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Abstract

In this paper, we extend the concept of GG - convexity to GG- E - convexity and then we derived
some new integral inequalities for GG- E - convex function using Holder’s integral inequalities. Enough
examples are given to verify the obtained results.
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1 Introduction

Convexity contains a broad spectrum of significance in both applied and pure mathematics. Nowadays,

the concept of convexity is not confined to convex functions only, but it has also extended to non - convex

functions as well as convex programming.Minkowski [9] did the first methodical study of convexity. Convexity

plays an important role in convex - optimization. So Many problems of quasi - convex optimization arise in

spanning economics [8, 13], industrial organization [14]. Realted to quasi-convex optimization also available

In offline case [10, 11, 12, 19]. Convexity is also useful in concept of special means like arithmetic mean,

. geometric mean, harmonic mean, logarithmic mean and identric mean Anderson et al.[1] mentioned

mean function. Anderson et al. [1] derived similar results for some power series, especially hypergeometric

functions. Dragomir [5] gave inequalities at the same time Akdemir et al. [2] gave generalization in sense of

convex functions. Then new integral inequalities arise via GG - convexity and GA - convexity [3].

Hanson and Mond [6] extended the class of convex functions to the class of invex functions and showed

that programming problems that can be transformed in this way are a strict subset of invex programming

problems, then Bector and Singh [4] introduced B - vex functions and discussed differentiable and non

differentiable cases. Class of B - vex functions forms a subset of the sets of both semistrictly quasiconvex

as well as quasiconvex functions. For the first time Youness [17] provided the concept of well known class

of generalised convexity, namely E-convexity. Furthermore, he formulated some results from E - convex

functions in programming problems [18]. Yang [15] refined few results of E - convex programming, which

were obtained by Younness [17]. Over the past few years, many researchers have focused on the theory of

inequalities. Because of the wide range of ideas and applications, the theory of inequalities has become a

captivating, engrossing and gripping area for researchers.

In this paper, our aim is to establish some new inequalities for GG - E - convex function. Also we prove

that not only the inequalities of the convex function are possible through the mean function, but also the

composite functions in which one is convex and the other is non-convex obey the inequalities. The Interesting

techniques and the useful ideas of this paper may encourage further research in this dynamic area.
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2 Definitions and Preliminaries

Definition 2.1. The function f : I ⊂ R→ R is a convex function on I, if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. We say that g is concave if - f is convex [3].

Let f : I ⊂ R → R be a convex function where a, b ∈ I with a < b. Then the following double inequality

holds :

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

This inequality is well - known in the literature as Hermite - Hadamard inequality [5].

Definition 2.2. A set N ⊂ Rn is said to be E - convex iff there is a map E : Rn → Rn such that

(1− t)E(x) + tE(y) ∈ N.
for each x, y ∈ N and 0 ≤ t ≤ 1[17].

Definition 2.3. A function f : Rn → Rn is said to be E - convex on a set N ⊂ Rn, iff there is a map

E : Rn → Rn such that N is an convex set and

f(tE(x) + (1− t)E(y)) ≤ tf(E(x)) + (1− t)f(E(y)).

for each x, y ∈ N and 0 ≤ t ≤ 1 on the other hand, if

f(tE(x) + (1− t)E(y)) ≥ tf(E(x)) + (1− t)f(E(y)).

then f is called E - concave on N. If the inequality signs in the previous two inequalities are strict, then f is

called strictly E convex and strictly E concave, respectively [17].

Definition 2.4. Let f : S → (0,∞) be continuous, where I is subinterval of (0,∞). Let N and P be any two

mean functions, T ⊂ R and there is a map E : R→ R then we say f is NP -E-convex(concave) on T if

f(N(E(x), E(y)) ≤ (≥)P (f(E(x), f(E(y)).

for all x, y ∈ S.

Definition 2.5. The GG - E - convex functions are those functions f : S ⊆ R+ → R and there is a map

E : R→ R such that x, y ∈ S and

t ∈ [0, 1]⇒ f((E(x))1−t(E(y))t) ≤ (f(E(x))1−t(f(E(y))t.

Definition 2.6. The GG - E - concave functions are those functions f : S ⊆ R+ → R and there is a map

E : R→ R such that x, y ∈ S and

t ∈ [0, 1]⇒ f((E(x))1−t(E(y))t) ≥ (f(E(x))1−t(f(E(y))t.

