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Abstract

In generalizing the notion of pseudo complemented lattice, Varlet [8] introduced the notion of 0-distributive
lattices. In this paper, we prove that the class of 0-distributive lattices is not an equational class, but it is an equational
class-like in the sense that while an equational class is closed under the operations of subalgebras, direct products and
homomorphic images, the class of 0-distributive lattices is closed under the first two operations and as far as the third
one is concerned, the homomorphism should be a monomorphism. We also prove that if CS (L) is 0-semimodular
then so is L.
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1. Introduction
An equational class of universal algebras is class of universal algebras which satisfies a set of identities. Equivalently,
an equational class of universal algebras is a family of universal algebras which is closed under the operations of taking
subalgebras, homomorphic images and direct product of members.

The following result is appeared in [2].

Theorem 1.1. Let K be a class of lattices. A Class K of lattices is equational class or a variety iff K is closed under
the formation of homomorphic images, sublattices and direct products.

In the variety of lattices, the classes of modular lattices and distributive lattices are equational, while complete
lattices and complemented lattices are not.

The concept of 0-distributive lattices was first introduced by Verlet [8]. Several authors have made contributions
in different aspects of 0-distributive lattices. For example, one can refer to Subbarayan and Vethamanickam [7] and
Balasubramani and Venkatanarasimhan [1], etc.

2. Class of 0-distributive lattices
In this section, we examine whether the class of 0-distributive is equational. We prove that it is closed under sublattices,
direct products but a homomorphic image of a 0-distributive lattice is 0-distributive, only if the homomorphism is a
monomorphism. For all undefined terms we refer to [3].

Definition 2.1. A lattice L with 0 is said to be 0-distributive if a ∧ b = 0 and a ∧ c = 0 imply a ∧ (b ∨ c) = 0, for any
a, b, c in L.

Lemma 2.1. A sublattice of a 0-distributive lattice is 0-distributive.

Proof. Since x∧ y = 0, x∧ z = 0 in the sublattice imply x∧ (y∨ z) = 0 in the sublattice, the sublattice is 0-distributive.

Lemma 2.2. A product of 0-distributive lattices is 0-distributive.

Proof. If {Li/i ∈ I} is family of 0-distributive lattices and if X = xi/i ∈ I,Y = yi/i ∈ I and Z = zi/i ∈ I are any three
elements of πi∈I Li, then X ∧ Y = 0 and X ∧ Z = 0 in πi∈I Li imply that xi ∧ yi = 0 and xi ∧ zi = 0 for all i ∈ I imply that
xi ∧ (yi ∨ zi) = 0 for all i ∈ I, which implies that X ∧ (Y ∨ Z) = 0 in {Li/i ∈ I}
Lemma 2.3. Homomorphic image of a 0-distributive lattice is 0-distributive, only if the homomorphism is one-one.
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Proof. Since, if L is a 0-distributive lattice and L1 its homomorphic image, then let f : L → L1 be an one-one, onto
homomorphism and let x1, y1, z1 ∈ L1 such that x1 ∧ y1 = 0, x1 ∧ z1 = 0 then there exists x, y, z ∈ L such that
f (x) = x1, f (y) = y1, f (z) = z1.
Therefore, f (x) ∧ f (y) = 0 and f (x) ∧ f (z) = 0.
Hence f (x ∧ y) = f (x ∧ z) = 0.
Therefore, f (x ∧ y) = f (0) and f (x ∧ z) = f (0) which implies that x ∧ y = 0 and x ∧ z = 0 ∈ L, as f is one-one.
So, x ∧ (y ∨ z) = 0 in L, as L is 0-distributive.
Hence f [x ∧ (y ∨ z)] = f (0).
That is, f (x) ∧ [ f (y) ∨ f (z)] = f (0) = 0.
Hence x1 ∧ (y1 ∨ z1) = 0.
So, L1 is 0-distributive.

Theorem 2.1. A Class of 0-distributive lattices is closed under the operations of taking sublattices, direct products
and monomorphic images.

Proof. It follows from Lemmas 2.1, 2.2 and 2.3.

3. Class of CS(L)
In the theory of lattice of convex sublattices, another approach was developed by Lavanya and Bhatta in their paper [4].
They define a new partial ordering relation on CS (L). They proved that both L and CS (L) are in the same equational
class with respect to this new partial ordering.They have shown that L and CS (L) satisfy the same identities with
respect to this new partial ordering. This motivated us to look into the connection between L and CS (L) for Eulerian
lattices which are a class of lattices not defined by identities.

This new partial ordering was made of use by Ramanamurty [5]. He proved that for a lattice L, CS (L) is
semimodular then so is L.

The results of Lavanya and Bhatta [4] motivated us to work with the new partial ordering. In this section, we show
by a counter example that with respect to this partial ordering relation CS (L) need not be Eulerian, for an Euelrian
lattice L and prove that if CS (L) is 0-semimodular then so is L. The next definition appeared in [4].

