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Abstract

Over the past few years, convex optimization has played a vital role in the study of complex
engineering problems in different fields. Geometric programming is one of the available techniques
particularly used for solving nonconvex programming problems. But in this article, a suitable attempt has
been made to solve a real-life model on convex multi-objective using geometric programming technique
with help of the ε-constraint method and result is compared with the solutions obtained by fuzzy
technique. Finally, a conclusion is presented by analyzing the solutions to a numerical problem.
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1 Introduction
There is hardly ever a situation that arises where one can expect only one goal at the same time. For
example, while purchasing something we are expecting a high-quality product at a low price. In the same
manner, most of the technical problems involve more than one goal to maximize quality versus minimizing
the cost. This ambiguity proceeds to the field of multi-objective optimization. There exists an infinite
number of optimal solutions to multi-objective problems because of conflicting objectives. The group of these
agreement solutions is called the pareto set[8] and solutions are called pareto solutions. But the question
arises how to combine different objectives to yield optimal solutions for our modeled problems. In this article
geometric programming technique has been discussed for solving different engineering applications, which
was developed by Duffin, Peterson and Zener [9]. Nowadays, it can be used in various fields like circuit
design [4, 5], production, and constructing models for market planning [2, 11]. Many important problems
in engineering need to solve non-convex multi-objective optimization problems to achieve the proper results.
But in this article, we have tried to discuss convex multi-objective optimization problems. The optimization
problem in which objective functions, as well as, constraints are convexly is known as the convex problems.
Recently convex optimization methods are widely used in the design and analysis of communication systems
and signal processing algorithms because in convex problems local optimum is considered as global optimum.
Luo et al.[12], in their recent paper have shown how convex optimization is useful for communications and
signal processing. Different applications in the field of automatic control systems, electronic circuit design,
data analysis, statistics, and finance has been discovered since its development. The basic advantages of
the convex optimization problem for solving a problem very reliably and efficiently using interior-point
methods or other special methods have been shown by Boyd et al.[6]. The connectedness properties of
quasi-convex problems using cone-efficient set of the solution have been shown by Zhou[16]. An and Liu[1]
have proven different necessary and sufficient conditions for getting weakly Pareto solutions and weakly
efficient solutions of convex multi-objective programming problems. For deriving the solutions of multi-
objective convex problems using both equality and inequality constraints, Shang et al.[15] have discussed
the homotopy method which does not require any starting point to be the feasible point.

The paper is structured as follows: beginning with the introduction, the basic concept of convex
optimization has been discussed in sec 2. The modeling of multi-objective convex geometric problems
discussed in sec 3 and corresponding solution procedure by ε-constraint method discussed in sec 4. The rule
of convergence of solutions by ε-constraint method and a suitable example based on our discussion given in
sec 5 and sec 6 respectively. Finally, conclusion drawn is presented in Sec 7.
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2 Basic concepts of convex set, convex function and convex programming
The study of fundamental concepts of convexity and its use in the construction of mathematical models[7, 14]
related to various physical problems are key for everyone.
Convex sets:
A set S ⊂ Rn is said to be convex if for any two points x, y ∈ S, their convex linear combination also lies in
S. Mathematically, it is represented as.
λ x + (1-λ)y∈ S for all λ ∈ [0, 1] and x, y ∈ S
Since the line segment joining any two distinct points is no longer on the unit sphere, the unit sphere is not
convex whereas the unit ball is a convex set. Generally, a convex set is a solid object having no holes and
always curved outward. An important property regarding convex sets is that the intersection of more than
one number of convex sets is again convex.
Convex functions
A function f(x) : Rn → R is called convex if for any two points x, y ∈ Rn the following condition must be
satisfied
f(λ x + (1-λ)y)≤ λ f(x) + (1-λ)f(y) for all λ ∈ [0, 1].
Geometrically, a function is called convex if the line joining x and y lies above the graph of f that is called
an epigraph.
Theorem 2.1. Let f is a function which is defined and differentiable on domf . Then f is called convex if
and only if f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ domf .
It will be strictly convex if and only if domf is convex for every x, y ∈ domfand x 6= y. Then we have
f(y) > f(x) +∇f(x)T (y − x).
Theorem 2.2. Let f be a twice differentiable function on its convex domain domf . Then f is called convex
if and only if the hessian of the function should be positive semi definite: ∇2f(x) ≥ 0 for allx ∈ domf .
However, if ∇2f(x) > 0 for all x ∈ domf , then f will be strictly convex.
Basic Properties of convex functions
· f is called strictly convex if the strict inequality holds and x 6= y.
· if f is concave then −f will be convex.
· if f is convex then its epigraph epi f is also a convex set.
· If f is a convex function over a convex set S, then the local minimum will be the global minimum.
Convex Optimization
The optimization problem of the form

