## Jñānābha, Vol. 52(2) (2022), 68-72

(Dedicated to Professor D. S. Hooda on His $80^{\text {th }}$ Birth Anniversary Celebrations)

# GEOMETRY ON KAEHLERIAN WEYL-CONFORMAL AND WEYL-CONHARMONIC RECURRENT CURVATURE MANIFOLDS Preeti Chauhan and U.S.Negi <br> Department of Mathematics, H.N.B. Garhwal University (A Central University), 

S.R.T. Campus Badshahithaul, Tehri Garhwal, Uttarakhand, India

Email: preetichauhan1011@gmail.com, usnegi7@gmail.com
(Received: August 16, 2021, In format: September 26, 2021; Revised: July 14, 2022; Accepted: August 27, 2022)
DOI: https://doi.org/10.58250/jnanabha.2022.52207


#### Abstract

Ozdemir and Yildirim (2005) has premeditated on conformally recurrent Kaehlerian weyl spaces. Also, Negi et al.(2019), has studied analytic HP-transformation in almost Kaehlerian spaces. In this paper, we have calculated geometry on Kaehlerian weyl-conformal and weyl-conharmonic recurrent curvature manifolds and some theorems are obtained. 2020 Mathematical Sciences Classification: 53C15, 53C55, 53B3 Keywords and Phrases: Kaehlerian manifolds, Weyl recurrent manifolds, Conformal and Conharmonic recurrence.


## 1. Introduction

The $n$-dimension differentiable manifold having a Riemann metric $\mathbf{g}$ with symmetric connection $\nabla$ and $U$ is a 1type field is called Weyl space $W_{n}(g, U)$ under the recalibration and transformed U gratifying the form Hlavaty[5], Calderbank and Pedersen [1]

$$
\begin{align*}
\nabla_{g} & =2(U \bigotimes g),  \tag{1.1}\\
\bar{g} & =\lambda^{2} g  \tag{1.2}\\
\bar{U} & =U+d \ln \lambda \tag{1.3}
\end{align*}
$$

where $\lambda$ is a scalar function on $W_{n}(g, U)$.
If point $\mathbf{P}$ defined on $W_{n}(g, U)$ is called a dependency of $g$ of power $\mathbf{r}$ if it discloses a revolution of the type under the recalibration (1.2) of $\mathbf{g}$ given by Canfes and Ozdeger [3]. The expanded covariant derivative of dependency $\mathbf{P}$ of tensor $g_{i j}$ power $\mathbf{r}$ is defined in Norden [8]

$$
\begin{align*}
\bar{P} & =\lambda^{r} P,  \tag{1.4}\\
\dot{\nabla} P & =\nabla_{k} P-r U_{k} P . \tag{1.5}
\end{align*}
$$

Also, putting (1.1) in confined coordinates and using (1.5), then we find

$$
\partial_{k} g_{i j}-g_{h j} \Gamma_{i k}^{h}-g_{i h} \Gamma_{j k}^{h}-2 U_{k} g_{i j}=0, \partial_{k}=\frac{\partial}{\partial^{k}}, \dot{\nabla} g_{i j}=0
$$

Here $\Gamma_{k l}^{i},\left\{\begin{array}{l}i \\ k l\end{array}\right\}$ are coefficients of Weyl and metric connection respectively defined

$$
\begin{align*}
& \Gamma_{k l}^{i}=\left\{\begin{array}{c}
i \\
k l
\end{array}\right\}-g^{i m}\left(g_{m k} U_{l}+g_{m l} U_{k}-g_{k l} U_{m}\right),  \tag{1.6}\\
& \left\{\begin{array}{l}
i \\
k l
\end{array}\right\}=\frac{1}{2} g^{i m}\left(\partial_{k} g_{m l}+\partial_{l} g_{k m}-\partial_{m} g_{k l}\right) . \tag{1.7}
\end{align*}
$$

