GEOMETRY ON KAELERIAN WEYL-CONFORMAL AND WEYL-CONHARMONIC RECURRENT CURVATURE MANIFOLDS
Preeti Chauhan and U.S. Negi
Department of Mathematics, H.N.B. Garhwal University (A Central University),
S.R.T. Campus, Badshahithaul, Tehri Garhwal, Uttarakhand, India
Email: preetichauhan1011@gmail.com, usnegi7@gmail.com
(Received: August 16, 2021, In format: September 26, 2021; Revised: July 14, 2022; Accepted: August 27, 2022)
DOI: https://doi.org/10.58250/jnanabha.2022.52207

Abstract
Ozdemir and Yildirim (2005) has premeditated on conformally recurrent Kaehlerian weyl spaces. Also, Negi et al. (2019), has studied analytic HP-transformation in almost Kaehlerian spaces. In this paper, we have calculated geometry on Kaehlerian weyl-conformal and weyl-conharmonic recurrent curvature manifolds and some theorems are obtained.

2020 Mathematical Sciences Classification: 53C15, 53C55, 53B3
Keywords and Phrases: Kaehlerian manifolds, Weyl recurrent manifolds, Conformal and Conharmonic recurrence.

1. Introduction
The n-dimension differentiable manifold having a Riemann metric \(g \) with symmetric connection \(\nabla \) and \(U \) is a 1-type field is called Weyl space \(W_n(g, U) \) under the recalibration and transformed \(U \) gratifying the form Hlavaty [5], Calderbank and Pedersen [1]

\[\nabla_g = 2(U \otimes g), \]
\[\bar{g} = \lambda^2 g, \]
\[\bar{U} = U + d \ln \lambda, \]

where \(\lambda \) is a scalar function on \(W_n(g, U) \).

If point \(P \) defined on \(W_n(g, U) \) is called a dependency of \(g \) of power \(r \) if it discloses a revolution of the type under the recalibration (1.2) of \(g \) given by Canfes and Ozdeger [3]. The expanded covariant derivative of dependency \(P \) of tensor \(g_{ij} \) power \(r \) is defined in Norden [8]

\[\bar{P} = \lambda' P, \]
\[\bar{\nabla} P = \nabla_k P - rU_k P. \]

Also, putting (1.1) in confined coordinates and using (1.5), then we find

\[\partial_k g_{ij} = g_{hj} \Gamma^k_{ih} - g_{ih} \Gamma^k_{j} - 2U_k g_{ij} = 0, \partial_k = \frac{\partial}{\partial \bar{x}^k} \bar{\nabla} g_{ij} = 0. \]

Here \(\Gamma^i_{kl}, \\{\zeta^i_{kl}\} \) are coefficients of Weyl and metric connection respectively defined

\[\Gamma^i_{kl} = \{\zeta^i_{kl}\} = \delta^{im} (g_{mk} U_l + g_{ml} U_k - g_{kl} U_m), \]
\[\{\zeta^i_{kl}\} = \frac{1}{2} \delta^{im} (\partial_k g_{ml} + \partial_l g_{km} - \partial_m g_{kl}). \]

The \(n \)-dimensional Kaehlerian Weyl manifolds \((KW_n) \) with an almost complex structure \(F^i_j \) fulfilling the tensors \(F_{ij} \) and \(F^{ij} \) are of power 2 and -2, respectively Demirbuker and Ozdemir [4]

\[F^i_j F^j_k = -\delta^i_k, \]
\[g_{ij} F^i_k F^j_k = g_{kk}, \]
\[\nabla F^i_i = 0, \text{ (for all } i, j, k), \]
\[F_{ij} = g_{jk} F^j_i = -F_{ji}, \]
\[F^{ij} = g^{ih} F^i_h = -F^{ji}. \]
The curvature tensor R_{ijkl} and R^g_{ijkl} of $W_n(g, U)$ are following Hlavaty [5], Ozdemir and Yildirim [10]

