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Jñānābha, Vol. 53(1) (2023), 118-124
(Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

SOME FIXED POINT RESULTS FOR CYCLIC (ψ, φ,Z )− CONTRACTION IN PARTIAL
METRIC SPACES

R. Jahir Hussain and K. Manoj
PG & Research Department of Mathematics

Jamal Mohamed College (Autonomous) (Affiliated to Bharathidasan University)
Tiruchirapplli, Tamilnadu, India-620020

Email: hssn jhr@yahoo.com, manojguru542@gmail.com
(Received: January 19, 2023; In format: February 03, 2023; Revised: February 07, 2023; Accepted:

February 08, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53115

Abstract

In this paper, we present a new type of cyclic (ψ, φ,Z )− contraction which is a combination of cyclic
(ψ, φ,A,B)− contraction and Z−contraction in the framework of complete partial metric space with the
help of simulation function. We investigate the existence of fixed point result using cyclic (ψ, φ,Z )−
contraction in the setting of complete partial metric space. Also we give an example to clarify the main
result.
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1 Introduction
The idea of partial metric space was introduced by Mathews ([19]) and it is defined as the same point

in partial metric does not necessarily need to be zero. In 2003, Kirk ([17]) introduced the notion of cyclic
contraction. Karapinar ([14]) explored cyclic contraction in partial metric space in 2012 while Agarwal ([2])
defined a very useful cyclic generalized contractions on the complete partial metric space in the same year.
Khojasteh ([16]) introduced new approach in fixed point theory by using a simulation function. This paper
inspired us to find a different type of cyclic contraction in complete partial metric space. Many authors have
already demonstrated different types of contractions in partial metric spaces (see [4, 5, 6, 7, 8, 11]).

In this paper, we establish a cyclic (ψ, φ, Z)− contraction in complete partial metric space to determine
a unique fixed point.

On the other hand, the concept of simulation function was established in [16] to unify the existing fixed
point results.

2 Preliminaries
Definition 2.1 ([16]). A function ξ : [0,∞)→ [0,∞) satisfying the following conditions
(ξ1) ξ(0, 0) = 0;
(ξ2) ξ(t, s) < t− s for all t, s > 0;
(ξ3) {tn}, {sn} are sequences in (0,∞) such that limn→∞tn = limn→∞sn > 0, then lim supn→∞ ξ(tn, sn) <

0, is called a simulation function.

Due to the axiom (ξ2), we have ξ(t, t) < 0 for all t > 0.

Example 2.1 ([3, 16, 20]). Let φ1 : [0,∞)→ [0,∞) be a continuous functions with φi(t) = 0 if and only if
t = 0. For i = 1, 2, 3, 4, 5, 6, we define the mappings ξi : [0,∞)× [0,∞)→ R as follows

(i) ξ1(t, s) = φ1(s)− φ1(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for all t > 0;

(ii) ξ1(t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → [0,∞) are two continuous functions

with respect to each variable such that f(t, s) > g(t, s) for all t, s > 0;
(iii) ξ3(t, s) = s− φ3(s)− t for all t, s ∈ [0,∞);
(iv) If ψ : [0,∞)→ [0, 1) is a function such that lim supt→r+ ψ(t) < 1 for all r > 0 and define

ξ4(t, s) = sψ(s)− t for all s, t ∈ [0,∞);
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(v) If η : [0,∞)→ [0,∞) is an upper semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0
and define

ξ5(t, s) = η(s)− t for all s, t ∈ [0,∞);

(vi) If φ : [0,∞) → [0,∞) is a function such that
∫ ε

0
φ(u)du exists and

∫ ε
0
φ(u)du > ε for each ε > 0 and

define

ξ6(t, s) = s−
∫ t

0

φ(u)du for all s, t ∈ [0,∞).

It is clear that each function ξi(i = 1, 2, 3, 4, 5, 6) forms a simulation function.

Definition 2.2 ([19]). A partial metric on a non empty set X is a function p : X ×X → R+ such that for
all x, y ∈ X
(p1) x = y ⇐⇒ p(x, x) = p(y, y) = p(x, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A pair (X, p) is called a partial metric space. Each partial metric on X generates T0 topology τp on X which
is the family of p−open balls {Bp(x, δ) : x ∈ X, δ > 0}, where Bp(x, δ) = {y ∈ X : p(x, y) < p(x, x) + δ} for
all x ∈ X and δ > 0. If p is partial metric on X, then the function dp : X ×X → R+ given by
dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Definition 2.3. Let (X, p) be a partial metric space. Then
(1) A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if

p(x, x) = lim
n→∞

p(x, xn);

(2) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if and only if

lim
n,m→∞

p(xn, xm)

exists (finite);
(3) A partial metric space (X, p)is said to be complete if every Cauchy sequence {xn} in X converges with

respect to τp to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm);

(4) A subset A of a partial metric space (X, p) is closed if whenever {xn}is a sequence in A such that {xn}
converges to some x ∈ X, then x ∈ A.