minf(x) (2.1)

subject to
fi(x) ≤ 0, i = 1, 2, ...,m, (2.2)

gj(x) = 0, j = 1, 2, 3, ..., n, x ∈ S, (2.3)

is called convex optimization problem if inequality constraints are convex and equality constraints are affine
where S is a convex set. The optimization problem will be non-convex if one of the conditions is violated.
Convex optimization problems have three important properties that make them fundamentally more powerful
than any generic non-convex optimization problems.
· Local optimum is necessarily a global optimum;
· Detection of exact infeasibility ;
· Very large problems can be handled by efficient numerical solution methods.
Theorem 2.3. (Local optima implies global optima)Let Q be a convex optimization problem and let x∗ ∈ S
be a point such that f(x∗) ≤ f(y) for all feasible y with ||x∗ − y|| ≤ ρ. Then f(x∗) ≤ f(y) for all feasible y.
proof: The proof is by contradiction. Assume that there is some feasible t such that f(t) < f(x∗). Then
take y = αx∗ + (1− α)t for α ∈ (0, 1) close to 1. We claim this point is feasible. The affine constraints are
satisfied due to linearity, since both x∗and t are feasible. As for the inequality constraints, by convexity we
get
gi(αx

∗ + (1− α)t) ≤ αgi(x∗) + (1− α)gi(t) ≤ 0.
Hence y is feasible. However, the objective value is strictly smaller than f(x∗), since
f(αx∗ + (1− α)t) ≤ αf(x∗) + (1− α)f(t) < f(x∗).
For α close to one, we will get ||x∗ − y|| ≤ ρ, which is a contradiction.
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3 Multi-objective convex geometric programming problem (MOCGPP)
Optimization of multiple objective functions subject to given constraints is known as multi-objective
optimization. In this process a solution which is optimal with respect to one objective function may not
be same for remaining objectives. As a result, we can not find only one global optimal solution. Therefore
optimizing a problem means, find a solution such that it should acceptable to all the decision makers. A
multi-objective geometric problem will be convex if all objective functions as well as constraints are convex.
It can be defined mathematically as follows:

To determine x = (x1, x2, ..., xn)T in order to

min : fk(x) =

αk∑

i=1

βk0i

n∏

j=1

x
ck0ij
j , k = 1, 2, ..., p. (3.1)

Subject to

gt(x) =

αt∑

i=1

βit

n∏

j=1

x
citj
j ≤ 1, t = 1, 2, ...,m, (3.2)

xj > 0, j = 1, 2, ..., n, (3.3)

where all objective functions and constraints are convex and
βk0i ≥ 0 ∀ k and i,
βit ≥ 0 ∀ i and t,
ck0tj and citj are real numbers ∀ i, j, k, t,
αk = no. of terms in the kth objective function fk(x),
αt= no. of terms in the tth constraint.

4 The ε-constraintmethod
This method was developed first by Haimes et al.[10] for generating pareto optimal solutions for the multi-
objective optimization problems. In this method at a time, only one of the objective functions solved
expressing other objective functions as constraints. This method can be stated as:

min : f l0(x), where l ∈ {1, 2, ..., k}, (4.1)

subject to
fp0 (x) ≤ εp, p = 1, 2, ..., k, p 6= l, (4.2)

gi(x) ≤ 1, i = 1, 2, ...,m. (4.3)

We define
Lp ≤ εp ≤ Up, p = 1, 2, ..., k, p 6= l.

where
Lp = min

∀x∈X
fp0 (x), p = 1, 2, ..., k.

and
Up = max

∀x∈X
fp0 (x), p = 1, 2, ..., k,

x ∈ X, X being the feasible region .