\[R^j_{ijkl} = \frac{\partial}{\partial x^k} \Gamma^j_{ik} - \frac{\partial}{\partial x^l} \Gamma^j_{li} + \Gamma^j_{ik} \Gamma^i_{lj} - \Gamma^j_{il} \Gamma^i_{kj}, \]
(1.13)

\[R_{ijkl} = g_{bh} R^b_{ijkl}, R^h_{ijkl} = R_{ijkl} \text{ and } R = g^{ij} R_{ij}, \]
(1.14)

\[R_{ij(l)} = n \nabla_i U_j, \]
(1.15)

\[H_{ij} = \frac{1}{2} R_{ijkl} F^{kl}, M_{ij} = g_{bh} \delta^i_j, R^h_{ijkl} = R_{ijkl} \delta^g_{bh}, \]
(1.16)

\[M_{ij} = \left(\frac{n-2}{n} \right) R_{ij} + \frac{2}{n} R_{ji} = R_{ij} + 2n(R_{ji} - R_{ij}), \]
(1.17)

\[H_{ij} = -M_{hi} F^h_j = M_{ji}, \]
(1.18)

\[H_{hi} F^j_i = -H_{jh} F^h_i = M_{ji}, \]
(1.19)

\[H_{hi} F^h_i = -M_{hi} F^h_i = -R, \]
(1.20)

\[R_{ijkl} + R_{ijkl} = 4 \nabla_i U_j g_{ij}, \]
(1.21)

\[H_{ij} + H_{ji} = 0. \]
(1.22)

2. Geometry on Kaehlerian Weyl-Conformal recurrent curvature manifolds

Then-dimensional Weyl recurrent manifolds of its curvature tensor R_{ij}, k satisfies the condition

\[\nabla_i R_{jk} = P_i R_{jk} + Q_i (g_{ij} g_{lk} - g_{ik} g_{lj}), \]
(2.1)

where P and Q are two correspondingly non-zero 1-types of powers 0 and -2 given by Canfes [2]. Here putting

\[G_{ik} = g_{ik} g_{lk} - g_{ik} g_{lj}, \]
then (2.1) becomes

\[\nabla_i R_{jk} = P_i R_{jk} + Q_i G_{ik}. \]
(2.2)

If the 1-type Q is zero, then it is Weyl recurrent manifolds given by Canfes and Ozdegir [3]

Definition 2.1. The n-dimensional ($n \geq 2m$) Kaehlerian Weyl recurrent manifold is called a widespread Weyl recurrent manifold if its curvature tensor R_{ij}, k of power 2 fulfills the condition

\[\nabla_i R_{jk} = P_i R_{jk} + Q_i G_{ik}, \]
(2.3)

where P and Q are correspondingly 1-type of powers 0 and -2.

Again, the conformal curvature tensor C^h_{ijkl} of $W_n(g, U)$ is given by Miron [6]

\[C^h_{ijkl} = R^h_{ijkl} + \delta^h_j L_{ij} - \delta^h_i L_{jk} + \delta^h_k g_{ij} - L^h_{ij} g_{ik} - 2 h_i L_{[ij]}, \]
(2.4)

where:

\[L_{ij} = -\frac{R_{ij}}{n(n-2)} + \frac{2}{n(n-2)} R_{ijkl} + \frac{R_{ij}}{2(n-1)(n-2)} R_{ijkl}, \]
(2.5)

\[L^h_k = g^h_k L_k. \]
(2.6)

Considering (1.17) with (2.5) becomes

\[L_{ij} = -\frac{1}{n-2} L_{ij} + \frac{R_{ij}}{n(n-2)} + \frac{R_{ijkl}}{2(n-1)(n-2)}, \]
(2.7)

and

\[L_{ij} = -\frac{1}{n-2} M_{ij} + \frac{1}{n(n-2)(n-4)} (M_{ij} - M_{ij}) + \frac{1}{2(n-1)(n-2)} R_{ijkl}. \]
(2.8)

