
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
Jñānābha, Vol. 52(2) (2022), 58-67
(Dedicated to Professor D. S. Hooda on His 80th Birth Anniversary Celebrations)

OPTIMIZATION OF FUZZY ASSIGNMENT PROBLEM USING R
Anju Khandelwal 1, Suneet Saxena 2 and Avanish Kumar 3

1,2 Department of Mathematics, SRMS College of Engineering and Technology, Bareilly, India
3 Department of Mathematical Sciences and Computer Applications, Bundelkhand University, Jhansi, India

Email: dranju20khandelwal@gmail.com , sunarn2012@gmail.com , dravanishkumar@yahoo.com
(Received : August 04, 2022; Revised : August 14, 2022, Accepted : September, 23, 2022)

DOI: https://doi.org/10.58250/jnanabha.2022.52206

Abstract
Distributed Computing refers to the solution of a problem by distributed systems of autonomous and hetero-

geneous computers that are used in communication, networking, and workstation. Distributed computing is a
computing technology that allows multiple computers to solve the same problem. Here problem-solving is achieved
by communicating and executing the tasks in a distributed environment. Distributed Computing helps in performing
computational tasks much faster than single computers. The objective of the problem present in this paper is
to optimize the Processor Execution Cost and find the optimum combination which gives the reduced processor
execution cost in the distributed computing environment and further provides the reduced program service cost as
well as reliability. The algorithm for the present problem is executed in the open-source R programming language for
optimization.
2020 Mathematical Sciences Classification: MSC 90-04, 90-05, 90C-08, 90C-70
Keywords and Phrases: Distributed Computing System (DCS), Processor/Task Execution Cost (PEC/TEC),
Processor Communication Cost (PCC), Process Requirement, Open-Source Language.

1. Introduction
Any distributed computer system consists of many software components that are on multiple computers and run
as a unit system. The computers in a distributed system are physically and remotely connected together with a
communicating network. It can be geographically distant and connected to a wide area network where nodes can
easily share data with other nodes. More and more nodes can be added easily in a distributed system i.e., it can be
scaled up as needed. The failure or disruption of one or more nodes in any distributed computer system does not have
an unauthorized effect on that entire system. In this situation other nodes can continue to communicate with remaining
other among themselves.

Figure 1.1: Characteristic of Distributed System

58

This characteristic of distributed computing predominates among all other features of distributed computing Fig.
1.1.

Distributed computing allows different users and computers to share information among themselves. In addition,
distributed computing can pass processing power, memory, or storage benefits from one machine to another. A
Distributed Computing System is a networked collection of independent machines that can collaborate remotely to
achieve an objective. So distributed computing is used in cloud technology that enables this distributed system
to operate, collaborate and communicate. Distributed computing results in the development of highly faulttolerant
systems that are reliable and performance-driven. Distributed systems allow real-time applications to execute faster
and to serve end-user requests quickly.

’R’ programming is a type of programming language mainly used for statistical computing. ’R’ programming is
exclusively based on data science, but ’R’ is also a multi-paradigm language, which means it has several paradigms
such as: object-oriented, procedural, reflective, etc.

Figure 1.2: R Environment Features

’R’ is an open-source programming language developed in 1993 that is an alternative implementation of the
language native ’ S ’. It gets its name from its creators Ross Ihaka and Robert Gentleman. The ’R’ language provides
a wide variety of statistics related libraries which give an environment conducive to statistical computing and design.
In addition, it is also used by many quantitative analysts as a programming tool and has many features Fig. 1.2.

2. Literature Review
Over the years the distributed computing system has become an integral part of executing scientific applications
that are usually represented by a workflow model. It is a simple and costeffective way for scientists to demonstrate
workflows anytime and anywhere. Distributed computing environment plays an important role in providing resources
as a utility on the Internet. Distributed processing environment has emerged as an approach in terms of new governance
business and renaissance or revitalization in data innovation. Distributed computing divides a single task among
multiple computers while cloud computing provides hardware, software and other infrastructure resources over the
Internet. Distributed computing is done when connected via a network to achieve faster than using a personal computer.
Technically, if an application syncs information across multiple devices it represents cloud computing as it is using
distributed computing.

