## Jñānābha, Vol. 52(2) (2022), 48-57

(Dedicated to Professor D. S. Hooda on His $80^{\text {th }}$ Birth Anniversary Celebrations)

# COMMON FIXED POINT THEOREMS FOR GENERALIZED MULTI-VALUED CONTRACTIONS IN $b$-METRIC AND DISLOCATED $b$-METRIC SPACES <br> <br> Kuldeep Joshi <br> <br> Kuldeep Joshi <br> Department of Mathematics, D. S. B. Campus, Kumaun University, Nainital-263002, Uttarakhand, India <br> Email: kuldeep_joshi68@yahoo.com <br> (Received: July 18, 2022; Revised : August 11, 2022; Accepted : August 14, 2022) 

DOI: https://doi.org/10.58250/jnanabha.2022.52205


#### Abstract

In this paper, we extend the contraction to find some common fixed point theorems of multivalued contraction in b-metric and dislocated b-metric spaces. Also, we give some examples to vindicate our results. Moreover, the obtained results extend and improve some well known results of the literature. 2020 Mathematical Sciences Classification: 47H10, 54H25. Keywords and Phrases: Multi-valued mapping, common fixed point, b-metric space, dislocated b-metric space


## 1. Introduction and Preliminaries

Let ( $X, d$ ) be a metric space, then a mapping $T: X \rightarrow X$ is said to be contraction if there exists a positive real number $r<1$ such that $d(T x, T y) \leq r d(x, y)$ for all $x, y \in X$. In the literature of fixed point theory, Banach contraction principle $(B C P)$ plays an improtant role which states that every contraction on a complete metric space $(X, d)$ has a unique fixed point, i.e., there is a point $z \in X$ such that $T z=z$. It has a wide range of applications in physical sciences, computer sciences and Engineering Sciences. $B C P$ is further improved, extended and generalized by many researchers in the fixed point theory by weakening the contractive condition and structure of the metric space [1, 18]. In 1969, Nadler[17] introduced the notion of multi-valued contractive mapping in a complete metric space, and established a fixed point theorem for multivalued mapping which is a generalization of $B C P$. In fact, Nadler proved the following result:

Theorem 1.1 ([17]). Let $(X, d)$ be a complete metric space and $T: X \rightarrow C B(X)$ be a mapping. Assume there exists $r \in[0,1)$ such that $H(T x, T y) \leq r d(x, y)$ for all $x, y \in X$. Then, there exists $z \in X$ such that $z \in T z$.

Thereafter, Nadler's fixed point theorem, many authors have given results for muti-valued and hybrid contractive mappings $[8,9,10,11,19,4]$ and references therein.

In generalization process of metric structure, the concept of b-metric space was introduced by Czerwik[7]. Since then many authors used notion of b-metric to obtain various fixed point theorems. Moreover, several results of metric spaces are presented for b-metric spaces, see $[3,13,12,16]$ and references therein. Similarly, some interesting results in dislocated b-metric space are also proved by researchers, see [14, 20].

Now we give some definitions and important theorems of literature which will be useful for our main results.
Definition 1.1 ([5]). Let $X$ be a non-empty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow[0, \infty)$ is called a b-metric iff for all $x, y, z \in X$, the following conditions are satisfied:
(i) $d(x, y)=0$ iff $x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, z) \leq s[d(x, y)+d(y, z)]$,
the triplet $(X, d, s)$ is known as $b$-metric space.
Definition 1.2 ([5]). Let $(X, d, s)$ be a $b$-metric space. A sequence $x_{n}$ in $X$ is said to be:

1. Cauchy if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$;
2. convergent iff there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ (or if for all $\epsilon>0$, there exists $k \in \mathbb{N}$ we have such that $d\left(x_{n}, x\right)<\epsilon$ for all $\left.n \geq k\right)$, and we write $\lim _{n \rightarrow \infty} x_{n}=x$;
3. complete if every Cauchy sequence in $X$ is convergent.

Definition 1.3 ([3]). Let $(X, d, s)$ be a b-metric space. A subset $Y$ of $X$ is said to be:

1. closed iff for each sequence $x_{n}$ in $Y$, which converges to an element $x$, we have $x \in Y$;
2. compact iff for every sequence of element in $Y$ there exists a subsequence that converges to an element in $Y$;
3. bounded iff $\sup \{d(x, y): x, y \in Y\}<\infty$.

The extension of Banach contraction principle in b-metric spaces as follows:
Theorem 1.2 ([5]). Let $(X, d)$ be a complete $b$-metric space with constant $s \geq 1$ such that b-metric is a continuous functional. Let $T: X \rightarrow X$ be a contraction having contraction constant $k \in[0,1)$ such that $k s<1$. Then $T$ has $a$ unique fixed point.

Definition 1.4 ([2]). Let $X$ be a nonempty set and $s \geq 1$ be a given real number. A function $d_{b}: X \times X \rightarrow[0, \infty)$ is called a dislocated b-metric iff for all $x, y, z \in X$, the following conditions are satisfied:
(i) $d_{b}(x, y)=0 \Rightarrow x=y$;
(ii) $d_{b}(x, y)=d(y, x)$;
(iii) $d_{b}(x, z) \leq s\left[d_{b}(x, y)+d_{b}(y, z)\right]$,
the triplet $\left(X, d_{b}, s\right)$ is known as dislocated $b$-metric space. If $s=1$, the disloctated b-metric space $\left(X, d_{b}, s\right)$ is called a dislocated metric space.

Definition 1.5 ([2]). Let $\left(X, d_{b}\right)$ be a dislocated b-metric space. A sequence $\left\{x_{n}\right\}$ in $X$ is said to be:

1. Cauchy if and only if $d_{b}\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$;
2. convergent iff there exist $x \in X$ such that $d_{b}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ and we write $\lim _{n \rightarrow \infty} x_{n}=x$;
3. complete if every Cauchy sequence in $X$ is convergent.

Example 1.1. Let $X=\mathbb{Q}^{+} \cup\{0\}$ and let $d_{b}: X \times X \rightarrow X$ defined by $d_{b}(x, y)=(x+y)^{2}$ for all $x, y \in X$. Then $d_{b}$ is dislocated b-metric on $X$ with $s=2$.