Also, from (1.15), (1.17), (2.5) and (2.8), we obtain

\[L_{ij} = -\frac{1}{n-2} R_{ij} = -\nabla_i U_j = -\frac{1}{2(n-4)} (M_{ij} - M_{ij}). \]
(2.9)

Definition 2.2. The n-dimensional ($n \geq 2m$) Kaehlerian Weyl recurrent manifold is called widespread conformal recurrent manifold if its conformal curvature tensor C^h_{ijkl} of power 2 fulfills the condition

\[\nabla_i C^h_{ijkl} = P_i C^h_{ijkl} + Q_i G_{ijkl}. \]
(2.10)

where Q are correspondingly 1-type of powers 0 and -2 and $C_{ijkl} = C^h_{ijkl} g_{hi}$. We can prove the following theorem relating to widespread Kaehlerian Weyl-conformal recurrent curvature manifolds.

69
Theorem 2.1. A Kaehlerian Weyl recurrent manifolds \((KW_n) \) is widespread conformal recurrent manifold iff it is widespread recurrent.

Proof. Assume \(KW_n \) is widespread conformal recurrent manifold. Transvecting (2.4) by \(g_{hi} \) we get

\[
C_{ijk} = R_{ijk} + g_{ik}L_{lj} - g_{jl}L_{ki} + g_{ij}L_{lk} - g_{kl}L_{ij} - 2g_{il}L_{kj}.
\]

(2.11)

By taking the expanded covariant derivative of (2.11) and using (2.10), (2.11), we obtain

\[
\nabla_j R_{ijk} + g_{ik} \nabla_j L_{lj} - g_{jl} \nabla_i L_{ki} + g_{ij} \nabla_k L_{lk} - g_{kl} \nabla_i L_{ij} - 2g_{il} \nabla_j L_{kj} = P_r \left(R_{ijk} + g_{ik}L_{lj} - g_{jl}L_{ki} + g_{ij}L_{lk} - g_{kl}L_{ij} - 2g_{il}L_{kj} \right) + Q_r G_{ijk}.
\]

Transvecting (2.12) by \(F^{jk} \) and using (1.16), (1.17), (1.18) and (2.8), we derive

\[
\frac{(n-3)}{(n-2)} \nabla_i H_{li} + \frac{1}{(n-2)} \nabla_i H_{li} - \frac{1}{(n-1)(n-2)} F_l \nabla_i R + \frac{1}{(n-4)} g_{li} F^{jk} \nabla_j M_{jk} = P_i \left(\frac{(n-3)}{(n-2)} H_{li} + \frac{1}{(n-2)} H_{li} - \frac{1}{(n-1)(n-2)} RF_{li} + \frac{1}{(n-4)} g_{li} F^{jk} M_{jk} \right) + \frac{1}{2} Q_r G_{ijk} F^{jk}.
\]

(2.13)

Also, multiplying (2.13) by \(F^{ij} \) and adopting (1.20), we obtain

\[
\nabla_i R = P_i R + n \frac{(1-n)}{(n-2)} Q_r.
\]

(2.14)

Again, multiplying (2.13) by \(g^{ji} \) and using (1.18) establish

\[
F^{jk} \nabla_j M_{jk} = P_r F^{jk} M_{jk} + \frac{1}{2} Q_r G_{ijk} F^{jk} g^{li}.
\]

(2.15)

Since \(G_{ijk} F^{jk} g^{li} = 0 \), therefore

\[
F^{jk} \nabla_j M_{jk} = P_r F^{jk} M_{jk}.
\]

(2.16)

Applying (2.14) and (2.16) in (2.13), we get

\[
\nabla_i H_{li} = P_i H_{li} + \frac{(n-1)}{(n-2)} Q_r F_{li}.
\]

(2.17)

Multiplying (2.17) by \(F^j \), we obtain

\[
\nabla_i M_{lj} = P_i M_{lj} - \frac{(n-1)}{(n-2)} Q_r g_{lj}.
\]

(2.18)

Employing (2.14) and (2.18) into (2.8), we derive

\[
\nabla_i L_{lj} = P_i L_{lj} + \frac{1}{2(n-2)} Q_r g_{lj}.
\]

(2.19)

Using (2.19), (2.12) reduces to

\[
\nabla_i R_{ijk} = P_i R_{ijk} + \frac{(n-1)}{(n-2)} Q_r G_{ijk}.
\]

(2.20)

Hence, the necessary part of the theorem is proved.