Definition 2.4. Let A and B be non-empty subset of a metric space (X, d) and T : A ∪B → A ∪B. Then
T is called a cyclic map if T (A) ⊆ B and T (B) ⊆ A.

Theorem 2.1 ([17]). Let A and B be non empty closed subsets of a complete metric space (X, d). Suppose
that T : A ∪B → A ∪B is a cyclic map such that

d(Tx, Ty) ≤ kd(x, y).

If k ∈ [0, 1), then T has a unique fixed point in A ∩B.

To see [12], Karapinar and Erhan showed different types of cyclic contractions in usual metric space.

Definition 2.5 ([15]). The function φ : [0,∞) → [0,∞) is called an altering distance functions if the
following conditions are satisfied:

(1) φ is continuous and non decreasing;
(2) φ(t) = 0 if and only if t = 0.

3 Main Results
Definition 3.1. Let (X, p) be a partial metric space and A,B be a non empty closed subsets of (X, p). A
mapping T : A ∪B → A ∪B is called cyclic (ψ, φ, Z)-contraction if

(i) A ∪B has a cyclic representation with respect to T , i.e) T (A) ⊆ B and T (B) ⊆ A;
(ii) If ψ and φ are altering distance functions,

ξ(ψ(p(Tx, Ty)), φ(max(p(x, Tx), p(y, Ty)))) ≥ 0 ∀x ∈ A and y ∈ B. (3.1)
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Theorem 3.1. Let A,B be non empty closed subsets of a complete partial metric space (X, p). if T : A∪B →
A ∪B is a cyclic (ψ, φ, Z)-contraction. Then T has a unique fixed point v ∈ A ∩B.

Proof. Fix any x0 ∈ A. We choose x1 ∈ B, since T (A) ⊆ B such that Tx0 = x1. Again we choose x2 ∈ A
such that Tx1 = x2, since T (B) ⊆ A. Continuing on this way, we construct a sequence {xn} in X such that
x2n ∈ A, x2n+1 ∈ B, i.e) x2n+1 = Tx2n and x2n+2 = Tx2n+1. if x2n0+1 = Tx2n0+1. Thus x2n0+1 is a fixed
point of T in A ∩B.

In this above manner we assume that x2n+1 6= x2n+2 for all n ∈ N. If n is even, then n = 2j for some
j ∈ N. Let x2j+1 6= x2j+2 and from equation (3.1), we have

ξ(ψ(p(Tx2j , Tx2j+1)), φ(max(p(x2j , Tx2j), p(x2j+1, Tx2j+1)))) ≥ 0.

Using (ξ2), we have

ξ(ψ(p(x2j+1, x2j+2)), φ(max(p(x2j , x2j+1), p(x2j+1, x2j+2))))

< φ(max(p(x2j , x2j+1), p(x2j+1, x2j+2)))− ψ(p(x2j+1, x2j+2)). (3.2)

From the above, we have

ψ(p(x2j+1, x2j+2)) < φ(max(p(x2j , x2j+1), p(x2j+1, x2j+2))), (3.3)

if max(p(x2j , x2j+1), p(x2j+1, x2j+2)) = p(x2j+1, x2j+2),
p(x2j , x2j+1) < p(x2j+1, x2j+2),
ψ(p(x2j , x2j+1)) < φ(p(x2j+1, x2j+2)).
Since φ is non-decreasing function
φ(p(x2j+1, x2j+2)) = 0, hence p(x2j+1, x2j+2) = 0.
By (p1) and (p2), x2j+1 = x2j+2,
which is a contradiction to our assumption

max(p(x2j , x2j+1), p(x2j+1, x2j+2)) = p(x2j , x2j+1)

From (3.3), we get
ψ(p(x2j+1, x2j+2)) < φ(p(x2j , x2j+1)). (3.4)

If n is odd, then n = 2j + 1 for some j ∈ N. By equation (3.1), we get

ξ(ψ(p(Tx2j+1, Tx2j+2)), φ(max(p(x2j+1, Tx2j+1), p(x2j+2, Tx2j+2)))) ≥ 0.