The $n$-dimensional Kaehlerian Weyl manifolds $\left(K W_{n}\right)(n \geq 2 m)$ with an almost complex structure $F_{l}^{j}$ fulfilling the tensors $F_{i j}$ and $F^{i j}$ are of power 2 and -2, respectively Demirbuker and Ozdemir [4]

$$
\begin{align*}
F_{i}^{j} F_{j}^{k} & =-\delta_{i}^{k},  \tag{1.8}\\
g_{i j} F_{h}^{i} F_{k}^{j} & =g_{h k},  \tag{1.9}\\
\dot{\nabla} F_{i}^{j} & =0,(\text { for all } i, j, k),  \tag{1.10}\\
F_{i j} & =g_{j k} F_{i}^{k}=-F_{j i},  \tag{1.11}\\
F^{i j} & =g^{i h} F_{h}^{j}=-F^{j i}, \tag{1.12}
\end{align*}
$$

The curvature tensor $R_{i j k l}$ and $R_{j k l}^{i}$ of $W_{n}(g, U)$ are following Hlavaty [5], Ozdemir and Yildirim [10]

$$
\begin{align*}
R_{j k l}^{j} & =\frac{\partial}{\partial x} \Gamma_{j k}^{i}-\frac{\partial}{\partial x^{k}} \Gamma_{j l}^{i}+\Gamma_{h l}^{i} \Gamma_{j k}^{h}-\Gamma_{h k}^{i} \Gamma_{j l}^{h},  \tag{1.13}\\
R_{i j k l} & =g_{i h} R_{j k l}^{h}, R_{i j a}^{a}=R_{i j} \text { and } R=g^{i j} R_{i j},  \tag{1.14}\\
R_{[i j]} & =n \nabla_{[i} U_{j]},  \tag{1.15}\\
H_{i j} & =\frac{1}{2} R_{i j k l} F^{k l}, M_{i j}=g_{k i} R_{j}^{k}, R_{j}^{k}=R_{j k l}^{h} g^{k l},  \tag{1.16}\\
M_{i j} & =\left(\frac{n-2}{n}\right) R_{i j}+\frac{2}{n} R_{j i}=R_{i j}+2 n\left(R_{j i}-R_{i j}\right),  \tag{1.17}\\
H_{i j} & =-M_{h j} F_{i}^{h}=M_{i h} F_{j}^{h},  \tag{1.18}\\
H_{h i} F_{j}^{h} & =-H_{j h} F_{i}^{h}=M_{j i},  \tag{1.19}\\
H_{h i} F^{h i} & =-M_{h i} g^{h i}=-R,  \tag{1.20}\\
R_{i j k l}+R_{j i k l} & =4 \nabla_{[k} U_{l]} g_{i j},  \tag{1.21}\\
H_{i j}+H_{j i} & =0 \tag{1.22}
\end{align*}
$$

## 2. Geometry on Kaehlerian Weyl-Conformal recurrent curvature manifolds

Then-dimensional Weyl recurrent manifoldsof its curvature tensor $R_{l i j k}$ satisfies the condition

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+Q_{r}\left(g_{l j} g_{i k}-g_{l k} g_{i j}\right) \tag{2.1}
\end{equation*}
$$

where $\mathbf{P}$ and $\mathbf{Q}$ are two correspondingly non-zero 1-types of powers 0 and -2 given by Canfes [2]. Here putting $G_{l i j k}=g_{l j} g_{i k}-g_{l k} g_{i j}$, then (2.1) becomes

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+Q_{r} G_{l i j k} \tag{2.2}
\end{equation*}
$$

If the 1-type $\mathbf{Q}$ is zero, then it is Weyl recurrent manifolds given by Canfes and Ozdeger [3]
Definition 2.1. The n-dimensional $(n \geq 2 m)$ Kaehlerian Weyl recurrent manifold is called a widespread Weyl recurrent manifold if its curvature tensor $R_{l i j k}$ of power 2 fulfills the condition

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+Q_{r} G_{l i j k} \tag{2.3}
\end{equation*}
$$

where $\mathbf{P}$ and $\mathbf{Q}$ are correspondingly 1-type of powers 0 and -2.
Again, the conformal curvature tensor $C_{i j k}^{h}$ of $W_{n}(g, U)$ is given by Miron [6]

$$
\begin{equation*}
C_{i j k}^{h}=R_{i j k}^{h}+\delta_{k}^{h} L_{i j}-\delta_{j}^{h} L_{i k}+L_{k}^{h} g_{i j}-L_{j}^{h} g_{i k}-2 \delta_{i}^{h} L_{[j k]}, \tag{2.4}
\end{equation*}
$$

where:

$$
\begin{gather*}
L_{i j}=-\frac{R_{i j}}{(n-2)}+\frac{2}{n(n-2)} R_{[i j]}+\frac{R g_{i j}}{2(n-1)(n-2)}  \tag{2.5}\\
L_{k}^{h}=g^{l h} L_{l k} \tag{2.6}
\end{gather*}
$$

