SOME FIXED POINT RESULTS FOR CYCLIC (ψ, ϕ, Z) - CONTRACTION IN PARTIAL METRIC SPACES
 R. Jahir Hussain and K. Manoj
 PG \& Research Department of Mathematics
 Jamal Mohamed College (Autonomous) (Affiliated to Bharathidasan University)
 Tiruchirapplli, Tamilnadu, India-620020
 Email: hssn_jhr@yahoo.com, manojguru542@gmail.com

(Received: January 19, 2023; In format: February 03, 2023; Revised: February 07, 2023; Accepted:
February 08, 2023)
DOI: https://doi.org/10.58250/jnanabha.2023.53115

Abstract

In this paper, we present a new type of cyclic (ψ, ϕ, Z) - contraction which is a combination of cyclic (ψ, ϕ, A, B) - contraction and Z-contraction in the framework of complete partial metric space with the help of simulation function. We investigate the existence of fixed point result using cyclic $(\psi, \phi, Z)-$ contraction in the setting of complete partial metric space. Also we give an example to clarify the main result. 2020 Mathematical Sciences Classification: 47H09, 47H10, 54H25. Keywords and Phrases: Partial metric spaces, Simulation function, Cyclic mapping, Cyclic $(\psi, \phi, Z)-$ contraction.

1 Introduction

The idea of partial metric space was introduced by Mathews ([19]) and it is defined as the same point in partial metric does not necessarily need to be zero. In 2003, Kirk ([17]) introduced the notion of cyclic contraction. Karapinar ([14]) explored cyclic contraction in partial metric space in 2012 while Agarwal ([2]) defined a very useful cyclic generalized contractions on the complete partial metric space in the same year. Khojasteh ([16]) introduced new approach in fixed point theory by using a simulation function. This paper inspired us to find a different type of cyclic contraction in complete partial metric space. Many authors have already demonstrated different types of contractions in partial metric spaces (see $[4,5,6,7,8,11]$).

In this paper, we establish a cyclic $(\psi, \phi, Z)-$ contraction in complete partial metric space to determine a unique fixed point.

On the other hand, the concept of simulation function was established in [16] to unify the existing fixed point results.

2 Preliminaries

Definition $2.1([16])$. A function $\xi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions
$\left(\xi_{1}\right) \xi(0,0)=0$;
$\left(\xi_{2}\right) \xi(t, s)<t-s$ for all $t, s>0$;
$\left(\xi_{3}\right)\left\{t_{n}\right\},\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}>0$, then $\limsup _{n \rightarrow \infty} \xi\left(t_{n}, s_{n}\right)<$ 0 , is called a simulation function.

Due to the axiom $\left(\xi_{2}\right)$, we have $\xi(t, t)<0$ for all $t>0$.
Example $2.1([3,16,20])$. Let $\phi_{1}:[0, \infty) \rightarrow[0, \infty)$ be a continuous functions with $\phi_{i}(t)=0$ if and only if $t=0$. For $i=1,2,3,4,5,6$, we define the mappings $\xi_{i}:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ as follows
(i) $\xi_{1}(t, s)=\phi_{1}(s)-\phi_{1}(t)$ for all $t, s \in[0, \infty)$, where $\phi_{1}(t)<t \leq \phi_{2}(t)$ for all $t>0$;
(ii) $\xi_{1}(t, s)=s-\frac{f(t, s)}{g(t, s)} t$ for all $t, s \in[0, \infty)$, where $f, g:[0, \infty)^{2} \rightarrow[0, \infty)$ are two continuous functions with respect to each variable such that $f(t, s)>g(t, s)$ for all $t, s>0$;
(iii) $\xi_{3}(t, s)=s-\phi_{3}(s)-t$ for all $t, s \in[0, \infty)$;
(iv) If $\psi:[0, \infty) \rightarrow[0,1)$ is a function such that $\lim _{\sup _{t \rightarrow r^{+}} \psi(t)<1 \text { for all } r>0 \text { and define }}$