Let $(X, d)$ be a metric (resp. b-metric, dislocated b-metric) space and $C B(X)$ the collection of all non-empty closed and bounded subsets of $X$. The Hausdorff metric $H\left(\right.$ resp. $\left.H, H_{b}\right)$ on $C B(X)$ induced by the metric $d$ is given by

$$
H(A, B)=\max \left\{\sup _{p \in A} d(p, B), \sup _{q \in B} d(q, A)\right\}
$$

for $A, B \in C B(X)$, where $d(x, A)=\inf _{y \in A} d(x, y)$. Moreover, the distance between sets $A, B \in C B(X)$ is defined as $d(A, B)=\inf \{d(p, q): p \in A, q \in B\}$.

We recall the following properties from $[3,6]$ and the references therein.
Lemma 1.1. Let $(X, d, s)$ be a b-metric space. For any $A, B, C \in C B(X)$ and any $x, y \in X$, the following statements are true:

1. $d(x, B) \leq d(x, q)$, for any $q \in B$;
2. $\sup _{p \in A} d(p, B) \leq H(A, B)$;
3. $H(A, B)=0$ iff $A=B$;
4. $d(x, B) \leq H(A, B)$, for any $x \in A$;
5. $H(A, B)=H(B, A)$;
6. $H(A, C) \leq s[H(A, B)+H(B, C)]$
7. $d(x, A) \leq s[d(x, y)+d(y, A)]$.

Following the Nadler's fixed point theorem, Czerwik [6] established the following theorem for mulitvalued mapping.

Theorem 1.3 ([6]). Let $(X, d, s)$ be a complete b-metric space and let $T: X \rightarrow C B(X)$ be a multi-valued mapping such that $T$ satisfies the inequality $H(T x, T y) \leq a d(x, y)$ for all $x, y \in X$, where $0<a<\frac{1}{s^{2}}$. Then $T$ has a fixed point.

Subsequently a number of fixed point theorems have been obtained by the researchers for multivalued mappings in different settings of spaces see $[12,19,18,4]$ and references therein. In this paper, we extend and generalize the result of [12] for multivalued mappings satisfying generalized contractive type condition in complete b-metric and dislocated b-metric spaces.

## 2. Main Results

Lemma 2.1 ([7]). Let $(X, d, s)$ be a b-metric (or dislocated b-metric) space and $A, B \in C B(X)$. Then, for each $\epsilon>0$ and for all $p \in A$, there exists $q \in B$ such that $d(p, q) \leq H(A, B)+\epsilon$.
Theorem 2.1. Let $(X, d, s)$ be a complete b-metric space and let $S, T: X \rightarrow C B(X)$ be two multivalued mappings satisfying for all $x, y \in X$,

$$
\begin{equation*}
H(T x, S y) \leq a d(x, T y)+b[d(x, S y)+d(T x, T y)+c d(T x, S y)] \tag{2.1}
\end{equation*}
$$

where $a, b, c \geq 0$ with $a+2 b s+b c<1$ and $b+b c<1 / s^{2}$. Then $S$ and $T$ have a unique common fixed point in $X$.
Proof. Fix $x \in X$. Without loss of generality, we choose $\epsilon_{0}$ such that $0<\epsilon_{0}<1-b s-b c$. Then, for $x \in X$, define $x_{0}=x$ and let $x_{1} \in T x_{0}$. By Lemma 2.1, we may choose $x_{2} \in S x_{0}$ such that

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq H\left(T x_{0}, S x_{0}\right)+\epsilon_{0} \\
& \leq a d\left(x_{0}, T x_{0}\right)+b\left[d\left(x_{0}, S x_{0}\right)+d\left(T x_{0}, T x_{0}\right)+c d\left(T x_{0}, S x_{0}\right]+\epsilon_{0}\right. \\
& \leq a d\left(x_{0}, x_{1}\right)+b d\left(x_{0}, x_{2}\right)+b c d\left(x_{1}, x_{2}\right)+\epsilon_{0} \\
& \leq a d\left(x_{0}, x_{1}\right)+b s\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]+b c d\left(x_{1}, x_{2}\right)+\epsilon_{0} \\
\Rightarrow d\left(x_{1}, x_{2}\right)(1-b s-b c) & \leq a d\left(x_{0}, x_{1}\right)+b s d\left(x_{0}, x_{1}\right)+\epsilon_{0} \\
& \leq(a+b s) d\left(x_{0}, x_{1}\right)+\epsilon_{0} \\
\Rightarrow d\left(x_{1}, x_{2}\right) & \leq \frac{(a+b s)}{(1-b s-b c)} d\left(x_{0}, x_{1}\right)+\frac{\epsilon_{0}}{(1-b s-b c)} .
\end{aligned}
$$

$$
\text { Thus, } \quad d\left(x_{1}, x_{2}\right) \leq \frac{(a+b s)}{(1-b s-b c)} d\left(x_{0}, x_{1}\right)+\epsilon, \quad \text { where } \epsilon=\frac{\epsilon_{0}}{(1-b s-b c)} \text {. }
$$

Similarly, there exists $x_{3} \in T x_{2}$ such that

$$
\begin{aligned}
& d\left(x_{2}, x_{3}\right) \leq H\left(T x_{2}, S x_{0}\right)+\frac{\epsilon_{0}^{2}}{(1-b s-b c)} \\
& \leq a d\left(x_{2}, T x_{0}\right)+b\left[d\left(x_{2}, S x_{0}\right)+d\left(T x_{0}, T x_{2}\right)+c d\left(T x_{2}, S x_{0}\right)\right] \\
&+\frac{\epsilon_{0}^{2}}{(1-b s-b c)} \\
& \Rightarrow d\left(x_{2}, x_{3}\right) \leq a d\left(x_{2}, x_{1}\right)+b d\left(x_{1}, x_{3}\right)+b c d\left(x_{3}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-b s-b c)} \\
& \Rightarrow d\left(x_{2}, x_{3}\right)(1-b s-b c) \leq a d\left(x_{2}, x_{1}\right)+b s\left[d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)\right]+b c d\left(x_{3}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-b s-b c)} \\
& \Rightarrow d\left(x_{2}, x_{3}\right) \leq \frac{\left(a d\left(x_{2}, x_{1}\right)+b s d\left(x_{1}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-b s-b c)}\right.}{(1-b s-b c)} d\left(x_{1}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-b s-b c)^{2}}
\end{aligned}
$$