Considering (1.17) with (2.5) becomes

$$
\begin{equation*}
L_{i j}=-\frac{1}{n-2} M_{i j}+\frac{R_{j i}-R_{i j}}{n(n-2)}+\frac{R g_{i j}}{2(n-1)(n-2)} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{i j}=-\frac{1}{(n-2)} M_{i j}+\frac{1}{(n-4)(n-2)}\left(M_{j i}-M_{i j}\right)+\frac{1}{2(n-1)(n-2)} R g_{i j} .(2.8) \tag{2.8}
\end{equation*}
$$

Also, from (1.15), (1.17), (2.5) and (2.8), we obtain

$$
\begin{equation*}
L_{[i j]}=-\frac{1}{n} R_{[i j]}=-\nabla_{[i} U_{j]}=-\frac{1}{2(n-4)}\left(M_{i j}-M_{j i}\right) \tag{2.9}
\end{equation*}
$$

Definition 2.2. The n-dimensional $(n \geq 2 m)$ Kaehlerian Weyl recurrent manifold is called widespread conformal recurrent manifold if its conformal curvature tensor $C_{l i j k}$ of power 2 fulfills the condition

$$
\begin{equation*}
\dot{\nabla}_{r} C_{l i j k}=P_{r} C_{l i j k}+Q_{r} G_{l i j k} \tag{2.10}
\end{equation*}
$$

where $\mathbf{Q}$ are correspondingly 1-type of powers 0 and -2 and $C_{l i j k}=C_{i j k}^{h} g_{h l}$.
We can prove the following theorem relating to wide spread Kaehlerian Weyl-conformal recurrent curvature manifolds.

Theorem 2.1. A Kaehlerian Weyl recurrent manifolds $\left(K W_{n}\right)$ is widespread conformal recurrent manifold iff it is widespread recurrent.

Proof. Assume $K W_{n}$ is widespread conformal recurrent manifold. Transvecting (2.4) by $g_{h l}$ we get

$$
\begin{equation*}
C_{l i j k}=R_{l i j k}+g_{k l} L_{i j}-g_{j l} L_{i k}+g_{i j} L_{l k}-g_{i k} L_{l j}-2 g_{i l} L_{[j k]} . \tag{2.11}
\end{equation*}
$$

By taking the expanded covariant derivative of (2.11) and using (2.10), (2.11), we obtain

$$
\begin{align*}
& \dot{\nabla}_{r} R_{l i j k}+g_{k l} \dot{\nabla}_{r} L_{i j}-g_{j l} \dot{\nabla}_{r} L_{i k}+g_{i j} \dot{\nabla}_{r} L_{l k}-g_{i k} \dot{\nabla}_{r} L_{l j}-2 g_{i l} \dot{\nabla}_{r} L_{[j k]} \\
= & P_{r}\left[R_{l i j k}+g_{k l} L_{i j}-g_{j l} L_{i k}+g_{i j} L_{l k}-g_{i k} L_{l j}-2 g_{i l} L_{[j k]}\right]+Q_{r} G_{l i j k} . \tag{2.12}
\end{align*}
$$

Transvecting (2.12) by $F^{j k}$ and using (1.16), (1.17), (1.18) and (2.8), we derive

$$
\begin{align*}
& \frac{(n-3)}{(n-2)} \dot{\nabla}_{r} H_{l i}+ \frac{1}{(n-2)} \dot{\nabla}_{r} H_{i l}-\frac{1}{(n-1)(n-2)} F_{l i} \dot{\nabla}_{r} R+\frac{1}{(n-4)} g_{i l} F^{j k} \dot{\nabla}_{r} M_{j k} \\
& \quad=P_{r}\left[\frac{(n-3)}{(n-2)} H_{l i}+\frac{1}{(n-2)} H_{l i}-\frac{1}{(n-1)(n-2)} R F_{l i}+\frac{1}{(n-4)} g_{i l} F^{j k} M_{j k}\right]+\frac{1}{2} Q_{r} G_{l i j k} F^{j k} \tag{2.13}
\end{align*}
$$