In 2019, Hao et al.[1] proposed resource scheduling algorithms on the basis of work endurance value. Here, in
order to reduce the energy consumption of cloud computing systems, the concepts of performance conditions, work
endurance value and relaxation time in cloud systems were studied. Here the task waiting time was also reduced by
accommodating massive random task allocation resources in cloud computing systems.

Over the years, the demand for an eco-friendly environment has led to a rapid rise in the green city revolution
around the world. The demand for eco-friendly has necessitated the shift of major energy consumers from conventional

59

electricity grids to renewable energy sources (RES). This is the reason why cloud data centers (DCs) have emerged as
important consumers of energy. Kaur, Aujla and Kumar [2, (2022)] provides a comprehensive workload classification
in job scheduling and virtual machine placement architecture for Cloud DC powered by RES and Power Grid is
designed. Here, well-established benefits such as reduced operating costs and carbon emissions are expanded by using
an advanced heuristic approach.

Fuzzy computing is of great importance in any real-life application. Task assignment is an important part of
distributed computing systems. Task assignment requires the processor to allocate tasks for execution to use the
appropriate means of computation available. Task allocation requires that it conform to the performance characteristics
of that task. Khandelwal [3, (2019)] and Khandelwal-Kumar [4, (2019), 5, (2020)] investigated the task allocation
problem that is based on fuzzy computing which is more realistic and general in nature. It is based on distributed
computing with task allocation timing and fuzzy communication timing.

Liu et al. [6, (2021)] proposed an online multi-workflow scheduling framework called NOSF. Deadline-
constrained workflows with random arrivals and uncertain task execution times can be scheduled with this online
multi-workflow scheduling. The computation offloading has become increasingly popular in recent years to reduce
energy consumption and enhance smartphone performance. Lu et al.[7, (2022)] proposed and implemented a
lightweight offloading framework to deal with heterogeneous architectures between smartphones and servers. This
lightweight offloading framework supports offloading of computation-intensive tasks and deploys servers efficiently.
The experimental results presented here are valid for multi-task offloading strategy and intensive offloading requests.

Load balancing is like a challenge in cloud network to improve proper resource utilization and makespan. Various
static and dynamic scheduling methods are used to troubleshoot load balancing. Mishra Sharma, Rath and Parida
[8, (2022)], used two multi-datacenters for load balancing and appropriate task scheduling. In addition, the paper
proposed a two-stage load adjustment technique in two multi-datacenters through which users can allocate jobs to
different virtual machines in the data centers.

The digital transformation of all traditional systems has led to a massive outflow of data. Most of the data generated
by digital devices is challenging to handle and there are problems of latency while providing services to the end users.
This problem can be solved by osmotic computing method given by Neha, Panda and Sahu [9, (2021)]. Osmotic
computing exploits and integrates cloud, edge and Internet of things platforms as well. Osmotic computing is a
growing research area that has laid the foundation for a new state-of-the-art computing paradigm by objectifying
scenarios to handle heavy data and computations as per user requirements and resource availability.

Distributed cloud computing is increasingly relevant to both academia and numerous industries as an emerging
subfield of computer science. It is a solution to high barriers of entry in configuring and maintaining computing
hardware and inflexible platform constraints. Task scheduling is one of the vital aspects of distributed cloud computing
which deals with the strategies for assigning tasks to computing resources. There are numerous commonly used task
scheduling algorithms that cut down the completion time and increase the throughput of the system. Shi, Suo, Kemp
and Hodge [10, (2020)] suggested an algorithm called BMin which augments the performance of the algorithm Min-
min, decreased completion time, increased throughput, and improves load balancing of resources- outperforming the
classical algorithm. Methods based on migrating crawling agents (migrants) can be used to select and filter web
documents on the web server with the search engine side. This significantly reduces the network load caused by web
crawlers, but as a migrant web move around, security issues emerge. These are an impediment to the development
and maintenance of mobile agent technology. Singhal, Dixit, Agarwal and Sharma [11, (2018)] presented a remote
platform-oriented reliability-based approach that is helpful for maintaining the security and integrity of migrants as
well as data and remote platforms. Also, Truong and Dustdar [12, (2010)] presented cost models associated with
different application performance models are presented. Here the method of determining the cost of various scenarios
from the performance model is presented. It presents the estimation, monitoring and analysis of costs associated with
scientific applications using realworld applications.

