ISSN 0304-9892 (Print) www.vijnanaparishadofindia.org/jnanabha Jñānābha, Vol. 53(1) (2023), 118-124 (Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

SOME FIXED POINT RESULTS FOR CYCLIC $(\psi,\phi,Z)-$ CONTRACTION IN PARTIAL METRIC SPACES

R. Jahir Hussain and K. Manoj

PG & Research Department of Mathematics

Jamal Mohamed College (Autonomous) (Affiliated to Bharathidasan University)

Tiruchirapplli, Tamilnadu, India-620020

Email: $hssn_jhr@yahoo.com, manojguru542@gmail.com$

(Received: January 19, 2023; In format: February 03, 2023; Revised: February 07, 2023; Accepted:

February 08, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53115

Abstract

In this paper, we present a new type of cyclic (ψ, ϕ, Z) – contraction which is a combination of cyclic (ψ, ϕ, A, B) – contraction and Z-contraction in the framework of complete partial metric space with the help of simulation function. We investigate the existence of fixed point result using cyclic (ψ, ϕ, Z) – contraction in the setting of complete partial metric space. Also we give an example to clarify the main result.

2020 Mathematical Sciences Classification: 47H09, 47H10, 54H25.

Keywords and Phrases: Partial metric spaces, Simulation function, Cyclic mapping, Cyclic (ψ, ϕ, Z) contraction.

1 Introduction

The idea of partial metric space was introduced by Mathews ([19]) and it is defined as the same point in partial metric does not necessarily need to be zero. In 2003, Kirk ([17]) introduced the notion of cyclic contraction. Karapinar ([14]) explored cyclic contraction in partial metric space in 2012 while Agarwal ([2]) defined a very useful cyclic generalized contractions on the complete partial metric space in the same year. Khojasteh ([16]) introduced new approach in fixed point theory by using a simulation function. This paper inspired us to find a different type of cyclic contraction in complete partial metric space. Many authors have already demonstrated different types of contractions in partial metric spaces (see [4, 5, 6, 7, 8, 11]).

In this paper, we establish a cyclic (ψ, ϕ, Z) – contraction in complete partial metric space to determine a unique fixed point.

On the other hand, the concept of simulation function was established in [16] to unify the existing fixed point results.

2 Preliminaries

Definition 2.1 ([16]). A function $\xi : [0, \infty) \to [0, \infty)$ satisfying the following conditions

$(\xi_1) \ \xi(0,0) = 0;$

- $(\xi_2) \ \xi(t,s) < t-s \ for \ all \ t,s > 0;$
- (ξ_3) { t_n }, { s_n } are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0$, then $\limsup_{n \to \infty} \xi(t_n, s_n) < 0$, is called a simulation function.

Due to the axiom (ξ_2) , we have $\xi(t, t) < 0$ for all t > 0.

Example 2.1 ([3, 16, 20]). Let $\phi_1 : [0, \infty) \to [0, \infty)$ be a continuous functions with $\phi_i(t) = 0$ if and only if t = 0. For i = 1, 2, 3, 4, 5, 6, we define the mappings $\xi_i : [0, \infty) \times [0, \infty) \to \mathbb{R}$ as follows

- (i) $\xi_1(t,s) = \phi_1(s) \phi_1(t)$ for all $t, s \in [0,\infty)$, where $\phi_1(t) < t \le \phi_2(t)$ for all t > 0;
- (ii) $\xi_1(t,s) = s \frac{f(t,s)}{g(t,s)}t$ for all $t,s \in [0,\infty)$, where $f,g:[0,\infty)^2 \to [0,\infty)$ are two continuous functions with respect to each variable such that f(t,s) > g(t,s) for all t,s > 0;
- (iii) $\xi_3(t,s) = s \phi_3(s) t$ for all $t, s \in [0,\infty)$;
- (iv) If $\psi: [0,\infty) \to [0,1)$ is a function such that $\limsup_{t\to r^+} \psi(t) < 1$ for all r > 0 and define

 $\xi_4(t,s) = s\psi(s) - t \text{ for all } s, t \in [0,\infty);$

(v) If $\eta : [0, \infty) \to [0, \infty)$ is an upper semi-continuous mapping such that $\eta(t) < t$ for all t > 0 and $\eta(0) = 0$ and define

$$\xi_5(t,s) = \eta(s) - t \text{ for all } s, t \in [0,\infty);$$

(vi) If $\phi : [0, \infty) \to [0, \infty)$ is a function such that $\int_0^{\epsilon} \phi(u) du$ exists and $\int_0^{\epsilon} \phi(u) du > \epsilon$ for each $\epsilon > 0$ and define

$$\xi_6(t,s) = s - \int_0^t \phi(u) du \text{ for all } s, t \in [0,\infty).$$

It is clear that each function ξ_i (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

