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Abstract

In this article, we obtain hypergeometric forms (not available in the literature) of some composite
functions like:

(1− y2)
d
2 exp(d tanh−1 y), (1 + x2)

g
2 cos(g tan−1 x), (1 + x2)

g
2 sin(g tan−1 x),

(1 + x2)
ik
2 cosh(k tan−1 x), (1 + x2)

ik
2 sinh(k tan−1 x), (1− y2)

g
2 cosh(g tanh−1 y),

(1− y2)
g
2 sinh(g tanh−1 y), (1− y2)

ik
2 cos(k tanh−1 y), (1− y2)

ik
2 sin(k tanh−1 y),

by using Leibniz theorem for successive differentiation and Maclaurin’s series expansion. Some
applications are also discussed.
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1 Introduction and Preliminaries
In this paper, we shall use the following standard notations:
N : = {1, 2, 3, · · · } ;N0 := N

⋃ {0} ; and Z−0 := Z−
⋃ {0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real numbers, natural numbers,
integers, positive and negative real numbers respectively.

The Pochhammer symbol (α)p(α, p ∈ C) is defined by ([15, p.22 Eq.(1), p.32, Q.N.(8) and Q.N.(9)],see
also [17, p.23, Eq.(22) and Eq.(23)]).

A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is accomplished by
introducing any arbitrary number of numerator and denominator parameters [17, p.42, Eq.(1)].

Relations between hyperbolic and trigonometric functions are:

cos(iθ) = cosh(θ), sin(iθ) = i sinh(θ), (1.1)

tan−1(ix) = i tanh−1(x). (1.2)

The Maclaurin’s series is a particular case of Taylor’s series expansion of a function about the origin, the
Maclaurin series is given as:

y(x) = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + · · ·

=

∞∑

n=0

xn

n!
(yn)0 (1.3)

=

∞∑

n=0

x2n

(2n)!
(y2n)0 +

∞∑

n=0

x2n+1

(2n+ 1)!
(y2n+1)0, (1.4)

where, (ym)0 =
(
dmy
dxm

)
x=0

.
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The general Leibniz rule, named after Gottfried Wilhelm Leibniz, generalizes the product rule (which is
also known as ”Leibniz’s rule”), which states that if U(x) and T (x) are n-times differentiable functions, then
the product U(x).T (x) is also n-times differentiable and its nth derivative is given by:

Dn[U(x) T (x)] = (nC0)(Dn U)(D0 T ) + (nC1)(Dn−1 U)(D1 T ) + (nC2)(Dn−2 U)(D2 T ) + · · ·+
+(nCn−1)(D1 U)(Dn−1 T ) + (nCn)(D0 U)(Dn T ), (1.5)

=

n∑

r=0

nCr(D
rT )(Dn−rU), (1.6)

=

n∑

r=0

nCr(D
n−rT )(DrU), (1.7)

where D = d
dx .

Euler’s formula is
exp(iθ) = cos(θ) + i sin(θ). (1.8)

The present article is organized as follows. In section 3 we have given the proof of presented composite
function. In section 4 we have discussed some applications using the relations between inverse trigonometric
and inverse hyperbolic functions. The proof of the presented function is not available in the literature[1, 2,
3, 4, 6, 7, 9, 10, 5, 8] see also [11, 13, 12, 14, 16]. So we are interested to give the proof of hypergeometric
form using Maclaurin series.

2 Hypergeometric Form of Composite Function
When the values of numerator, denominator parameters and arguments leading to the results which do not
make sense are tacitly excluded, then the following hypergeometric form holds true:

(1 + x2)
ib
2 exp(b tan−1 x) = 2F1



− ib2 , −ib+1

2 ;
−x2

1
2 ;


+ bx2F1




1−ib
2 , 2−ib

2 ;
−x2

3
2 ;


 . (2.1)

Note:In above hypergeometric function x and b can be purely real or purely imaginary or complex
numbers.

3 Independent Proof of Hypergeometric Form
Proofof(2.1).

Let
y = (1 + x2)

ib
2 exp(b tan−1 x). (3.1)

Put x = 0 in equation (3.1), we get
(y)0 = 1. (3.2)

Differentiate equation (3.1) w.r.t. x and put x = 0, we get

(1 + x2)y1 − (xi+ 1)yb = 0. (3.3)

(y1)0 = b = i(−ib). (3.4)

Differentiate equation (3.3) n-times w.r.t. x, and applying Leibniz theorem, we get

Dn
{

(1 + x2)y1

}
− bDn {(xi+ 1)y} = 0; n ≥ 1.

