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Abstract

In this paper, we exhibit certain double series associated with general hypergeometric type Hurwitz-
Lerch Zeta functions and then derive their summation formulae and relations due to their series and
integral identities. We also obtain various known and unknown results in terms of Hurwitz-Lerch Zeta
functions and their generating relations.
2020 Mathematical Sciences Classification: 11M35, 33C65.
Keywords and Phrases: Double series associated with general hypergeometric type Hurwitz -
Lerch Zeta functions, summation formulae, series and integral identities, Hurwitz-Lerch Zeta generating
relations.

1 Introduction and preliminaries
Recently, the authors [10] studied the generalized hypergeometric type Hurwitz-Lerch Zeta function defined
by

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

∞∑

n=0

∏p
i=1 (αi)n∏q
i=1 (γi)nn!

zn

(n+ a)s
, (1.1)

where p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q); s, z ∈ C.
Here in (1.1) the notations denote

C = {z : z = x+ iy : x, y ∈ R, i =
√

(−1)},Z−0 = {0,−1,−2, . . .},
R = (−∞,∞), R+ = R\(−∞, 0] and N0 = {0, 1, 2, 3, . . .}.

Again for a 6= 0, the Pochhammer symbol ([14, p.45] and [21, pp.21-22]) as generalized factorial function
is given by

(a)n =

{
a(a+ 1)(a+ 2) . . . (a+ n− 1);n ≥ 1,

1;n = 0,

and in general it is defined as

(a)v =
Γ(a+ v)

Γ(a)
∀v ∈ R.

In (1.1) it is also claimed that due to [7,8,10], for fixed and large value of N and with the properties
of Gaussian gamma function [21, p.20 ], we find that the function (1.1) is written as partial sum of
hypergeometric type Hurwitz-Lerch Zeta series and the generalized Gaussian hypergeometric series ([14,
p. 73] and [21, pp. 42-43]), as

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

N−1∑

n=0

∏p
i=1 (αi)n∏q
i=1 (γi)n n!

zn

(n+ a)s

+

∏p
i=1 (αi)N Γ(N + a)zN∏q

i=1 (γi)N Γ(N + s+ a)N !
p+2Fq+2

(
(α+N)1,p, N + a, 1;

(γ +N)1,q, N + 1, N + s+ a;
z

)
(1.2)

Since in formula (1.2) for fixed and large N , the first series is finite and the second series is the generalized
Gaussian hypergeometric function pFq (.) which follows the convergent conditions given by [21, p.43]
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(i) converges for |z| <∞, if p ≤ q;
(ii) converges for |z| < 1, if p = q + 1;

(iii) diverges for all z, z 6= 0, if p > q + 1;
(iv) converges absolutely for |z| = 1, if p = q + 1 alongwith

R(ω) = R

(
q∑

i=1

γi + s−
p∑

i=1

αi

)
> 0;

(v) converges conditionally for |z| = 1, z 6= 1, if p = q + 1
and −1 < R(ω) ≤ 0;

(vi) diverges for |z| = 1, if p = q + 1 and R(ω) < −1.
Therefore, the series in (1.1) also satisfies same convergence conditions as given above in (i) to (vi).
In the formula (1.1) taking p = 2, q = 1, α1 = α, α2 = β, and γ1 = γ, we convert it specially into

the extended hypergeometric type Hurwitz-Lerch Zeta function, used in the probability distributions due to
Garg et al. [5], in the form

2H1

(
α, β;
γ;

z, s, a

)
=

∞∑

n=0

(α)n(β)n
(γ)nn!

zn

(n+ a)s
= φα,β;γ(z, s, a), (1.3)

where, α, β, s, z ∈ C and a, γ ∈ C\Z−0 , converges if R(s) > 0, when |z| < 1, (z 6= 1). But when z = 1, for
R(γ) > 1

2R(α+ β + 1) > 0, the series in (1.3) converges if

R(s) >
1

2
R(α+ β)− 1

2
, ( see [10]). (1.4)

It is remarked that on combining both the conditions of R(γ) and the R(s) given in (1.3) and (1.4), we
get