Definition 2.2 ([19]). A partial metric on a non empty set X is a function $p: X \times X \to \mathbb{R}^+$ such that for all $x, y \in X$

- $(p_1) \ x = y \iff p(x, x) = p(y, y) = p(x, y);$
- $(p_2) \ p(x,x) \le p(x,y);$
- $(p_3) \ p(x,y) = p(y,x);$
- $(p_4) \ p(x,z) \le p(x,y) + p(y,z) p(y,y).$

A pair (X, p) is called a partial metric space. Each partial metric on X generates T_0 topology τ_p on X which is the family of p-open balls $\{B_p(x, \delta) : x \in X, \delta > 0\}$, where $B_p(x, \delta) = \{y \in X : p(x, y) < p(x, x) + \delta\}$ for all $x \in X$ and $\delta > 0$. If p is partial metric on X, then the function $d_p : X \times X \to R^+$ given by $d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y)$ is a metric on X.

Definition 2.3. Let (X, p) be a partial metric space. Then

(1) A sequence $\{x_n\}$ in a partial metric space (X, p) converges to a point $x \in X$ if and only if

$$p(x,x) = \lim_{n \to \infty} p(x,x_n)$$

(2) A sequence $\{x_n\}$ in a partial metric space (X, p) is called a Cauchy sequence if and only if

$$\lim_{n,m\to\infty}p(x_n,x_m)$$

exists (finite);

(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges with respect to τ_p to a point $x \in X$ such that

$$p(x,x) = \lim_{n \to \infty} p(x_n, x_m);$$

(4) A subset A of a partial metric space (X, p) is closed if whenever $\{x_n\}$ is a sequence in A such that $\{x_n\}$ converges to some $x \in X$, then $x \in A$.

Definition 2.4. Let A and B be non-empty subset of a metric space (X, d) and $T : A \cup B \to A \cup B$. Then T is called a cyclic map if $T(A) \subseteq B$ and $T(B) \subseteq A$.

Theorem 2.1 ([17]). Let A and B be non empty closed subsets of a complete metric space (X,d). Suppose that $T: A \cup B \to A \cup B$ is a cyclic map such that

$$d(Tx, Ty) \le kd(x, y).$$

If $k \in [0,1)$, then T has a unique fixed point in $A \cap B$.

To see [12], Karapinar and Erhan showed different types of cyclic contractions in usual metric space.

Definition 2.5 ([15]). The function $\phi : [0, \infty) \to [0, \infty)$ is called an altering distance functions if the following conditions are satisfied:

(1) ϕ is continuous and non decreasing;

(2) $\phi(t) = 0$ if and only if t = 0.

3 Main Results

Definition 3.1. Let (X, p) be a partial metric space and A, B be a non empty closed subsets of (X, p). A mapping $T : A \cup B \to A \cup B$ is called cyclic (ψ, ϕ, Z) -contraction if

- (i) $A \cup B$ has a cyclic representation with respect to T, i.e) $T(A) \subseteq B$ and $T(B) \subseteq A$;
- (ii) If ψ and ϕ are altering distance functions,

$$\xi(\psi(p(Tx,Ty)),\phi(\max(p(x,Tx),p(y,Ty)))) \ge 0 \quad \forall x \in A \text{ and } y \in B.$$

$$(3.1)$$

Theorem 3.1. Let A, B be non empty closed subsets of a complete partial metric space (X, p). if $T: A \cup B \to A$ $A \cup B$ is a cyclic (ψ, ϕ, Z) -contraction. Then T has a unique fixed point $v \in A \cap B$.

Proof. Fix any $x_0 \in A$. We choose $x_1 \in B$, since $T(A) \subseteq B$ such that $Tx_0 = x_1$. Again we choose $x_2 \in A$ such that $Tx_1 = x_2$, since $T(B) \subseteq A$. Continuing on this way, we construct a sequence $\{x_n\}$ in X such that $x_{2n} \in A, x_{2n+1} \in B$, i.e) $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Tx_{2n+1}$. if $x_{2n_0+1} = Tx_{2n_0+1}$. Thus x_{2n_0+1} is a fixed point of T in $A \cap B$.