(1 + x2)yn+1 + 2nxyn + n(n− 1)yn−1 − b(xi+ 1)yn − bin(1− b)yn−1 = 0; n ≥ 1. (3.5)

Put x = 0 in equation(3.5) we get

(yn+1)0 = − [n(n− 1)− bin] (yn−1)0 + b(yn)0; n ≥ 1. (3.6)

Put n = 1, 2, 3, 4, 5, 6, 7, 8.... in equation (3.6), we get

(y2)0 = b(b+ i) = ib(1− ib), (3.7)

(y3)0 = b(b+ i)(b+ 2i) = i2b(1− ib)(2− ib), (3.8)

(y4)0 = b(b+ i)(b+ 2i)(b+ 3i) = i3b(1− ib)(2− ib)(3− ib), (3.9)
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(y5)0 = b(b+ i)(b+ 2i)(b+ 3i)(b+ 4i) = i4b(1− ib)(2− ib)(3− ib)(4− ib), (3.10)

(y6)0 = b(b+ i)(b+ 2i)(b+ 3i)(b+ 4i)(b+ 5i) = i5b(1− ib)(2− ib)(3− ib)(4− ib)(5− ib) (3.11)

(yn)0 =

n∏

k=1

{b+ (k − 1)i} , (3.12)

(yn)0 = (i)n−1b(1− ib)(2− ib)(3− ib)....(n− 1− ib), (3.13)

(yn)0 = in(−ib)n. (3.14)

We know by Maclaurin series expansion

y = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + .... (3.15)

y =

∞∑

n=0

(yn)0 x
n

n!
, (3.16)

y =

∞∑

n=0

(−ib)n(xi)n

n!
, (3.17)

y =

∞∑

n=0

(−ib)2n(xi)2n

(2n)!
+

∞∑

n=0

(−ib)2n+1(xi)2n+1

(2n+ 1)!
, (3.18)

y =

∞∑

n=0

(
− ib2

)
n

(
− ib+1

2

)
n

(−x2)n(
1
2

)
n
n!

+ bx

∞∑

n=0

(
− ib+1

2

)
n

(
− ib+2

2

)
n

(−x2)n(
3
2

)
n
n!

. (3.19)

Using definition of generalized hypergeometric function of one variable, we get the required result (2.1).

4 Applications
Suppose x ∈ R and b is purely imaginary in equation (2.1), then putting x = iy and b = −id in equation
(2.1), where y is purely imaginary and d is purely real, we get

(1− y2)
d
2 exp(d tanh−1 y) = 2F1



−d2 , 1−d

2 ;
y2

1
2 ;


+ dy 2F1




1−d
2 , 2−d

2 ;
y2

3
2 ;


 . (4.1)

Putting b = −ig in the equation (2.1), where g is purely real, we get

(1 + x2)
g
2 exp(−ig tan−1 x) = 2F1



− g2 ,

−g+1
2 ;

−x2

1
2 ;


− igx2F1




1−g
2 , 2−g

2 ;
−x2

3
2 ;


 . (4.2)

Applying Euler’s formula on left hand side of equation (4.2), then on equating real and imaginary parts,
we get

(1 + x2)
g
2 cos(g tan−1 x) = 2F1



− g2 ,

−g+1
2 ;

−x2

1
2 ;


 , (4.3)

(1 + x2)
g
2 sin(g tan−1 x) = gx 2F1




1−g
2 , 2−g

2 ;
−x2

3
2 ;


 . (4.4)

Put g = ik in equation (4.3) and (4.4), where k is purely imaginary, we get

(1 + x2)
ik
2 cosh(k tan−1 x) = 2F1



− ik2 , −ik+1

2 ;
−x2

1
2 ;


 , (4.5)

(1 + x2)
ik
2 sinh(k tan−1 x) = kx 2F1




1−ik
2 , 2−ik

2 ;
−x2

3
2 ;


 . (4.6)
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Putting x = iy in equation (4.3) and (4.4) , where y is purely imaginary, we get

(1− y2)
g
2 cosh(g tanh−1 y) = 2F1



− g2 ,

−g+1
2 ;

y2

1
2 ;


 , (4.7)

(1− y2)
g
2 sinh(g tanh−1 y) = gy 2F1




1−g
2 , 2−g

2 ;
y2

3
2 ;


 . (4.8)

Putting x = iy and g = ik in equation (4.3) and (4.4), where y and k are purely imaginary, we get

(1− y2)
ik
2 cos(k tanh−1 y) = 2F1



− ik2 , −ik+1

2 ;
y2

1
2 ;


 , (4.9)

(1− y2)
ik
2 sin(k tanh−1 y) = ky2F1




1−ik
2 , 2−ik

2 ;
y2

3
2 ;


 . (4.10)

5 Conclusion

In our present investigation, we have obtained hypergeometric forms of some composite functions using

Maclaurin’s series expansion and Leibniz theorem. We conclude our present investigation by observing that

hypergeometric form of some other functions can be derived in an analogous manner. More over the results

derived are significant. These are expected to find some potential applications in the fields of Applied

Mathematics and Engineering Sciences.
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