R(γ + s− α− β) > 0,

which is identical to R(ω) given in (iv) of (1.2) for p = 2 and q = 1.
Further in the generalized hypergeometric type Hurwitz-Lerch Zeta function (1.1), if we set

q = p− 1, γ1 = α1, γ2 = α2, . . . , γp−1 = αp−1, αp = 1, it becomes Hurwitz-Lerch Zeta function as

pHp−1

(
(α)1,p−1, 1;
(α)1,p−1;

z, s, a

)
=

∞∑

n=0

∏p−1
i=1 (αi)n (1)n∏p−1
i=1 (αi)n n!

zn

(n+ a)s

=

∞∑

n=0

zn

(n+ a)s
= φ(z, s, a), (1.5)

which converges if R(s) > 0, when |z| < 1, (z 6= 1), but when z = 1, the series (1.5) converges for R(s) > 1.
We also verify it as setting γ = α, β = 1 in remark of Eqn. (1.4) and R(s) > 1.

In extension of (1.1), we again define a general hypergeometric type Hurwitz -Lerch Zeta function in
following form

pKq

(
(α)1,p;
(γ)1,q;

A; z, s, a

)
=

∞∑

n=0

An
∏p
i=1 (αi)n∏q

i=1 (γi)n

zn

(n+ a)sn!
, (1.6)

where p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q);
s, z ∈ C. A symbolizes for a bounded real or complex An ∀n ∈ N0 and follows certain restrictions.

For a sequence 〈An〉 = 〈1〉 ∀n ∈ N0, by (1.1) and (1.6), we find an identity

pKq

(
(α)1,p;
(γ)1,q;

1; z, s, a

)
= pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
.

Again, for a sequence 〈An〉 = 〈(1)n〉 ∀n ∈ N0, we have a relation with (1.1) and (1.6) as

pKq

(
(α)1,p;
(γ)1,q;

(1); z, s, a

)
= p+1Hq

(
(α)1,p, 1;
(γ)1,q;

z, s, a

)
.

It is recalled that Exton [3] obtained some theorems on general hypergeometric generating relations,
Srivastava [17] established certain generating relations of Hurwitz-Lerch Zeta functions and recently, Kumar
and Chandel [10] derived various relations and identities for double series associated with general Hurwitz-
Lerch type Zeta functions. In this motivation, we exhibit these researches for exploring new ideas in the
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theory of extended generalized hypergeometric type Hurwitz-Lerch Zeta functions and thus consider x, y, s ∈
C; a, 2d ∈ C\Z−0 and An, a bounded real or complex sequence ∀n ∈ N0, which follows certain restrictions to
introduce following families of general hypergeometric type Hurwitz-Lerch Zeta functions in the form

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

m,n=0

An(d)m+n

(
d− 1

2

)
m+n

(2d)m+2n

xm+nyn

(n+ a)sm!n!
, (1.7)

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

m,n=0

An(d)m+n

(
d+ 1

2

)
m+n

(2d)m+2n

xm+nyn

(n+ a)sm!n!
. (1.8)

Here in left hand sides of (1.7) and (1.8), A stands for bounded real or complex sequence An ∀n ∈ N0 as
in right hand side of their series.

Again, to obtain summation formulae, series and integral identities of the functions defined in (1.7) and
(1.8) in terms of (1.6), we make an appeal to following preliminary formulae:

For z ∈ C, |z| ≤ 1, 2d 6= 0,−1,−2, . . ., (see Erdélyi et al. [2, Vol. I, p. 101], Srivastava and Manocha [21,
p. 34])

2F1

(
d, d− 1

2 ;
2d;

z

)
=

(
1 +
√

1− z
2

)1−2d

, (1.9)

but by (1.9), we immediately have

2F1

(
d, d− 1

2 ;
2d;

1

)
= 22d−1. (1.10)

Also there exists another result

2F1

(
d, d+ 1

2 ;
2d;

z

)
=

1√
1− z

(
1 +
√

1− z
2

)1−2d

, (1.11)

provided that, z ∈ C, |z| < 1, 2d 6= 0,−1,−2, . . ..
For all 0 ≤ n ≤ m

1

(m− n)!
=

(−1)n(−m)n
m!

