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Abstract

In this paper, we extend the contraction to find some common fixed point theorems of multivalued contraction
in b-metric and dislocated b-metric spaces. Also, we give some examples to vindicate our results. Moreover, the
obtained results extend and improve some well known results of the literature.
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1. Introduction and Preliminaries
Let (X, d) be a metric space, then a mapping T : X → X is said to be contraction if there exists a positive real number
r < 1 such that d(T x,Ty) ≤ r d(x, y) for all x, y ∈ X. In the literature of fixed point theory, Banach contraction
principle (BCP) plays an improtant role which states that every contraction on a complete metric space (X, d) has a
unique fixed point, i.e., there is a point z ∈ X such that Tz = z. It has a wide range of applications in physical sciences,
computer sciences and Engineering Sciences. BCP is further improved, extended and generalized by many researchers
in the fixed point theory by weakening the contractive condition and structure of the metric space [1, 18]. In 1969,
Nadler[17] introduced the notion of multi-valued contractive mapping in a complete metric space, and established a
fixed point theorem for multivalued mapping which is a generalization of BCP. In fact, Nadler proved the following
result:

Theorem 1.1 ([17]). Let (X, d) be a complete metric space and T : X → CB(X) be a mapping. Assume there exists
r ∈ [0, 1) such that H(T x,Ty) ≤ r d(x, y) for all x, y ∈ X. Then, there exists z ∈ X such that z ∈ Tz.

Thereafter, Nadler’s fixed point theorem, many authors have given results for muti-valued and hybrid contractive
mappings [8, 9, 10, 11, 19, 4] and references therein.

In generalization process of metric structure, the concept of b-metric space was introduced by Czerwik[7]. Since
then many authors used notion of b-metric to obtain various fixed point theorems. Moreover, several results of metric
spaces are presented for b-metric spaces, see [3, 13, 12, 16] and references therein. Similarly, some interesting results
in dislocated b-metric space are also proved by researchers, see [14, 20].

Now we give some definitions and important theorems of literature which will be useful for our main results.

Definition 1.1 ([5]). Let X be a non-empty set and s ≥ 1 be a given real number. A function d : X × X → [0,∞) is
called a b-metric iff for all x, y, z ∈ X, the following conditions are satisfied:

(i) d(x, y) = 0 iff x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ s[d(x, y) + d(y, z)],

the triplet (X, d, s) is known as b-metric space.

Definition 1.2 ([5]). Let (X, d, s) be a b-metric space. A sequence xn in X is said to be:

1. Cauchy if and only if d(xn, xm)→ 0 as n,m→ ∞;
2. convergent iff there exists x ∈ X such that d(xn, x) → 0 as n → ∞ (or if for all ε > 0, there exists k ∈ N we
have such that d(xn, x) < ε for all n ≥ k), and we write limn→∞ xn = x;

3. complete if every Cauchy sequence in X is convergent.
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Definition 1.3 ([3]). Let (X, d, s) be a b-metric space. A subset Y of X is said to be:

1. closed iff for each sequence xn in Y, which converges to an element x, we have x ∈ Y;
2. compact iff for every sequence of element in Y there exists a subsequence that converges to an element in Y;
3. bounded iff sup{d(x, y) : x, y ∈ Y} < ∞.

The extension of Banach contraction principle in b-metric spaces as follows:

Theorem 1.2 ([5]). Let (X, d) be a complete b-metric space with constant s ≥ 1 such that b-metric is a continuous
functional. Let T : X → X be a contraction having contraction constant k ∈ [0, 1) such that ks < 1. Then T has a
unique fixed point.

Definition 1.4 ([2]). Let X be a nonempty set and s ≥ 1 be a given real number. A function db : X × X → [0,∞) is
called a dislocated b-metric iff for all x, y, z ∈ X, the following conditions are satisfied:

(i) db(x, y) = 0⇒ x = y;
(ii) db(x, y) = d(y, x);
(iii) db(x, z) ≤ s[db(x, y) + db(y, z)],

the triplet (X, db, s) is known as dislocated b-metric space. If s = 1, the disloctated b-metric space (X, db, s) is called
a dislocated metric space.

