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Abstract

In this paper, we shall prove the generalized Hyers-Ulam stability of the additive-quartic functional
equation introduced by C. Muthamilarasi et al. [11] in Random Normed spaces by using direct and
fixed-point methods.
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1 Introduction

In the field of stability of functional equations, a type of stability named after the Mathematician Ulam
[15] is often considered. In 1940, Ulam [15], triggered the study of stability problems for various functional
equations. He presented a number of unsolved problems. Since then, this question has attracted the attention
of many researchers. In the next year, Hyers [9] gave answer of Ulams question in the case of approximately
additive mappings. Thereafter, Hyers result was generalized by Aoki [3] and improved for additive mappings,
and subsequently improved by Rassias [[6],[7]] for linear mappings by allowing the Cauchy difference to be
unbounded.

Since then, stability of functional equation had been discussed in various spaces by researchers [[2],[4],[5]].
In 1963, Serstnev [13] introduced the theory of random normed spaces (briefly, RN-spaces) which is
generalization of deterministic result of normed spaces and also in the study of random operator equations.
A number of papers and research monographs have been published on generalizations of the stability of
different functional equations in RN- spaces [12]. Recently, in 2017, Abdou et al. [1] discussed the stability
of a quintic functional equations in random normed space. In this paper, we shall discuss about the stability
of A-Quartic functional equation in random normed space.

To prove our main results, we need some notions and definitions from the literature as follows: A function
F:RU{—00,+00} — [0,1] is called a distribution function if it is nondecreasing and left -continuous with
F(0) =0 and F(co) = 1. The class of all probability distribution functions F' with F(0) = 0 is denoted by
A.DT is a subset of A consisting of all functions F' € A for which F'(c0) = 1, where [~ F(z) = limy_,,- F(¢).
For any a > 0, ¢, is the element of DT | which is defined as

0, ift<0
1, otherwise.
Definition 1.1 ([14])). A function T : [0,1] x [0,1] — [0,1] is a continuous triangular norm (briefly, a
t-norm) if T satisfies the following conditions:
1. T is commutative and associative,
2. T is continuous,

3. T(a,1) =1 for all a0, 1],
4. T'(a,b) < T(c,d) whenever a < ¢ and b < d for all a,b,c,d € [0, 1].

The examples of continuous t-norm are as follows:
Ty (a,b) = min{a, b}, Tp(a,b) = minab, Tt (a,b) = max{a+b— 1,0}
Recall that, if T is a t-norm and {z,} is a sequence of number in [0, 1], then 77> ; x; is defined recurrently by
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TL z; = ziandTP z; = T(T"1 T, Tn) = T(x1,22,,....,2,) for each n > 2 and T2, z, is defined as
T:1$n+z

Definition 1.2 ([13]). Let X be a real linear space, i be a mapping from X into DY (foranyx X, pu(z) is
denoted by . and T be a continuous t norm. The triple (X, u,t) is called a random normed space (briefly
RN-space) if p satisfies the following conditions:

(RN1) pp = €o(t) for allt > 0 if and only if z = 0;
(RN2) pox(t) = ‘LLI(‘(Il) forallz € X,a# 0 and all t > 0;
(RN3) piz +y(t+ s) > T(pa(t), py(s)) for all z,y € X and all t,s > 0.

Example 1.3. Every normed space (X, ||.||) defines a RN-space (X, u, Tar), where p,(t) =
t > 0 and T}y is the minimum t-norm. This space is called induced random normed space.

Definition 1.3 ([13]). Let (X, u,T) be a RN-space.

1. A sequence {z,} in X is said to be convergent to a point x € X if, for all ¢ > 0 and X\ > 0 there exists
a positive integer N such that fi(,, —»)(f) > 1 — A, whenever n > N. In this case, z is called the limit
of the sequence {z,} and we denote it by lim, oo ftz, —» = 1.

2. A sequence {z,} in X is called a Cauchy sequence if, for all ¢ > 0 and A > 0, there exists a positive
integer N such that p;, g, (t) > 1 — A, whenever n > m > N.

3. The RN -space (X, u, T) is said to be complete if every Cauchy sequence in X is convergent to a point
in X.

Theorem 1.1 ([14]). If (X,u,T) is a RN-space and {x,} is a sequence of X such that x, — x then
limy, s 00 oo, (£) = pz(t) almost everywhere.

Recently in 2021, Muthamilarasi et al. [11] proved the general solution and generalized Hyers-Ulam
stability of additive quartic functional equation.

t
m y for all

flaz + a*y + a®2) + f(—azx + d*y + a®2) + flax —ay + a®2) + flax + a®y — a2)

= 2[f(az +a®y) + f(a’y + a’2) + f(az + a’2)

T+ ez —aPy) + f(Py — ¥2) + [z — ax)]

- 2[ H(f@) + f(=2) +a*(f(y) + f(~y))

+ a®(f(z) + f(=2)] = la(f(2) = f(-2))
a2(f(y)—f( y)) +a*(f(2) = f(=2))]. (1.1)

+

for fixed ¢ € Z* in Banach spaces.