, (1.12)

and ∀n ∈ N0

(λ)2n = 22n

(
λ

2

)

n

(
λ

2
+

1

2

)

n

. (1.13)

2 Eulerian Integral representations
In this section, we derive Eulerian integral representations of the general hypergeometric type Hurwitz-Lerch
Zeta functions defined in the Eqns. (1.1), (1.6), (1.7) and (1.8) involving known and unknown hypergeometric
functions.

Here ∀n ∈ N0, a, s ∈ C,R(s) > 0,R(a) > 0, we apply the following Eulerian integral formula
[4,11,12,13,18]

1

Γ(s)

∫ ∞

0

e−(a+n)tts−1dt =
1

(n+ a)s
,

in the Eqns. (1.1) and (1.6) and obtain their Eulerian integral representations

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

1

Γ(s)

∫ ∞

0

e−atts−1
pFq

(
(α)1,p;
(γ)1,q;

ze−t
)
dt, (2.1)

pKq

(
(α)1,p;
(γ)1,q;

A; z, s, a

)
=

1

Γ(s)

∫ ∞

0

e−atts−1
pGq

(
(α)1,p;
(γ)1,q;

A; ze−t
)
dt, (2.2)

where, pGq

(
(α)1,p;
(γ)1,q;

A; z

)
=
∑∞
n=0

An
∏p
i=1(αi)n∏q

i=1(γi)n

zn

n! is a general hypergeometric function. A stands for a

bounded real or complex sequence An ∀n ∈ N0. For example if 〈An〉 = 〈1〉, ∀n ∈ N0, then there exists a
relation

pGq

(
(α)1,p;
(γ)1,q;

1; z

)
= pFq

(
(α)1,p;
(γ)1,q;

z

)
.
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It is remarked that on specialization of the parameters in (2.1) and (2.2), we may obtain various Hurwitz-
Lerch Zeta functions associated with the hypergeometric functions and hypergeometric polynomials found in
the literature (for example, Rainville [14], Slater [15], Sneddon [16], Srivastava and Karlsson [20], Srivastava
and Manocha [21] and others).

In above motivation of (2.1) and (2.2) ∀x, y ∈ C; 2d ∈ C\Z−0 ; a, s ∈ C,R(s) > 0,R(a) > 0, we introduce
following integral representations of the functions (1.7) and (1.8) defined by

φ1(A, d, d− 1/2; 2d;x, y; s, a) =
1

Γ(s)

∫ ∞

0

e−atts−1φ1
∗ (A, d, d− 1/2; 2d;x, xye−t

)
dt, (2.3)

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1

Γ(s)

∫ ∞

0

e−atts−1φ2
∗ (A, d, d+ 1/2; 2d;x, xye−t

)
dt, (2.4)

where the general double functions φ∗1(.) and φ∗2(.) are defined in the double series

φ1
∗(A, d, d− 1/2; 2d;x, y) =

∞∑

m,n=0

An(d)m+n

(
d− 1

2

)
m+n

(2d)m+2n

xmyn

m!n!
, (2.5)

φ2
∗(A, d, d+ 1/2; 2d;x, y) =

∞∑

m,n=0

An(d)m+n

(
d+ 1

2

)
m+n

(2d)m+2n

xmyn

m!n!
. (2.6)

Here, A denotes for bounded real or complex sequence An ∀n ∈ N0 and follows certain restrictions.
It is noticed that on specialization of the parameters of (2.5) and (2.6) and making an appeal to

the formulae (2.3) and (2.4), we may obtain various Hurwitz-Lerch Zeta functions associated with the
hypergeometric functions of two variables like Appell’s functions, Kampé de Fériet functions, Humbert
functions and others found in the literature ( see for example, Bailey [1], Exton [4], Srivastava and Panda
[19], Srivastava and Karlsson [20], Srivastava and Manocha [21] and so on).

