigate the generalized Hyers-Ulam stability problem of the A-Quartic functional
equation (1.1) in RN-spaces.

Theorem 2.1. . Let φ : X3 → Z be a function such that, for some 0 < α < a ,

µ′φ(ax,ay,az)(t) ≥ µ′α(φ(x,y,z))(t). (2.1)

and limn→∞ µ′φ(anx,any,anz)(a
nt) = 1. For all x, y, z ∈ X and t > 0.

If f : X → Y is an odd mapping with f(0) = 0 such that

µDf(x,y,z)(t) ≥ µ′φ(x,y,z)(t) (2.2)

for all x, y, z ∈ X and t > 0.
Then there exists a unique additive mapping A : X → Y such that,

µf(x)−A(x)(t) ≥ µ′φ(x,0,0)(2(a− α)t) (2.3)

for all x ∈ X and t > 0.

Proof. Putting y = z = 0 in equation (2.2), we get

µ2af(x)−2f(ax)(t) ≥ µ′φ(x,0,0)(t). (2.4)

µ
(f(x)− f(ax)a )

(t) ≥ µφ(x,0,0)(2at). (2.5)

for all x ∈ X and t > 0. Replacing x by ax in equation (2.4), we get

µ
(f(ax)− f(a

2x)
a )

(t)µ′φ(ax,0,0)(2at) ≥ µ′φ(x,0,0)(
2at

α
),

µ
(f(ax)− f(a

2x)
a )

(t) ≥ µ′φ(ax,0,0)(2at)µ
′
φ(x,0,0)(

2at

α
),

µ
(f(ax)/a− f(a

2x)

a2
)
(t/a) ≥ µ′φ(x,0,0)(

2at

α
)),

µ
(f(ax)/a− f(a

2x)

a2
)
(t) ≥ µ′φ(x,0,0)(t). (2.6)

for all x ∈ X and t > 0.
Continuing like this, we have

µ
(
f(anx)
an −f(

f(an+1x)

an+1 ))
(t) ≥ µ′φ(x,0,0)(

2an+1t

an
). (2.7)

Now, since

f(anx)

an
− f(x) = (

f(anx)

an
− f(an−1x))

an−1
)

+ (
(f(an−1x)

an−1
− f(an−2x)

an−2)

+ ...+ (
f(ax)

a
− f(x)),

=

n−1∑

j=0

(
f(aj+1x)

aj+1
− f(ajx)

aj
)

µ
(
f(anx)
an −f(x))

(

n−1∑

j=0

1

2a
(
α

a
)jt) ≥ TM (µ′φ(x,0,0)(t),

= µ′φ(x,0,0)(t). (2.8)

Now, replacing x by amx in equation (2.8), we get

µ
(
f(an+mx)

an )−f(amx)
(

n−1∑

j=0

1

2a
(
α

a
)jt) ≥ µ′φ(amx,0,0)(t),
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µ
(
f(an+mx)

an+m − f(a
mx)
am )

(

n−1∑

j=0

1

2aam
(
α

a
)jt) ≥ µ′φ(x,0,0)(

t

αm
),

µ
(
f(an+mx)

an+m − f(a
mx)
am )

)(t) ≥ µ′φ(x,0,0)(
t

αm(
∑n−1
j=0

t
2aam (αa )jt)

),

= µ′φ(x,0,0)

2at∑n−1
j=0 (αa )j

,

≥ µ′φ(x,0,0)

2at∑n+m−1
j=m (αa )j+m

. (2.9)

for all x ∈ X and m,n ∈ Z with n > m ≥ 0 since < a, the sequence { (f(anx))
an } is a Cauchy sequence in the

complete RN -spaces (Y, µ, TM ) and so it converges to some point A(x) ∈ Y . Fix x ∈ X and put m = 0 in
equation (2.9), we get

µ
(
(f(anx))

an −f(x))
(t) ≥ µ′φ(x,0,0)