Continuing in this way, we obtain by induction a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $x_{2 n} \in S x_{2 n-2}, x_{2 n+1} \in T x_{2 n}$, such that

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n+2}\right) & \leq H\left(T x_{2 n}, S x_{2 n}\right)+\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n}} \\
d\left(x_{2 n}, x_{2 n+1}\right) & \leq H\left(S x_{2 n-2}, T x_{2 n}\right)+\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n+1}\right) \leq & H\left(S x_{2 n-2}, T x_{2 n}\right)+\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}} \\
\leq & a d\left(x_{2 n}, T x_{2 n-2}\right)+b\left[d\left(x_{2 n}, S x_{2 n-2}\right)+d\left(T x_{2 n}, T x_{2 n-2}\right)+c d\left(T x_{2 n}, S x_{2 n-2}\right)\right] \\
& +\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}}
\end{aligned}
$$

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n+1}\right) \leq & a d\left(x_{2 n}, x_{2 n-1}\right)+b\left[d\left(x_{2 n}, x_{2 n}\right)+d\left(x_{2 n+1}, x_{2 n-1}\right)+c d\left(x_{2 n+1}, x_{2 n}\right)\right] \\
& +\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}} \\
\leq & a d\left(x_{2 n}, x_{2 n-1}\right)+b d\left(x_{2 n+1}, x_{2 n-1}\right)+b c d\left(x_{2 n+1}, x_{2 n}\right)+\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}} \\
d\left(x_{2 n}, x_{2 n+1}\right) \leq & a d\left(x_{2 n}, x_{2 n-1}\right)+b s\left[d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)\right]+b c d\left(x_{2 n+1}, x_{2 n}\right) \\
& +\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}} \\
(1-b s-b c) d\left(x_{2 n}, x_{2 n+1}\right) \leq & (a+b s) d\left(x_{2 n}, x_{2 n-1}\right)+\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n-1}} \\
\Rightarrow \quad d\left(x_{2 n}, x_{2 n+1}\right) \leq & \frac{(a+b s)}{(1-b s-b c)} d\left(x_{2 n}, x_{2 n-1}\right)+\frac{\epsilon_{0}^{2 n}}{(1-b s-b c)^{2 n}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq & H\left(T x_{2 n}, S x_{2 n}\right)+\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n}} \\
\leq & a d\left(x_{2 n}, T x_{2 n}\right)+b\left[d\left(x_{2 n}, S x_{2 n}\right)+d\left(T x_{2 n}, T x_{2 n}\right)+c d\left(T x_{2 n}, S x_{2 n}\right)\right] \\
& +\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n}} \\
\leq & a d\left(x_{2 n}, x_{2 n+1}\right)+b d\left(x_{2 n}, x_{2 n+2}\right)+b c d\left(x_{2 n+1}, x_{2 n+2}\right)+\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n}} \\
\leq & a d\left(x_{2 n}, x_{2 n+1}\right)+b s\left[d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right)\right]+b c d\left(x_{2 n+1}, x_{2 n+2}\right) \\
& +\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n}} \\
(1-b s-b c) d\left(x_{2 n+1}, x_{2 n+2}\right) \leq & (a+b s) d\left(x_{2 n}, x_{2 n+1}\right)+\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n}} \\
\Rightarrow d\left(x_{2 n+1}, x_{2 n+2}\right) \leq & \frac{(a+b s)}{(1-b s-b c)} d\left(x_{2 n}, x_{2 n+1}\right)+\frac{\epsilon_{0}^{2 n+1}}{(1-b s-b c)^{2 n+1}}
\end{aligned}
$$

Therefore,

$$
d\left(x_{n}, x_{n+1}\right) \leq \frac{(a+b s)}{(1-b s-b c)} d\left(x_{n-1}, x_{n}\right)+\epsilon^{n} \quad \forall n \in \mathbb{N}, \quad \text { where } \quad \epsilon=\frac{\epsilon_{0}}{(1-b s-b c)}
$$

Let $k=\frac{(a+b s)}{(1-b s-b c)}$, then for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq k d\left(x_{n-1}, x_{n}\right)+\epsilon^{n} \\
& \leq k\left[k d\left(x_{n-2}, x_{n-1}\right)+\epsilon^{n-1}\right]+\epsilon^{n} \\
& \vdots \\
& \leq k^{n} d\left(x_{0}, x_{1}\right)+\sum_{r=0}^{n-1} k^{n} \epsilon^{n-r}
\end{aligned}
$$

$$
\text { which shows that, } \sum_{n=1}^{N} d\left(x_{n}, x_{n+1}\right) \leq \sum_{n=1}^{N} k^{n} d\left(x_{0}, x_{1}\right)+\sum_{n=1}^{N}\left(\sum_{r=0}^{n-1} k^{r} \epsilon^{n-r}\right)
$$

$$
\leq \sum_{n=1}^{N} k^{n} d\left(x_{0}, x_{1}\right)+\sum_{n=1}^{N} \epsilon^{n}\left(\sum_{r=0}^{n-1} k^{r}\right)
$$

$$
=d\left(x_{0}, x_{1}\right) \sum_{n=1}^{N} k^{n}+\sum_{n=1}^{N} \epsilon^{n} \cdot \frac{1-k^{n}}{1-k}
$$

$$
\begin{aligned}
& <d\left(x_{0}, x_{1}\right) \sum_{n=1}^{N} k^{n}+\sum_{n=1}^{N} \epsilon^{n} \cdot \frac{1}{1-k} \\
\Rightarrow \quad \sum_{n=1}^{\infty} d\left(x_{n}, x_{n+1}\right) & =d\left(x_{0}, x_{1}\right) \sum_{n=1}^{\infty} k^{n}+\frac{1}{1-k} \sum_{n=1}^{\infty} \epsilon^{n} \\
& \leq d\left(x_{0}, x_{1}\right) \frac{k}{1-k}+\frac{\epsilon}{(1-k)(1-\epsilon)}<\infty .
\end{aligned}
$$

Hence, we get $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.
Now we show that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $X$. Let $m, n>0$ with $m>n$, and so taking $m=n+p$, where $p \in \mathbb{N}$, we get

$$
d\left(x_{n}, x_{m}\right)=d\left(x_{n}, x_{n+p}\right) \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+\ldots+s^{p} d\left(x_{n+p-1}, x_{n+p}\right)
$$

taking $n \rightarrow \infty$, we get $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. Hence the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. As $(X, d, s)$ is complete, then there exists $z \in X$ such that $x_{n} \rightarrow z$ and so, $\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0$.

