ISSN 0304-9892 (Print)

CREATION OF SEQUENCES OF SINGULAR 3-TUPLES THROUGH ABEL AND CYCLOTOMIC POLYNOMIAL WITH COMMENSURABLE PROPERTY
 R. Vanaja ${ }^{1}$ and V. Pandichelvi ${ }^{2}$
 ${ }^{1}$ Department of Mathematics, AIMAN College of Arts \& Science for Women, Tiruchirappalli, Tamil Nadu,

 India-620021(Affiliated to Bharathidasan University)
${ }^{2}$ Post Graduate \& Research Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamil Nadu, India-620019
(Affiliated to Bharathidasan University)
Email: vanajvicky09@gmail.com, mvpmahesh2017@gmail.com
(Received: June 06, 2022, In format: July 28, 2022; Revised: August 24, 2022; Accepted: April 08, 2023)
DOI: https://doi.org/10.58250/jnanabha.2023.53112

Abstract

In this paper, the sequence of 3-tuples named as singular 3-tuples $\{f(x), g(x), h(x)\},\{g(x), h(x), i(x)\}$ etc concerning Abel's polynomial and Cyclotomic polynomial such that the arithmetic mean of any two polynomials increased by a monomial with integer coefficients provides square of a particular polynomial is enumerated. Furthermore, Python program for conformation of each of an evaluated singular 3-tuples is also exemplified. 2020 Mathematical Sciences Classification: 11B83 Keywords and Phrases: Singular 3-tuples, Abel's polynomial, Cyclotomic polynomial.

1 Introduction

"A set of s positive integers $\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ is called a Diophantine s-tuples with the property $D(l), l \in Z-\{0\}$ if $r_{m} r_{n}+l$ is a perfect square for all $1 \leq m<n \leq s$." In [1, 2, 4], the writers originate limited number of Diophantine triples with precise properties. For an inclusive analysis of numerous problems on Diophantine 3tuples with appropriate properties, see [5-11, 15-18]. In this communication, the process of finding sequence of singular 3-tuples $\{f(x), g(x), h(x)\},\{g(x), h(x), i(x)\}$ etc consisting Abel's polynomial and Cyclotomic polynomial such that the arithmetic mean of any two polynomials in each 3-tuples enlarged by a monomial with integer coefficients remains square of a polynomial is demonstrated. Moreover, Python program for checking each of such singular 3-tuples with numerical values is illustrated.

2 Basic Definitions

2.1 Abel's Polynomial

The $n^{\text {th }}$ term of Abel's Polynomial is defined by

$$
p_{a, n}(x)=x(x-a n)^{n-1}
$$

Therefore

$$
P_{1,2}(x)=x^{2}-2 x, P_{2,2}(x)=x^{2}-4 x .
$$

2.2 Cyclotomic Polynomial

The $n^{\text {th }}$ term of Cyclotomic Polynomial is defined by

$$
\varphi_{n}(x)= \begin{cases}\sum_{k=0}^{n-1} x^{k}, & \text { if } n \text { is a prime number } \\ p-1 \\ \sum_{k=0}(-x)^{k}, & \text { if } n=2 p \text { where } p \text { is an odd prime number } .\end{cases}
$$

Then, $\varphi_{3}(x)=x^{2}+x+1, \varphi_{6}(x)=x^{2}-x+1$.

2.3 Singular 3-tuples

A set of 3-tuples $\{f(x), g(x), h(x)\}$ is called singular 3-tuples with property $D[r(x)]$ if the average of any two polynomials in the set added with $r(x)$ is a square of some other polynomial where $f(x), g(x), h(x), r(x)$ are polynomials with integer coefficients.

3 Process of Receiving Singular 3-tuples

The method of discovering two different types of singular 3-tuples in which the elements are Abel's polynomial and Cyclotomic polynomial such that average of any two polynomials added with certain monomial gives a square of a polynomial is expressed in Section 3.1 and Section 3.2.

3.1 Singular 3-tuples with Ables Polynomial

Choose $f(x)=P_{1,2}(16 x)=256 x^{2}-32 x$ and $g(x)=P_{2,2}(16 x)=256 x^{2}-64 x$ be such that average of $f(x)$ and $g(x)$ added with $80 x+1$ is a square of a polynomial.