$$
\xi_{4}(t, s)=s \psi(s)-t \text { for all } s, t \in[0, \infty)
$$

(v) If $\eta:[0, \infty) \rightarrow[0, \infty)$ is an upper semi-continuous mapping such that $\eta(t)<t$ for all $t>0$ and $\eta(0)=0$ and define

$$
\xi_{5}(t, s)=\eta(s)-t \text { for all } s, t \in[0, \infty)
$$

(vi) If $\phi:[0, \infty) \rightarrow[0, \infty)$ is a function such that $\int_{0}^{\epsilon} \phi(u) d u$ exists and $\int_{0}^{\epsilon} \phi(u) d u>\epsilon$ for each $\epsilon>0$ and define

$$
\xi_{6}(t, s)=s-\int_{0}^{t} \phi(u) d u \text { for all } s, t \in[0, \infty)
$$

It is clear that each function $\xi_{i}(i=1,2,3,4,5,6)$ forms a simulation function.
Definition 2.2 ([19]). A partial metric on a non empty set X is a function $p: X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y \in X$
$\left(p_{1}\right) x=y \Longleftrightarrow p(x, x)=p(y, y)=p(x, y) ;$
$\left(p_{2}\right) p(x, x) \leq p(x, y) ;$
$\left(p_{3}\right) p(x, y)=p(y, x)$;
$\left(p_{4}\right) p(x, z) \leq p(x, y)+p(y, z)-p(y, y)$.
A pair (X, p) is called a partial metric space. Each partial metric on X generates T_{0} topology τ_{p} on X which is the family of p-open balls $\left\{B_{p}(x, \delta): x \in X, \delta>0\right\}$, where $B_{p}(x, \delta)=\{y \in X: p(x, y)<p(x, x)+\delta\}$ for all $x \in X$ and $\delta>0$. If p is partial metric on X, then the function $d_{p}: X \times X \rightarrow R^{+}$given by $d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)$ is a metric on X.

Definition 2.3. Let (X, p) be a partial metric space. Then
(1) A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) converges to a point $x \in X$ if and only if

$$
p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)
$$

(2) A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) is called a Cauchy sequence if and only if

$$
\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

exists (finite);
(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges with respect to τ_{p} to a point $x \in X$ such that

$$
p(x, x)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

(4) A subset A of a partial metric space (X, p) is closed if whenever $\left\{x_{n}\right\}$ is a sequence in A such that $\left\{x_{n}\right\}$ converges to some $x \in X$, then $x \in A$.

Definition 2.4. Let A and B be non-empty subset of a metric space (X, d) and $T: A \cup B \rightarrow A \cup B$. Then T is called a cyclic map if $T(A) \subseteq B$ and $T(B) \subseteq A$.

Theorem 2.1 ([17]). Let A and B be non empty closed subsets of a complete metric space (X, d). Suppose that $T: A \cup B \rightarrow A \cup B$ is a cyclic map such that

$$
d(T x, T y) \leq k d(x, y)
$$

If $k \in[0,1)$, then T has a unique fixed point in $A \cap B$.
To see [12], Karapinar and Erhan showed different types of cyclic contractions in usual metric space.
Definition 2.5 ([15]). The function $\phi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance functions if the following conditions are satisfied:
(1) ϕ is continuous and non decreasing;
(2) $\phi(t)=0$ if and only if $t=0$.

3 Main Results

Definition 3.1. Let (X, p) be a partial metric space and A, B be a non empty closed subsets of (X, p). A mapping $T: A \cup B \rightarrow A \cup B$ is called cyclic (ψ, ϕ, Z)-contraction if
(i) $A \cup B$ has a cyclic representation with respect to T, i.e) $T(A) \subseteq B$ and $T(B) \subseteq A$;
(ii) If ψ and ϕ are altering distance functions,