Now we show that $z$ is a fixed point of $T$ and $S$. To see this, we have

$$
\begin{aligned}
d(z, T z) \leq & s\left[d\left(z, x_{2 n+2}\right)+d\left(x_{2 n+2}, T z\right)\right] \\
\leq & s\left[d\left(z, x_{2 n+2}\right)+H\left(S x_{2 n}, T z\right)\right] \\
\leq & s\left[d\left(z, x_{2 n+2}\right)+H\left(T z, S x_{2 n}\right]\right. \\
\leq & s\left[d\left(z, x_{2 n+2}\right)+a d\left(z, T x_{2 n}\right)+b\left\{d\left(z, S x_{2 n}\right)+d\left(T x_{2 n}, T z\right)+c d\left(T z, S x_{2 n}\right\}\right]\right. \\
\leq & s\left[d\left(z, x_{2 n+2}\right)+a d\left(z, x_{2 n+1}\right)+b\left\{d\left(z, x_{2 n+2}\right)+d\left(x_{2 n+1}, T z\right)+c d\left(T z, x_{2 n+2}\right\}\right]\right. \\
\leq & s\left[d\left(z, x_{2 n+2}\right)+a d\left(z, x_{2 n+1}\right)+b d\left(z, x_{2 n+2}\right)\right. \\
& \left.+b s\left\{d\left(x_{2 n+1}, z\right)+d(z, T z)\right\}+b c s\left\{d(T z, z)+d\left(z, x_{2 n+2}\right)\right\}\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in above inequality, we obtain $d(z, T z) \leq s^{2}(b+b c) d(z, T z)$, then we have $d(z, T z)=0$ (since $b+b c<\frac{1}{s^{2}}$ ), i.e., $z \in T z$. Hence $F(T) \neq \phi$, here $F(T)$ is the set of fixed points of $T$. Also,

$$
\begin{aligned}
H(T z, S z) & \leq a d(z, T z)+b[d(z, S z)+d(T z, T z)+c d(T z, S z)] \\
& \leq b d(z, S z)+b c d(z, S z) \\
& \leq(b+b c) H(T z, S z)
\end{aligned}
$$

thus $H(T z, S z)=0$, i.e., $T z=S z$. Hence $F(S) \neq \phi$, where $F(S)$ denotes the collection of fixed points of $S$. Now, we arrive at our final step which requires the following steps:

1. $F(T)=T z$,
2. $\quad S x=T x$ for all $x \in F(T)$,
3. $\quad F(T)=F(S)$.

Firstly, let $x \in F(T)$, i.e. $x \in T x$,

$$
\begin{aligned}
d(x, T z) & \leq H(T x, T z) \\
& \leq H(T x, S z) \\
& \leq a d(x, T z)+b[d(x, S z)+d(T z, T x)+c d(T x, S z)] \\
& \leq a d(x, T z)+b d(x, T z)+b d(T z, x)+b c d(x, S z) \\
& \leq a d(x, T z)+b d(x, T z)+b d(x, T z)+b c d(x, T z),
\end{aligned}
$$

thus $d(x, T z)=0$, i.e., $x \in T z$, and hence $T x \subset T z$ and $F(T) \subset T z$.
Now, let $x \in T z$. Then,

$$
\begin{aligned}
d(x, T x) & \leq H(T z, T x) \\
& \leq H(T x, S z) \\
& \leq a d(x, T z)+b[d(x, S z)+d(T z, T x)+c d(T x, S z)] \\
& \leq a d(x, T z)+b d(x, S z)+b d(T z, T x)+b c d(T x, S z) \\
& \leq a d(x, T z)+b d(x, T z)+b d(x, T x)+b c d(T x, T z) \\
& \leq a d(x, T z)+b d(x, T z)+b d(x, T x)+b c d(T x, x),
\end{aligned}
$$

thus $d(x, T x)=0$, i.e., $x \in T x$. Hence, we get $T z \subset T x, T z \subset F(T)$, and so $F(T)=T z$.
Next, we show that $T x=S x$. For all $x \in F(T)$, we have

$$
\begin{aligned}
H(T x, S x) & \leq a d(x, T x)+b[d(x, S x)+d(T x, T x)+c d(T x, S x)] \\
& \leq a d(x, T x)+b d(x, S x)+b c d(x, S x) \\
& \leq b d(x, S x)+b c d(x, S x) \\
& \leq(b+b c) d(x, S x) \\
& \leq(b+c) H(T x, S x)
\end{aligned}
$$

thus $H(T x, S x)=0$, i.e., $T x=S x$ for all $x \in F(T)$.
Now, we show that $F(T)=F(S)$. Let $x \in F(T)$, i.e. $x \in T x$. By previous result $T x=S x$, we find $x \in S x \Rightarrow x \in$ $F(S)$, so we automatically get $F(T) \subset F(S)$.
Further, it remains to show that $F(S) \subset F(T)$. Let $x \in F(s)$, i.e., $x \in S x$

$$
\begin{aligned}
d(x, T x) & \leq H(T x, S x) \\
& \leq a d(x, T x)+b[d(x, S x)+d(T x, T x)+c d(T x, S x)] \\
& \leq a d(x, T x)+b c d(T x, S x) \\
& \leq a d(x, T x)+b c d(T x, x) \\
& \leq(a+b c) d(T x, x)
\end{aligned}
$$