In this above manner we assume that $x_{2n+1} \neq x_{2n+2}$ for all $n \in \mathbb{N}$. If n is even, then n = 2j for some $j \in \mathbb{N}$. Let $x_{2j+1} \neq x_{2j+2}$ and from equation (3.1), we have

$$\xi(\psi(p(Tx_{2j}, Tx_{2j+1})), \phi(\max(p(x_{2j}, Tx_{2j}), p(x_{2j+1}, Tx_{2j+1})))) \ge 0$$

Using (ξ_2) , we have

$$\xi(\psi(p(x_{2j+1}, x_{2j+2})), \phi(\max(p(x_{2j}, x_{2j+1}), p(x_{2j+1}, x_{2j+2})))) < \phi(\max(p(x_{2j}, x_{2j+1}), p(x_{2j+1}, x_{2j+2}))) - \psi(p(x_{2j+1}, x_{2j+2})).$$
(3.2)

From the above, we have

$$\psi(p(x_{2j+1}, x_{2j+2})) < \phi(\max(p(x_{2j}, x_{2j+1}), p(x_{2j+1}, x_{2j+2}))),$$
(3.3)

if $\max(p(x_{2j}, x_{2j+1}), p(x_{2j+1}, x_{2j+2})) = p(x_{2j+1}, x_{2j+2}),$ $p(x_{2j}, x_{2j+1}) < p(x_{2j+1}, x_{2j+2}),$ $\psi(p(x_{2j}, x_{2j+1})) < \phi(p(x_{2j+1}, x_{2j+2})).$ Since ϕ is non-decreasing function $\phi(p(x_{2j+1}, x_{2j+2})) = 0$, hence $p(x_{2j+1}, x_{2j+2}) = 0$. By (p_1) and (p_2) , $x_{2i+1} = x_{2i+2}$,

which is a contradiction to our assumption

$$\max(p(x_{2j}, x_{2j+1}), p(x_{2j+1}, x_{2j+2})) = p(x_{2j}, x_{2j+1})$$

From (3.3), we get

$$\psi(p(x_{2j+1}, x_{2j+2})) < \phi(p(x_{2j}, x_{2j+1})).$$
(3.4)

If n is odd, then n = 2j + 1 for some $j \in \mathbb{N}$. By equation (3.1), we get

$$\xi(\psi(p(Tx_{2j+1}, Tx_{2j+2})), \phi(\max(p(x_{2j+1}, Tx_{2j+1}), p(x_{2j+2}, Tx_{2j+2}))))) \ge 0$$

Using (ξ_2) , we get

$$\psi(p(x_{2j+2}, x_{2j+3})) < \phi(\max(p(x_{2j+1}, x_{2j+2}), p(x_{2j+2}, x_{2j+3}))),$$

if

$$\max(p(x_{2j+1}, x_{2j+2}), p(x_{2j+2}, x_{2j+3})) = p(x_{2j+2}, x_{2j+3})$$

i.e)

$$p(x_{2j+2}, x_{2j+3}) < p(x_{2j+2}, x_{2j+3})$$

$$\psi(p(x_{2j+2}, x_{2j+3})) < \phi(p(x_{2j+2}, x_{2j+3})).$$

Since ϕ is non-decreasing function.

 $\phi(p(x_{2j+2}, x_{2j+3})) = 0$ and hence $p(x_{2j+2}, x_{2j+3}) = 0$, by (p_1) and (p_2) . It implies that, $x_{2j+2} = x_{2j+3}$ which contradicts to our assumption Therefore,

$$\max(p(x_{2j+1}, x_{2j+2}), p(x_{2j+2}, x_{2j+3})) = p(x_{2j+1}, x_{2j+2}),$$

$$\psi(p(x_{2j+2}, x_{2j+3})) < \phi(p(x_{2j+1}, x_{2j+2})).$$
(3.5)

From equation (3.4) and (3.5), we get

$$\psi(p(x_{n+1}, x_{n+2})) < \phi(p(x_n, x_{n+1})).$$
(3.6)

In the above $\{p(x_n, x_{n+1})/n \in \mathbb{N}\}$ is a non-increasing sequence and hence there exist $r \geq 0$ such that

$$\lim_{n \to \infty} p(x_n, x_{n+1}) = r. \tag{3.7}$$

Let $n \to \infty$ in equation (3.6) and also using the fact ψ and ϕ are continuous, we get $\psi(r) < \phi(r)$. It gives $\xi(\psi(r), \phi(r)) \ge 0, \xi(\psi(r), \phi(r)) < \phi(r) - \psi(r).$

From (ξ_1) , $\xi(\psi(r), \phi(r)) = 0$ and hence $\psi(r) = \phi(r) = 0$, by altering distance function, $\psi(r) = \phi(r) = 0$ iff r = 0.