$$
\begin{equation*}
\xi(\psi(p(T x, T y)), \phi(\max (p(x, T x), p(y, T y)))) \geq 0 \quad \forall x \in A \text { and } y \in B \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let A, B be non empty closed subsets of a complete partial metric space (X, p). if $T: A \cup B \rightarrow$ $A \cup B$ is a cyclic (ψ, ϕ, Z)-contraction. Then T has a unique fixed point $v \in A \cap B$.
Proof. Fix any $x_{0} \in A$. We choose $x_{1} \in B$, since $T(A) \subseteq B$ such that $T x_{0}=x_{1}$. Again we choose $x_{2} \in A$ such that $T x_{1}=x_{2}$, since $T(B) \subseteq A$. Continuing on this way, we construct a sequence $\left\{x_{n}\right\}$ in X such that $x_{2 n} \in A, x_{2 n+1} \in B$, i.e) $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=T x_{2 n+1}$. if $x_{2 n_{0}+1}=T x_{2 n_{0}+1}$. Thus $x_{2 n_{0}+1}$ is a fixed point of T in $A \cap B$.

In this above manner we assume that $x_{2 n+1} \neq x_{2 n+2}$ for all $n \in \mathbb{N}$. If n is even, then $n=2 j$ for some $j \in \mathbb{N}$. Let $x_{2 j+1} \neq x_{2 j+2}$ and from equation (3.1), we have

$$
\xi\left(\psi\left(p\left(T x_{2 j}, T x_{2 j+1}\right)\right), \phi\left(\max \left(p\left(x_{2 j}, T x_{2 j}\right), p\left(x_{2 j+1}, T x_{2 j+1}\right)\right)\right)\right) \geq 0
$$

Using $\left(\xi_{2}\right)$, we have

$$
\begin{align*}
\xi\left(\psi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right), \phi\left(\operatorname { m a x } \left(p \left(x_{2 j},\right.\right.\right.\right. & \left.\left.\left.\left.x_{2 j+1}\right), p\left(x_{2 j+1}, x_{2 j+2}\right)\right)\right)\right) \\
& <\phi\left(\max \left(p\left(x_{2 j}, x_{2 j+1}\right), p\left(x_{2 j+1}, x_{2 j+2}\right)\right)\right)-\psi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right) \tag{3.2}
\end{align*}
$$

From the above, we have

$$
\begin{equation*}
\psi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right)<\phi\left(\max \left(p\left(x_{2 j}, x_{2 j+1}\right), p\left(x_{2 j+1}, x_{2 j+2}\right)\right)\right) \tag{3.3}
\end{equation*}
$$

if $\max \left(p\left(x_{2 j}, x_{2 j+1}\right), p\left(x_{2 j+1}, x_{2 j+2}\right)\right)=p\left(x_{2 j+1}, x_{2 j+2}\right)$,
$p\left(x_{2 j}, x_{2 j+1}\right)<p\left(x_{2 j+1}, x_{2 j+2}\right)$,
$\psi\left(p\left(x_{2 j}, x_{2 j+1}\right)\right)<\phi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right)$.
Since ϕ is non-decreasing function
$\phi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right)=0$, hence $p\left(x_{2 j+1}, x_{2 j+2}\right)=0$.
By $\left(p_{1}\right)$ and $\left(p_{2}\right), x_{2 j+1}=x_{2 j+2}$,
which is a contradiction to our assumption

$$
\max \left(p\left(x_{2 j}, x_{2 j+1}\right), p\left(x_{2 j+1}, x_{2 j+2}\right)\right)=p\left(x_{2 j}, x_{2 j+1}\right)
$$

From (3.3), we get

$$
\begin{equation*}
\psi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right)<\phi\left(p\left(x_{2 j}, x_{2 j+1}\right)\right) \tag{3.4}
\end{equation*}
$$

If n is odd, then $n=2 j+1$ for some $j \in \mathbb{N}$. By equation (3.1), we get

$$
\xi\left(\psi\left(p\left(T x_{2 j+1}, T x_{2 j+2}\right)\right), \phi\left(\max \left(p\left(x_{2 j+1}, T x_{2 j+1}\right), p\left(x_{2 j+2}, T x_{2 j+2}\right)\right)\right)\right) \geq 0
$$