thus $d(x, T x)=0$, i.e., $x \in T x$. Hence, $F(T)=F(S) \neq \phi$ and $S x=T x=F(T)$ for all $x \in F(T)$.
At last, we have to show that the common fixed point is unique. Let $z, v$ be two common fixed points of $T$ and $S$ such that $z \neq v$. Then,

$$
\begin{aligned}
& d(z, v) \leq H(T z, T v) \\
& \leq H(T z, S v) \\
& \leq a d(z, T v)+b[d(z, S v)+d(T v, T z)+c d(T z, S v)] \\
& \leq a d(z, T v)+b d(z, S v)+b d(v, z)+b c d(z, S v) \\
& \Rightarrow \quad(1-b-b c) d(z, v) \leq a d(z, T v)+b d(z, S v) \\
& \leq a d(z, T v)+b d(z, T v) \\
& \leq(a+b) d(z, v) \\
& \Rightarrow \quad(1-a-2 b-b c) d(z, v) \leq 0 \\
& \Rightarrow \quad d(z, v)=0, \text { i.e., } z=v .
\end{aligned}
$$

which completes the proof.
Remark 2.1. Our result ( Theorem 2.1)generalizes the result of [12].
As a consequence of Theorem 2.1, we have the following corollary.
Corollary 2.1. Let $(X, d, s)$ be a complete b-metric space and let $S, T: X \rightarrow C B(X)$ be two multivalued mappings satisfying for all $x, y \in X$,

$$
\begin{equation*}
H(T x, S y) \leq a d(x, T y)+b[d(x, S y)+c d(T x, S y)], \tag{2.2}
\end{equation*}
$$

where $a, b, c \geq 0$ with $a+2 b s+b c<1$ and $b+b c<1 / s^{2}$. Then $S$ and $T$ have a unique common fixed point in $X$.
Also, for different cases in the Theorem 2.1 we obtain the following particular results as corollaries.
Corollary 2.2 ([15]). Let $(X, d)$ be complete metric space and let $S, T: X \rightarrow C B(X)$ be mappings satisfying $H(T x, T y) \leq r d(x, T y)$, for all $x, y \in X$ with $r \in[0,1)$. Then $F(T)=F(S) \neq \phi$ and $T x=S x=F(T)$ for all $x \in F(T)$.

Corollary 2.3. Let $(X, d)$ be complete metric space and let $S, T$ be self mappings on $X$ and if there exists $r \in[0,1)$ such that $d(T x, S y) \leq r d(x, T y)$ for all $x, y \in X$. Then $S$ and $T$ have a unique common fixed point.

Corollary 2.4. Let $(X, d)$ be complete metric space and let $T: X \rightarrow C(X)$ be a mapping satisfying $H\left(T x, T^{2} y\right) \leq$ $r d(x, T y)$, for all $x, y \in X$ with $r \in[0,1)$.Then $F(T) \neq \phi$ and $T x=F(T)$ for all $x \in F(T)$.

Now, we present the following illustration in the support of Theorem 2.1.

Example 2.1. Let $X=[0, \infty)$ with b-metric defined by $d(x, y)=|x-y|^{2}$ with $s=2$. Let $T, S: X \rightarrow C B(X)$ defined by

$$
T(x)=\left\{\begin{array}{l}
{\left[\frac{1}{4}, \frac{1}{2}\right], \text { if } x \in[2, \infty),} \\
\{0\}, \text { if } x \notin[2, \infty)
\end{array} \quad \text { and } \quad S(x)=\left\{\begin{array}{l}
\left.\left[\frac{1}{30}, \frac{1}{25}\right], \text { if } x \in[2, \infty)\right], \\
\{0\}, \text { if } x \notin[2, \infty) .
\end{array}\right.\right.
$$

Now, we consider the following case:
Case 1: If $x \notin[2, \infty), y \notin[2, \infty)$, then $T(x)=\{0\}, S(y)=\{0\}$, and the condition (2.1) is obviously true because $H(T x, S y)=0$.
Case 2: If $x \in[2, \infty), y \in[2, \infty)$, we have $T(x)=\left[\frac{1}{4}, \frac{1}{2}\right], S(y)=\left[\frac{1}{30}, \frac{1}{25}\right]$, and

$$
\begin{aligned}
H(T x, S y) & =\max \left\{\sup _{a \in T x} d\left(a,\left[\frac{1}{30}, \frac{1}{25}\right]\right), \sup _{b \in S y} d\left(b,\left[\frac{1}{4}, \frac{1}{2}\right]\right)\right\} \\
& =\max \left\{d\left(\frac{1}{2},\left[\frac{1}{30}, \frac{1}{25}\right]\right), d\left(\frac{1}{30},\left[\frac{1}{4}, \frac{1}{2}\right]\right)\right\} \\
& =\max \left\{\left(\frac{1}{2}-\frac{1}{25}\right)^{2},\left(\frac{1}{30}-\frac{1}{4}\right)^{2}\right\}=\frac{529}{625} .
\end{aligned}
$$

Also, $d(x, T y)=\frac{9}{4}, d(x, S y)=\frac{2401}{625}, d(T x, T y)=0$ and $d(T x, S y)=\frac{441}{10000}$. Thus the condition (2.1) satisfies for $a=\frac{3}{5}, b=\frac{1}{20}$ and $c=3$ with $a+2 b s+b c<1$ and $b+b c<\frac{1}{s^{2}}$.
Case 3: If $x \in[2, \infty), y \notin[2, \infty)$, we get $T(x)=\left[\frac{1}{4}, \frac{1}{2}\right], S(y)=\{0\}, H(T x, S y)=\frac{1}{4}, d(x, T y)=4, d(x, S y)=4$, $d(T x, T y)=\frac{1}{16}$ and $d(T x, S y)=\frac{1}{16}$. Thus, the condition (2.1) is true for $a=\frac{3}{5}, b=\frac{1}{20}$ and $c=3$ with $a+2 b s+b c<1$ and $b+b c<\frac{1}{s^{2}}$.
Case 4: If $x \notin[2, \infty), y \in[2, \infty)$, we get $T(x)=\{0\}, S(y)=\left[\frac{1}{25}, \frac{1}{30}\right], H(T x, S y)=\frac{1}{625}, d(x, T y)=0, d(x, S y)=0$ and $d(T x, T y)=\frac{1}{16}, d(T x, S y)=\frac{1}{900}$. Thus, the condition (2.1) holds for $a=\frac{3}{5}, b=\frac{1}{20}$ and $c=3$ with $a+2 b s+b c<1$ and $b+b c<\frac{1}{s^{2}}$.
Hence, in all cases we have the condition (2.1 of Theorem 2.1 is satisfied for $a=\frac{3}{5}, b=\frac{1}{20}$ and $c=3$ with $a+2 b s+b c<$ 1 and $b+b c<\frac{1}{s^{2}}$, and $0 \in X$ is the only common fixed point of $S$ and $T$.