The widespread use of data mining and analysis to support decision making has become possible in today’s era
of big data. The complex process of collecting massive amounts of data can be modeled as a workflow involving
storage, transmission and analysis. Cloud environments provide sufficient computing and storage resources for big
data management and analysis, but cost-effective resource provisioning for workflows in the cloud is still a significant
challenge. Time limit is the most important thing for any workflow execution. Wu, Ding, Jia, and Li[13, (2020)]
addressed the challenge of cost-effective resource provisioning while meeting the real-time requirements of workflow
execution by introducing a programmingbased resource provisioning strategy.

Large-scale cluster operation of drones has gradually become a reality with the continuous development of
computer and network technology due to Yadav, Kumar and Gupta [14, (2006)]. In UAV cluster combat, one of

60

the most challenging challenges is the proper allocation of UAV cluster combat tasks and intelligent adaptation
control of the UAV cluster. Therefore, solving the task allocation problem and finding the optimal solution is an
NP-hard problem model. Zhang and Chen [15, (2021)] used a CSA based approach to optimize the four objectives
simultaneously in multi-UAV task allocation to maximize the number of tasks allocated. Solving this problem
maximizes the benefits of performing tasks, minimizes resource costs and minimizes time costs.

3. Objective
The objective of this research problem is to execute the large-scale program to assign its various tasks to the most
suitable processors in the distributed processing environment. The assignment of tasks shall be based on execution
cost that is to be formulate in such a way that the overall cost along with reliability is to be optimized under the set
of given constraints. The cost and reliability functions to measure processor execution cost, processor communication
cost, processor execution reliability and processor communication reliability are then had to be formulated. The load
on each processor has been also taken care off to balance the load of each and every processor. It is presumed that
number of tasks shall always be greater than number of available processors of the Distributed Computing System.
The algorithm is implemented on an open-source ’R’ language to get an index that will define the optimal system cost.
Here, the index will be obtained by using processor execution cost and reliability. The entire process will definitely
provide the analyses of the distributed system and provide the overall optimal system cost with reliability.

4. Technique
Let the given system consists of a set of n processors P = {p1, p2, p3, p4, . . . , pn}, interconnected by communication
links and a set of m tasks T = {t1, t2, t3, t4, . . . , tm}, . The Processor Execution Cost of individual tasks corresponding
to each processor are given in the form of matrices ECM(,) of order m × n. The Processor Communication Cost is
taken in the square symmetric matrices CCM(,) of order n respectively. The assignment of tasks to processors may be
done in different ways. The overall processor execution cost [Ecost] is expressed as the sum of execution costs along
with communication cost of all the tasks as follows:

Ecost =

 n∑
i=1


n∑

j=1

ECi jxi j

 +

n∑
j=1


n∑

j=1

CCi jyi j


 ,

The Processor Execution Reliability of individual tasks corresponding to each processor are given in the form of
matrices ERM(,) of order m × n. The Processor Communication Reliability is taken in the square symmetric matrices
CRM(,) of order n respectively. The overall processor execution reliability [Ereliability] is expressed as the product
of execution reliability along with communication reliability of all the tasks as follows:

Ereliability =

 n∏
i=1


n∑

j=1

ERi jxi j

 ∗
n∏

i=1


n∑

j=1

CRi jxi j


 ,

where,

xi j =

 c1, if ith task is assigned to jth processor
0, otherwise

yi j =


1, if the task assigned to processor i communicate
with the task assigned to processor j
0, otherwise
Index =

Ereliability
Ecost .