Lemma 2.1. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and x, y ∈ So, where So is

the interior set of S with α < β, and there is a map E : R→ R. If g
′ ∈ L([E(α)], [E(β)]), then the following

identity holds :

E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)

= lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(β))t(E(α))(2−t)) g′

(
(E(β))

t
2 (E(α))

(2−t)
2

)
dt
]

+ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(α))t(E(β))(2−t)) g′

(
(E(α))

t
2 (E(β))

(2−t)
2

)
dt
]
.
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Proof. Let J1 =
∫ 1

0

(
(E(β))t(E(α))(2−t)) g′

(
(E(β))

t
2 (E(α))

(2−t)
2

)
dt and J2 =

∫ 1

0

(
(E(α))t(E(β))(2−t)) g′

(
(E(α))

t
2 (E(β))

(2−t)
2

)
dt.

Then we notice that

J1 =
∫ 1

0

(
(E(β))t(E(α))(2−t)) g′

(
(E(β))

t
2 (E(α))

(2−t)
2

)
dt

2
lnE(β)−lnE(α)

∫ 1

0

(
(E(β))

t
2 (E(α))

(2−t)
2

)
g
′
(

(E(β))
t
2 (E(α))

(2−t)
2

)
d
(
E(β))

t
2 (E(α))

(2−t)
2

)
.

Now by the change of variable E(v) = (E(β))
t
2 (E(α))

(2−t)
2 ) and integrating by parts, we have

J1 = 2
lnE(β)−lnE(α)

[√
(E(α)E(β))g

√
(E(α)E(β))− E(α)g(E(α))−

∫√(E(α)E(β))

E(α) g(E(v))dE(v)

]
.

Conformably, we have

J2 = 2
lnE(β)−lnE(α)

[
E(β)g(E(β))−

√
(E(α)E(β))g

√
(E(α)E(β))−

∫ E(β)√
(E(α)E(β))

g(E(v))dE(v)

]
.

Multiplying J1 and J2 by lnE(β)−lnE(α)
2 and adding the results we get the appealed identity.

Our first result is given in the following theorem.

Example 2.1. Let f :
[
0, π2

]
→ [0,∞) and n ∈ N− {1} such that

f(x) = −
∫ n
√
x

0

ln(cos(t))dt

is not GG − convex on
(
0, π2

)
and there is a map E :

[
0, n
√

π
2

]
→
[
0, π2

]
such that E(x) = xn, then the

function

f(E(x)) = −
∫ x

0

ln(cos(t))dt

is GG - E - convex function on
(
0, π2

)
.

Example 2.2. Let f :
[
0, (4n+1)π

2

]
→ [0,∞) where n ∈ Z such that

f(x) = ln(sinx)

is not GG - convex on
(

0, (4n+1)π
2

)
and there is a map E :

[
0, (4n+1)π

2

]
→
[
0, (4n+1)π

2

]
such that E(x) =

(4n+1)π
2 − x then the function

f(E(x)) = ln

(
sin

(
(4n+ 1)π

2
− x
))

f(E(x)) = ln (cosx)

is GG - E - convex function on
(

0, (4n+1)π
2

)
.

Example 2.3. Let E : < → < and f : < → < are defined as

E(x) =

{
2 x > 0

−x x ≤ 0
And

f(x) = x2

Then the function E(x) is not obeying our inequalities and the function f(x) is obeying our inequalities.

Also the composition foE will obey our inequalities.

Remark 2.1. Example 2.3 shows that a non convex function E(x) does not obey our inequalities, but a

convex function f(x) obey our inequalities. And also an E−convex function foE(x) obey our inequalities.

Example 2.4. Let the function E : < → < such that E(x) = lnx which is non convex, so this function is

not obeying our inequalities.

Example 2.5. Let the function F : < → < such that F (x) = ex which is convex, so this function is obeying

our inequalities.

Example 2.6. Let the composition of two functions E,F be defined as FoE : < → < such that F (E(x)) = x

which is E−convex, so this function is obeying our inequalities.
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3 Main Results

Theorem 3.1. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with α < β

and E : R → R is a non decreasing function so E(α) < E(β). If g
′ ∈ L[E(α), E(β)]. If |g′| is GG − E −

Convex on [E(α), E(β)], then the following inequality holds:

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)
L
(
E(α)

√
|g′(E(α))|, E(β)

√
|g′(E(β))|

)
.