Using $\left(\xi_{2}\right)$, we get

$$
\psi\left(p\left(x_{2 j+2}, x_{2 j+3}\right)\right)<\phi\left(\max \left(p\left(x_{2 j+1}, x_{2 j+2}\right), p\left(x_{2 j+2}, x_{2 j+3}\right)\right)\right)
$$

if

$$
\max \left(p\left(x_{2 j+1}, x_{2 j+2}\right), p\left(x_{2 j+2}, x_{2 j+3}\right)\right)=p\left(x_{2 j+2}, x_{2 j+3}\right)
$$

i.e)

$$
\begin{aligned}
p\left(x_{2 j+2}, x_{2 j+3}\right) & <p\left(x_{2 j+2}, x_{2 j+3}\right) \\
\psi\left(p\left(x_{2 j+2}, x_{2 j+3}\right)\right) & <\phi\left(p\left(x_{2 j+2}, x_{2 j+3}\right)\right) .
\end{aligned}
$$

Since ϕ is non-decreasing function.
$\phi\left(p\left(x_{2 j+2}, x_{2 j+3}\right)\right)=0$ and hence $p\left(x_{2 j+2}, x_{2 j+3}\right)=0$, by $\left(p_{1}\right)$ and $\left(p_{2}\right)$.
It implies that, $x_{2 j+2}=x_{2 j+3}$
which contradicts to our assumption
Therefore,

$$
\begin{gather*}
\max \left(p\left(x_{2 j+1}, x_{2 j+2}\right), p\left(x_{2 j+2}, x_{2 j+3}\right)\right)=p\left(x_{2 j+1}, x_{2 j+2}\right) \\
\psi\left(p\left(x_{2 j+2}, x_{2 j+3}\right)\right)<\phi\left(p\left(x_{2 j+1}, x_{2 j+2}\right)\right) \tag{3.5}
\end{gather*}
$$

From equation (3.4) and (3.5), we get

$$
\begin{equation*}
\psi\left(p\left(x_{n+1}, x_{n+2}\right)\right)<\phi\left(p\left(x_{n}, x_{n+1}\right)\right) \tag{3.6}
\end{equation*}
$$

In the above $\left\{p\left(x_{n}, x_{n+1}\right) / n \in \mathbb{N}\right\}$ is a non-increasing sequence and hence there exist $r \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=r \tag{3.7}
\end{equation*}
$$

Let $n \rightarrow \infty$ in equation (3.6) and also using the fact ψ and ϕ are continuous, we get $\psi(r)<\phi(r)$. It gives

$$
\xi(\psi(r), \phi(r)) \geq 0, \xi(\psi(r), \phi(r))<\phi(r)-\psi(r)
$$

From $\left(\xi_{1}\right), \xi(\psi(r), \phi(r))=0$ and hence $\psi(r)=\phi(r)=0$, by altering distance function, $\psi(r)=\phi(r)=0$ iff $r=0$.
By equation (3.7), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0 \tag{3.8}
\end{equation*}
$$

by $\left(p_{2}\right)$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n}\right)=0 \tag{3.9}
\end{equation*}
$$

since $d_{p}(x, y)=2 p(x, y)$ for all $x, y \in X$.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, x_{n+1}\right)=0 \tag{3.10}
\end{equation*}
$$

Next we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in metric space $\left(A \cup B, d_{P}\right)$. It is sufficient to show that $\left\{x_{2 n}\right\}$ is a Cauchy sequence in $\left(A \cup B, d_{P}\right)$. Suppose to the contrary $\left\{x_{2 n}\right\}$ is not a Cauchy sequence in $\left(A \cup B, d_{P}\right)$, there exist $\epsilon>0$ and two subsequences $\left\{x_{2 n(k)}\right\}$ and $\left\{x_{2 m(k)}\right\}$ of $\left\{x_{2 n}\right\}$ with $m(k)>n(k)>k$. $m(k)$ is the smallest index in \mathbb{N} such that

$$
\begin{equation*}
d_{p}\left(x_{2 m(k)}, x_{2 n(k)}\right) \geq \epsilon \tag{3.11}
\end{equation*}
$$

this means that

$$
\begin{equation*}
d_{p}\left(x_{2 m(k)}, x_{2 n(k)-2}\right)<\epsilon, \tag{3.12}
\end{equation*}
$$