For example, under the conditions
∑Q
j=1 ϑj −

∑P
j=1 θj > 0, if we set the sequence An =

∏P
j=1 Γ(αj+θjn)∏Q
j=1 Γ(βj+ϑjn)′

,

∀n ∈ N0, αj ∈ C, θj ∈ R+, ∀(j = 1, 2, 3, . . . , P );βj ∈ C, ϑj ∈ R+, ∀(j = 1, 2, 3, . . . , Q), then for 2d, βj ∈
C\Z−0 , ∀(j = 1, 2, 3, . . . , Q), the functions (2.5) and (2.6) become double Srivastava-Daoust functions [18] in
the following form

φ1
∗(d, d−1/2, [(α) : θ]; 2d, [(β) : ϑ];x, y) =

22d−1Γ
(
d+ 1

2

)

Γ
(

1
2

)
Γ
(
d− 1

2

)S2:0;P
1:0;Q

[
[d : 1, 1],

[
d− 1

2 : 1, 1
]

: −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

x, y

]
,

(2.7)
provided that |x| <∞, |y| < 1,
and

φ2
∗(d, d+ 1/2, [(α) : θ]; 2d, [(β) : ϑ];x, y) =

22d−1

Γ
(

1
2

)S2:0;P
1:0;Q

[
[d : 1, 1],

[
d+ 1

2 : 1, 1
]

: −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

x, y

]
, (2.8)

provided that |x| <∞, |y| < 1, respectively.
Thus making an appeal to (2.7) and (2.8) in the Eqns. (2.3) and (2.4) respectively, for a, s ∈ C,R(s) >

0,R(a) > 0; 2d, βj ∈ C\Z−0 , ∀(j = 1, 2, 3, . . . , Q), we generate integral representation of the Hurwitz-Lerch
double Zeta functions associated with the Srivastava-Daoust double series, given by

ψ1

(
d, d− 1

2 : [(α) : θ];
2d : [(β) : ϑ];

x, y; s, a

)
=

∞∑

m,n=0

(d)m+n(d− 1
2 )m+n

(2d)m+2n

∏P
j=1 Γ(αj + θjn)

∏Q
j=1 Γ(βj + ϑjn)

xm+nyn

(m+ 2n+ a)sm!n!

=
Γ(d+ 1

2 )√
πΓ(d− 1

2 )

22d−1

Γ(s)

∫ ∞

0

e−atts−1S2:0;P
1:0;Q

[
[d : 1, 1], [d− 1

2 : 1, 1] : −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

xe−t, xye−2t

]
dt,

provided that |x| <∞, |y| < 1, (2.9)

and

ψ2

(
d, d+ 1/2 : [(α) : θ];

2d : [(β) : ϑ];
; s, a

)
=

∞∑

m,n=0

(d)m+n

(
d+ 1

2

)
m+n

(2d)m+2n

∏P
j=1 Γ (αj + θjn)

∏Q
j=1 Γ (βj + ϑjn)

xm+nyn

(m+ 2n+ a)sm!n!

=
22d−1

√
πΓ(s)

∫ ∞

0

e−atts−1S2:0;P
1:0;Q

[
[d : 1, 1], [d+ 1

2 : 1, 1] : −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

xe−t, xye−2t

]
, (2.10)
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provided that |x| <∞, |y| < 1, respectively.
Recently, some general Hurwitz-Lerch type Zeta functions associated with the double and multiple

Srivastava-Daoust hypergeometric functions are analyzed in [18] which are applied in different scientific
problems for example see [6,9]. Therefore importance in further researches, we study analytic continuation
properties of the double functions (2.9) and (2.10) through their integral representations.

3 Summation Formulae
In this section, we obtain summation formulae of the general hypergeometric type Hurwitz-Lerch Zeta
functions of one and two variables defined by Eqns. (1.1), (1.6), (1.7) and (1.8). Again we show that the
functions (1.7) and (1.8) are represented as the sum of functions (1.6).

Lemma 3.1. If p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q); s, z ∈ C. Then under
the conditions given in (1.2), the summation formula of (1.1) exists as

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
= exp[− slog a] +

∏p
i=1 (αi)∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)
. (3.1)

Proof. Considering the formula (1.1) and for a 6= 0, using the binomial theorem, we write it as

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

1

as
+
∞∑

r=0

(s)r
r!