Also, multiplying (2.13) by $F^{l i}$ and adopting (1.20), we obtain

$$
\begin{equation*}
\dot{\nabla}_{r} R=P_{r} R+\frac{n(1-n)}{(n-2)} Q_{r} . \tag{2.14}
\end{equation*}
$$

Again, multiplying (2.13) by $g^{i i}$ and using (1.18) establish

$$
\begin{equation*}
F^{j k}\left(\dot{\nabla}_{r} M_{j k}\right)=P_{r} F^{j k} M_{j k}+\frac{1}{2} Q_{r} G_{l i j k} F^{j k} g^{l i} \tag{2.15}
\end{equation*}
$$

Since $G_{l i j k} F^{j k} g^{l i}=0$, therefore

$$
\begin{equation*}
F^{j k} \dot{\nabla}_{r} M_{j k}=P_{r} F^{j k} M_{j k} . \tag{2.16}
\end{equation*}
$$

Applying (2.14) and (2.16) in (2.13), we get

$$
\begin{equation*}
\dot{\nabla}_{r} H_{l i}=P_{r} H_{l i}+\frac{(n-1)}{(n-2)} Q_{r} F_{l i} \tag{2.17}
\end{equation*}
$$

Multiplying (2.17) by $F_{j}^{i}$, we obtain

$$
\begin{equation*}
\dot{\nabla}_{r} M_{l j}=P_{r} M_{l j}-\frac{(n-1)}{(n-2)} Q_{r} g_{l j} . \tag{2.18}
\end{equation*}
$$

Employing (2.14) and (2.18) into (2.8), we derive

$$
\begin{equation*}
\dot{\nabla}_{r} L_{i j}=P_{r} L_{i j}+\frac{1}{2(n-2)} Q_{r} g_{i j} \tag{2.19}
\end{equation*}
$$

Using (2.19), (2.12) reduces to

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+\frac{(n-1)}{(n-2)} Q_{r} G_{l i j k} \tag{2.20}
\end{equation*}
$$

Hence, the necessary part of the theorem is proved.
Conversely, assume that $K W_{n}$ is widespread recurrent with 1-types $\mathbf{P}$ and $\mathbf{Q}$, then

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+Q_{r} G_{l i j k} \tag{2.21}
\end{equation*}
$$

Multiplying (2.21) by $F^{j k}$ and using (1.16), we get

$$
\begin{equation*}
\dot{\nabla}_{r} H_{l i}=P_{r} H_{l i}+Q_{r} F_{l i} \tag{2.22}
\end{equation*}
$$

Transvecting (2.22) by $F^{l i}$, we find

$$
\begin{equation*}
\dot{\nabla}_{r} R=P_{r} R-n Q_{r} . \tag{2.23}
\end{equation*}
$$

while for $H_{l i}=M_{l h} F i^{h}$ from (2.22), we get

$$
\begin{equation*}
\dot{\nabla}_{r} M_{l j}=P_{r} M_{l j}-Q_{r} g_{l j} \tag{2.24}
\end{equation*}
$$

Hence from (2.8), (2.22), (2.23), we obtain

$$
\begin{gather*}
\dot{\nabla}_{r} L_{i j}=P_{r} L_{i j}+\frac{1}{2(n-1)} Q_{r} g_{i j},  \tag{2.25}\\
\dot{\nabla}_{r} L_{[i j]}=P_{r} L_{[i j]} . \tag{2.26}
\end{gather*}
$$

Taking expanded covariant derivative of (2.11) and using (2.25) and (2.26), we get

$$
\begin{equation*}
\dot{\nabla}_{r} C_{l i j k}=P_{r} C_{l i j k}+\frac{(n-2)}{(n-1)} Q_{(r)} G_{l i j k}, \tag{2.27}
\end{equation*}
$$

which implies that sufficient part of the theorem is proved.