from equation (3.10), (3.11) and triangle inequality, we get

$$
\begin{aligned}
\epsilon & \leq d_{p}\left(x_{2 m(k)}, x_{2 n(k)}\right) \\
& \leq d_{p}\left(x_{2 m(k)}, x_{2 n(k)-2}\right)+d_{p}\left(x_{2 n(k)-2}, x_{2 n(k)}\right) \\
& <\epsilon+d_{p}\left(x_{2 n(k)-2}, x_{2 n(k)-1}\right)+d_{p}\left(x_{2 n(k)-1}, x_{2 n(k)}\right) .
\end{aligned}
$$

As $k \rightarrow \infty$ and using (3.8) we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)}, x_{2 n(k)}\right)=\epsilon \tag{3.13}
\end{equation*}
$$

Again from (3.10) and we use triangle inequality we get

$$
\begin{aligned}
\epsilon & \leq d_{P}\left(x_{2 m(k)}, x_{2 n(k)}\right) \\
& \leq d_{p}\left(x_{2 n(k)}, x_{2 n(k)-1}\right)+d_{p}\left(x_{2 n(k)-1}, x_{2 m(k)}\right) \\
& \leq d_{p}\left(x_{2 n(k)}, x_{2 n(k)-1}\right)+d_{p}\left(x_{2 n(k)}, x_{2 m(k)+1}\right)+d_{p}\left(x_{2 m(k)+1}, x_{2 m(k)}\right) \\
& \leq d_{p}\left(x_{2 n(k)}, x_{2 n(k)-1}\right)+d_{p}\left(x_{2 n(k)-1}, x_{2 m(k)}\right)+2 d_{p}\left(x_{2 m(k)+1}, x_{2 m(k)}\right) \\
& \leq 2 d_{p}\left(x_{2 n(k)}, x_{2 n(k)-1}\right)+d_{p}\left(x_{2 m(k)}, x_{2 n(k)}\right)+2 d_{p}\left(x_{2 m(k)+1}, x_{2 m(k)}\right)
\end{aligned}
$$

Using limit $n \rightarrow \infty$ in the above inequality and using equation (3.8), (3.10), we get

$$
\begin{aligned}
\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)}, x_{2 n(k)}\right) & =\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right) \\
& =\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)+1}, x_{2 n(k)}\right) \\
& =\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)}, x_{2 n(k)-1}\right) .
\end{aligned}
$$

Since $d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)$ for all $x, y \in X$, therefore

$$
\begin{aligned}
\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)}, x_{2 n(k)}\right) & =\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right) \\
& =\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)+1}, x_{2 n(k)}\right) \\
& =\lim _{k \rightarrow \infty} d_{p}\left(x_{2 m(k)}, x_{2 n(k)-1}\right) \\
& =\frac{\epsilon}{2}
\end{aligned}
$$

By equation (3.1), we have

$$
\begin{aligned}
\xi\left(\psi\left(p\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right)\right)\right. & \left., \phi\left(\max \left(p\left(x_{2 m(k)}, T x_{2 m(k)}\right), p\left(x_{n(k)-2}, T x_{2 n(k)-2}\right)\right)\right)\right) \\
< & \phi\left(\max \left(p\left(x_{2 m(k)}, T x_{2 m(k)}\right), p\left(x_{n(k)-2}, T x_{2 n(k)-2}\right)\right)\right)-\psi\left(p\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right)\right.
\end{aligned}
$$

$$
\xi\left(\psi\left(p\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right)\right)<\phi\left(\max \left(p\left(x_{2 m(k)}, T x_{2 m(k)}\right), p\left(x_{n(k)-2}, T x_{2 n(k)-2}\right)\right)\right)\right.
$$

Therefore

$$
\xi\left(\psi\left(p\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right)\right)=0\right.
$$