(−a)r
∞∑

n=1

∏p
i=1 (αi)n∏q
i=1 (γi)n n!

zn

ns+r
. (3.2)

The Eqn. (3.2) on aid of (1.1) immediately gives the result (3.1).
Clearly, making an appeal to the formula (3.1), we get following summation formulae in terms of the

hyperbolic functions:
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)
−1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
+

1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a−1

)

−
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a−1)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)

= sinh[s log a] (3.3)

and

1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
−
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)
−

+
1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a−1

)
−
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a−1)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)

= cosh[s log a]. (3.4)

Similarly by the formula (1.6), we get

pKq

(
(α)1,p;
(γ)1,q;

A; z, s, a

)
= A0 exp[−s log a]+

∏p
i=1 (αi)∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpKq

(
(α+ 1)1,p;
(γ + 1)1,q;

A+; z, s+ r + 1, 1

)
,

(3.5)
where p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q); s, z ∈ C, A stands for a sequence
An, a bounded real or complex sequences ∀n ∈ N0. Also A+stands for a sequence An+1, ∀n ∈ N0.

Theorem 3.1. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or complex sequences ∀n ∈ N0, then
under the conditions |x| ≤ 1, the double series (1.7) follows a summation formula

φ1(A, d, d− 1/2; 2d;x, y; s, a)

=
A0

as

(
1 +
√

1− x
2

)1−2d

+
xy(2d− 1)

4(2d+ 1)

(
1 +
√

1− x
2

)−2d−1

×
∞∑

r=0

(s)r
r!

(−a)r1K1

(
d+ 1

2 ;
d+ 3

2 ;
A+;

xy

(1 +
√

1− x)2
, s+ r + 1, 1

)
, (3.6)

where, 1K1 (.) is a general hypergeometric type Hurwitz -Lerch Zeta function (1.6) and A+stands for the
sequence An+1, a bounded real or complex sequences ∀n ∈ N0 that follows certain restrictions.
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Proof. We consider the double series (1.7) in the form

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

m=0

∞∑

n=0

An(d)m+n

(
d− 1

2

)
m+n

(2d)m+2n

xm(xy)n

(n+ a)sm!n!
,

and apply series rearrangement techniques to derive hypergeometric function

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

n=0

An(d)n
(
d− 1

2

)
n

(2d)2n

(xy)n

(n+ a)sn!
2F1

(
d+ n, d+ n− 1

2 ;
2d+ 2n;

x

)
. (3.7)

Now in (3.7) under the conditions |x| ≤ 1, using the formulae (1.9) and (1.13), we get

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1 ∞∑

n=0

An
(
d− 1

2

)
n(

d+ 1
2

)
n

(
xy

(1+
√

1−x)2

)n

(n+ a)sn!
. (3.8)

In (3.8) applying the formula (1.6), we obtain the result

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1

1K1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
, s, a

)
,

in which making an appeal to the techniques of Lemma 3.1, we obtain the summation formula (3.6). Hence
the Theorem 3.1 is proved.

Corollary 3.1. If in the Theorem 3.1 put x = 1 and all y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or
complex sequences ∀n ∈ N0, then following summation formula exists

21−2dφ1(A, d, d−1/2; 2d; 1, y; s, a) =
A0

as
+
y(2d− 1)

(2d+ 1)

∞∑

r=0

(s)r
r!

(−a)r1K1

(
d+ 1

2 ;
d+ 3

2 ;
A+; y, s+ r + 1, 1

)
. (3.9)

Also there exists an identity

21−2dφ1(A, d, d− 1/2; 2d; 1, y; s, a) = 1K1

(
d− 1

2 ;
d+ 1

2 ;
A; y, s, a

)
. (3.10)

Proof. Considering the Eqn. (3.6) and putting x = 1, we obtain the summation formula (3.9). Further
making same process with an appeal to the Eqns. (1.6), (1.10) and (3.8), we find an identity (3.10).

Corollary 3.2. If R(s) > 0,R(a) > 0, then under the conditions of the Theorem 3.1 an Eulerian integral
representation of the double series (1.7) exists in the following form

φ1(A, d, d− 1/2; 2d;x, y; s, a) =
1

Γ(s)

(
2

(1 +
√

1− x)

)2d−1 ∫ ∞

0

e−atts−1
1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xye−t

(1 +
√

1− x)2

)
dt

(3.11)

Proof. Consider the formula (3.8) and then here under the conditions of the Theorem 3.1, use an Eulerian
integral formula and thus apply the techniques of Section 2, we get the formula

φ1(A, d, d−1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1 ∞∑

n=0

An
(
d− 1

2

)
n(

d+ 1
2

)
n
n!