Mathematically, the above hypothesis is expressed by

$$
\begin{equation*}
\left[\frac{f(x)+g(x)}{2}\right]+80 x+1=(16 x+1)^{2}=[\alpha(x)]^{2} \text { (say). } \tag{3.1}
\end{equation*}
$$

Let $h(x)$ be another polynomial collected with the resulting two conditions that

$$
\begin{align*}
& {\left[\frac{g(x)+h(x)}{2}\right]+80 x+1=[\beta(x)]^{2},} \tag{3.2}\\
& {\left[\frac{f(x)+h(x)}{2}\right]+80 x+1=[\gamma(x)]^{2} .} \tag{3.3}
\end{align*}
$$

Subtraction of (3.3) from (3.2) affords the succeeding equation

$$
\begin{equation*}
\left[\frac{g(x)-f(x)}{2}\right]=[\beta(x)]^{2}-[\gamma(x)]^{2} . \tag{3.4}
\end{equation*}
$$

For finding the third element $h(x)$ in an essential triple, let us select the proper conversions as specified below.

$$
\begin{equation*}
\beta(x)=A+2 \text { and } \gamma(x)=A . \tag{3.5}
\end{equation*}
$$

Replacing the chosen values of $f(x), g(x)$ and the alterations (3.5) in (3.4), the possibility of A and hence $\gamma(x)$ is attained by

$$
\gamma(x)=A=4 x-1
$$

Retaining $f(x)$ and the above derived value of $\gamma(x)$ in (3.3), it is scrutinized that

$$
h(x)=-224 x^{2}-112 x
$$

Note that, $\{f(x), g(x), h(x)\}=\left\{256 x^{2}-32 x, 256 x^{2}-64 x,-224 x^{2}-112 x\right\}$ is a gorgeous singular 3-tuples with property $D(80 x+1)$.

Similarly opening with patterns of singular 2-tuples $\{g(x), h(x)\},\{h(x), i(x)\}$ etc, it is possible to extend patterns of singular 3-tuples $\{g(x), h(x), i(x)\}\{h(x), i(x), j(x)\}$ etc with an equivalent condition $D(80 x+1)$. Here

$$
\begin{aligned}
i(x) & =7200 x^{4}+1440 x^{3}+56 x^{2}-72 x \\
j(x) & =1620000 x^{8}+648000 x^{7}+190800 x^{6}+43200 x^{5}+2450 x^{4}-20 x^{3}+134 x^{2}-68 x
\end{aligned}
$$

Table 3.1 demonstrates singular 3 -tuples for few values of x for easy understanding.
Table 3.1

x	$D(80 x+1)$	$\{f(x), g(x), h(x)\}$	$\{g(x), h(x) i(x)\}$	$\{h(x) i(x), j(x)\}$
1	$D(81)$	$\{224,192,-336\}$	$\{192,-336,8624\}$	$\{-336,8624,2504496\}$
2	$D(161)$	$\{960,896,-1120\}$	$\{896,-1120,126800\}$	$\{-1120,126800,511297040\}$
3	$D(241)$	$\{2208,2112,-2352\}$	$\{2112,-2352,622368\}$	$\{-2352,622368,12195785712\}$
4	$D(321)$	$\{3968,3840,-4032\}$	$\{3840,-4032,1935968\}$	$\{-4032,1935968,117611533392\}$
5	$D(401)$	$\{6240,6080,-6160\}$	$\{6080,-6160,4681040\}$	$\{-6160,4681040,686555281760\}$

3.2 Singular 3-tuples with Cyclotomic Polynomial

Let $\{k(x), l(x)\}=\left\{\varphi_{3}(16 x), \varphi_{6}(16 x)\right\}=\left\{256 x^{2}+16 x+1,256 x^{2}-16 x+1\right\}$ be a pair comprising Cyclotomic Polynomials such that the average of these two polynomials augmented by the monomial $32 x$ is a square of some other polynomial. Following the procedure as explained in Section 3.1, this pair is extended into singular triple $\{k(x), l(x), m(x)\}$ with property $D(32 x)$. Here $m(x)=-224 x^{2}-64 x+1$.