Also $\xi\left(\psi\left(p\left(x_{2 m(k)+1}, x_{2 n(k)-1}\right)\right)=0\right.$ if and only if $x_{2 m(k)+1}=x_{2 n(k)-1}$, hence $\psi\left(\frac{\epsilon}{2}\right)=0$ iff $\frac{\epsilon}{2}=0$ and $\epsilon=0$. It is a contradiction to our assumption, thus $\left\{x_{2 n}\right\}$ is a Cauchy sequence in $\left(A \cup B, d_{p}\right)$. Since (X, d) is complete and $A \cup B$ is a closed subspace of (X, p), then $(A \cup B, p)$ is complete. Therefore $\left\{x_{n}\right\}$ converges in the metric space $\left(A \cup B, d_{p}\right)$,

$$
\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, v\right)=0
$$

Hence

$$
\begin{equation*}
p(v, v)=\lim _{n \rightarrow \infty} p\left(x_{n}, v\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right) \tag{3.14}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is Cauchy in $\left(A \cup B, d_{p}\right)$ and $(A \cup B, p)$ if and only if it is Cauchy in $\left(A \cup B, d_{p}\right)$ and $(A \cup B, p)$ is complete iff $\left(A \cup B, d_{p}\right)$ is complete.

$$
\begin{gather*}
\lim _{n, m \rightarrow \infty} d_{p}\left(x_{n}, x_{m}\right)=0 \\
d_{p}\left(x_{m}, x_{n}\right)=2 p\left(x_{m}, x_{n}\right)-p\left(x_{m}, x_{m}\right)-p\left(x_{n}, x_{n}\right) \tag{3.15}
\end{gather*}
$$

As $m, n \rightarrow \infty$ and using equation (3.9) and equation (3.15) in the above we get

$$
\lim _{n, m \rightarrow \infty} d_{p}\left(x_{m}, x_{n}\right)=2 p\left(x_{m}, x_{n}\right)=0
$$

By equation (3.14), we have

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, v\right)=p(v, v)=0
$$

Since $p\left(x_{2 n}, v\right) \rightarrow 0, x_{2 n}$ is belongs to A and A is closed in $(X, p), v \in A$, ie) $v \in A \cap B$.
From definition of p, we have

$$
\begin{aligned}
p\left(x_{n}, T v\right) & \leq p\left(x_{n}, v\right)+p(v, T v)-p(v, v) \\
& \leq p\left(x_{n}, v\right)+p\left(v, x_{n}\right)+p\left(x_{n}, T v\right)-p(v, v)-p\left(x_{n}, x_{n}\right)
\end{aligned}
$$

Taking limit $n \rightarrow \infty$ in the above inequality, we get

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, T v\right)=p(v, T v)
$$

Now, we claim that $T v=v$.
Since $x_{2 n} \in A$ and $v \in B$ by equation (3.1), we have

$$
\begin{aligned}
\xi\left(\psi\left(p\left(x_{2 n+1}, T v\right), \phi\left(\max \left(p\left(x_{2 n}, T x_{2 n}\right), p(v, T v)\right)\right)\right)\right) & <\phi\left(\max \left(p\left(x_{2 n}, T x_{2 n}\right), p(v, T v)\right)\right. \\
& \left.-\psi\left(p\left(x_{2 n+1}, T v\right)\right)\right) \\
\psi\left(p\left(x_{2 n+1}, T v\right)\right) & \leq \phi\left(\max \left(p\left(x_{2 n}, T x_{2 n}\right), p(v, T v)\right)\right) \\
& =\phi(p(v, T v))
\end{aligned}
$$

Since ϕ is an altering distance function, $\phi(v, T v)=0 \Longleftrightarrow p(v, T v)=0$,
ie) $T v=v$.
Hence v is a fixed point of T.
To prove uniqueness:
Let w be any other fixed point of T in $A \cap B$.It is easy to prove $p(v, w)=0$.

$$
\begin{aligned}
\xi(\psi(p(T v, T w), \phi(\max (p(v, T v), p(w, T w))))) & <\phi(\max (p(v, T v), p(w, T w)) \\
& -\psi(p(T v, T w) \\
\psi(p(T v, T w) & \leq \phi(\max (p(v, T v), p(w, T w)))
\end{aligned}
$$

Thus $\psi(p(T v, T w))=0$ and hence $p(T v, T w)=0, p(v, w)=0$. Hence $v=w$.