## 3. Geometry on Kaehlerian Weyl-Conharmonic recurrent curvature manifolds

The conharmonic curvature tensor $K_{l i j k}$ of $W_{n}(g, U)$ can be given by Ozen and Altay [9].

$$
\begin{equation*}
K_{l i j k}=C_{l i j k}+\frac{R}{(n-2)(n-1)} G_{l i j k}, n>2 \tag{3.1}
\end{equation*}
$$

where $C_{l i j k}$ is the conformal curvature tensor of Weyl space and $G_{l i j k}=g_{l j} g_{i k}-g_{l k} g_{i j}$.
Definition 3.1. The $n$-dimensional $(n \geq 2 m)$ Kaehlerian Weyl recurrent manifold is called widespread conharmonic recurrent manifold if its conharmonic curvature tensor $K_{l i j k}$ of power 2 fulfills the condition

$$
\begin{equation*}
\dot{\nabla}_{r} K_{l i j k}=P_{r} K_{l i j k}+Q_{r} G_{l i j k}, \tag{3.2}
\end{equation*}
$$

where $\mathbf{P}$ and $\mathbf{Q}$ are correspondingly non-zero 1-types of powers 0 and -2.
We can prove the following theorem relating to widespread Kaehlerian Weyl-conharmonic recurrent curvature manifolds.
Theorem 3.1. A Kaehlerian Weyl recurrent manifold $\left(K W_{n}\right)$ is widespread conharmonic recurrent manifold iff it is widespread recurrent.
Proof. Asume $K W_{n}$ is widespread recurrent, then

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+Q_{r} G_{l i j k} . \tag{3.3}
\end{equation*}
$$

From Theorem 2.1 and (2.27), we have

$$
\begin{equation*}
\dot{\nabla}_{r} C_{l i j k}=P_{r} C_{l i j k}+\frac{(n-2)}{(n-1)} Q_{r} G_{l i j k} . \tag{3.4}
\end{equation*}
$$

Taking expanded covariant derivative of (3.1), we find

$$
\begin{equation*}
\dot{\nabla}_{r} K_{l i j k}=\dot{\nabla}_{r} C_{l i j k}+\frac{1}{(n-1)(n-2)} G_{l i j k} \dot{\nabla}_{r} R . \tag{3.5}
\end{equation*}
$$

Using (3.4) in (3.5), we obtain

$$
\begin{equation*}
\dot{\nabla}_{r} K_{l i j k}=P_{r} C_{l i j k}+\frac{(n-2)}{(n-1)} Q_{r} G_{l i j k}+\frac{1}{(n-1)(n-2)} G_{l i j k} \dot{\nabla}_{r} R . \tag{3.6}
\end{equation*}
$$

Employing (2.23), (3.6) becomes

$$
\begin{equation*}
\dot{\nabla}_{r} K_{l i j k}=P_{r} C_{l i j k}+\frac{(n-2)}{(n-1)} Q_{r} G_{l i j k}+\frac{1}{(n-1)(n-2)} G_{l i j k}\left(P_{r} R-n Q_{r}\right) \tag{3.7}
\end{equation*}
$$

Therefore, from (3.1) we get

$$
\begin{equation*}
\dot{\nabla}_{r} K_{l i j k}=P_{r} K_{l i j k}+\frac{(n-4)}{(n-1)} Q_{r} G_{l i j k} . \tag{3.8}
\end{equation*}
$$

Hence the necessary part of the theorem is proved.
Conversely, assume that

$$
\begin{equation*}
\dot{\nabla}_{r} K_{l i j k}=P_{r} K_{l i j k}+Q_{r} G_{l i j k}, \tag{3.9}
\end{equation*}
$$

therefore (3.5) becomes

$$
\begin{equation*}
P_{r} K_{l i j k}+Q_{r} G_{l i j k}=\dot{\nabla}_{r} C_{l i j k}+\frac{1}{(n-1)(n-2)} G_{l i j k} \dot{\nabla}_{r} R . \tag{3.10}
\end{equation*}
$$

Using (3.1), we have

$$
\begin{equation*}
P_{r}\left(C_{l i j k}+\frac{R}{(n-1)(n-2)} G_{l i j k}\right)+Q_{r} G_{l i j k}=\dot{\nabla}_{r} C_{l i j k}+\frac{1}{(n-1)(n-2)} G_{l i j k} \dot{\nabla}_{r} R . \tag{3.11}
\end{equation*}
$$