Definition 1.5 ([2]). Let (X, db) be a dislocated b-metric space. A sequence {xn} in X is said to be:

1. Cauchy if and only if db(xn, xm)→ 0 as n,m→ ∞;
2. convergent iff there exist x ∈ X such that db(xn, x)→ 0 as n→ ∞ and we write limn→∞ xn = x;
3. complete if every Cauchy sequence in X is convergent.

Example 1.1. Let X = Q+ ∪ {0} and let db : X × X → X defined by db(x, y) = (x + y)2 for all x, y ∈ X. Then db is
dislocated b-metric on X with s = 2.

Let (X, d) be a metric (resp. b-metric, dislocated b-metric) space and CB(X) the collection of all non-empty closed
and bounded subsets of X. The Hausdorff metric H(resp.H,Hb) on CB(X) induced by the metric d is given by

H(A, B) = max
sup

p∈A
d(p, B), sup

q∈B
d(q, A)


for A, B ∈ CB(X), where d(x, A) = infy∈A d(x, y). Moreover, the distance between sets A, B ∈ CB(X) is defined as
d(A, B) = inf{d(p, q) : p ∈ A, q ∈ B}.

We recall the following properties from [3, 6] and the references therein.

Lemma 1.1. Let (X, d, s) be a b-metric space. For any A, B,C ∈ CB(X) and any x, y ∈ X, the following statements are
true:

1. d(x, B) ≤ d(x, q), for any q ∈ B;
2. supp∈A d(p, B) ≤ H(A, B);
3. H(A, B) = 0 iff A = B;
4. d(x, B) ≤ H(A, B), for any x ∈ A;
5. H(A, B) = H(B, A);
6. H(A,C) ≤ s[H(A, B) + H(B,C)]
7. d(x, A) ≤ s[d(x, y) + d(y, A)].

Following the Nadler’s fixed point theorem, Czerwik [6] established the following theorem for mulitvalued
mapping.

Theorem 1.3 ([6]). Let (X, d, s) be a complete b-metric space and let T : X → CB(X) be a multi-valued mapping
such that T satisfies the inequality H(T x,Ty) ≤ ad(x, y) for all x, y ∈ X, where 0 < a < 1

s2 .Then T has a fixed point.

Subsequently a number of fixed point theorems have been obtained by the researchers for multivalued mappings
in different settings of spaces see [12, 19, 18, 4] and references therein. In this paper, we extend and generalize the
result of [12] for multivalued mappings satisfying generalized contractive type condition in complete b-metric and
dislocated b-metric spaces.
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2. Main Results
Lemma 2.1 ([7]). Let (X, d, s) be a b-metric (or dislocated b-metric) space and A, B ∈ CB(X). Then, for each ε > 0
and for all p ∈ A, there exists q ∈ B such that d(p, q) ≤ H(A, B) + ε.

Theorem 2.1. Let (X, d, s) be a complete b-metric space and let S ,T : X → CB(X) be two multivalued mappings
satisfying for all x, y ∈ X,

H(T x, S y) ≤ a d(x,Ty) + b [d(x, S y) + d(T x,Ty) + c d(T x, S y)], (2.1)

where a, b, c ≥ 0 with a + 2bs + bc < 1 and b + bc < 1/s2. Then S and T have a unique common fixed point in X.

Proof. Fix x ∈ X. Without loss of generality, we choose ε0 such that 0 < ε0 < 1 − bs − bc. Then, for x ∈ X, define
x0 = x and let x1 ∈ T x0. By Lemma 2.1, we may choose x2 ∈ S x0 such that

d(x1, x2) ≤ H(T x0, S x0) + ε0

≤ a d(x0,T x0) + b [d(x0, S x0) + d(T x0,T x0) + c d(T x0, S x0] + ε0

≤ ad(x0, x1) + bd(x0, x2) + bcd(x1, x2) + ε0

≤ a d(x0, x1) + bs [d(x0, x1) + d(x1, x2)] + bc d(x1, x2) + ε0

⇒ d(x1, x2)(1 − bs − bc) ≤ ad(x0, x1) + bsd(x0, x1) + ε0

≤ (a + bs)d(x0, x1) + ε0

⇒ d(x1, x2) ≤ (a + bs)
(1 − bs − bc)

d(x0, x1) +
ε0

(1 − bs − bc)
.