4 Conclusion

In this paper, the main result determines a fixed point using cyclic (ψ, ϕ, Z) - contraction in partial metric spaces. Suppose, if we use this contraction in quasi-partial metric space, it satisfies the conditions (QPM1), (QPM2), (QPM3), (QPM4) in [13]. As a result, this contraction has a unique fixed point in quasi-partial metric space as well.
Acknowledgement. Authors are very much thankful to the Editor and Reviewer for their valuable suggestions to bring the paper in its present form.

References

[1] T. Abdeljawad, E. Karapinar and K. Tas, A generalized contraction principle with control functions on partial metric spaces, Computers Math. Appl., 63 (2012), 716-719.
[2] R.P. Agarwal, M.A. Alghamdi and N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl. 40 (2012), 1-11.
[3] H.H. Alsulami, E. Karapinar, F. Khojasteh and A.F. Roldan-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and Society, 2014 (2014), 1-10, Article ID 269286.
[4] I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl., 157 (2010), 2778-2785.
[5] H. Aydi, E. Karapinar and S.H. Rezapour, A Generalized Meir-Keeler-Type Contraction on Partial Metric Spaces, Abstract and Applied Analysis, 2012 (2012), 1-10, Article ID 287127.
[6] H. Aydi, S. Hadj-Amor and E. Karapinar, Berinde Type generalized contractions on partial metric spaces, Abstract and Applied Analysis, 2013 (2013), 1-10, Article ID 312479.
[7] K.P. Chi, E. Karapinar and T.D. Thanh, On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces, Bulletin of the Iranian Mathematical Society, 39 (2013), 369-381.
[8] K.P. Chi, E. Karapinar and T.D. Thanh, A Generalized Contraction Principle in Partial Metric Spaces, Math. Comput. Modelling, 55 (2012), 1673-1681.
[9] E. Karapinar, Fixed point results via simulation functions, Filomat, 30(8) (2016), 2343-2350.
[10] E.Karapinar and R.P. Agarwal, Interpolative Rus-Reich-Ciric Type Contractions Via Simulation Functions, An. St. Univ. Ovidius Constanta, Ser. Mat., 27(3) (2019), 137-152.
[11] E. Karapinar, K.P. Chi and T.D. Thanh, A generalization of Ciric quasi-contractions, Abstr. Appl. Anal., 2012 (2012), 1-9, Article ID 518734.
[12] E. Karapinar and I.M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5 (2011), 342-353.
[13] E. Karapinar, I. Erhan and A. Ozturk, Fixed point theorems on quasi-partial metric spaces, Mathematical and Computer Modelling, 57 (2013), 2442-2448.
[14] E. Karapinar, I.M. Erhan and A.Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239-244.
[15] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
[16] F. Khojasteh, S. Shukla and S. Radenović, A new approach to the study of fixed point theorey for simulation functions, Filomat, 29(6) (2015), 1189-1194.
[17] W.A. Kirk, P.S. Srinavasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory, 4 (2003), 79-89.
[18] H. Lakzian and B. Samet, Fixed points for (ψ, ϕ)-weakly contractive mappings in generalized metric spaces, Appl. Math. Lett., 25 (2012), 902-906.
[19] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann.N.Y. Acad. Sci., 728 (1994), 183-197.
[20] A.F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355.
[21] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), 1-6.
[22] B. Samet, Best proximity point results in partially ordered metric spaces via simulation functions, Fixed Point Theory Appl., 232 (2015), 1-15.
[23] W. Shatanawi and S. Manro, Fixed point results for cyclic (ψ, ϕ, A, B) - contraction in partial metric spaces, Fixed Point Theory Appl., 165 (2012), 1-13.
[24] W. Shatanawi and B. Samet, On (ψ, ϕ)-weakly contractive condition in partially ordered metric spaces, Comput. Math.Appl., 62 (2011), 3204-3214.
[25] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. General Topol., 6 (2005), 229-240.