Theorem 2.2. Let $\left(X, d_{b}, s\right)$ be a complete dislocated b-metric space and let $S, T: X \rightarrow C B(X)$ be two multivalued mappings satisfying for all $x, y \in X$,

$$
\begin{equation*}
H_{b}(T x, S y) \leq a d_{b}(x, T y)+b\left[d_{b}(x, S y)+c d_{b}(T x, S y)\right] \tag{2.3}
\end{equation*}
$$

where $a, b, c \geq 0$ with $2 a s+3 b s+b c<1$ and $b+b c<1 / s^{2}$. Then $S$ and $T$ have a unique common fixed point in $X$.
Proof. Fix $x \in X$. Without loss of generality, we choose $\epsilon_{0}$ such that $0<\epsilon_{0}<1-2 b s-b c$. Then, for $x \in X$, define $x_{0}=x$ and let $x_{1} \in T x_{0}$. By Lemma 2.1, we may choose $x_{2} \in S x_{0}$ such that

$$
\begin{aligned}
d_{b}\left(x_{1}, x_{2}\right) & \leq H_{b}\left(T x_{0}, S x_{0}\right)+\epsilon_{0} \\
& \leq a d_{b}\left(x_{0}, T x_{0}\right)+b\left[d_{b}\left(x_{0}, S x_{0}\right)+c d_{b}\left(T x_{0}, S x_{0}\right]+\epsilon_{0}\right. \\
& \leq a d_{b}\left(x_{0}, x_{1}\right)+b d_{b}\left(x_{0}, x_{2}\right)+b c d_{b}\left(x_{1}, x_{2}\right)+\epsilon_{0} \\
& \leq a d_{b}\left(x_{0}, x_{1}\right)+b s\left[d_{b}\left(x_{0}, x_{1}\right)+d_{b}\left(x_{1}, x_{2}\right)\right]+b c d_{b}\left(x_{1}, x_{2}\right)+\epsilon_{0} \\
\Rightarrow \quad d_{b}\left(x_{1}, x_{2}\right)(1-2 b s-b c) & \leq a d_{b}\left(x_{0}, x_{1}\right)+b s d_{b}\left(x_{0}, x_{1}\right)+\epsilon_{0} \\
\text { Thus, } \quad d_{b}\left(x_{1}, x_{2}\right) & \leq \frac{(a+b s)}{(1-2 b s-b c)} d_{b}\left(x_{0}, x_{1}\right)+\epsilon_{1}, \quad \text { where } \epsilon_{1}=\frac{\epsilon_{0}}{(1-2 b s-b c)} .
\end{aligned}
$$

Similarly, there exists $x_{3} \in T x_{2}$ such that

$$
\begin{aligned}
d_{b}\left(x_{2}, x_{3}\right) \leq & H_{b}\left(T x_{2}, S x_{0}\right)+\frac{\epsilon_{0}^{2}}{(1-2 b s-b c)} \\
\leq & a d_{b}\left(x_{2}, T x_{0}\right)+b\left[d_{b}\left(x_{2}, S x_{0}\right)+c d_{b}\left(T x_{2}, S x_{0}\right)\right] \\
& +\frac{\epsilon_{0}^{2}}{(1-2 b s-b c)} \\
\leq & a d_{b}\left(x_{2}, x_{1}\right)+b d_{b}\left(x_{2}, x_{2}\right)+b c d_{b}\left(x_{3}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-2 b s-b c)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq a d_{b}\left(x_{2}, x_{1}\right)+b s\left[d_{b}\left(x_{2}, x_{3}\right)+d_{b}\left(x_{3}, x_{2}\right)\right]+b c d_{b}\left(x_{3}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-2 b s-b c)} \\
& \Rightarrow \quad d_{b}\left(x_{2}, x_{3}\right)(1-2 b s-b c) \leq a d_{b}\left(x_{2}, x_{1}\right)+b s d_{b}\left(x_{2}, x_{1}\right)+\frac{\epsilon_{0}^{2}}{(1-2 b s-b c)} \\
& \Rightarrow \quad d_{b}\left(x_{2}, x_{3}\right) \leq \frac{(a+b s)}{(1-2 b s-b c)} d_{b}\left(x_{1}, x_{2}\right)+\frac{\epsilon_{0}^{2}}{(1-2 b s-b c)^{2}} .
\end{aligned}
$$

Continuing in this way, we obtain a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
d_{b}\left(x_{n}, x_{n+1}\right) \leq \frac{(a+b s)}{(1-2 b s-b c)} d_{b}\left(x_{n-1}, x_{n}\right)+\epsilon_{1}^{n} \quad \forall n \in \mathbb{N} .
$$