5. Algorithm
To give an algorithmic representation to the technique mentioned in the section 4, let us consider a system in which a
set of m tasks T = {t1, t2, t3, t4, . . . , tm} is to be executed on a set of n available processors P = {p1, p2, p3, p4, . . . , pn},
here. m >> n.

61

square symmetric matrices 𝐶𝐶𝑀(,) of order 𝑛 respectively. The assignment of tasks to

processors may be done in different ways. The overall processor execution cost [Ecost] is

expressed as the sum of execution costs along with communication cost of all the tasks as

follows:

𝐸𝑐𝑜𝑠𝑡 = [∑ {∑ 𝐸𝐶𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1 } + ∑ {∑ 𝐶𝐶𝑖𝑗𝑦𝑖𝑗

𝑛
𝑗=1 }𝑛

𝑗=1
𝑛
𝑖=1] , (4.1)

The Processor Execution Reliability of individual tasks corresponding to each processor are

given in the form of matrices 𝐸𝑅𝑀(,) of order 𝑚 × 𝑛 . The Processor Communication

Reliability is taken in the square symmetric matrices 𝐶𝑅𝑀(,) of order 𝑛 respectively. The

overall processor execution reliability [Ereliability] is expressed as the product of execution

reliability along with communication reliability of all the tasks as follows:

𝐸𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = [∏ {∑ 𝐸𝑅𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1 }𝑛

𝑖=1 ∗ ∏ {∑ 𝐶𝑅𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1 }𝑛

𝑖=1], (4.2)

 where,

𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦𝑖𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑖 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐼𝑛𝑑𝑒𝑥 =
𝐸𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐸𝑐𝑜𝑠𝑡
 . (4.3)

5. Algorithm

To give an algorithmic representation to the technique mentioned in the section 4, let us

consider a system in which a set of m tasks 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, … , 𝑡𝑚} is to be executed on a set

of n available processors 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, … , 𝑝𝑛} , here. m >> n.

Flowchart 5.1: Algorithm of Proposed Technique

Step1. Input: m, n, ECM (,), ERM (,), CCM (,), CRM (,)

Step2. Select the task to form the combinations with other task(s), (say (ti , tk)). Store it in TCOMB (,).

Step3. Add kth row of ECM (,) to its ith row. If all the values are become infinite, get next value of TCOMB

(,) then repeat else go to step 4.

Step4. Modify CCM (,), CRM (,), ECM (,) and ERM (,).

Step5. Replace the corresponding values of kth row and kth column by zero in CCM (,) and then add kth

row to ith row and kth column to ith column, after that delete the kth row and kth column from CCM

(,).

Step6. Replace the corresponding values of kth row and kth column by one in CRM (,) then multiply kth row

to ith row and kth column to ith column, after that delete the kth row and kth column from CRM (,).

Step7. Modify the ECM (,) by adding kth row to ith row and thereby deleting kth row.

Step8. Modify the ERM (,) by multiplying kth row to ith row and thereby deleting kth row.

Step9. Store modified, ECM (,), ERM (,), CCM (,) and CRM (,) to NECM (,), NERM (,), NCCM (,) and

NCRM (,) respectively.

Step10. Apply Assignment Algorithm [Hungarian method for task allocation].

Step11. Evaluate Execution Cost [Ecost], Execution Reliability [Ereliability] and Index by using equation

(4.1), (4.2) and (4.3).

Step12. Stop

6. Implementation
To analyses the performance of the Distributed Computing System, the suggested algorithm is then executed in
the open-source R programming language to find the set of combinations, and then evaluate the index values for
each combination, the index values shall be based upon the processor execution costs and execution reliabilities for
the corresponding combinations. In order to implement the proposed algorithm following two examples have been
illustrated.

Example 6.1. Here, we consider a distributed environment consisting of a set T = t1, t2, t3, t4 of 4 tasks of a large-scale
program and a set P = p1, p2, p3 of 3 processors in a distributed system.