1

Γ(s)

∫ ∞

0

e−atts−1

(
xye−t

(1 +
√

1− x)2

)n
dt.

(3.12)
Now in right hand side of (3.12) using the function (2.2), we obtain the result (3.11).

Theorem 3.2. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 such that If R(s) > 0,R(a) > 0 and An be bounded real or
complex sequences ∀n ∈ N0, then by the function (1.7) under the conditions |x| ≤ 1, following summation
formula of (1.7) also exists

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d− 1

2

)
n

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
xn, (3.13)

where, the partial sum of the extended general hypergeometric type Hurwitz -Lerch Zeta function (1.6) is
defined by

1K1

(
−n;

2d+ n;
A;−y, s, a

)
=

1

Γ(s)

∫ ∞

0

e−atts−1
1G1

(
−n;

2d+ n;
A;−ye−t

)
dt,R(s) > 0,R(a) > 0, ∀n = 0, 1, 2, 3, . . . ,

(3.14)

1G1(·) is defined in (2.2).
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Proof. Considering the function (1.7) and applying the series rearrangement techniques, we find that

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

m=0

m∑

n=0

An(d)m
(
d− 1

2

)
m

(2d)m+n

xmyn

(n+ a)s(m− n)!n!
.

Now using the formula (1.12) and making an appeal to the Eulerian integral formula given in the Section 2
we find that

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!

1

Γ(s)

∫ ∞

0

e−atts−1

{
n∑

m=0

Am(−n)m
(2d+ n)m

(−ye−t)m
m!

}
dt.

(3.15)
In right hand side of the Eqn. (3.15) making an appeal to the formula (2.2), we derive (3.14) and from

which, we finally obtain the result (3.13).
In the similar manner, we obtain following results:

Theorem 3.3. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or complex sequences ∀n ∈ N0, then
due to the function (1.8) under the conditions |x| < 1, following summation formula exists

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
A0

(a)s
1√

1− x

(
1 +
√

1− x
2

)1−2d

+
xy√
1− x

(
1 +
√

1− x
2

)−1−2d ∞∑

r=0

(s)r
r!

(−a)r0K0

(
−;
−;A

+;
xy

(1 +
√

1− x)2
, s+ r + 1, 1

)
(3.16)

Here, A+stands for An+1, a bounded real or complex sequences ∀n ∈ N0, follows certain restrictions.

Proof. Under the conditions given in the Theorem 3.3, for the double series (1.8), we write

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

n=0

An(d)n
(
d+ 1

2

)
n

(xy)n

(2d)2nn!(n+ a)s
2F1

[
d+ n, d+ n+ 1

2 ;
2d+ 2n;

x

]
. (3.17)

Now in the Eqn. (3.17) using of the formulae (1.11)-(1.13) for |x| < 1, we obtain

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d ∞∑

n=0

An

(
xy

(1+
√

1−x)2

)n

n!(n+ a)s
. (3.18)

Now in Eqn. (3.18) making an appeal to formula (1.6) and the theory given in Theorem 3.1, we derive
the result (3.16).

Corollary 3.3. If R(s) > 0,R(a) > 0, then due to the function (1.8) following formula holds

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d
1

Γ(s)

∫ ∞

0

e−atts−1
0K0

(
−;
−;A;

xye−t

(1 +
√

1− x)2

)
dt.

(3.19)

Proof. In the Eqn. (3.18) of the Theorem 3.3 applying the Eulerian formula given in (2.1), we derive

φ2(A, d, d+1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d
1

Γ(s)

∫ ∞

0

e−atts−1

{ ∞∑

n=0

An
n!

(
xye−t

(1 +
√

1− x)2

)n}
dt.

(3.20)
Now in (3.20), applying the formula (1.6) and same technique of proof of the Theorem 3.1, we obtain the

formula (3.19).