Thus, d(x1, x2) ≤ (a + bs)
(1 − bs − bc)

d(x0, x1) + ε, where ε =
ε0

(1 − bs − bc)
.

Similarly, there exists x3 ∈ T x2 such that

d(x2, x3) ≤ H(T x2, S x0) +
ε0

2

(1 − bs − bc)
≤ ad(x2,T x0) + b[d(x2, S x0) + d(T x0,T x2) + cd(T x2, S x0)]

+
ε0

2

(1 − bs − bc)

⇒ d(x2, x3) ≤ ad(x2, x1) + bd(x1, x3) + bcd(x3, x2) +
ε0

2

(1 − bs − bc)

≤ ad(x2, x1) + bs[d(x1, x2) + d(x2, x3)] + bcd(x3, x2) +
ε0

2

(1 − bs − bc)

⇒ d(x2, x3)(1 − bs − bc) ≤ ad(x2, x1) + bsd(x1, x2) +
ε0

2

(1 − bs − bc)

⇒ d(x2, x3) ≤ (a + bs)
(1 − bs − bc)

d(x1, x2) +
ε0

2

(1 − bs − bc)2

Continuing in this way, we obtain by induction a sequence {xn}n∈N such that x2n ∈ S x2n−2, x2n+1 ∈ T x2n, such that

d(x2n+1, x2n+2) ≤ H(T x2n, S x2n) +
ε2n+1

0

(1 − bs − bc)2n

d(x2n, x2n+1) ≤ H(S x2n−2,T x2n) +
ε2n

0

(1 − bs − bc)2n−1

Now,

d(x2n, x2n+1) ≤ H(S x2n−2,T x2n) +
ε2n

0

(1 − bs − bc)2n−1

≤ ad(x2n,T x2n−2) + b[d(x2n, S x2n−2) + d(T x2n,T x2n−2) + cd(T x2n, S x2n−2)]

+
ε2n

0

(1 − bs − bc)2n−1
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d(x2n, x2n+1) ≤ ad(x2n, x2n−1) + b[d(x2n, x2n) + d(x2n+1, x2n−1) + cd(x2n+1, x2n)]

+
ε2n

0

(1 − bs − bc)2n−1

≤ ad(x2n, x2n−1) + bd(x2n+1, x2n−1) + bcd(x2n+1, x2n) +
ε2n

0

(1 − bs − bc)2n−1

d(x2n, x2n+1) ≤ ad(x2n, x2n−1) + bs[d(x2n+1, x2n) + d(x2n, x2n−1)] + bcd(x2n+1, x2n)

+
ε2n

0

(1 − bs − bc)2n−1

(1 − bs − bc)d(x2n, x2n+1) ≤ (a + bs)d(x2n, x2n−1) +
ε2n

0

(1 − bs − bc)2n−1

⇒ d(x2n, x2n+1) ≤ (a + bs)
(1 − bs − bc)

d(x2n, x2n−1) +
ε2n

0

(1 − bs − bc)2n

Also,

d(x2n+1, x2n+2) ≤ H(T x2n, S x2n) +
ε2n+1

0

(1 − bs − bc)2n

≤ ad(x2n,T x2n) + b[d(x2n, S x2n) + d(T x2n,T x2n) + cd(T x2n, S x2n)]

+
ε2n+1

0

(1 − bs − bc)2n

≤ ad(x2n, x2n+1) + bd(x2n, x2n+2) + bcd(x2n+1, x2n+2) +
ε2n+1

0

(1 − bs − bc)2n

≤ ad(x2n, x2n+1) + bs[d(x2n, x2n+1) + d(x2n+1, x2n+2)] + bcd(x2n+1, x2n+2)

+
ε2n+1

0

(1 − bs − bc)2n

(1 − bs − bc)d(x2n+1, x2n+2) ≤ (a + bs)d(x2n, x2n+1) +
ε2n+1

0

(1 − bs − bc)2n

⇒ d(x2n+1, x2n+2) ≤ (a + bs)
(1 − bs − bc)

d(x2n, x2n+1) +
ε2n+1

0

(1 − bs − bc)2n+1

Therefore,

d(xn, xn+1) ≤ (a + bs)
(1 − bs − bc)

d(xn−1, xn) + εn ∀n ∈ N, where ε =
ε0

(1 − bs − bc)
.