Similarly, if $\{l(x), m(x)\},\{m(x), n(x)\}$ etc are pairs in which the elements are certain polynomials, then as in Section 3.1 each pair can be protracted into singular triples $\{l(x), m(x), n(x)\},\{m(x), n(x), p(x)\}$ etc with the similar property $D(32 x)$. Here

$$
\begin{aligned}
& n(x)=7200 x^{4}+1440 x^{3}+56 x^{2}-24 x+1 \\
& p(x)=1620000 x^{8}+648000 x^{7}+190800 x^{6}+43200 x^{5}+2450 x^{4}-20 x^{3}+134 x^{2}-20 x+1 .
\end{aligned}
$$

The ensuing Table 3.2 establishes the prescribed singular 3-tuples for limited values of x.
Table 3.2

x	$D(32 x)$	$\{k(x), l(x), m(x)\}$	$\{l(x), m(x), n(x)\}$	$\{m(x), n(x), p(x)\}$
1	$D(32)$	$\{273,241,-287\}$	$\{241,-287,8673\}$	$\{-287,8673,2504545\}$
2	$D(64)$	$\{1057,993,-1023\}$	$\{993,-1023,126897\}$	$\{-1023,126897,511297137\}$
3	$D(96)$	$\{2353,2257,-2207\}$	$\{2257,-2207,622513\}$	$\{-2207,622513,12195785857\}$
4	$D(128)$	$\{4161,4033,-3839\}$	$\{4033,-3839,1936161\}$	$\{-3839,1936161,117611533585\}$
5	$D(160)$	$\{6481,6321,-5919\}$	$\{6321,-5919,4681281\}$	$\{-5919,4681281,686555282001\}$

4 Python program

Python program is displayed below for endorsement of each of the singular 3-tuples with arithmetic values.

```
import math
Section=int(input('ENTER THE VALUE OF SECTION'))
if Section == 1:
    x=int(input('ENTER THE VALUE OF x = '))
    f=256 * x * x-32 * x
    g=256 * x * x-64 * x
    h=-224 * x * x-112 * x
    i=7200 * x * x * x * x+1440 * x * x * x+56 * x * x-72 * x
    j=1620000* (x* x * x * x * x * x * x * x) + 648000* (x * x * x * x * x * x * x)
        + 190800 * (x * x * x * x * x * x)+43200 * (x * x * x * x * x)
        +2450* (x * x * x * x)-20 * (x * x * x)+134* (x * x)-68* x
print('f(x)=', f,'g(x)=', g,'h(x)=', h,'i(x)=', i,'j(x)=', j)
    R=((f+g)/2)+80* *+1
    Y=((g+h)/2)+80 * x+1
    Z=((h+f)/2)+80*x+1
    M=((g+i)/2)+80*x+1
    N}=((h+i)/2)+80*x+
    P=((h+j)/2)+80*x+1
    Q=((i+j)/2)+80 * x+1
root1=mathsqrt(R)
root2=mathsqrt (Y)
root3=mathsqrt(Z)
root4=mathsqrt (M)
root5=mathsqrt(N)
root6=mathsqrt(P)
root7=mathsqrt(Q)
if (int(root1+0.5) ** 2==R) and (int(root2+0.5) ** 2==Y) and (int(root3+0.5) ** 2==Z):
print('(f(x), g(x), h(x))=',(f,g, h), "is a Singular triple with D(80x+1)")
else:
print('(f(x),g(x), h(x))=',(f,g, h), "is not a Singular triple with D(80x+1)")
if (int(root2+0.5) ** 2==Y) and (int(root4+0.5) ** 2==M) and (int(root5+0.5) ** 2==N):
print('(g(x), h(x), i(x))=',(g, h, i), "is a Singular triple with D(80x+1)")
else:
print('(g(x), h(x), i(x))=',(g, h, i), "is not a Singular triple with D(80x+1)")
if (int(root5+0.5) ** 2==N) and (int(root6+0.5) * * 2==P) and (int(root7+0.5) ** 2==Q):
print('(h(x), i(x), j(x))=',(h, i, j), "is a Singular triple with D(80x+1)")
else:
print('(h(x), i(x), j(x))=',(h, i, j), "is not a Singular triple with D(80x+1)")
elif Section == 2:
X=int(input('ENTER THE VALUE OF X = '))
k=256 * X * X+16 * X+1
l=256 * X * X-16 * X+1
```

```
m=-224 * X * X-64 * X+1
n=7200 * X * X * X * X+1440 * X * X * X+56 * X * X-24* X+1
p=1620000 * (X * X * X * X * X * X * X * X) + 648000 * (X * X * X * X * X * X * X)
    +190800 * (X * X * X * X * X * X) +43200 * (X * X * X * X * X)
    +2450* (X * X * X * X)-20 * (X * X * X)+134 * (X * X)-20 * X+1
print('k(x)=', k,'l(x)=', l,'m(x)=', m,'n(x)=', n,'p(x)=', p)
A=((k+l)/2)+32*X
B=((1+m)/2)+32 * X
C=((m+k)/2)+32* X
D=((1+n)/2)+32 * X
E=((m+n)/2)+32*X
F=((m+p)/2)+32*X
G=((n+p)/2)+32*X
root1=mathsqrt(A)
root2=mathsqrt(B)
root3=mathsqrt(C)
root4=mathsqrt(D)
root5=mathsqrt(E)
root6=mathsqrt(F)
root7=mathsqrt(G)
if (int(root1+0.5) ** 2==A) and (int(root2+0.5) ** 2==B) and (int(root3+0.5) ** 2==C):
print('(k(x), l(x), m(x))=',(k,l,m), "is a Singular triple with D(32x)")
else:
print('(k(x), l(x)m(x))=',(k,l,m), "is not a Singular triple with D(32x)")
if (int(root2+0.5) ** 2==B) and (int(root4+0.5) ** 2==D) and (int(root5+0.5) ** 2==E):
print('(l(x), m(x), n(x))=',(l,m,n), "is a Singular triple with D(32x)")
else:
print('(l(x), m(x), n(x))=',(l,m,n), "is not a Singular triple with D(32x)")
if (int(root5+0.5) ** 2==E) and (int(root6+0.5) ** 2==F)
    and (int(root7+0.5) ** 2==G):
print('(m(x), n(x), p(x))=',(m, n, p), "is a Singular triple with D(32x)")
else:
print('(m(x), n(x), p(x))=',(m, n, p), "is not a Singular triple with D(32x)")
```