Theorem 3.4. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or complex sequences ∀n ∈ N0, then
due to the function (1.8) under the conditions |x| < 1, following summation formula exists

ϕ2(A, d, d+
1

2
; 2d;x, y; s, a) =

∞∑

n=0

(d)n(d+ 1
2 )n

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
xn, (3.21)

where, the function 1K1

(
−n;

2d+ n;
A;−y, s, a;

)
is defined by (3.14).
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Proof. Making an appeal to the function (1.8), we get

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

n∑

m=0

Am(−n)m
(2d+ n)m

(−y)m

(m+ a)ssm

=

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

1

Γ(s)

∫ ∞

0

e−atts−1

{
n∑

m=0

Am(−n)m
(2d+ n)m

(−ye−t)m
m!

}
dt. (3.22)

Now in the second series of (3.22) making an appeal to the function (3.14), we obtain the summation
formula (3.21).

We present following applications of our results derived in the Sections 2 and 3 :

4 Applications
In this section, we make an application of the Theorems presented in the previous Sections 2 and 3 . Then
we obtain generating relations and the integral identities.
Application 4.1. If all conditions of the Theorems 3.1 and 3.2 are satisfied, then there exists a generating
relation of the extended general hypergeometric type Hurwitz -Lerch Zeta function
(

2

(1 +
√

1− x)

)2d−1

1K1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
, s, a

)
=

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
.

(4.1)
Solution. Considering the Eqn. (3.8) of the Theorem 3.1 and applying (3.15) of the Theorem 3.2, we derive
the equality given by

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1 ∞∑

n=0

An
(
d− 1

2

)
n(

d+ 1
2

)
n

(
xy

(1+
√

1−x)2

)n

(n+ a)sn!

=

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!

n∑

m=0

Am(−n)m
(2d+ n)m

(−y)m

(m+ a)sm!
. (4.2)

Now in the relation (4.2) making an appeal to the extended general hypergeometric type Hurwitz -Lerch
Zeta function (1.6) in the last two equalities, we obtain the generating relation (4.1).
Application 4.2. If all conditions of the Theorems 3.3 and 3.4 are satisfied, then there exists a generating
relation of the extended general hypergeometric type Hurwitz -Lerch Zeta function as

1√
1− x

(
2

(1 +
√

1− x)

)2d−1

0K0

(
−;
−;

A;
xy

(1 +
√

1− x)2
z, s, a

)
=

∞∑

n=0

(d)n
(
d+ 1

2

)
n

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
xn.

(4.3)
Proof. Making an appeal to the Theorems 3.3 and 3.4, we get the equalities

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d ∞∑

n=0

An

(
xy

(1+
√

1−x)2

)n

n!(n+ a)s

=

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

n∑

m=0

Am(−n)m
(2d+ n)m

(−y)m

(m+ a)sm!
. (4.4)

Then in the relation (4.4) making an appeal to the extended general hypergeometric type Hurwitz-Lerch
Zeta function (1.6) in the last two equalities, we obtain the generating relation (4.3).
Application 4.3. If all conditions of the Theorems 3.1 and 3.2 are satisfied, then there exists an Eulerian
integral identity for the extended general hypergeometric type Hurwitz -Lerch Zeta function (1.7), given by

(
2

(1 +
√

1− x)

)2d−1 ∫ ∞

0

e−atts−1
1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
e−t
)
dt

=

∞∑

n=0

(d)n(d− 1
2 )nx

n

(2d)nn!

∫ ∞

0

e−atts−1
1G1

(
−n;

2d+ n;
A;−ye−t

)
dt. (4.5)

Solution. Making an appeal to the methods given in the Eqn. (2.1) and the formula (2.2) in the relation
(4.1), we derive the Eulerian integral identity (4.5).
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Application 4.4. If all conditions of the Theorems 3.3 and 3.4 are satisfied, then there exists an Eulerian
integral identity for the extended general hypergeometric type Hurwitz -Lerch Zeta function (1.8), as

1√
1− x

(
2

(1 +
√

1− x)

)2d−1 ∫ ∞

0

e−atts−1
0G0

(
−;
−;

A;
xy

(1 +
√

1− x)2
e−t
)
dt

=

∞∑

n=0

(d)n(d+ 1
2 )nx

n

(2d)nn!