By equation (3.7), we get

$$\lim_{n \to \infty} p(x_n, x_{n+1}) = 0, \tag{3.8}$$

by (p_2) , we get

$$\lim_{n \to \infty} p(x_n, x_n) = 0, \tag{3.9}$$

since $d_p(x, y) = 2p(x, y)$ for all $x, y \in X$.

$$\lim_{n \to \infty} d_p(x_n, x_{n+1}) = 0.$$
(3.10)

Next we show that $\{x_n\}$ is a Cauchy sequence in metric space $(A \cup B, d_P)$. It is sufficient to show that $\{x_{2n}\}$ is a Cauchy sequence in $(A \cup B, d_P)$. Suppose to the contrary $\{x_{2n}\}$ is not a Cauchy sequence in $(A \cup B, d_P)$, there exist $\epsilon > 0$ and two subsequences $\{x_{2n(k)}\}$ and $\{x_{2m(k)}\}$ of $\{x_{2n}\}$ with m(k) > n(k) > k. m(k) is the smallest index in \mathbb{N} such that

$$d_p(x_{2m(k)}, x_{2n(k)}) \ge \epsilon, \tag{3.11}$$

this means that

$$d_p(x_{2m(k)}, x_{2n(k)-2}) < \epsilon, \tag{3.12}$$

from equation (3.10), (3.11) and triangle inequality, we get

$$\begin{aligned} \epsilon &\leq d_p(x_{2m(k)}, x_{2n(k)}) \\ &\leq d_p(x_{2m(k)}, x_{2n(k)-2}) + d_p(x_{2n(k)-2}, x_{2n(k)}) \\ &< \epsilon + d_p(x_{2n(k)-2}, x_{2n(k)-1}) + d_p(x_{2n(k)-1}, x_{2n(k)}). \end{aligned}$$

As $k \to \infty$ and using (3.8) we have

$$\lim_{k \to \infty} d_p(x_{2m(k)}, x_{2n(k)}) = \epsilon.$$
(3.13)

Again from (3.10) and we use triangle inequality we get

$$\begin{aligned} \epsilon &\leq d_P(x_{2m(k)}, x_{2n(k)}) \\ &\leq d_p(x_{2n(k)}, x_{2n(k)-1}) + d_p(x_{2n(k)-1}, x_{2m(k)}) \\ &\leq d_p(x_{2n(k)}, x_{2n(k)-1}) + d_p(x_{2n(k)}, x_{2m(k)+1}) + d_p(x_{2m(k)+1}, x_{2m(k)}) \\ &\leq d_p(x_{2n(k)}, x_{2n(k)-1}) + d_p(x_{2n(k)-1}, x_{2m(k)}) + 2d_p(x_{2m(k)+1}, x_{2m(k)}) \\ &\leq 2d_p(x_{2n(k)}, x_{2n(k)-1}) + d_p(x_{2m(k)}, x_{2n(k)}) + 2d_p(x_{2m(k)+1}, x_{2m(k)}). \end{aligned}$$

Using limit $n \to \infty$ in the above inequality and using equation (3.8), (3.10), we get

$$\lim_{k \to \infty} d_p(x_{2m(k)}, x_{2n(k)}) = \lim_{k \to \infty} d_p(x_{2m(k)+1}, x_{2n(k)-1})$$
$$= \lim_{k \to \infty} d_p(x_{2m(k)+1}, x_{2n(k)})$$
$$= \lim_{k \to \infty} d_p(x_{2m(k)}, x_{2n(k)-1}).$$
Since $d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y)$ for all $x, y \in X$, therefore

Since
$$a_p(x, y) = 2p(x, y) - p(x, x) - p(y, y)$$
 for all $x, y \in X$, therefore

$$\lim_{k \to \infty} d_p(x_{2m(k)}, x_{2n(k)}) = \lim_{k \to \infty} d_p(x_{2m(k)+1}, x_{2n(k)-1})$$

$$= \lim_{k \to \infty} d_p(x_{2m(k)}, x_{2n(k)-1})$$

$$= \lim_{k \to \infty} d_p(x_{2m(k)}, x_{2n(k)-1})$$

$$= \frac{\epsilon}{2}.$$

By equation (3.1), we have

$$\begin{split} \xi(\psi(p(x_{2m(k)+1}, x_{2n(k)-1})), \phi(\max(p(x_{2m(k)}, Tx_{2m(k)}), p(x_{n(k)-2}, Tx_{2n(k)-2})))) \\ &\quad < \phi(\max(p(x_{2m(k)}, Tx_{2m(k)}), p(x_{n(k)-2}, Tx_{2n(k)-2}))) - \psi(p(x_{2m(k)+1}, x_{2n(k)-1})) \\ \end{split}$$