Output of Some Examples

```
ENTER THE VALUE OF SECTION 1
ENTER THE VALUE OF x = 1
f(x)=224 g(x)= 192 h(x)=-336 i (x)=8624 j(x)= 2504496
(f(x),g(x), h(x))= (224, 192,-336) is a Singular triple with D(80x+1)
(g(x), h(x), i(x))= (192, -336, 8624) is a Singular triple with D(80x+1)
(h(x), i(x), j(x))= (-336, 8624, 2504496) is a Singular triple with D (80x+1)
ENTER THE VALUE OF SECTION 1
ENTER THE VALUE OF x = 2
f(x)=960 g(x)= 896 h(x)=-1120 i(x)= 126800 j(x)= 511297040
(f(x),g(x), h(x))= (960, 896,-1120) is a Singular triple with D(80x+1)
(g(x), h(x), i(x))= (896, -1120, 126800) is a Singular triple with D (80x+1)
(h(x), i(x), j(x))= (-1120,126800,511297040) is a Singular triple with D(80x+1)
ENTER THE VALUE OF SECTION 2
ENTER THE VALUE OF X = 1
k(x)= 273 l(x)= 241 m(x)=-287 n(x)= 8673 p(x)= 2504545
(k(x), l(x), m(x))= (273, 241,-287) is a Singular triple with D(32x)
(l(x), m(x), n(x))= (241, -287, 8673) is a Singulartriple with D(32x)
(m(x), n(x), p(x))= (-287, 8673, 2504545) is a Singular triple with D(32x)
ENTER THE VALUE OF SECTION 2
ENTER THE VALUE OF X = 2
k(x)=1057 l(x)= 993 m(x)=-1023 n(x)= 126897 p(x)= 511297137
(k(x), l(x), m(x))= (1057, 993, -1023) is a Singular triple with D(32x)
(l(x), m(x), n(x))= (993,-1023, 126897) is a Singular triple with D(32x)
(m(x), n(x), p(x))= (-1023, 126897, 511297137) is a Singular{triple with D(32x)
```