Compromise solutions of the problems can be generated considering the values of εp in the interval
[Lp, Up] for p = 1, 2, ..., k.

5 Test of convergence of solutions by ε-constraint method
Sometimes, it is necessary to check the convergence of optimal solutions in multi-objective problems.
Regarding this, Ojha and Biswal[13] in their recent paper have shown how the pareto solutions converges
using ε-constraint method. Below given steps are some of the notes representing converges of the solutions.

Step 1. Determine the bounds of the objectives (f
(l)
0 (x), l = 1, 2, ..., k) using ideal points X(1), X(2), ..., X(k)

as obtained by geometric programming technique. Let Ll and Ul are the least and best values of f
(l)
0 i.e

Ll ≤ f (l)
0 (x) ≤ Ul, l = 1, 2, ..., k.

Step 2.Consider εl be a point in the interval [Ll, Ul] such that Ll ≤ εl ≤ Ul, l = 1, 2, ...., k.
Step 3. If we assign different values to εl in the interval [Ll, Ul], it will initiate a set of pareto optimal
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solution.
Step 4. Weigh the differences between the pareto solutions with the solution obtained by fuzzy method.
Step 5. If the solution obtained in step 3 is same as that obtained in step 4, then stop and accept the
solution of the problem.

6 Numerical example
Let’s consider and solve the following example on the basis of our above discussion.
Example 6.1.

Find x1, x2 and x3 to
min f1(x) = 2x−1

1 x−1
2 + 20x2 + 12x−1

3 , (6.1)

min f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , (6.2)

subject to

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.3)

where x1, x2, x3 ≥ 0. (6.4)

Verification of convexity of objective functions
It can be shown that a function f(x1, x2, ....xn) is a convex function if and only if the matrix of second

order derivatives or Hessian matrix is positive semi-definite and principal minor determinants of this matrix
are all non negative.

for example, if H(x) = [ ∂2f
∂xi .∂xj

] =



a11 a12 a13

a21 a22 a23

a31 a32 a33


, where i=1, 2, 3 and j=1, 2, 3

Let us verify the convexity of 1st objective function f1(x) = 2x−1
1 x−1

2 + 20x2 + 12x−1
3

As per the definition, Hessian matrix for the given problem will be

H(x) =




4x−3
1 x−1

2 2x−2
1 x−2

2 0
2x−2

1 x−2
2 4x−1

1 x−3
2 0

0 0 24x−3
3


 .

Corresponding to the above hessian matrix, the determinant of the principal minors D1 = 4x−3
1 x−1

2 , D2 =
12x−4

1 x−4
2 and D3 = 288x−4

1 x−4
2 x−3

3 are positive for the design variables x1, x2 and x3. So it is a convex
function.

Similarly for the 2nd objective function f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , hessian matrix will be

H(x) =




8x−3
1 x−1

2 x−1
3 4x−2

1 x−2
2 x−1

3 4x−2
1 x−1

2 x−2
3

4x−2
1 x−2

2 x−1
3 84x−1

1 x−3
2 x−1

3 + 40 4x−1
1 x−2

2 x−2
3

4x−2
1 x−1

2 x−2
3 4x−1

1 x−2
2 x−2

3 8x−1
1 x−1

2 x−3
3 + 20x3


 .

Corresponding to the above hessian matrix, the determinant of the principal minors D1 =
8x−3

1 x−1
2 x−1

3 , D2 = 64x−4
1 x−4

2 x−2
3 + 320x−3

1 x−1
2 x−1

3 − 16x−4
1 x−4

2 x−2
3 and D3 = 2564x−5

1 x−5
2 x−5

3 +
19208x−4

1 x−2
2 x−4

3 + 6400x−3
1 x−1

2 x−4
3 − 192x−4

1 x−4
2 x−5

3 are positive for the design variables x1, x2 and x3. So
it is a convex function.