6. Implementation

To analyses the performance of the Distributed Computing System, the suggested algorithm

is then executed in the open-source R programming language to find the set of combinations,

and then evaluate the index values for each combination, the index values shall be based upon

the processor execution costs and execution reliabilities for the corresponding combinations.

In order to implement the proposed algorithm following two examples have been illustrated.

Example 6.1. Here, we consider a distributed environment consisting of a set 𝑇 =
{𝑡1, 𝑡2, 𝑡3, 𝑡4} of 4 tasks of a large-scale program and a set 𝑃 = {𝑝1, 𝑝2, 𝑝3} of 3 processors in a

distributed system.

𝐸𝐶𝑀(,) =

𝑝1 𝑝2 𝑝2

𝑡1 8 12 7
𝑡2 9 8 11
𝑡3 12 9 6
𝑡4 10 11 12

 𝐸𝑅𝑀(,) =

𝑝1 𝑝2 𝑝2

𝑡1 0.997 0.996 0.994
𝑡2 0.993 0.998 0.992
𝑡3 0.998 0.991 0.994
𝑡4 0.997 0.993 0.998

𝐶𝐶𝑀(,) =

𝑡1 𝑡2 𝑡3 𝑡4

𝑡1 0 3 6 9
𝑡2 3 0 4 5
𝑡3 6 4 0 7
𝑡4 9 5 7 0

 𝐶𝐶𝑀(,) =

𝑡1 𝑡2 𝑡3 𝑡4

𝑡1 0.000 0.994 0.996 0.995
𝑡2 0.994 0.000 0.992 0.993
𝑡3 0.996 0.992 0.000 0.992
𝑡4 0.995 0.993 0.992 0.000

 The implementation of the example through ‘R’ is represented in Fig. 6.1 and its output is

shown in Fig. 6.2 as obtained through R Console. The final as well optimal assignment of tasks

is mentioned in Fig. 6.3.

Figure 6.1: Program on R Console

The implementation of the example through R is represented in Fig. 6.1 and its output is shown in Fig. 6.2 as
obtained through R Console. The final as well optimal assignment of tasks is mentioned in Fig. 6.3.

62

6. Implementation

To analyses the performance of the Distributed Computing System, the suggested algorithm

is then executed in the open-source R programming language to find the set of combinations,

and then evaluate the index values for each combination, the index values shall be based upon

the processor execution costs and execution reliabilities for the corresponding combinations.

In order to implement the proposed algorithm following two examples have been illustrated.

Example 6.1. Here, we consider a distributed environment consisting of a set 𝑇 =
{𝑡1, 𝑡2, 𝑡3, 𝑡4} of 4 tasks of a large-scale program and a set 𝑃 = {𝑝1, 𝑝2, 𝑝3} of 3 processors in a

distributed system.

𝐸𝐶𝑀(,) =

𝑝1 𝑝2 𝑝2

𝑡1 8 12 7
𝑡2 9 8 11
𝑡3 12 9 6
𝑡4 10 11 12

 𝐸𝑅𝑀(,) =

𝑝1 𝑝2 𝑝2

𝑡1 0.997 0.996 0.994
𝑡2 0.993 0.998 0.992
𝑡3 0.998 0.991 0.994
𝑡4 0.997 0.993 0.998

𝐶𝐶𝑀(,) =

𝑡1 𝑡2 𝑡3 𝑡4

𝑡1 0 3 6 9
𝑡2 3 0 4 5
𝑡3 6 4 0 7
𝑡4 9 5 7 0

 𝐶𝐶𝑀(,) =

𝑡1 𝑡2 𝑡3 𝑡4

𝑡1 0.000 0.994 0.996 0.995
𝑡2 0.994 0.000 0.992 0.993
𝑡3 0.996 0.992 0.000 0.992
𝑡4 0.995 0.993 0.992 0.000

 The implementation of the example through ‘R’ is represented in Fig. 6.1 and its output is

shown in Fig. 6.2 as obtained through R Console. The final as well optimal assignment of tasks

is mentioned in Fig. 6.3.