Multiplying both sides of (3.11) by $F^{j k}$ and using (1.16), we get

$$
\begin{align*}
& 2 P_{r}\left[\frac{(n-3)}{(n-2)} H_{l i}+\right.\left.\frac{1}{(n-2)} H_{i l}-\frac{1}{(n-1)(n-2)} R F_{l i}\right]+ \\
&(n-4) 1 \\
& g_{i l} F^{j k} M_{j k}+P_{r} \frac{R}{(n-1)(n-2)}  \tag{3.12}\\
& G_{l i j k} F^{j k}+Q_{r} G_{l i j k} F^{j k}=2\left[\frac{(n-3)}{(n-2)} \dot{\nabla}_{r} H_{l i}\right.\left.+\frac{1}{(n-2)} \dot{\nabla}_{r} H_{i l}-\frac{1}{(n-1)(n-2)} F_{l i} \dot{\nabla}_{r} R\right] \\
&+\frac{1}{(n-4)} g_{i l} F^{j k} \dot{\nabla}_{r} M_{j k}+\frac{1}{(n-1)(n-2)} G_{l i j k} F^{j k} \dot{\nabla}_{r} R .
\end{align*}
$$

Since $G_{l i j k} F^{l i} F^{j k}=2 n$, by Transvecting (1.20) with $F^{l i}$ and using (1.20), we obtain

$$
\begin{equation*}
\dot{\nabla}_{r} R=P_{r} R-\frac{n(n-2)}{(n-4)} Q_{r},(n>4) . \tag{3.13}
\end{equation*}
$$

Hence, by using (3.2) and (3.5), we get

$$
\begin{equation*}
\dot{\nabla}_{r} C_{l i j k}=P_{r} C_{l i j k}+\frac{(n-2)^{2}}{(n-1)(n-4)} Q_{r} G_{l i j k},(n>4) . \tag{3.14}
\end{equation*}
$$

From Theorem 2.1, we obtain

$$
\begin{equation*}
\dot{\nabla}_{r} R_{l i j k}=P_{r} R_{l i j k}+\frac{(n-1)}{(n-4)} Q_{r} G_{l i j k},(n>4) \tag{3.15}
\end{equation*}
$$

the sufficient part of the Theorem 3.1 is proved.

## 4. Conclusion

We have established from above two Theorems 2.1 and 3.1, that a Kaehlerian Weyl recurrent manifolds is widespread conformal recurrent manifold and conharmonic recurrent manifold iff it is widespread recurrent respectively.
Acknowledgement. We are thankful to the Editor and reviewer for them precious recommendation to take the paper in current form.

## References

[1] D. M. J. Calderbank and H. Pedersen, Selfdual Spaces with Complex Structures, Einstein-Weyl Geometry and Geodesics. Annales de linstitut Fourier, 50(2000), 921-963.
[2] E. O. Canfes, On Generalized Recurrent Weyl Spaces and Wongs Conjecture. Differential Geometry and Dynamical Systems, 8(2006), 34-42.
[3] E. O. Canfes and A. Ozdeger, Some applications of prolonged covariant differentiation in Weyl space. Journal of Geometry, $\mathbf{6 0}$ (1997), 7-16.
[4] H. Demirbker and F. zdemir, Almost Hermitian, Almost Kaehlerian and Almost Semi-Kaehlerian Structures in Weyl Spaces. Buletinnul Sthnific Universitath Politehnica Din Timisoara Matematica-Fizica, 43(57) (1998), 1-7.
[5] V. Hlavaty, Theorie d'immersion d'une $W_{m}$ dans $W_{n}$. Ann. Soc. Polon. Math., 21(1949), 196-206.
[6] R. Miron, Mouvements confermes dans lesespaces $W_{n}$ et $N_{n}$, Tensor, N. S., 19(1968), 37-43.
[7] U.S Negi, Trishna Devi and M. S. Poonia, An analytic HP-transformation in almost Kaehlerian spaces. Aryabhatta Journal of Mathematics and informatics, 11 (1)(2019), 103-108,
[8] A. Norden, Affinely connected spaces, GRFML, Moscow, (in Russian), 1976.
[9] F. Ozen, and S. Altay, On Totally Umbilical Hypersurface with Conharmonic Curvature Tensor, Steps in Diff. Geom. Proceedings of the Colloqium, 1(2000) 243-250.
[10] F. Ozdemir andG. C. Yildirim, On conformally recurrent Kaehlerian Weyl spaces. Topology and its applications, 153(2005), 477-484.