Lemma 1.1. Let W and X be real vector spaces. If an odd mapping f : W — X satisfies (1.1), then fis
additive.

Lemma 1.2. Assume that W and X are real vector spaces. If an even mapping f : W — X satisfies the
quartic functional equation

fRw+z)+ fRw —x) =4f(w+x) +4f(w — z) + 24f(w) — 6f(x), if and only if f: W — X satisfies the
functional equation (1.1) for all x,y,z,w € W. Throughout this paper,let X be a real linear space, (Z, ', Thr)
be an RN -space and (Y, u,Trr) be a complete RN -spaces. For mapping f : X — Y, we define

Df(x,y,2) = flax+ad*y+a®2) + f(—ax + a’y + a®2) + flax — a®y + a>2)
+  flaz 4 a®y — a®z) — 2[f(ax + a®y) + (a*y + a®2) + f(ax + a®2)
T+ flar - ay) + flaPy - a*2) + f(a*z — an)
b (f(@) + £ () + )+ F(—9) + a2 () + F(—2)]
+ [a(f(z) = f(=2)) +a®*(f(y) — F(=y)) +a*(f(2) = F(=2))], (1.2)
(1.3)

for all x,y,z € X.
In this paper, using the direct and fixed-point methods, we investigate the generalised Hyers -Ulam stability
of the A-Quartic functional equation (1.1) in random normed spaces under the minimum t-norm.
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2 Random stability of the functional equation

In this section, we investigate the generalized Hyers-Ulam stability problem of the A-Quartic functional

equation (1.1) in RN-spaces.
Theorem 2.1. . Let ¢ : X — Z be a function such that, for some 0 < a < a ,
Hes(azsay,az) () = ooy, ()
and lim,,_, u'qb(anz’any’anz)(a”t) =1. Forall x,y,z € X andt > 0.
If f: X =Y is an odd mapping with f(0) =0 such that
1D (2.2) (1) = By ) ()

forallz,y,z € X and t > 0.
Then there exists a unique additive mapping A : X —'Y such that,

If () -A@) () = Hy(z,0,0)(2(a — a)t)
forallz € X andt > 0.

Proof. Putting y = z = 0 in equation (2.2), we get

H2af(z)—2f(az) (t) > M;’(IL’,O,O) (t)
P (a)— 2222 () 2 H(a,0,0) (20t).

for all x € X and t > 0. Replacing = by ax in equation (2.4), we get
2at
/

/’L(f(ax)_f(aazl‘))(t)lu’:j)(az,O,O)(2at) > lu’(ﬁ(I,0,0)(?)’
2at
N(f(m)_f(aa?x))(t) > :u’:j)(am,O,O)(2at)ﬂ’:¢(a:,O,0)(7)7
2at
t > ul —
H’(f(az)/aif(zj’ﬂ))( /a’) - Iu’¢(3370,0)( a ))5
ﬂ(f(a$)/a7f<zzx>)(t) > Hi(a,0,0)(0)-
forall x € X and ¢t > 0.
Continuing like this, we have
2a" 1t
" nt1gy (1) > 1) —_
,u'(f(gn@_f(f(znilr)))( ) > Mq&(w,0,0)( an
Now, since
f(a") ) fa)
e (O CAe R 22y
L YE) e
anfl an72)
+ ...+(f(zm) f(@)),
_ @) fala)
- atl i )
§=0
n—1 1 o .
Hsenn gy (D 520 = Tullyo0®),
j=0
= Hye.00 )
Now, replacing = by a,,z in equation (2.8), we get
n—1
1 o
,LL( f(ar;tmm))_f(amm)(z %(E)Jt) Z /’L%(amx,o,o)(t%
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n—1
1 a; t
M santma f(z:z))(z (=)'t Hig(2,0,0) (o

nTm 2aa™ " a a™

Y

)

j=
Mf;s( oo)( !

x,U, m n—1 aNi

am™ (3 (%))

7=0 2aa™
, 2at
M¢($7070) Zn—l (g>]
j=0\a
> 2at
- ¢(x,0,0) n+m—1 . .
> (G)+m

Jj=m

);

M fantms)  fams) ))(t)

ant+m

9

(2.9)

for all x € X and m,n € Z with n > m > 0 since < a, the sequence {(f(zﬂ} is a Cauchy sequence in the
complete RN-spaces (Y, u, Ths) and so it converges to some point A(z) € Y. Fix ¢ € X and put m =0 in
equation (2.9), we get
’ (t) > “
(flalv=)) Z H(2,0,0) —=n—1, g1’
(=3 f(@) z Z?:o (2)d

So, for any § > 0,
@)@+ = Tar(pyy) swrn (8), psers _p,) (t) (2.10)
2at
> Ty t@ro (8); Wyz.0,0) <o o )-
A(z) o (=0, )2?201(%)]
forall z € X and ¢ > 0.