Using (ξ2), we get
ψ(p(x2j+2, x2j+3)) < φ(max(p(x2j+1, x2j+2), p(x2j+2, x2j+3))),

if
max(p(x2j+1, x2j+2), p(x2j+2, x2j+3)) = p(x2j+2, x2j+3)

i.e)
p(x2j+2, x2j+3) < p(x2j+2, x2j+3)

ψ(p(x2j+2, x2j+3)) < φ(p(x2j+2, x2j+3)).

Since φ is non-decreasing function.
φ(p(x2j+2, x2j+3)) = 0 and hence p(x2j+2, x2j+3) = 0,by (p1) and (p2).
It implies that, x2j+2 = x2j+3

which contradicts to our assumption
Therefore,

max(p(x2j+1, x2j+2), p(x2j+2, x2j+3)) = p(x2j+1, x2j+2),

ψ(p(x2j+2, x2j+3)) < φ(p(x2j+1, x2j+2)). (3.5)

From equation (3.4) and (3.5), we get

ψ(p(xn+1, xn+2)) < φ(p(xn, xn+1)). (3.6)

In the above {p(xn, xn+1)/n ∈ N} is a non-increasing sequence and hence there exist r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (3.7)
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Let n→∞ in equation (3.6) and also using the fact ψ and φ are continuous, we get ψ(r) < φ(r). It gives

ξ(ψ(r), φ(r)) ≥ 0, ξ(ψ(r), φ(r)) < φ(r)− ψ(r).

From (ξ1), ξ(ψ(r), φ(r)) = 0 and hence ψ(r) = φ(r) = 0, by altering distance function, ψ(r) = φ(r) = 0 iff
r = 0.
By equation (3.7), we get

lim
n→∞

p(xn, xn+1) = 0, (3.8)

by (p2), we get
lim
n→∞

p(xn, xn) = 0, (3.9)

since dp(x, y) = 2p(x, y) for all x, y ∈ X.

lim
n→∞

dp(xn, xn+1) = 0. (3.10)

Next we show that {xn} is a Cauchy sequence in metric space (A∪B, dP ). It is sufficient to show that {x2n}
is a Cauchy sequence in (A∪B, dP ). Suppose to the contrary {x2n} is not a Cauchy sequence in (A∪B, dP )
, there exist ε > 0 and two subsequences {x2n(k)} and {x2m(k)} of {x2n} with m(k) > n(k) > k. m(k) is the
smallest index in N such that

dp(x2m(k), x2n(k)) ≥ ε, (3.11)

this means that
dp(x2m(k), x2n(k)−2) < ε, (3.12)

from equation (3.10), (3.11) and triangle inequality, we get

ε ≤ dp(x2m(k), x2n(k))

≤ dp(x2m(k), x2n(k)−2) + dp(x2n(k)−2, x2n(k))

< ε+ dp(x2n(k)−2, x2n(k)−1) + dp(x2n(k)−1, x2n(k)).

As k →∞ and using (3.8) we have
lim
k→∞

dp(x2m(k), x2n(k)) = ε. (3.13)

Again from (3.10) and we use triangle inequality we get

ε ≤ dP (x2m(k), x2n(k))

≤ dp(x2n(k), x2n(k)−1) + dp(x2n(k)−1, x2m(k))

≤ dp(x2n(k), x2n(k)−1) + dp(x2n(k), x2m(k)+1) + dp(x2m(k)+1, x2m(k))

≤ dp(x2n(k), x2n(k)−1) + dp(x2n(k)−1, x2m(k)) + 2dp(x2m(k)+1, x2m(k))

≤ 2dp(x2n(k), x2n(k)−1) + dp(x2m(k), x2n(k)) + 2dp(x2m(k)+1, x2m(k)).

Using limit n→∞ in the above inequality and using equation (3.8), (3.10), we get

lim
k→∞

dp(x2m(k), x2n(k)) = lim
k→∞

dp(x2m(k)+1, x2n(k)−1)

= lim
k→∞

dp(x2m(k)+1, x2n(k))

= lim
k→∞

dp(x2m(k), x2n(k)−1).