For the given constraint 2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, the hessian matrix will be

H(x) =




4x
−1/2
2 −2x1x

−3/2
2 0

−2x1x
−3/2
2 3/2x2

1x
−5/2
2 + 4x−3

2 x2
3 −4x−2

2 x3

0 −4x−2
2 x3 4x−1

2


 .

Now this hessian matrix can be checked for convexity of constraints. We found it is also convex function.
Therefore the given optimization problem is a convex optimization problem.

Here we have divided this problem into two sub problems as primal(i) and primal(ii)in order to find its
optimal solutions.
Primal (i) Corresponding dual and their solutions
Primal(i).
Find x1, x2 and x3 to

min f1(x) = 2x−1
1 x−1

2 + 20x2 + 12x−1
3 , (6.5)
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subject to

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.6)

where x1, x2, x3 ≥ 0. (6.7)

Dual:
The Dual of the above primal will be as follows:

max
t

: V (t) =

(
2

t01

)t01 ( 20

t02

)t02 ( 12

t03

)t03 ( 2

t11

)t11 ( 2

t12

)t12
(t11 + t12)

(t11+t12)
. (6.8)

Subject to

t01 + t02 + t03 = 1,

−t01 + 2t11 = 0,

−t01 + t02 −
1

2
t11 − t12 = 0,

−t03 + 2t12 = 0,

t01, t02, t03, t11, t12 ≥ 0,

Solution of primal(i) is f1(x) = 45.10214 for x1 = 0.3390946, x2 = 0.9131737 and x3 = 0.5888183 where
as its corresponding dual is f∗1 = 45.10214 for t01 = 0.1432052, t02 = 0.4049359, t03 = 0.4518589, ‘t11 =
0.0716025, t12 = 0.2259295.
Primal(ii) Corresponding dual and their solutions
Primal(ii).
Find x1, x2 and x3 to minimize,

min f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , (6.9)

subject to

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.10)

where x1, x2, x3 ≥ 0. (6.11)

Dual.

max
t

: V (t) =

(
4

t01

)t01 ( 20

t02

)t02 ( 10

t03

)t03 ( 2

t11

)t11 ( 2

t12

)t12
(t11 + t12)

(t11+t12)
. (6.12)

Subject to

t01 + t02 + t03 = 1,

−t01 + 2t11 = 0,

−t01 + 2t02 −
1

2
t11 − t12 = 0,

−t01 − t03 + 2t12 = 0,

t01, t02, t03, t11, t12 ≥ 0.

Solution of primal f2(x) = 54.28115 for x1 = 0.40671, x2 = 0.9880575 and x3 = 0.5741136 where as its
dual will be f∗2 = 54.28115 for t01 = 0.3194082, t02 = 0.3597041, t03 = 0.3208877, t11 = 0.1597041, t12 =
0.3201480.

Replacing the value of f1 in f2 and f2 in f1, we find both lower and upper bound of the functions:
L1 = 45.10214 ≤ f1 ≤ 45.63988 = U1,

and L2 = 54.28115 ≤ f2 ≤ 55.64130 = U2.
Defining ε1 and ε2 based on the values of f1 and f2, we have

45.10214 ≤ ε1 ≤ 45.63988 and 54.28115 ≤ ε2 ≤ 55.64130 .
We can observe, as the value of ε1 and ε2 changes within their range, the value of objective functions f1 and
f2 also changes and are converging towards their suitable compromise values.
Primal(i) and its solution by ε-constraint method
Find x1, x2 and x3 to

min f1(x) = 2x−1
1 x−1

2 + 20x2 + 12x−1
3 , (6.13)
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subject to
4x−1

1 x−1
2 x−1

3 + 20x2
2 + 10x−1

3 ≤ ε2, (6.14)

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.15)

where x1, x2, x3 > 0. (6.16)

Different values of the Primal(i) will be obtained by changing ε2 between 54.28115 to 55.63988 given in
Table 6.1.