Conversely, assume that \(KW_n \) is widespread recurrent with 1-types \(P \) and \(Q \), then

\[
\nabla_i R_{ijk} = P_i R_{ijk} + Q_r G_{ijk}.
\]

(2.21)

Multiplying (2.21) by \(F^{jk} \) and using (1.16), we get

\[
\nabla_i H_{li} = P_i H_{li} + Q_r F_{li}.
\]

(2.22)

Transvecting (2.22) by \(F^{li} \), we find

\[
\nabla_i R = P_i R - n Q_r.
\]

(2.23)

while for \(H_{li} = M_{li} F^{li} \) from (2.22), we get

\[
\nabla_i M_{lj} = P_i M_{lj} - Q_r g_{lj}.
\]

(2.24)

Hence from (2.8), (2.22), (2.23), we obtain

\[
\nabla_i L_{lj} = P_i L_{lj} + \frac{1}{2(n-1)} Q_r g_{lj},
\]

(2.25)

\[
\nabla_i L_{lji} = P_i L_{lji}.
\]

(2.26)

Taking expanded covariant derivative of (2.11) and using (2.25) and (2.26), we get

\[
\nabla_i C_{ijk} = P_i C_{ijk} + \frac{(n-2)}{(n-1)} Q_r G_{ijk},
\]

(2.27)

which implies that sufficient part of the theorem is proved.
3. Geometry on Kaehlerian Weyl-Conharmonic recurrent curvature manifolds

The conharmonic curvature tensor K_{ljik} of $W_{n}(g, U)$ can be given by Ozen and Altay [9].

$$K_{ljik} = C_{ljik} + \frac{R}{(n - 1)(n - 2)} G_{ljik}, n > 2,$$ \hspace{1cm} (3.1)

where C_{ljik} is the conformal curvature tensor of Weyl space and $G_{ljik} = g_{ljik} - g_{li} g_{kj} g_{ij}$.

Definition 3.1. The n-dimensional ($n \geq 2m$) Kaehlerian Weyl recurrent manifold is called widespread conharmonic recurrent manifold if its conharmonic curvature tensor K_{ljik} of power 2 fulfills the condition

$$\nabla_{r} K_{ljik} = P_{r} K_{ljik} + Q_{r} G_{ljik},$$ \hspace{1cm} (3.2)

where P and Q are correspondingly non-zero 1-types of powers 0 and -2.

We can prove the following theorem relating to widespread Kaehlerian Weyl-conharmonic recurrent curvature manifolds.

Theorem 3.1. A Kaehlerian Weyl recurrent manifold (KW_{n}) is widespread conharmonic recurrent manifold iff it is widespread recurrent.

Proof. Asume KW_{n} is widespread recurrent, then

$$\nabla_{r} R_{ljik} = P_{r} R_{ljik} + Q_{r} G_{ljik}.$$ \hspace{1cm} (3.3)

From Theorem 2.1 and (2.27), we have

$$\nabla_{r} C_{ljik} = P_{r} C_{ljik} + \frac{(n - 2)}{(n - 1)} Q_{r} G_{ljik}.$$ \hspace{1cm} (3.4)

Taking expanded covariant derivative of (3.1), we find

$$\nabla_{r} K_{ljik} = \nabla_{r} C_{ljik} + \frac{1}{(n - 1)(n - 2)} G_{ljik} \nabla_{r} R.$$ \hspace{1cm} (3.5)

Using (3.4) in (3.5), we obtain

$$\nabla_{r} K_{ljik} = P_{r} C_{ljik} + \frac{(n - 2)}{(n - 1)} Q_{r} G_{ljik} + \frac{1}{(n - 1)(n - 2)} G_{ljik} \nabla_{r} R.$$ \hspace{1cm} (3.6)