2at∑n−1
j=0 (αa )j

,

So, for any δ > 0,
µ(A(x)−f(x))(δ + t) ≥ TM (µ

A(x)− f(a
nx)
an

(δ), µ f(anx)
an −f(x)

(t) (2.10)

≥ TM (µ
A(x)− f(a

nx)
an

(δ), µ′φ(x,0,0)

2at∑n−1
j=0 (αa )j

).

for all x ∈ X and t > 0.
Taking the limit in (2.10) as n→∞, we get

µ(A(x)−f(x))(δ + t) ≥ µ′φ(x,0,0)(
2at

1
1−αa

) = µ′φ(x,0,0)(2t(a− α)) (2.11)

Since δ is arbitrary, by taking δ → 0 in equation (2.11), we have

µ(A(x)−f(x))(t) ≥ µ′φ(x,0,0)(2(a− α)(t), (2.12)

for all x ∈ X and t > 0.
Therefore, we conclude that the condition of equation (2.3) holds.
Also, by replacing x, y and z by anx, any and anz in equation (2.2), we have

µDf(anx,any,anz
an

(t) ≥ µφ(anx,any,anz)(a
n)(t) = µ′φ(x,y,z)(

a

α
)n(t),

for all x, y, z ∈ X and t > 0.
It follows from limn→∞ µ′φ(anx,any,anz)(a

nt) = 1, that A satisfies the equation (1.1), which implies that A is
an additive mapping.
To prove the uniqueness of the quartic mapping A, let us assume that there exists another mapping A′X → Y
which satisfies equation (2.3). Fix x ∈ X, then A(anx) = anA(x) and A′(anx) = anA′(x) for all n ∈ Z+.
Thus it follows from the equation (2.3) that

µ(A(x)−A′(x))(t) = µ
(
A(anx)
an −A

′(anx)
an )

(t)

≥ TM (µA(anx)
an − f(a

nx)
an )

(
t

2
), µ f(anx)

an −A
′(anx)
an )

(
t

2
) (2.13)

≥ µ′φ(x,0,0)((a− α)(
a

α
)nt).

Since, limn→∞(a− α)( aα )nt =∞, we have µ(A(x)−A′(x))(t) = 1 for all t > 0.
Thus the additive mapping is unique.
This completes the proof.

Theorem 2.2. Let φ : X3 → Z be a function such that, for some 0 < α < a4,
µ′(φ(ax,ay,az))(t) ≥ µαφ(x,y,z)(t) (2.14)

and limn→∞ µ′anφ(anx,any,anz)(t) = 1 for all x, y, z ∈ X and t > 0. If f : X → Y is an even mapping with

f(0) = 0 which satisfies equation (2.2), then there exists a unique additive mapping Q : X → Y such that
µ(f(x)−A(x))(t) ≥ µ′φ(x,0,0)(4(a4 − α)t), (2.15)

for all x ∈ X and t > 0.

176



Replace x, y, z by x, 0, 0 respectively in equation (2.14), we obtain

µ(4f(ax)−4a4f(x)(t) ≥ µ′φ(x,0,0)(t),

µ
4a4(

f(ax)

a4
−f(x)

(t) ≥ µ′φ(x,0,0)(t),

µ
(
f(ax)

a4
−f(x)

(
t

4a4
) ≥ µ′φ(x,0,0)(t),

µ f(ax)
a4
−f(x)

(t) ≥ µ′φ(x,0,0)(4a
4t). (2.16)

for all x ∈ X and t > 0 .
Replacing x by ax in equation (2.16), we get

µ f(a2x)
a4
−f(ax)

(t) ≥ µ′φ(ax,0,0)(4a
4t),

≥ µ′φ(x,0,0)(
4a4t

a
),

µ f(a2x)
a8
− f(ax)

a4

(t) ≥ µ′φ(x,0,0)(
4a4t

a
),

µ
(
f(a2x)

a8
)−(

f(ax)

a4
)
(t) ≥ µ′φ(x, 0, 0)(

4a8t

a
), (2.17)

for all x ∈ X and t > 0.
Now again, replacing x by ax in equation (2.17), we have