5 Conclusion

In this paper, the development of finding order of singular 3-tuples $\{f(x), g(x), h(x)\}$,
$\{g(x), h(x), i(x)\}$ etc entailing Abel's polynomial and Cyclotomic polynomial in which the arithmetic mean of any two polynomials in each 3 -tuples added by a monomial with integer coefficients leftovers square of a polynomial is recognized. Additionally, Python program for inspection of each of such singular 3-tuples with numerical values is presented. To conclude this, one can pursuit varieties of 3-tuples nourishing innumerable exciting features.
Acknowledgement. Authors are grateful to the Editor and Reviewer for their fruitful suggestions to improve the paper.

References

[1] I. G. Bashmakova (Ed.), Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (1974), 85-86.
[2] Y. Bugeaud, A. Dujella and M. Mignotte, On the family of Diophantine triples $\left\{k-1, k+1,16 k^{3}-4 k\right\}$, Glasgow Math. J., 49 (2007), 333-344.
[3] A. Chandola, R. M. Pandey, R. Agarwal, L. Rathour and V. N. Mishra, On some properties and applications of the generalized S-Parameter Mittag-leffler function, Advanced Mathematical Models and Applications, 7(2) (2022), 130-145.
[4] M. N. Deshpande, Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society, 4 (2003), 19-21.
[5] M. A. Gopalan, V. Sangeetha and Manju Somanath, Construction of the Diophantine Triple involving polygonal number, Sch. J. Eng. Tech., 2(1) (2014), 19-22.
[6] M. A. Gopalan, V. Geetha and S. Vidhyalakshmi, Dio 3-tuples for Special Numbers-I, The Bulletin of Society for Mathematical Services and Standards, 10 (2014), 1-6.
[7] M. A. Gopalan, S. Vidhyalakshmi and S. Mallika, Special family of Diophantine triples, Sch. J. Eng. Tech., 2 (2014), 197-199.
[8] M. A. Gopalan, K. Geetha and Manju Somanath, On special Diophantine triples, Archimedes Journal of Mathematics, 4(1) (2014), 37-43.
[9] M. A. Gopalan and V. Geetha, Sequences of Diophantine triples, JP Journal of Mathematical Sciences, 14(1) (2015), 27-39.
[10] M. A. Gopalan and Sharadha Kumar, On the Sequences of Diophantine 3-tuples generated through Euler and Bernoulli Polynomials, Tamap Journal of Mathematics and Statistics, (2019), 1-5.
[11] G. Janaki and C. Saranya, Construction of the Diophantine Triple involving Pentatope Number, IJRASET, 6(3) (2018), 2317-2319.
[12] V. N. Mishra, Some Problems on Approximations of Functions in Banach Space, Ph.D Thesis, Indian Institute of Technology Roorkee, 247667, Uttarakhand, India, 2007.
[13] V. N. Mishra and L. N. Mishra, Approximationsof Signals(Functions)inL ${ }_{p}-$ norm, International Journal of Contemporary Mathematical Sciences, 7(19) (2012), 909-918.
[14] L. N. Mishra, M. Raiz, L. Rathour and V. N. Mishra, Tauberian -theorems for weighted means of double sequences in intuitionstic fuzzy normed spaces, Yugoslav Journal of Operations Research, 32(3) (2022), 377-388.
[15] V. Pandichelvi, Construction of the Diophantine triple involving polygonal numbers, Impact J. Sci. Tech., 5(1) (2011), 07-11.
[16] V. Pandichelvi and P. Sandhya, The patterns of Diophantine triples engross Cheldhiya Companion sequences with inspiring properties, Adalya Journal, 9(4) (2020), 399-404.
[17] V. Pandichelvi and P. Sivakamasundari, On the extendibility of the sequences of Diophantine triples into quadruples involving Pell numbers, International journal of current Advanced Research, 6(11) (2017), 7197-7202.
[18] V. Pandichelvi and S. Saranya, Classification of an exquisite Diophantine 4-tuples bestow with an order, Malaya Journal of Mathematik, 9(1) (2021), 612-615.
[19] Vandana, Deepamala, K. Drachal and V. N. Mishra, Some algebra-geometric aspects of spacetime c-boundary, Mathematica Aeterna, 6(4) (2016), 561-5726