Table 6.1: (Optimal solution of Primal(i))

ε2 x1 x2 x3 primalf1

54.3 0.3968714 0.9834149 0.5792341 45.50971
54.5 0.3744542 0.9677492 0.5881633 45.27651
54.7 0.3634936 0.9560997 0.5906395 45.19375
54.9 0.3557495 0.9455062 0.5913476 45.14871
55.1 0.3497639 0.9355950 0.5911580 45.12281
55.3 0.3449175 0.9262459 0.5904456 45.10875
55.5 0.3408725 0.9173958 0.5894118 45.10279
55.6 0.3390946 0.9131737 0.5888183 45.10214

Dual
The Dual of the above primal will be:

max
t

: V (t) =

(
1

t01

)t01 ( 1

4t02

)t02 ( 3

4t11

)t11 ( 3

8t12

)t12
(t11 + t12)

(t11+t12)

(
2

ε2t21

)t21 ( 2

ε2t22

)t22
(t21 + t22)

(t21+t22)
, (6.17)

subject to

t01 + t02 = 1,

−2t01 + 2t11 − t21 + t22 = 0,

2t02 − 2t11 + t12 − t21 + t22 = 0,

−t02 + 2t12 − t21 = 0,

t01, t02, t11, t12, t21, t22 ≥ 0.

(6.18)

As the value of ε2 will change between 54.28115 to 55.64130, the changes occur in the dual value is given
in the Table 6.2.

Table 6.2: (Dual Solution)

ε2 t01 t02 t03 t11 t12 t13 t21 t22 Dualf1

54.3 0.1126002 0.432175 0.455221 1.23822 1.35357 1.208159 0.675410 1.45080 45.50971
54.5 0.1218983 0.427481 0.450619 0.240704 0.240232 0.218063 0.181301 0.454694 45.27651
54.7 0.1273361 0.423111 0.449552 0.127157 0.119299 0.110479 0.127246 0.343594 45.19375
54.9 0.1316970 0.418840 0.449462 0.075176 0.668398 0.063216 0.103437 0.293928 45.14871
55.1 0.1354475 0.414688 0.449864 0.043940 0.037172 0.035917 0.089675 0.264842 45.12281
55.3 0.1387802 0.410672 0.450547 0.022454 0.018169 0.0017934 0.080617 0.245468 45.10875
55.5 0.1418002 0.406802 0.451397 0.006534 0.005608 0.0005108 0.074167 0.231528 45.10279
55.6 0.1432051 0.404935 0.451859 0.22940×

10−7
0.17625×
10−7

0.18190×
10−7

0.071600 0.225929 45.10214

From table 6.2, we found the optimal value of dual, that is 45.10214 for t01 = 0.143051, t02 =
0.4049359, t03 = 0.4518591, t11 = 0.22940 × 10−7, t12 = 0.17625 × 10−7, t13 = 0.18190 × 10−7, t21 =
0.071600, t22 = 0.225929
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Primal(ii) and its solution by ε-constraint method
Find x1, x2 and x3 to

min f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , (6.19)

subject to
2x−1

1 x−1
2 + 20x2 + 12x−1

3 ≤, ε1 (6.20)

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.21)

where x1, x2, x3 ≥ 0. (6.22)

Solutions of the Primal(ii) obtained by changing the values of ε1 between 45.10214 to 45.63988 given in Table
6.3.

Table 6.3: (Optimal solution of Primal(ii))

ε1 x1 x2 x3 primalf2

45.11 0.345469 0.927377 0.590554 55.2752
45.3 0.377145 0.970123 0.587336 54.46271
45.5 0.396079 0.982994 0.579618 54.30320
45.6 0.403834 0.986803 0.575673 54.28274
45.61 0.404565 0.987130 0.575281 54.28203
45.63 0.406007 0.987758 0.574499 54.28125
45.639 0.406647 0.988031 0.574148 54.28115

Dual
The Dual of the above Primal will be

max
t

: V (t) =

(
1

t01

)t01 ( 1

4t02

)t02 ( 3

4t11

)t11 ( 3

8t12

)t12
(t11 + t12)

(t11+t12)

(
2

ε2t21

)t21 ( 2

ε2t22

)t22
(t21 + t22)

(t21+t22)
. (6.23)

Subject to

t01 + t02 = 1

−2t01 + 2t11 − t21 + t22 = 0,

2t02 − 2t11 + t12 − t21 + t22 = 0,

−t02 + 2t12 − t21 = 0,

t01, t02, t11, t12, t21, t22 ≥ 0.