Let $k=\frac{(a+b s)}{(1-2 b s-b c)}$, then for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
d_{b}\left(x_{n}, x_{n+1}\right) & \leq k d_{b}\left(x_{n-1}, x_{n}\right)+\epsilon_{1}^{n} \\
& \leq k\left[k d_{b}\left(x_{n-2}, x_{n-1}\right)+\epsilon_{1}^{n-1}\right]+\epsilon_{1}^{n} \\
& \vdots \\
& \leq k^{n} d_{b}\left(x_{0}, x_{1}\right)+\sum_{r=0}^{n-1} k^{r} \epsilon_{1} n-r \\
\text { which shows that, } \sum_{n=1}^{N} d_{b}\left(x_{n}, x_{n+1}\right) & \leq \sum_{n=1}^{N} k^{n} d_{b}\left(x_{0}, x_{1}\right)+\sum_{n=1}^{N}\left(\sum_{r=0}^{n-1} k^{r} \epsilon_{1}^{n-r}\right) \\
& \leq \sum_{n=1}^{N} k^{n} d_{b}\left(x_{0}, x_{1}\right)+\sum_{n=1}^{N} \epsilon_{1}^{n}\left(\sum_{r=0}^{n-1} k^{r}\right) \\
& \leq d_{b}\left(x_{0}, x_{1}\right) \sum_{n=1}^{N} k^{n}+\sum_{n=1}^{N} \epsilon_{1}^{n} \cdot \frac{1-k^{n}}{1-k} \\
& <d_{b}\left(x_{0}, x_{1}\right) \sum_{n=1}^{N} k^{n}+\sum_{n=1}^{N} \epsilon_{1}^{n} \cdot \frac{1}{1-k} \\
\Rightarrow \sum_{n=1}^{\infty} d_{b}\left(x_{n}, x_{n+1}\right) & =d_{b}\left(x_{0}, x_{1}\right) \sum_{n=1}^{\infty} k^{n}+\frac{1}{1-k} \sum_{n=1}^{\infty} \epsilon_{1}^{n} \\
& \leq d_{b}\left(x_{0}, x_{1}\right) \frac{k}{1-k}+\frac{\epsilon_{1}}{(1-k)\left(1-\epsilon_{1}\right)}<\infty .
\end{aligned}
$$

Hence, we get $\lim _{n \rightarrow \infty} d_{b}\left(x_{n}, x_{n+1}\right)=0$.
Now we show that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $X$. Let $m, n>0$ with $m>n$, and so taking $m=n+p$, where $p \in \mathbb{N}$, we have

$$
d_{b}\left(x_{n}, x_{m}\right)=d_{b}\left(x_{n}, x_{n+p}\right) \leq s d_{b}\left(x_{n}, x_{n+1}\right)+s^{2} d_{b}\left(x_{n+1}, x_{n+2}\right)+\ldots+s^{p} d_{b}\left(x_{n+p-1}, x_{n+p}\right),
$$

making $n \rightarrow \infty$, we get $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. Hence the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. As $\left(X, d_{b}, s\right)$ is complete, then there exists $z \in X$ such that $x_{n} \rightarrow z$ and so, $\lim _{n \rightarrow \infty} d_{b}\left(x_{n}, z\right)=0$.

Now we show that $z$ is a fixed point of $T$ and $S$. To see this, we have

$$
\begin{aligned}
d_{b}(z, T z) \leq & s\left[d_{b}\left(z, x_{2 n+2}\right)+d_{b}\left(x_{2 n+2}, T z\right)\right] \\
\leq & s\left[d_{b}\left(z, x_{2 n+2}\right)+H_{b}\left(S x_{2 n}, T z\right)\right] \\
\leq & s\left[d_{b}\left(z, x_{2 n+2}\right)+H_{b}\left(T z, S x_{2 n}\right]\right. \\
\leq & s\left[d_{b}\left(z, x_{2 n+2}\right)+a d_{b}\left(z, T x_{2 n}\right)+b\left\{d_{b}\left(z, S x_{2 n}\right)+c d_{b}\left(T z, S x_{2 n}\right\}\right]\right. \\
\leq & s\left[d_{b}\left(z, x_{2 n+2}\right)+a d_{b}\left(z, x_{2 n+1}\right)+b\left\{d_{b}\left(z, x_{2 n+2}\right)+c d_{b}\left(T z, x_{2 n+2}\right\}\right]\right. \\
\leq & s\left[d_{b}\left(z, x_{2 n+2}\right)+a d_{b}\left(z, x_{2 n+1}\right)+b d_{b}\left(z, x_{2 n+2}\right)\right. \\
& \left.+b c s\left\{d_{b}(T z, z)+d_{b}\left(z, x_{2 n+2}\right)\right\}\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the inequality above, we obtain $d_{b}(z, T z) \leq s^{2} b c d_{b}(z, T z)$, then we have $d_{b}(z, T z)=0$ (since $b+b c<\frac{1}{s^{2}}$ ), i.e. $z \in T z$. Hence $F(T) \neq \phi$, where $F(T)$ denotes the collection of fixed points of $T$. Also,

$$
H_{b}(T z, S z) \leq a d_{b}(z, T z)+b\left[d_{b}(z, S z)+c d_{b}(T z, S z)\right]
$$

$$
\begin{aligned}
& \leq b d_{b}(z, S z)+b c d_{b}(z, S z) \\
& \leq(b+b c) H_{b}(T z, S z)
\end{aligned}
$$

thus $H_{b}(T z, S z)=0$, i.e., $T z=S z$. Hence $F(S) \neq \phi$, here $F(S)$ is the set of fixed points of $S$.
We arrive at the proof of our final result which require the following steps:

1. $\quad F(T)=T z$,
2. $S x=T x$ for all $x \in F(T)$,
3. $\quad F(T)=F(S)$.

Firstly, let $x \in F(T)$, i.e. $x \in T x$,

$$
\begin{aligned}
d_{b}(x, T z) & \leq H_{b}(T x, T z) \\
& \leq H_{b}(T x, S z) \\
& \leq a d_{b}(x, T z)+b\left[d_{b}(x, S z)+c d_{b}(T x, S z)\right] \\
& \leq a d_{b}(x, T z)+b d_{b}(x, T z)+b c d_{b}(x, S z) \\
& \leq a d_{b}(x, T z)+b d_{b}(x, T z)++b c d_{b}(x, T z)
\end{aligned}
$$

thus $d_{b}(x, T z)=0$, i.e., $x \in T z$. Hence $T x \subset T z$ and $F(T) \subset T z$.
Now, let $x \in T z$. We show that $x \in T x$

$$
\begin{aligned}
d_{b}(x, T x) & \leq H_{b}(T z, T x) \\
& \leq H_{b}(S z, T x) \\
& \leq H_{b}(T x, S z) \\
& \leq a d_{b}(x, T z)+b\left[d_{b}(x, S z)+c d_{b}(T x, S z)\right] \\
& \leq a d_{b}(x, T z)+b d_{b}(x, S z)++b c d_{b}(T x, S z) \\
& \leq a d_{b}(x, x)+b d_{b}(x, x)+b c d_{b}(T x, x) .
\end{aligned}
$$