Figure 6.1: Program on R Console
Figure 6.1: Program on R Console

Figure 6.2: Output on R Console

Figure 6.3: Task Execution on Processor

Example 6.2. Consider another similar example in which the distributed environment

consisting of a set 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 } of 5 tasks of any large computer executable program

and a set 𝑃 = {𝑝1, 𝑝2, 𝑝3} of 3 processors of any distributed system. The details are shown in

Fig. 6.4, Fig. 6.5 and Fig. 6.6 respectively.

Figure 6.2: Output on R Console

63

Figure 6.3: Task Execution on Processor

Example 6.2. Consider another similar example in which the distributed environment consisting of a set T =

{t1, t2, t3, t4, t5} of 5 tasks of any large computer executable program and a set P = {p1, p2, p3} of 3 processors of
any distributed system. The details are shown in Fig. 6.4, Fig. 6.5 and Fig. 6.6 respectively.

Figure 6.4: Process on R Console

Figure 6.5: Output on R Console

Figure 6.6: Optimal Assignment of Task on Processor

Figure 6.4: Process on R Console

64

Figure 6.4: Process on R Console

Figure 6.5: Output on R Console

Figure 6.6: Optimal Assignment of Task on Processor

Figure 6.5: Output on R Console

Figure 6.4: Process on R Console

Figure 6.5: Output on R Console

Figure 6.6: Optimal Assignment of Task on Processor

Figure 6.6: Optimal Assignment of Task on Processor

7. Conclusion
In distributed system, computation workload is spread across several connected processors. It creates an execution
environment where application components look at specific geographical locations that are chosen based on application
needs. Also, in distributed cloud computing takes the cloud computing model and distributes it to different geographic
locations in a connected manner. Here we have chosen the problem in which number of tasks are more than the
number of processors in the distributed environment. On implemented the proposed algorithm the set of index values
are obtained which are based on cost and reliability. The minimum value of index indicates the overall optimal system
cost. The developed algorithm in R programming gives the optimum result for the examples 6.1 and 6.2. These
evaluated results have been mentioned in the following Table 7.1 and Table 7.2:

65

Table 7.1: Optimum Solution of Example 6.1

Task Processor EC CC Ecost ER CR Ereliability Index
t1 ∗ t4 p1 2*32 2*13 45 0.9860689 0.9821038 0.968422 0.02152049

t2 p2

t3 p3

Table 7.2: Optimum Solution of Example 6.2

Task Processor EC CC Ecost ER CR Ereliability Index
t1 ∗ t4 p1 2*34 13 47 0.982125 0.982104 0.964549 0.020522

t2 p2

t3 ∗ t5 p3

The pictorial representations of the input data of the Example 6.1 and example 6.2 are shown in Fig. 6.1, Fig. 6.4
and their output is shown through Fig. 6.2 and Fig. 6.5 respectively. The optimal assignment is shown through Fig. 6.3
and Fig. 6.6 respectively. The present algorithm is the implementation of the approach discussed by the Yadav, Kumar
and Gupta [14, (2006)] in R open source. Here complexity is found to be very less in comparison to the approach
discussed by Yadav et al. [14]. Although the studied algorithm implemented on the distributed environment, but it is
very easily extended to the cloud environment. Future researchers are advised to explore more parameters such as,
storage, speed, inter processor distance, computing, and other network resources.

References
[1] L. Hao, B. Li, K. Li and Y. Jin, Research for Energy Optimized Resource Scheduling Algo-

rithm in Cloud Computing Base on Task Endurance Value, International Conference on Artificial In-
telligence and Computer Applications, (2019), 279-282, China. http://doi/10.1109/ICAICA.2019.
8873435http://doi/10.1109/ICAICA.2019.8873435.

[2] K. Kaur, G. S. Aujla and N. Kumar, A Multi-Objective Optimization Scheme for Job Scheduling in Sustainable
Cloud Data Centers, IEEE Transactions on Cloud Computing, 10(1) (2022), 172-186. {http://doi/10.1109/
TCC.2019.2950002}{http://doi/10.1109/TCC.2019.2950002}.