(6.24)

As the value of ε1 will change between 45.10214 to 45.63988,the changes occur in dual value is given in Table
6.4.

Table 6.4: (Dual Solution)

ε1 t01 t02 t03 t11 t12 t13 t21 t22 Dualf2

45.11 0.327074 0.350879 0.322046 0.0075578 0.028352 0.031227 0.167315 0.340174 54.29273
45.3 0.322068 0.356626 0.321305 0.0025116 0.0097014 0.010488 0.162289 0.326931 54.28255
45.5 0.319408 0.359704 0.320887 0.116862×

10−7
0.453369×
10−7

0.487989×
10−7

0.159704 0.320148 54.28115

45.6 0.319408 0.359704 0.320887 0.116030×
10−7

0.453361×
10−7

0.491941×
10−7

0.159704 0.320148 54.28115

From table 6.4, it can be found that the optimal value of the dual is 54.28115 for t01 = 0.319408, t02 =
0.359704, t03 = 0.320887, t11 = 0.116030 × 10−7, t12 = 0.453361 × 10−7, t13 = 0.491941 × 10−7, t21 =
0.159704, t22 = 0.320148
Solution by fuzzy method
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Case-1.Solution of f1

The crisp model of f1 using fuzzy method can be stated as:
max : θ
subject to

2x−1
1 x−1

2 + 20x2 + 12x−1
3 + (45.63988− 45.10214)θ ≤ 45.63988,

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1,

θ > 0, xi > 0 for i = 1, 2, 3. (6.25)

The optimal value of f1 = 45.10214 for θ = 1.00008, x1 = 0.3390946, x2 = 0.9131737, x3 = 0.5888183.

Case-2.Solution of f2

The crisp model of f2 using fuzzy method is defined as follows:
max : θ
s.to

4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 + (55.64130− 54.28115)θ ≤ 55.64130,

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1,

θ > 0, xi > 0 for i = 1, 2, 3. (6.26)

The optimal value of f2 = 54.28115 for θ = 1.0000, x1 = 0.4067100, x2 = 0.9880575 and x3 = 0.5741136.

Result Analysis
Usually, the geometric programming problems are non-convex in nature. In this paper, the problem taken
for our research purposes is a convex problem. The main aim of taking convex problem is that global minima
of a problem will be global optima if the considered test problem is convex.
The above work out shows how the solutions converging to f1 = 45.10214 for x1 = 0.3390946, x2 = 0.9131737,
x3 = 0.588183 and f2 = 54.281159 for x1 = 0.4067100, x2 = 0.9880575, x3 = 0.5741136 by obtained by
ε-constraint method which is exactly same as obtained by fuzzy method. However, the decision makers have
multiple choices in ε-constraint method But there is only one choice in fuzzy method.

7 Conclusion
It is very interesting to search a suitable solution for the multi-objective problems. But only one difficulty
arises because of conflicting of objectives. Due to non-convexity nature,sometimes it is difficult to find a
best compromise solutions for multi-objective problems. Here we are not interested to explain whether a
generic multi-objective optimization problem is efficiently solvable or not. However, we are interested,how
to solve the problem efficiently. As far as the solutions of the problem is concerned, there exists optimization
problems in which both objective and the constraints are convex. Under the given conditions a convex
optimization problem can be solve up to to a given accuracy. In contrast, a non-convex problems is difficult
to solve. The computational effort required to solve such problems by the best known numerical methods
grows fast with the dimensions of the problems and therefore it is difficult to study an intrinsic nature of
non-convex problems. Because of this, we have considered a multi-objective convex geometric problem to
study its behaviour in order to find best compromise solutions.
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