Proof. From Lemma 2.1, using the property of the modulus and GG E convexity of |g′|, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(β))t(E(α))(2−t))

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣ dt
]

+ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(α))t(E(β))(2−t))

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣ dt
]

≤ lnE(β)−lnE(α)
2

[
∫ 1

0

(
(E(β))t(E(α))(2−t))

∣∣∣g′(E(β))
∣∣∣
t
2
∣∣∣g′(E(α))

∣∣∣
(2−t)

2

dt

]

+ lnE(β)−lnE(α)
2

[
∫ 1

0

(
(E(α))t(E(β))(2−t))

∣∣∣g′(E(α))
∣∣∣
t
2
∣∣∣g′(E(β))

∣∣∣
(2−t)

2

dt

]

= lnE(β)−lnE(α)
2

[
(E(α))2

∣∣∣g′(E(α))
∣∣∣
∫ 1

0

(
E(β)
√
|g′ (E(β))|

E(α)
√
|g′ (E(α))|

)t
dt

]

+ lnE(β)−lnE(α)
2

[
(E(β))2

∣∣∣g′(E(β))
∣∣∣
∫ 1

0

(
E(α)
√
|g′ (E(α))|

E(β)
√
|g′ (E(β))|

)t
dt

]
.

Then we get the desired result.

Theorem 3.2. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with α < β

and E : R → R is a non decreasing function so E(α) < E(β). If g
′ ∈ L[E(α), E(β)]. If |g′|n is GG - E -

Convex on [E(α), E(β)], for all E(γ) ∈ [E(α), E(β)],then the following inequality

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)
(L ((E(α))m, (E(β))m))

1
m

×
[(
L
(√
|g′(E(α))|n,

√
|g′(E(β))|n

)) 1
n

]

holds, where n > 1 and 1
m + 1

n = 1.

Proof. From Lemma 2.1, using the property of the modulus, GG E convexity of |g′|n and Holder integral

inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

= lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(β))t(E(α))(2−t))

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣ dt
]

+ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(α))t(E(β))(2−t))

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣ dt
]

≤ lnE(β)−lnE(α)
2

[(∫ E(β)

E(α)
(E(β))tm(E(α))(2−t)mdt

) 1
m
(∫ 1

0

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣
n) 1

n

]
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+ lnE(β)−lnE(α)
2

[(∫ E(β)

E(α)
(E(α))tm(E(β))(2−t)mdt

) 1
m
(∫ 1

0

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣
n) 1

n

]

≤ lnE(β)−lnE(α)
2


(E(α))2

(∫ 1

0

(
(E(β))m

(E(α))m

)t
dt

) 1
m

(
∫ 1

0

∣∣∣g′(E(β))
∣∣∣
tn
2
∣∣∣g′(E(α))

∣∣∣
(2−t)n

2

dt

) 1
n




+ lnE(β)−lnE(α)
2


(E(β))2

(∫ 1

0

(
(E(α))m

(E(β))m

)t
dt

) 1
m

(
∫ 1

0

∣∣∣g′(E(α))
∣∣∣
tn
2
∣∣∣g′(E(β))

∣∣∣
(2−t)n

2

dt

) 1
n


 .

Then we get the desired result.

Theorem 3.3. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
L
(√
|g′(E(α))|n,

√
|g′(E(β))|n

)) 1
n

×
[(

(E(β))m+1−mE(β)−(E(β))
m+1

) 1
m

(E(α))2
√
|g′(E(α))|+

(
(E(α))m+1−mE(α)−(E(α))

m+1

) 1
m

(E(β))2
√
|g′(E(β))|

]
.

Proof. From Lemma 2.1, using the property of the modulus, GG E convexity of |g′|n and Holder integral

inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(β))tmdt

) 1
m
(∫ 1

0
(E(β))(2−t)n

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(α))tmdt

) 1
m
(∫ 1

0
(E(α))(2−t)n

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]

≤ lnE(β)−lnE(α)
2



(∫ 1

0
(E(β))tmdt

) 1
m

(
∫ 1

0
(E(β))(2−t)n

∣∣∣g′ (E(β))
∣∣∣
t
2
∣∣∣g′ (E(α))

∣∣∣
(2−t)

2

dt

) 1
n




+ lnE(β)−lnE(α)
2



(∫ 1

0
(E(α))tmdt

) 1
m

(
∫ 1

0
(E(β))(2−t)n

∣∣∣g′ (E(α))
∣∣∣
t
2
∣∣∣g′ (E(β))

∣∣∣
(2−t)

2

dt

) 1
n


 .

If we calculate the integral above, we get the desired result.

Theorem 3.4. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)

×
(
L
(

(E(α))n
√
|g′(E(α))|n, (E(β))n

√
|g′(E(β))|n

)) 1
n

.