µ f(a3x)
a8
− f(a

2x)

a4

(t) ≥ µφ(ax,0,0)(
4a8t

a
),

µ f(a3x)
a12

− f(a
2x)

a8

(t) ≥ µ′φ(x,0,0)(
4a12t

2
),

Continuing this process, we get

µ f(anx)
a4n

− f(a
n−1x)

a4(n−1)

(t) ≥ µ′φ(x,0,0)

(4a4nt)
(n− 1)

,

Now, since

f(anx)

a4n
− f(x) =

n−1∑

j=0

f(aj+1x)

a4(j+1)
− f(ajx)

a4j
,

Now,

µ f(anx)
a4n

−f(x)
(

n−1∑

j=0

1

(4a4)
(
α

a4
)jt) ≥ TM (µ′φ(x,0,0)(t))

= µ′φ(x,0,0)(t). (2.18)

Now replacing x by amx in equation (2.18), we get

µ f(an+mx)

a4n

(

n−1∑

j=0

1

4a4
(
α

a4
)jt) ≥ µ′φ(amx,0,0)(t),

µ f(an+mx)

a4n+4m − f(a
mx)

a4m

(

n−1∑

j=0

1

4a4a4m
(
α

a4
)jt) ≥ µ′φ(x,0,0)(

t

αm
),

µ f(an+mx)

a4(n+m)
− f(a

mx)

a4m

(t) ≥ µ′
φ(x,0,0)( 4a4t∑n−1

j=0
( α
a4

)j+m
)

(2.19)
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for all x and m,n ∈ Z+ with n > m ≥ 0. Since < a4, the sequence ( f(anx)
a4n ) is a Cauchy sequence in the

complete RN -space (Y, µ, TM ) and it converge to a point Q(x) ∈ Y .
Fix x ∈ X and m = 0 in equation (2.19), we get

µ f(anx)
a4n

−f(x)
(t) ≥ µ′φ(x,0,0)

2a4t∑n+m−1
j=0 ( αa4 )j

,

and so, for any δ > 0,

µ(Q(x)−f(x))(δ + t) ≥ TMµ(Q(x)− f(a
nx)

a4n
)
(δ), µ

(
f(anx)

a4n
−f(x))

(t),

≥ TMµ(Q(x)− f(a
nx)

a4n
)
(δ), µ′φ(x,0,0)(

4a4t∑n+m−1
j=0 ( αa4 )j

), (2.20)

for all x ∈ X and t > 0. Taking the limit n→∞ in equation (2.20), we get

µ(Q(x)−f(x))(δ + t) =≥ µ′φ(x,0,0)(
4a4t

1
1− α

a4

)

= µ′φ(x,0,0)(4t(a
4 − α)). (2.21)

Since δ is arbitrary, by taking δ → 0 in equation (2.21), we have

µ(Q(x)−f(x))(t) ≥ µ′φ(x,0,0)(4t(a
4 − α)). (2.22)

for all x ∈ X, t > 0.
Therefore, we conclude that the condition of equation (2.15) holds.
Also replacing x, y, z by anx, any, az respectively in equation (2.15), we have

µ anx,any,az
an

(t) ≥ µ′φ(anx,any,az)(a
nt),

≥ µ′φ(x,y,z)((
a4

α
)nt).

It follows from limn→∞ µ′φ(anx,any,az)(a
4nt) = 1 that Q satisfies the equation (1.1), which implies Q is a

quartic mapping.