Taking the limit in (2.10) as n — oo, we get
2at
a@)-£@) O+ 1) 2 f0.0,0)(TT7) = Hoe,0,0) (2t — @) (2.11)

-2
Since § is arbitrary, by taking § — 0 in equation (2.11), we have

I A)—F(2)) () = Mg 0.0(2(a — @)(t), (2.12)
for all z € X and ¢t > 0.
Therefore, we conclude that the condition of equation (2.3) holds.
Also, by replacing z,y and z by a"x,a"y and a™z in equation (2.2), we have

a

)" (1),

psene e (6) 2 ftanaanyans) (@) ) = 1y

for all x,y,z € X and t > 0.

It follows from lim,,_ oo /’[’;ﬁ(a"
an additive mapping.

To prove the uniqueness of the quartic mapping A, let us assume that there exists another mapping A’X — Y
which satisfies equation (2.3). Fix 2 € X, then A(a"z) = a"A(z) and A'(a"x) = a"A'(x) for all n € Z7.
Thus it follows from the equation (2.3) that

(67

(a™t) =1, that A satisfies the equation (1.1), which implies that A is

z,a™y,a™z)

Ba@-a@)([t) = Bawns s, (t)
t t
> Tu(paers _sare)(5) Biers  a@ran,(5) (2.13)
@t am ) 2 a™ a™ ) 2
a n
> 0,0 ((@— a)(a) t).
Since, lim,, o0 (a — ) ()"t = 0o, we have (4 (z)—ar(2))(t) = 1 for all t > 0.
Thus the additive mapping is unique.
This completes the proof. O

Theorem 2.2. Let ¢ : X3 — Z be a function such that, for some 0 < a < a*,
Mo(az,ayaz) () 2 Has(a.y.z) () (2.14)
:1"(15({1":3 any anz)(t) =1forallz,y,z€ X andt > 0. If f : X = Y is an even mapping with
f(0) = 0 which satisfies equation (2.2), then there exists a unique additive mapping Q : X — 'Y such that
[ (@)= A() (B) = Hig(0.0.0)(4(a* — )t), (2.15)

and limy, oo 1

forallz € X and t > 0.
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Replace z,y, z by x, 0,0 respectively in equation (2.14), we obtain
1(af (ax)—da’ £ ) (E) = Hey(a 0,0 ()
/”L4a4(7f(“f)—f(9c) (t) = :U’:za(z,O,O) (t>’

t
N(%,f@) (@) 2 Nﬁp(z,o,o) (),

Mfgzw) —f(a) (t) > M;&(aj,0,0) (4a™t). (2.16)

forallz € X and ¢t >0 .
Replacing z by az in equation (2.16), we get

2 f(ZiZ) —f(az) (t) > M;&(aa:,0,0) <4a4t)7

da*t
2 :uqb(ﬂc 0 0)( )7
4a4t
Hi@s)  faz (t) > Hoe0 0)( ),
4a8t
N(f(:zl'))_(f(afm))( ) > M¢($ O O)( a )7 (2]‘7)
for all x € X and ¢t > 0.
Now again, replacing x by az in equation (2.17), we have
4aBt
Hieda)  fa2e) (t) = /L(zﬁ(ax,O,O)(i)a
4a'?t
[g@se) _ sw2e () > e 0,0 (5
al2 T8
Continuing this process, we get
(4a*"t)
n n— t)y > ul —
uf(fm@*fﬁ(nfﬁ)( ) > H(2,0,0) (n—1)
Now, since
fla"z) < f(@tz)  f(ada)
ain Z aA( J+1 IV
Now,
n—1
I oy /
Piens f(x)( (4a4)(g) t) = T (Hes(,0,0) (1))
7=0
= N;s(z,o,o) (t). (2.18)

Now replacing = by ™z in equation (2.18), we get

n—1

1  «
/M(n"““r) (Z 1aA ( 4) t) = M¢(amz 0 0)( ),
a an 770
n—1
1 a . t
- (2 / -
e s (2 g () 2 oo ()
Bofantmay  pama (E) = /J o
f;4<n+m>)*%< ) (“’OO)(%)

(2.19)
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f(a"x)

for all z and m,n € Z* with n > m > 0. Since < a*, the sequence (&

complete RN-space (Y, u, Ths) and it converge to a point Q(z) € Y.
Fix z € X and m = 0 in equation (2.19), we get

) is a Cauchy sequence in the

2a*t

prmyearee—" ——
Yo (Gr)