 $\xi(\psi(p(x_{2m(k)+1}, x_{2n(k)-1})) < \phi(\max(p(x_{2m(k)}, Tx_{2m(k)}), p(x_{n(k)-2}, Tx_{2n(k)-2}))).$

Therefore

$$\xi(\psi(p(x_{2m(k)+1}, x_{2n(k)-1}))) = 0.$$

Also $\xi(\psi(p(x_{2m(k)+1}, x_{2n(k)-1})) = 0$ if and only if $x_{2m(k)+1} = x_{2n(k)-1}$, hence $\psi(\frac{\epsilon}{2}) = 0$ iff $\frac{\epsilon}{2} = 0$ and $\epsilon = 0$. It is a contradiction to our assumption, thus $\{x_{2n}\}$ is a Cauchy sequence in $(A \cup B, d_p)$. Since (X, d) is complete and $A \cup B$ is a closed subspace of (X, p), then $(A \cup B, p)$ is complete. Therefore $\{x_n\}$ converges in the metric space $(A \cup B, d_p)$,

$$\lim_{n \to \infty} d_p(x_n, v) = 0.$$

Hence

$$p(v,v) = \lim_{n \to \infty} p(x_n, v) = \lim_{n, m \to \infty} p(x_n, x_m).$$
(3.14)

Since $\{x_n\}$ is Cauchy in $(A \cup B, d_p)$ and $(A \cup B, p)$ if and only if it is Cauchy in $(A \cup B, d_p)$ and $(A \cup B, p)$ is complete iff $(A \cup B, d_p)$ is complete.

$$\lim_{n,m\to\infty} d_p(x_n, x_m) = 0,$$

$$d_p(x_m, x_n) = 2p(x_m, x_n) - p(x_m, x_m) - p(x_n, x_n).$$
 (3.15)

As $m, n \to \infty$ and using equation (3.9) and equation (3.15) in the above we get

$$\lim_{n,m\to\infty} d_p(x_m,x_n) = 2p(x_m,x_n) = 0.$$

By equation (3.14), we have

$$\lim_{n \to \infty} p(x_n, v) = p(v, v) = 0$$

Since $p(x_{2n}, v) \to 0$, x_{2n} is belongs to A and A is closed in $(X, p), v \in A$, ie) $v \in A \cap B$. From definition of p, we have

$$p(x_n, Tv) \leq p(x_n, v) + p(v, Tv) - p(v, v) \\ \leq p(x_n, v) + p(v, x_n) + p(x_n, Tv) - p(v, v) - p(x_n, x_n).$$

Taking limit $n \to \infty$ in the above inequality, we get

$$\lim_{n \to \infty} p(x_n, Tv) = p(v, Tv).$$

Now, we claim that Tv = v.

Since $x_{2n} \in A$ and $v \in B$ by equation (3.1), we have

$$\begin{aligned} \xi(\psi(p(x_{2n+1},Tv),\phi(\max(p(x_{2n},Tx_{2n}),p(v,Tv))))) &< &\phi(\max(p(x_{2n},Tx_{2n}),p(v,Tv))) \\ &- &\psi(p(x_{2n+1},Tv))), \\ &\psi(p(x_{2n+1},Tv)) &\leq &\phi(\max(p(x_{2n},Tx_{2n}),p(v,Tv))) \\ &= &\phi(p(v,Tv)). \end{aligned}$$

Since ϕ is an altering distance function, $\phi(v, Tv) = 0 \iff p(v, Tv) = 0$, ie) Tv = v.

Hence v is a fixed point of T.

To prove uniqueness:

Let w be any other fixed point of T in $A \cap B$. It is easy to prove p(v, w) = 0.

$$\begin{array}{rcl} \xi(\psi(p(Tv,Tw),\phi(\max(p(v,Tv),p(w,Tw))))) &< & \phi(\max(p(v,Tv),p(w,Tw)) \\ & & - & \psi(p(Tv,Tw) \\ & & \psi(p(Tv,Tw) &\leq & \phi(\max(p(v,Tv),p(w,Tw))). \end{array}$$

Thus $\psi(p(Tv,Tw)) = 0$ and hence $p(Tv,Tw) = 0, \ p(v,w) = 0$. Hence $v = w$.