Definition 3.1. The binary relation ≤ on CS (L), defined by, for A, B in CS (L), A ≤ B if and only if ”for every a ∈ A
there exists a b ∈ B such that a ≤ b and for every b ∈ B there exists an a ∈ A such that b ≥ a”.

We provide the basic definitions and examples of Eulerian lattices that are needed to study of CS (L), if L is
Eulerian.

Definition 3.2. Let P be a finite poset with a unique minimum and a unique maximum element. The poset P is said to
be graded if all the maximal chains in P have the same length.

Definition 3.3. A function r : P→ {0, 1, ..., n} is said to be the rank function on P if r(x) = 0 if x is a minimal element
of P and r(y) = r(x) + 1 if y covers x in P. If r(x) = i then we say that x has rank i.

Definition 3.4. The Möbius function µ on a poset P is an integer-valued function µ : P × P → Z satisfying the
following conditions:

µ(x, y) =


1 if x = y
−∑

x≤z<y µ(x, z) if x ≤ y
0 if x ≮ y.

Definition 3.5. A finite graded poset P is said to be Eulerian if its Möbius function assumes the value µ(x, y) = (−1)l(x,y)

for all x ≤ y in P, where l(x, y) = r(y) − r(x) and r is the rank function on P.

Every Boolean algebra of rank n is Eulerian and the lattice C4 is Eulerian which is given in figure 3.1. For the
concept of Eulerian poset refer to [6, 7, 9].
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Every Boolean algebra of rank n is Eulerian and the lattice C4 is Eulerian
which is given in figure 1. For the concept of Eulerian poset refer to [6],[7],[9].
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Figure 1

Now, we show that CS(L) need not be Eulerian even though L is Eulerian by
the following counter-example. The lattice C4 given in figure 1 is an Eulerian
lattice. Its lattice of convex sublattices (CS(C4), ≤) is given in figure 2.
Here, CS(C4) need not be Eulerian. It contains a 3-element interval [a, b]
whose Möbius function is −1 ̸= (−1)ρ(b)−ρ(a).

The following two lemmas were proved by P.V.Ramanamurty in his paper
[5].

Lemma 3.1 If a, b ∈ L then we show that a ≺ b in L if and only if (a] ≺ (b]
in CS(L).

Lemma 3.2 If a is atom of L if and only if (a] is an atom of CS(L).

Definition 3.6 If L is said to be 0-semimodular if whenever a is an atom
of L and x ∈ L such that a ∧ x = 0 then x ∨ a covers x.

Lemma 3.3 If CS(L) is 0-semimodular then so is L.

Proof If a is an atom of L and x ∈ L such that a ∧ x = 0
Then (a] is an atom of CS(L), by the Lemma 3.2
Now a ∧ x = 0 implies that (a] ∧ (x] = 0 in CS(L)

So, (a] ∨ (x] covers (x] in CS(L), by hypothesis.
That is, (a ∨ x] covers (x] in CS(L).
This implies that, x ≺ a ∨ x, by the Lemma 3.2

Hence the lemma.
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Figure 3.1

Now, we show that CS (L) need not be Eulerian even though L is Eulerian by the following counter-example. The
lattice C4 given in Figure 3.1 is an Eulerian lattice. Its lattice of convex sublattices (CS (C4), ≤) is given in Figure 3.2.
Here, CS (C4) need not be Eulerian. It contains a 3-element interval [a, b] whose Möbius function is −1 , (−1)ρ(b)−ρ(a).

The following two lemmas were proved by P.V.Ramanamurty in his paper [5].

Lemma 3.1. If a, b ∈ L then we show that a ≺ b in L if and only if (a] ≺ (b] in CS (L).

Lemma 3.2. If a is atom of L if and only if (a] is an atom of CS (L).

Definition 3.6. If L is said to be 0-semimodular if whenever a is an atom of L and x ∈ L such that a∧ x = 0 then x∨ a
covers x.

Figure 3.2

Lemma 3.3. If CS (L) is 0-semimodular then so is L.

Proof. If a is an atom of L and x ∈ L such that a ∧ x = 0
Then (a] is an atom of CS (L), by the Lemma 3.2.
Now a ∧ x = 0 implies that (a] ∧ (x] = 0 in CS (L).
So, (a] ∨ (x] covers (x] in CS (L), by hypothesis.
That is, (a ∨ x] covers (x] in CS (L).
This implies that, x ≺ a ∨ x, by the Lemma 3.2.
Hence the lemma.
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4. Conclusion
The class of 0-distributive lattices is not an equational. The problem of equational class of weaker class of 0-distributive
lattices, like, Pseudo-0-distributive and super-0-distributive lattices are equational is still open.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their fruitful suggestions to bring the
paper in the present form.
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