[3] A. Khandelwal, Fuzzy based Amalgamated Technique for Optimal Service Time in Distributed Com-
puting System, International Journal of Recent Technology and Engineering, 8(3) (2019), 6763-6768.
Doi:10.35940/ijrte.C4783.098319.

[4] A. Khandelwal and A. Kumar, Framework and Evolution of Task Orientation using Fuzzy and GA, International
Journal of Recent Technology and Engineering, 8(2) (2019), 5475-5479. Doi:10.35940/ijrte.B6988.078219.

[5] A. Khandelwal and A. Kumar, Evaluation of Service Time in DCS using Fuzzy and Clustering Technique,
International Conference on Computational Performance Evaluation (ComPE), (2020), 028-032, Shilong.
http://doi/10.1109/ComPE49325.2020.9200122http://doi/10.1109/ComPE49325.2020.9200122.

[6] J. Liu, J. Ren, W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min and N. Najjari, Online Multi-Workflow Scheduling
under Uncertain Task Execution Time in IaaS Clouds, IEEE Transactions on Cloud Computing, 9(3) (2021),
1180-1194. http://doi.10.1109/TCC.2019.2906300http://doi.10.1109/TCC.2019.2906300.

[7] J. Lu, Q. Li, B. Guo, J. Li, Y. Shen, G. Li and H. Su, A Multi-Task Oriented Framework for Mobile Computation
Offloading, IEEE Transactions on Cloud Computing, 10(1) (2022), 187-201. https://doi.10.1109/TCC.
2019.2952346https://doi.10.1109/TCC.2019.2952346.

[8] S. C. Mishra Sharma, A. K. Rath and B. R. Parida, Efficient load balancing techniques for multi-datacenter cloud
milieu, International Journal of Information Technology, 14(2) (2022), 979-989. https://doi.org/10.1007/
s41870-020-00529-2https://doi.org/10.1007/s41870-020-00529-2.

[9] B. Neha, S. K. Panda and P. K. Sahu, An efficient task mapping algorithm for osmotic computing-based
ecosystem, International Journal of Information Technology, 13(4) (2021), 1303-1308. https://doi.org/
10.1007/s41870-021-00715-whttps://doi.org/10.1007/s41870-021-00715-w.

[10] Y. Shi, K. Suo, S. Kemp and J. Hodge, A Task Scheduling Approach for Cloud Resource
Management, 2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), London (2020), 131-136. http://doi/10.1109/WorldS450073.2020.

9210422http://doi/10.1109/WorldS450073.2020.9210422.

66

[11] N. Singhal, A. Dixit, R. P. Agarwal and A. K. Sharma, A reliability based approach for securing migrating
crawlers, International Jounal of Information Technology, 10(1) (2018), 91-98. https://doi.org/10.1007/
s41870-017-0065-0https://doi.org/10.1007/s41870-017-0065-0.

[12] H. L. Truong and S. Dustdar, Composable cost estimation and monitoring for computational applications in
cloud computing environments, Procedia Computer Science, (2010), 2175-2184. https://doi.org/10.1016/
j.procs.2010.04.243https://doi.org/10.1016/j.procs.2010.04.243.

[13] L. Wu, R. Ding, Z. Jia and X. Li, Cost-Effective Resource Provisioning for Real-Time
Workflow in Cloud, Journal of Complexity, 1 (2020), 1-15. https://doi.org/10.1155/2020/
1467274https://doi.org/10.1155/2020/1467274.

[14] P. K. Yadav, A. Kumar and A. R. Gupta, An Exhaustive Approach of Performance Analysis to the Distributed
Systems based on Cost Assignments, South East Asian Journal of Mathematics and Mathematical Sciences, 5(1)
(2006), 29-44.

[15] X. Zhang and X. Chen, UAV Task Allocation Based on Clone Selection Algorithm, Wireless
Communications and Mobile Computing, 1 (2021), 1-9. https://doi.org/10.1155/2021/

5518927https://doi.org/10.1155/2021/5518927

67