Let k =
(a+bs)

(1−bs−bc) , then for each n ∈ N, we have
d(xn, xn+1) ≤ k d(xn−1, xn) + εn

≤ k[kd(xn−2, xn−1) + εn−1] + εn

...

≤ knd(x0, x1) +

n−1∑
r=0

knεn−r

which shows that,
N∑

n=1

d(xn, xn+1) ≤
N∑

n=1

knd(x0, x1) +

N∑
n=1

(
n−1∑
r=0

krεn−r)

≤
N∑

n=1

knd(x0, x1) +

N∑
n=1

εn(
n−1∑
r=0

kr)

= d(x0, x1)
N∑

n=1

kn +

N∑
n=1

εn · 1 − kn

1 − k
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< d(x0, x1)
N∑

n=1

kn +

N∑
n=1

εn · 1
1 − k

⇒
∞∑

n=1

d(xn, xn+1) = d(x0, x1)
∞∑

n=1

kn +
1

1 − k

∞∑
n=1

εn

≤ d(x0, x1)
k

1 − k
+

ε

(1 − k)(1 − ε) < ∞.
Hence, we get limn→∞ d(xn, xn+1) = 0.

Now we show that {xn}n∈N is a Cauchy sequence in X. Let m, n > 0 with m > n, and so taking m = n + p, where
p ∈ N, we get

d(xn, xm) = d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . . + spd(xn+p−1, xn+p)

taking n → ∞, we get limn→∞ d(xn, xm) = 0. Hence the sequence {xn} is a Cauchy sequence. As (X, d, s) is complete,
then there exists z ∈ X such that xn → z and so, limn→∞ d(xn, z) = 0.

Now we show that z is a fixed point of T and S . To see this, we have

d(z,Tz) ≤ s[d(z, x2n+2) + d(x2n+2,Tz)]
≤ s[d(z, x2n+2) + H(S x2n,Tz)]
≤ s[d(z, x2n+2) + H(Tz, S x2n]
≤ s[d(z, x2n+2) + ad(z,T x2n) + b{d(z, S x2n) + d(T x2n,Tz) + cd(Tz, S x2n}]
≤ s[d(z, x2n+2) + ad(z, x2n+1) + b{d(z, x2n+2) + d(x2n+1,Tz) + cd(Tz, x2n+2}]
≤ s[d(z, x2n+2) + ad(z, x2n+1) + bd(z, x2n+2)

+bs{d(x2n+1, z) + d(z,Tz)} + bcs{d(Tz, z) + d(z, x2n+2)}].
Letting n → ∞ in above inequality, we obtain d(z,Tz) ≤ s2(b + bc)d(z,Tz), then we have d(z,Tz) = 0 (since
b + bc < 1

s2 ), i.e., z ∈ Tz. Hence F(T ) , φ, here F(T ) is the set of fixed points of T . Also,

H(Tz, S z) ≤ ad(z,Tz) + b[d(z, S z) + d(Tz,Tz) + cd(Tz, S z)]
≤ bd(z, S z) + bcd(z, S z)
≤ (b + bc)H(Tz, S z),

thus H(Tz, S z) = 0, i.e., Tz = S z. Hence F(S ) , φ, where F(S ) denotes the collection of fixed points of S .
Now, we arrive at our final step which requires the following steps:

1. F(T ) = Tz,
2. S x = T x for all x ∈ F(T ),
3. F(T ) = F(S ).

Firstly, let x ∈ F(T ), i.e. x ∈ T x,

d(x,Tz) ≤ H(T x,Tz)
≤ H(T x, S z)
≤ ad(x,Tz) + b[d(x, S z) + d(Tz,T x) + cd(T x, S z)]
≤ ad(x,Tz) + bd(x,Tz) + bd(Tz, x) + bcd(x, S z)
≤ ad(x,Tz) + bd(x,Tz) + bd(x,Tz) + bcd(x,Tz),

thus d(x,Tz) = 0, i.e., x ∈ Tz, and hence T x ⊂ Tz and F(T ) ⊂ Tz.
Now, let x ∈ Tz. Then,

d(x,T x) ≤ H(Tz,T x)
≤ H(T x, S z)
≤ ad(x,Tz) + b[d(x, S z) + d(Tz,T x) + cd(T x, S z)]
≤ ad(x,Tz) + bd(x, S z) + bd(Tz,T x) + bcd(T x, S z)
≤ ad(x,Tz) + bd(x,Tz) + bd(x,T x) + bcd(T x,Tz)
≤ ad(x,Tz) + bd(x,Tz) + bd(x,T x) + bcd(T x, x),
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thus d(x,T x) = 0, i.e., x ∈ T x. Hence, we get Tz ⊂ T x, Tz ⊂ F(T ), and so F(T ) = Tz.
Next, we show that T x = S x. For all x ∈ F(T ), we have

H(T x, S x) ≤ ad(x,T x) + b[d(x, S x) + d(T x,T x) + cd(T x, S x)]
≤ ad(x,T x) + bd(x, S x) + bcd(x, S x)
≤ bd(x, S x) + bcd(x, S x)
≤ (b + bc)d(x, S x)
≤ (b + c)H(T x, S x),

thus H(T x, S x) = 0, i.e., T x = S x for all x ∈ F(T ).
Now, we show that F(T ) = F(S ). Let x ∈ F(T ), i.e. x ∈ T x. By previous result T x = S x, we find x ∈ S x ⇒ x ∈

F(S ), so we automatically get F(T ) ⊂ F(S ).
Further, it remains to show that F(S ) ⊂ F(T ). Let x ∈ F(s), i.e., x ∈ S x

d(x,T x) ≤ H(T x, S x)
≤ ad(x,T x) + b[d(x, S x) + d(T x,T x) + cd(T x, S x)]
≤ ad(x,T x) + bcd(T x, S x)
≤ ad(x,T x) + bcd(T x, x)
≤ (a + bc)d(T x, x),

thus d(x,T x) = 0, i.e., x ∈ T x. Hence, F(T ) = F(S ) , φ and S x = T x = F(T ) for all x ∈ F(T ).
At last, we have to show that the common fixed point is unique. Let z, v be two common fixed points of T and S

such that z , v. Then,

d(z, v) ≤ H(Tz,Tv)
≤ H(Tz, S v)
≤ ad(z,Tv) + b[d(z, S v) + d(Tv,Tz) + cd(Tz, S v)]
≤ ad(z,Tv) + bd(z, S v) + bd(v, z) + bcd(z, S v)

⇒ (1 − b − bc)d(z, v) ≤ ad(z,Tv) + bd(z, S v)
≤ ad(z,Tv) + bd(z,Tv)
≤ (a + b)d(z, v)

⇒ (1 − a − 2b − bc)d(z, v) ≤ 0
⇒ d(z, v) = 0, i.e., z = v.

which completes the proof.

Remark 2.1. Our result ( Theorem 2.1)generalizes the result of [12].

As a consequence of Theorem 2.1, we have the following corollary.

Corollary 2.1. Let (X, d, s) be a complete b-metric space and let S ,T : X → CB(X) be two multivalued mappings
satisfying for all x, y ∈ X,

H(T x, S y) ≤ a d(x,Ty) + b [d(x, S y) + c d(T x, S y)], (2.2)

where a, b, c ≥ 0 with a + 2bs + bc < 1 and b + bc < 1/s2. Then S and T have a unique common fixed point in X.

Also, for different cases in the Theorem 2.1 we obtain the following particular results as corollaries.

Corollary 2.2 ([15]). Let (X, d) be complete metric space and let S ,T : X → CB(X) be mappings satisfying
H(T x,Ty) ≤ r d(x,Ty), for all x, y ∈ X with r ∈ [0, 1). Then F(T ) = F(S ) , φ and T x = S x = F(T ) for all
x ∈ F(T ).

Corollary 2.3. Let (X, d) be complete metric space and let S ,T be self mappings on X and if there exists r ∈ [0, 1)
such that d(T x, S y) ≤ r d(x,Ty) for all x, y ∈ X. Then S and T have a unique common fixed point.