∫ ∞

0

e−atts−1
1G1

(
−n;

2d+ n;
A;−ye−t

)
dt (4.6)

Solution. Making an appeal to the same techniques given in the Eqn. (2.1) and the formula (2.2) in the
relation (4.3), we derive the Eulerian integral identity (4.6).
Application 4.5. If all conditions of the Theorems 3.1 and 3.2 are satisfied, then for the extended general
hypergeometric type Hurwitz -Lerch Zeta function (1.7), there exists a hypergeometric generating relation
(

2

(1 +
√

1− x)

)2d−1

1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
e−t
)

=

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

(4.7)
Solution. By the Eulerian integral identity (4.5), we find that

∫ ∞

0

e−atts−1R
(1)
d,A(x, y; t)dt = 0, (4.8)

where,

Rd,A
(1)(x, y; t) =

(
2

(1 +
√

1− x)

)2d−1

1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
e−t
)

−
∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

Then, equating both sides of Eqn. (4.8), we obtain the result (4.7).
Application 4.6. If all conditions of the Theorems 3.3 and 3.4 are satisfied, then for the extended general
hypergeometric type Hurwitz -Lerch Zeta function (1.8), there exists the hypergeometric generating relation

1√
1− x

(
2

(1 +
√

1− x)

)2d−1

0G0

(
−;
−;

A;
xy

(1 +
√

1− x)2
e−t
)

=

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

(4.9)
Solution. By the Eulerian integral identity (4.6), we find that

∫ ∞

0

e−atts−1Rd,A
(2)(x, y; t)dt = 0, (4.10)

where,

R
(2)
d,A(x, y; t) =

1√
1− x

(
2

(1 +
√

1− x)

)2d−1

0G0

(
−;
−;

A;
xy

(1 +
√

1− x)2
e−t
)

−
∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

Finally, equating both sides of Eqn. (4.10), we obtain the result (4.9).
In concluding remarks, we derive interesting summation formulae from our above obtained results.

5 Interesting Results as Special Cases

Particularly, in Eqn. (4.2) set An = (2)n ∀n ∈ N0, d = 3
2 , there exists an interesting summation formula in

terms of Hurwitz-Lerch Zeta function

φ1

(
2,

3

2
, 1; 3;x, y; s, a

)
=

∞∑

n=0

(
3
2

)
n
xn

(3)n

n∑

m=0

(2)n(−n)m
(3 + n)m

(−y)m

(m+ a)sm!

=

∞∑

n=0

(
3
2

)
n
xn

(3)n
2H1

(
2,−n;
3 + n;

− y, s, a
)

=

(
4

(1 +
√

1− x)2

)
φ

(
xy

(1 +
√

1− x)2
, s, a

)
, (5.1)

154



where, all x, y, s ∈ C, |x| ≤ 1; a ∈ C\Z−0 .
In the result (5.1) for x = 1, we obtain the following identical formulae for Hurwitz-Lerch Zeta function

1

4
φ1

(
2,

3

2
, 1; 3; 1, y; s, a

)
=

1

4

∞∑

n=0

(
3
2

)
n

(3)n

n∑

m=0

(2)n(−n)m
(3 + n)m

(−y)m

(m+ a)sm!

=
1

4

∞∑

n=0

(
3
2

)
n

(3)n
2H1

(
2,−n;
3 + n;

− y, s, a
)

= φ(y, s, a), (5.2)

where, all y, s ∈ C; a ∈ C\Z−0 .
Again, in Eqn. (4.4) choosing An = (1)n ∀n ∈ N0, 2d 6= 0,−1,−2, . . ., there exists another interesting

summation formula in terms of Hurwitz-Lerch Zeta function

φ2(1, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

n∑

m=0

(−n)m
(2d+ n)m

(−y)m

(m+ a)s

=

∞∑

n=0

(d)n(d+ 1
2 )nx

n

(2d)nn!
1H1

(
−n;

2d+ n;
− y, s, a

)

=
1√

1− x

(
1 +
√

1− x
2

)1−2d

ϕ

(
xy

(1 +
√

1− x)2
, s, a

)
. (5.3)

where, x, y, s ∈ C, |x| < 1; a, 2d ∈ Z−0 .
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