Lemma 2.1 ([8]). Suppose that (ω, d) is a complete generalized metric space and J : ω → ω is astrictly
contractive mapping with Lipschitz constant L < 1. Then for each x ∈ ω, either d(Jnx, Jn+1x) =∞. for all
non negative integers n ≥ 0 or there exists a natural numbaer n0 such that

1. d(Jnx, Jn+1x) <∞ for all n ≥ n0;
2. The sequence Jnx is convergent to a fixed point y∗ og J ;
3. y∗ is the unique fixed point of J in the set A = {y ∈ ω : d(Jn0x, y) <∞};
4. d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ A.

Theorem 2.3. Let φ : X3 → D+ be a function such that, for some 0 < α < a4,

µ′φ(x,y,z)(t) ≤ µ′φ(ax,ay,az)(αt) (2.23)

for all x, y, z ∈ X and t > 0. If f : X → Y is an even mapping with f(0) = 0 such that

µD(x,y,z)(t) ≥ µ′φ(x,y,z)(t). (2.24)

for all x, y, z ∈ X and t > 0.
Then there exists a unique quartic mapping Q : X → Y such that

µ(f(x)−Q(x))(t) ≥ µ′φ(x,y,z)(2(a4 − α)t), (2.25)

for all x ∈ X, t > 0.

Proof. It follows from equation (2.24) that

µ
(f(x)− f(ax)

a4
)
(t) ≥ µ′φ(x,0,0)(4a

4t), (2.26)

for all x ∈ X, t > 0.
Let ω = {g : X → Y, g(x) = 0} and mapping d defined on ω by

d(g, h) = inf{c ∈ [0,∞) : µg(x)−h(x)}(ct) ≥ µ′φ(x,0)(t),∀x ∈ X}
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where as usual inf φ = −∞. Then (ω, d) is a generalized complete metric space. Now let us consider the
mapping J : ω → ω defined by
Jg(x) = 1

a4 g(ax), for all g ∈ ω and x ∈ X.
Let g, h ∈ ω and c ∈ [0,∞) be any arbitrary constant with d(g, h) < c.
Then µ(g(x)−h(x))(ct) ≥ µ′φ(x,0,0) for all x ∈ X, t > 0 and so,

µ(Jg(x)−Jh(x))(
αct

a4
) = µg(ax)−h(ax)(αct) ≥ µ′φ(x,0,0)(t) = µ′φ(αx,0,0), (2.27)

for all x ∈ X, t > 0. Hence we have d(Jg, Jh) ≤ αc
a4 ≤ αc

a4 d(g, h).
for all g, h ∈ ω.
Then J is a contractive mapping on ω with the Lipschitz constant L = α

a4 < 1.
Thus it follows from Lemma 2.1, that there exists a mapping Q : X → Y which is a unique fixed point of J
in the set ω1 = {g ∈ ω : d(g, h) <∞}, such that

Q(x) = limn→∞
f(anx)
a4n for all x ∈ X since limn→∞ d(Jf , Q) = 0. Also, using µ

(f(x)− f(ax)
a4

)
(t) ≥

µ′φ(x,0,0)(4(a4 − α)t), we have d(f, Jf) ≤ 1
4(a4−α) .

Therefore using Lemma 2.1, we get
d(f,Q) ≤ 1

1−Ld(f, Jf) ≤ 1
4(a4−α) .

This means that
µf(x)−Q(x)(t) ≥ µ′φ(x,0)(4(a4 − α)t),

for all x ∈ X, t > 0. Also by replacing x, y, z by 2nx, 2ny, 2nz in equation (2.4) respectively, we have

µDQ(x,y,z)(t) ≥ lim
n→∞

µ′φ(2nx,2ny,2z)(a
4nt) = lim

n→∞
µ′φ(x,y,z)((

a4

α
)nt) = 1,

for all x, y, z ∈ X and t > 0. By (RN1), the mapping is quartic.
To prove the uniqueness let us assume that there exists a quartic mapping Q′ : X → Y , which satisfies
equation (2.25). Then Q′ is a fixed point of J in ω1.
However it follows from the Lemma 2.3, that J has only one fixed point in ω1.
Hence Q = Q′.
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