Proof. From Lemma 2.1, using the property of the modulus, GG E - convexity of |g′|n and Power mean

integral inequality, we can write∣∣∣E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)

∣∣∣

≤ lnE(β)−lnE(α)
2

[(∫ 1

0
dt
)1− 1

n
(∫ 1

0
(E(β))tn(E(α))(2−t)n

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0
dt
)1− 1

n
(∫ 1

0
(E(α))tn(E(β))(2−t)n

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]
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≤ lnE(β)−lnE(α)
2


(E(α))2

∣∣∣g′(E(α))
∣∣∣
(
∫ 1

0

(
(E(β))n|g

′
(E(β))|

n
2

(E(α))n|g′ (E(α))|
n
2

)t
dt

) 1
n




+ lnE(β)−lnE(α)
2


(E(β))2

∣∣∣g′(E(β))
∣∣∣
(
∫ 1

0

(
(E(α))n|g

′
(E(α))|

n
2

(E(β))n|g′ (E(β))|
n
2

)t
dt

) 1
n


.

Then we get the desired result.

Theorem 3.5. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(
E(β)−1
ln(E(β))

) 1
m

E(α)
√
|g′(E(α))|L 1

n

(
(E(α))n

√
|g′(E(α))|n, (E(β))

√
|g′(E(β))|n

)]

+ lnE(β)−lnE(α)
2

[(
E(α)−1
ln(E(α))

) 1
m

E(β)
√
|g′(E(β))|L 1

n

(
(E(α))n

√
|g′(E(α))|, (E(β))n

√
|g′(E(β))|n

)]
.

Proof. From Lemma 2.1, using the property of the modulus, GG E - convexity of |g′|n and Power mean

integral inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(β))tdt

) 1
m

(∫ 1

0
(E(β))t(E(α))(2−t)n

∣∣∣g′(E(β))
∣∣∣
tn
2
∣∣∣g′(E(α))

∣∣∣
(1− t2 )n

dt

) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(α))tdt

) 1
m

(∫ 1

0
(E(α))t(E(β))(2−t)n

∣∣∣g′(E(α))
∣∣∣
tn
2
∣∣∣g′(E(β))

∣∣∣
(1− t2 )n

dt

) 1
n

]
.

Then we get the desired result.

Theorem 3.6. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
(E(α))

m
n

√
g′(E(α)) + ((E(β))

m
n

√
g′(E(β))

)

×
(
L
(

(E(α))
n−m
n−1 , (E(β))

n−m
n−1

))1− 1
n
(
L
(

(E(α))m
√
|g′(E(α))|n + (E(β))m

√
|g′(E(β))|n

)) 1
n

.

Proof. From Lemma 2.1, using the property of the modulus, GG E convexity of |g′|n and Power mean

integral inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(∫ 1

0

(
(E(β))t(E(α))(2−t))

)n−m
n−1 dt

)1− 1
n

]

×
[(∫ 1

0

(
(E(β))t(E(α))(2−t))

)m ∣∣∣g′(E(α))
∣∣∣
( 2−t

2 )n ∣∣∣g′(E(β))
∣∣∣
tn
2

dt

) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0

(
(E(α))t(E(β))(2−t))

)n−m
n−1 dt

)1− 1
n

]

×
[(∫ 1

0

(
(E(α))t(E(β))(2−t))

)m ∣∣∣g′(E(β))
∣∣∣
( 2−t

2 )n ∣∣∣g′(E(α))
∣∣∣
tn
2

dt

) 1
n

]
.

Then we get the desired result.

Theorem 3.7. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with α < β

and E : R → R is a non decreasing function so E(α) < E(β). If g
′ ∈ L[E(α), E(β)]. If |g′| is GG − E −

Convex on [E(α), E(β)], then the following inequality holds:

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)
L
(
E(α)

√
|g′(E(α))|, E(β)

√
|g′(E(β))|

)
.
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4 Application Area

The concept of E - convexity is the generalizations of convex sets and convex functions, in a respective

manner. E - convexity is also used in the study of E-convex programming. We believe that our new class of

functions will have a very profound research in this entrancing domain of inequalities and also in the pure

and applied sciences. The interesting inequalities and successful ideas in this article can be extended to other

mean functions like harmonic mean, Arithmetic mean etc. As we move forward, we aim to continue that

research to find inequalities for non-convex functions as well.

5 Conclusions

In this paper, we derived the inequalities for GG - E - Convex function using Holder integral inequality. If

we take E(x) as an identity function then it shows the result of [16].

Acknowledgement. Authors are very much thankful to the Editor and Reviewer for their valuable

suggestions to bring the paper in its present form.
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