122

4 Conclusion

In this paper, the main result determines a fixed point using cyclic (ψ, ϕ, Z) – contraction in partial metric spaces. Suppose, if we use this contraction in quasi-partial metric space, it satisfies the conditions (QPM1), (QPM2), (QPM3), (QPM4) in [13]. As a result, this contraction has a unique fixed point in quasi-partial metric space as well.

Acknowledgement. Authors are very much thankful to the Editor and Reviewer for their valuable suggestions to bring the paper in its present form.

References

- T. Abdeljawad, E. Karapinar and K. Tas, A generalized contraction principle with control functions on partial metric spaces, *Computers Math. Appl.*, 63 (2012), 716-719.
- [2] R.P. Agarwal, M.A. Alghamdi and N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, *Fixed Point Theory Appl.* 40 (2012), 1-11.
- [3] H.H. Alsulami, E. Karapinar, F. Khojasteh and A.F. Roldan-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, *Discrete Dynamics in Nature and Society*, **2014** (2014), 1-10, Article ID 269286.
- [4] I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, *Topol. Appl.*, 157 (2010), 2778-2785.
- [5] H. Aydi, E. Karapinar and S.H. Rezapour, A Generalized Meir-Keeler-Type Contraction on Partial Metric Spaces, *Abstract and Applied Analysis*, **2012** (2012), 1-10, Article ID 287127.
- [6] H. Aydi, S. Hadj-Amor and E. Karapinar, Berinde Type generalized contractions on partial metric spaces, Abstract and Applied Analysis, 2013 (2013), 1-10, Article ID 312479.
- [7] K.P. Chi, E. Karapinar and T.D. Thanh, On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces, *Bulletin of the Iranian Mathematical Society*, **39** (2013), 369-381.
- [8] K.P. Chi, E. Karapinar and T.D. Thanh, A Generalized Contraction Principle in Partial Metric Spaces, Math. Comput. Modelling, 55 (2012), 1673-1681.
- [9] E. Karapinar, Fixed point results via simulation functions, *Filomat*, **30**(8) (2016), 2343-2350.
- [10] E.Karapinar and R.P. Agarwal, Interpolative Rus-Reich-Ciric Type Contractions Via Simulation Functions, An. St. Univ. Ovidius Constanta, Ser. Mat., 27(3) (2019), 137-152.
- [11] E. Karapinar, K.P. Chi and T.D. Thanh, A generalization of Ciric quasi-contractions, Abstr. Appl. Anal., 2012 (2012), 1-9, Article ID 518734.
- [12] E. Karapinar and I.M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5 (2011), 342-353.
- [13] E. Karapinar, I. Erhan and A. Ozturk, Fixed point theorems on quasi-partial metric spaces, Mathematical and Computer Modelling, 57 (2013), 2442-2448.
- [14] E. Karapinar, I.M. Erhan and A.Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, *Appl. Math. Inf. Sci.*, 6 (2012), 239-244.
- [15] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
- [16] F. Khojasteh, S. Shukla and S. Radenović, A new approach to the study of fixed point theorey for simulation functions, *Filomat*, 29(6) (2015), 1189-1194.
- [17] W.A. Kirk, P.S. Srinavasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions. *Fixed Point Theory*, 4 (2003), 79-89.
- [18] H. Lakzian and B. Samet, Fixed points for (ψ, ϕ) -weakly contractive mappings in generalized metric spaces, *Appl. Math. Lett.*, **25** (2012), 902-906.
- [19] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann.N.Y. Acad. Sci., 728 (1994), 183-197.
- [20] A.F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355.
- [21] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), 1-6.
- [22] B. Samet, Best proximity point results in partially ordered metric spaces via simulation functions, Fixed Point Theory Appl., 232 (2015), 1-15.

- [23] W. Shatanawi and S. Manro, Fixed point results for cyclic (ψ, ϕ, A, B) contraction in partial metric spaces, *Fixed Point Theory Appl.*, **165** (2012), 1-13.
- [24] W. Shatanawi and B. Samet, On (ψ, ϕ) -weakly contractive condition in partially ordered metric spaces, Comput. Math.Appl., **62** (2011), 3204-3214.
- [25] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. General Topol., 6 (2005), 229-240.