)

,u f(aa;nl‘) _f(éC) (t) Z //[/;’("1770’0)

and so, for any § > 0,

Q@) @) (0 +1) = Thafs gy @ (6), by sare pi: (B),

adn

da*t

> Tarf g 27221 (0)s Hep(a0,0) (ST ) (2.20)
(Q(z) odn ) (va)zj;ro (a%)]
for all x € X and ¢ > 0. Taking the limit n — oo in equation (2.20), we get
, da*t
Q) —f@) (0 + 1) == iy 0.0(—7)
=1
= Moo (ta’ —a)). (2.21)
Since ¢ is arbitrary, by taking § — 0 in equation (2.21), we have
Q) f(2)) (8) = Mg 0.0y (4(a* — @)). (2.22)

for all x € X,t > 0.
Therefore, we conclude that the condition of equation (2.15) holds.
Also replacing z,y, z by ax, a™y, a® respectively in equation (2.15), we have

/’67“711’;;%“2 (t) Z /’[’;ﬁ(a"'a:7a"'y7az)(ant)7

I a4
> ﬂq&(m,y,z)((;)nt)
It follows from lim, ,u;)( a"t) = 1 that Q satisfies the equation (1.1), which implies Q is a

quartic mapping.

anrz,a™y,a?) (

Lemma 2.1 ([8]). Suppose that (w,d) is a complete generalized metric space and J : w — w is astrictly
contractive mapping with Lipschitz constant L < 1. Then for each x € w, either d(J"z, J" lz) = co. for all
non negative integers n > 0 or there exists a natural numbaer ng such that

1. d(J"z, J" z) < oo for all n > ng;

2. The sequence J™x is convergent to a fixed point y* og J;

3. yx* is the unique fixed point of J in the set A = {y € w: d(J™x,y) < co};

4. d(y,yx) < ﬁd(y, Jy) for all y € A.

Theorem 2.3. Let ¢ : X2 — D7 be a function such that, for some 0 < a < a*,

'ufﬁ(ryy,Z) (t) < u;)(a:c,ay,az)(at) (223)
forallz,y,z € X andt > 0. If f: X =Y is an even mapping with f(0) =0 such that
1D .y.2) (1) 2 Wiy ) (B)- (2.24)

forall x,y,z € X and t > 0.
Then there exists a unique quartic mapping Q : X — 'Y such that

() -Qa) (1) = (g (2(a” = )t), (2.25)
forallz € X,t > 0.
Proof. Tt follows from equation (2.24) that
F( () £t (8) = Hie.0,0) (4a’t), (2.26)

for all z € X,t > 0.
Let w={g: X = Y, g(z) = 0} and mapping d defined on w by

d(g, h) = inf{c € [0,00) : pg(z)—n(a)}(ct) = Wy(40)(t), V2 € X}
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where as usual inf ¢ = —co. Then (w,d) is a generalized complete metric space. Now let us consider the
mapping J : w — w defined by
Jg(z) = Lg(az), for all g € w and z € X.
Let g,h € w and ¢ € [0,00) be any arbitrary constant with d(g,h) < c.
Then fi(g(x)—n(a))(ct) > “;(m,o,o) for all x € X, ¢ > 0 and so,
act

/J“(Jg(r)—Jh(z))(?) = /‘g(ax)—h(ax)(aCt) 2 N;s(x,o,o) (t) = Niﬁ(ax,o,oy (2.27)
for all z € X,t > 0. Hence we have d(Jg, Jh) < o < 2¢d(g,h).
for all g,h € w.
Then J is a contractive mapping on w with the Lipschitz constant L = % < 1.
Thus it follows from Lemma 2.1, that there exists a mapping @ : X — Y which is a unique fixed point of J
in the set wy; = {g € w : d(g, h) < oo}, such that
Q(r) = lim, o0 fgznx) for all z € X since lim, ,o d(J/,Q) = 0. Also, using u(f(x)_f(:w))(t) >
He(2.,0,0) (4(a* — a)t), we have d(f, Jf) < m.
Therefore using Lemma 2.1, we get
d(va) S ﬁd(fﬂjf) S m-

This means that

1 () - Q) (t) = g0 (4(a* — a)t),
for all z € X,t > 0. Also by replacing z,y, z by 2"z, 2"y, 2"z in equation (2.4) respectively, we have
4
)'t) =1,

. ) a
#DQ(2) (£) 2 L (3 ey 2 (0178) = 100 pige (T

for all z,y,z € X and ¢t > 0. By (RN1), the mapping is quartic.

To prove the uniqueness let us assume that there exists a quartic mapping @’ : X — Y, which satisfies

equation (2.25). Then @’ is a fixed point of J in wy.

However it follows from the Lemma 2.3, that J has only one fixed point in w;.

Hence Q = Q. O
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