Since dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X, therefore

lim
k→∞

dp(x2m(k), x2n(k)) = lim
k→∞

dp(x2m(k)+1, x2n(k)−1)

= lim
k→∞

dp(x2m(k)+1, x2n(k))

= lim
k→∞

dp(x2m(k), x2n(k)−1)

=
ε

2
.

By equation (3.1) , we have

ξ(ψ(p(x2m(k)+1, x2n(k)−1)), φ(max(p(x2m(k), Tx2m(k)), p(xn(k)−2, Tx2n(k)−2))))

< φ(max(p(x2m(k), Tx2m(k)), p(xn(k)−2, Tx2n(k)−2)))− ψ(p(x2m(k)+1, x2n(k)−1)
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ξ(ψ(p(x2m(k)+1, x2n(k)−1)) < φ(max(p(x2m(k), Tx2m(k)), p(xn(k)−2, Tx2n(k)−2))).

Therefore
ξ(ψ(p(x2m(k)+1, x2n(k)−1)) = 0.

Also ξ(ψ(p(x2m(k)+1, x2n(k)−1)) = 0 if and only if x2m(k)+1 = x2n(k)−1, hence ψ( ε2 ) = 0 iff ε
2 = 0 and ε = 0.

It is a contradiction to our assumption, thus {x2n} is a Cauchy sequence in (A ∪ B, dp). Since (X, d) is
complete and A ∪B is a closed subspace of (X, p), then (A ∪B, p) is complete.
Therefore {xn} converges in the metric space (A ∪B, dp),

lim
n→∞

dp(xn, v) = 0.

Hence
p(v, v) = lim

n→∞
p(xn, v) = lim

n,m→∞
p(xn, xm). (3.14)

Since {xn} is Cauchy in (A ∪B, dp) and (A ∪B, p) if and only if it is Cauchy in (A ∪B, dp) and (A ∪B, p)
is complete iff (A ∪B, dp) is complete.

lim
n,m→∞

dp(xn, xm) = 0,

dp(xm, xn) = 2p(xm, xn)− p(xm, xm)− p(xn, xn). (3.15)

As m,n→∞ and using equation (3.9) and equation (3.15) in the above we get

lim
n,m→∞

dp(xm, xn) = 2p(xm, xn) = 0.

By equation (3.14), we have

lim
n→∞

p(xn, v) = p(v, v) = 0.

Since p(x2n, v)→ 0, x2n is belongs to A and A is closed in (X, p),v ∈ A, ie) v ∈ A ∩B.
From definition of p, we have

p(xn, T v) ≤ p(xn, v) + p(v, Tv)− p(v, v)

≤ p(xn, v) + p(v, xn) + p(xn, T v)− p(v, v)− p(xn, xn).

Taking limit n→∞ in the above inequality, we get

lim
n→∞

p(xn, T v) = p(v, Tv).

Now, we claim that Tv = v.
Since x2n ∈ A and v ∈ B by equation (3.1), we have

ξ(ψ(p(x2n+1, T v), φ(max(p(x2n, Tx2n), p(v, Tv))))) < φ(max(p(x2n, Tx2n), p(v, Tv))

− ψ(p(x2n+1, T v))),

ψ(p(x2n+1, T v)) ≤ φ(max(p(x2n, Tx2n), p(v, Tv)))

= φ(p(v, Tv)).

Since φ is an altering distance function, φ(v, Tv) = 0 ⇐⇒ p(v, Tv) = 0,
ie) Tv = v.
Hence v is a fixed point of T .
To prove uniqueness:
Let w be any other fixed point of T in A ∩B.It is easy to prove p(v, w) = 0.

ξ(ψ(p(Tv, Tw), φ(max(p(v, Tv), p(w, Tw))))) < φ(max(p(v, Tv), p(w, Tw))

− ψ(p(Tv, Tw)

ψ(p(Tv, Tw) ≤ φ(max(p(v, Tv), p(w, Tw))).

Thus ψ(p(Tv, Tw)) = 0 and hence p(Tv, Tw) = 0, p(v, w) = 0. Hence v = w.
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4 Conclusion
In this paper, the main result determines a fixed point using cyclic (ψ, φ,Z )− contraction in partial metric
spaces. Suppose, if we use this contraction in quasi-partial metric space, it satisfies the conditions (QPM1),
(QPM2), (QPM3), (QPM4) in [13]. As a result, this contraction has a unique fixed point in quasi-partial
metric space as well.
Acknowledgement. Authors are very much thankful to the Editor and Reviewer for their valuable
suggestions to bring the paper in its present form.
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