Employing (2.23), (3.6) becomes

$$\nabla_{r} K_{ljik} = P_{r} C_{ljik} + \frac{(n - 2)}{(n - 1)} Q_{r} G_{ljik} + \frac{1}{(n - 1)(n - 2)} G_{ljik} (P_{r} R - n Q_{r}).$$ \hspace{1cm} (3.7)

Therefore, from (3.1) we get

$$\nabla_{r} K_{ljik} = P_{r} K_{ljik} + \frac{(n - 4)}{(n - 1)} Q_{r} G_{ljik}.$$ \hspace{1cm} (3.8)

Hence the necessary part of the theorem is proved.

Conversely, assume that

$$\nabla_{r} K_{ljik} = P_{r} K_{ljik} + Q_{r} G_{ljik},$$ \hspace{1cm} (3.9)

therefore (3.5) becomes

$$P_{r} K_{ljik} + Q_{r} G_{ljik} = \nabla_{r} C_{ljik} + \frac{1}{(n - 1)(n - 2)} G_{ljik} \nabla_{r} R.$$ \hspace{1cm} (3.10)

Using (3.1), we have

$$P_{r} \left(C_{ljik} + \frac{R}{(n - 1)(n - 2)} G_{ljik} \right) + Q_{r} G_{ljik} = \nabla_{r} C_{ljik} + \frac{1}{(n - 1)(n - 2)} G_{ljik} \nabla_{r} R.$$ \hspace{1cm} (3.11)

Multiplying both sides of (3.11) by F^{lj} and using (1.16), we get

$$2 P_{r} \left(\frac{(n - 3)}{(n - 2)} H_{li} + \frac{1}{(n - 1)(n - 2)} R F_{li} \right) + \frac{1}{(n - 1)(n - 2)} g_{il} F_{jk} M_{jk} + P_{r} \frac{R}{(n - 1)(n - 2)}$$

$$G_{ljik} F^{jk} + Q_{r} G_{ljik} F^{jk} = 2 \left(\frac{(n - 3)}{(n - 2)} \nabla_{r} H_{li} + \frac{1}{(n - 1)(n - 2)} \nabla_{r} H_{il} - \frac{1}{(n - 1)(n - 2)} F_{il} \nabla_{r} R \right)$$

$$+ \frac{1}{(n - 1)(n - 2)} g_{il} F_{jk} \nabla_{r} M_{jk} + \frac{1}{(n - 1)(n - 2)} G_{ljik} F^{jk} \nabla_{r} R.$$ \hspace{1cm} (3.12)

Since $G_{ljik} F^{lk} F^{jk} = 2n$, by Transvecting (1.20) with F^{li} and using (1.20), we obtain

$$\nabla_{r} R = P_{r} R - \frac{n(n - 2)}{(n - 4)} Q_{r}, (n > 4).$$ \hspace{1cm} (3.13)

Hence, by using (3.2) and (3.5), we get

$$\nabla_{r} C_{ljik} = P_{r} C_{ljik} + \frac{(n - 2)^{2}}{(n - 1)(n - 4)} Q_{r} G_{ljik}, (n > 4).$$ \hspace{1cm} (3.14)

From Theorem 2.1, we obtain

$$\nabla_{r} R_{ljik} = P_{r} R_{ljik} + \frac{(n - 1)}{(n - 4)} Q_{r} G_{ljik}, (n > 4).$$ \hspace{1cm} (3.15)

the sufficient part of the Theorem 3.1 is proved.
4. Conclusion
We have established from above two Theorems 2.1 and 3.1, that a Kaehlerian Weyl recurrent manifolds is widespread conformal recurrent manifold and conharmonic recurrent manifold if and only if it is widespread recurrent respectively.

Acknowledgement. We are thankful to the Editor and reviewer for them precious recommendation to take the paper in current form.

References