Thus $d_{b}(x, T x)=0$, i.e., $x \in T x$. Hence $T z \subset T x, T z \subset F(T)$, and so $F(T)=T z$.
Next, we show that $T x=S x$. For all $x \in F(T)$, we get

$$
\begin{aligned}
H_{b}(T x, S x) & \leq a d_{b}(x, T x)+b\left[d_{b}(x, S x)+c d_{b}(T x, S x)\right] \\
& \leq a d_{b}(x, T x)+b d_{b}(x, S x)+b c d_{b}(x, S x) \\
& \leq b d_{b}(x, S x)+b c d_{b}(x, S x) \\
& \leq(b+b c) d_{b}(x, S x) \\
& \leq(b+b c) H_{b}(T x, S x)
\end{aligned}
$$

thus $\left.H_{b}(T x, S x)\right]=0$, i.e., $T x=S x$ for all $x \in F(T)$.
Now, we show that $F(T)=F(S)$. Let $x \in F(T)$, i.e. $x \in T x$. By previous result $T x=S x$, we get $x \in S x \Rightarrow x \in$ $F(S)$, so we automatically get $F(T) \subset F(S)$.

It remains to show that $F(S) \subset F(T)$. Let $x \in F(s)$, i.e. $x \in S x$

$$
\begin{aligned}
d_{b}(x, T x) & \leq H_{b}(S x, T x) \\
& \leq a d_{b}(x, T x)+b\left[d_{b}(x, S x)+c d_{b}(T x, S x)\right] \\
& \leq a d_{b}(x, T x)+b d_{b}(x, S x)+b c d_{b}(T x, S x) \\
& \leq a d_{b}(x, T x)+b d_{b}(x, T x)+b c d_{b}(T x, x) \\
& \leq(a+b+b c) d_{b}(T x, x),
\end{aligned}
$$

thus $d_{b}(x, T x)=0$, i.e., $x \in T x$, and we get $F(S)=F(T)$. Hence $F(T)=F(S) \neq \phi$ and $S x=T x=F(T)$ for all $x \in F(T)$.

At last, we have to show that the common fixed point is unique. Let $z, v$ be two common fixed points of $T$ and $S$ such that $u \neq v$. Then,

$$
\begin{aligned}
d_{b}(u, v) & \leq H_{b}(T z, T v) \\
& \leq H_{b}(T z, S v) \\
& \leq a d_{b}(z, T v)+b\left[d_{b}(z, S v)+c d_{b}(T z, S v)\right] \\
& \leq a d_{b}(z, T v)+b d_{b}(z, S v)+b c d_{b}(z, v)
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & (1-b c) d_{b}(z, v) \leq a d_{b}(z, T v)+b d_{b}(z, S v) \\
& \leq a d_{b}(z, T v)+b d_{b}(z, T v) \\
\Rightarrow \quad & d_{b}(z, v)=0, \text { i.e., } z=v .
\end{array}
$$

which completes the proof.
Acknowledgement. The author is very much thankful to the Editor and Referee for their valuable suggestions to bring the manuscript in its present form.

## References

[1] H. Alikhani, D. Gopal, M. A. Miandaragh, S. Rezapour and N. Shahzad, Some endpoint results for generalized weak contractive multifunctions, Sci. World J., 2013 (2013), 1-7.
[2] M. A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl.,2013(1) (2013), 1-25.
[3] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babes-Bolyai Math., 3 (2009), 114.
[4] Lj. B. Ćirić, Fixed point for generalized multivalued contractions, Mat. Vesnik, 9 (24) (1972), 265-272.
[5] S. Czerwik, Contraction mapping in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.
[6] S. Czerwik, K. DÅutek and S. Singh, Round-off stability of iteration procedures for operators in b-metric spaces, J. Nat. Phys. Sci., 11 (1997), 87-94.
[7] S.Czerwik, Nonlinear set-valued contraction mapping in b-metric space, Atti Semin. Mat. Fis. Univ. Modena, 46 (3) (1998), 263-276.
[8] B. Damjanovi, B. Samet and C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Scientia, 32(2)(2012), 818-824.
[9] A. A. Eldred, J. Anuradha and P. Veeramani, On equivalence of generalized multi-valued contractions and Nadler's fixed point theorem, J. Math. Anal. Appl., 336(2) (2007),751-757.
[10] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317(1) (2006), 103-112.
[11] M. E. Gordji, H. Baghani, H. Khodaei and M. A. Ramezani, Generalization of Nadler's fixed point theorem, J. Math. Anal. Appl., 3(2) (2010), 148-151.
[12] C. Jinakul, A. Wiwatwanich and A. Kaewkhao, Common fixed point theorem for multi-valued mappings on b-metric spaces, Int. J. Pure Appl. Math., 113(1) (2017), 167-179.
[13] J. M. Joseph, D. D. Roselin and M. Marudai, Fixed point theorems on multi valued mappings in b-metric spaces, Springer Plus, 5(1) (2016), 1-8.
[14] C. Klin-Eam and C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory Appl., 9 (2015), 1-12.
[15] L. J. Lin and S. Y. Wang, Common fixed point theorems for a finite family of discontinuous and noncommutative maps, Fixed Point Theory Appl., 2011 (2011), 1-19.
[16] K. Mehemet and H. Kiziltunc, On some well known fixed point theorems in b-metrics spaces, Turk. J. Anal. Appl., 1 (2013), 1316.
[17] S. B. Nadler, Multivalued contraction mapping, Pacific J. Math., 30(2) (1969), 475-488.
[18] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26-42.
[19] S. L. Singh and S. N. Mishra, Coincidence theorems for certain classes of hybrid contractions, Fixed Point Theory Appl., 2010 (2009), 1-14.
[20] P. Sumati Kumari, O. Alqahtani and E. Karapnar, Some fixed point theorems in b-dislocated metric space and applications, Symmetry, 10(12) (2018), 1-24.