Corollary 2.4. Let (X, d) be complete metric space and let T : X → C(X) be a mapping satisfying H(T x,T 2y) ≤
r d(x,Ty), for all x, y ∈ X with r ∈ [0, 1).Then F(T ) , φ and T x = F(T ) for all x ∈ F(T ).

Now, we present the following illustration in the support of Theorem 2.1.
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Example 2.1. Let X = [0,∞) with b-metric defined by d(x, y) = |x − y|2 with s = 2. Let T, S : X → CB(X) defined by

T (x) =

 [ 1
4 ,

1
2 ], if x ∈ [2,∞),

{0}, if x < [2,∞)
and S (x) =

 [ 1
30 ,

1
25 ], if x ∈ [2,∞)],

{0}, if x < [2,∞).

Now, we consider the following case:

Case 1: If x < [2,∞), y < [2,∞), then T (x) = {0}, S (y) = {0}, and the condition (2.1) is obviously true because
H(T x, S y) = 0.

Case 2: If x ∈ [2,∞), y ∈ [2,∞), we have T (x) = [ 1
4 ,

1
2 ], S (y) = [ 1

30 ,
1
25 ], and

H(T x, S y) = max
sup

a∈T x
d(a, [

1
30
,

1
25

]), sup
b∈S y

d(b, [
1
4
,

1
2

])


= max
{

d(
1
2
, [

1
30
,

1
25

]), d(
1

30
, [

1
4
,

1
2

])
}

= max
{

(
1
2
− 1

25
)2, (

1
30
− 1

4
)2
}

=
529
625

.

Also, d(x,Ty) = 9
4 , d(x, S y) = 2401

625 , d(T x,Ty) = 0 and d(T x, S y) = 441
10000 . Thus the condition (2.1) satisfies for

a = 3
5 , b = 1

20 and c = 3 with a + 2bs + bc < 1 and b + bc < 1
s2 .

Case 3: If x ∈ [2,∞), y < [2,∞), we get T (x) = [ 1
4 ,

1
2 ], S (y) = {0}, H(T x, S y) = 1

4 , d(x,Ty) = 4, d(x, S y) = 4,
d(T x,Ty) = 1

16 and d(T x, S y) = 1
16 . Thus, the condition (2.1) is true for a = 3

5 , b = 1
20 and c = 3 with a + 2bs + bc < 1

and b + bc < 1
s2 .

Case 4: If x < [2,∞), y ∈ [2,∞), we get T (x) = {0}, S (y) = [ 1
25 ,

1
30 ], H(T x, S y) = 1

625 , d(x,Ty) = 0, d(x, S y) = 0 and
d(T x,Ty) = 1

16 , d(T x, S y) = 1
900 . Thus, the condition (2.1) holds for a = 3

5 , b = 1
20 and c = 3 with a + 2bs + bc < 1

and b + bc < 1
s2 .

Hence, in all cases we have the condition (2.1 of Theorem 2.1 is satisfied for a = 3
5 , b = 1

20 and c = 3 with a+2bs+bc <
1 and b + bc < 1

s2 , and 0 ∈ X is the only common fixed point of S and T .

Theorem 2.2. Let (X, db, s) be a complete dislocated b-metric space and let S ,T : X → CB(X) be two multivalued
mappings satisfying for all x, y ∈ X,

Hb(T x, S y) ≤ a db(x,Ty) + b [db(x, S y) + c db(T x, S y)], (2.3)

where a, b, c ≥ 0 with 2as + 3bs + bc < 1 and b + bc < 1/s2. Then S and T have a unique common fixed point in X.

Proof. Fix x ∈ X. Without loss of generality, we choose ε0 such that 0 < ε0 < 1 − 2bs − bc. Then, for x ∈ X, define
x0 = x and let x1 ∈ T x0. By Lemma 2.1, we may choose x2 ∈ S x0 such that

db(x1, x2) ≤ Hb(T x0, S x0) + ε0

≤ a db(x0,T x0) + b [db(x0, S x0) + c db(T x0, S x0] + ε0

≤ adb(x0, x1) + bdb(x0, x2) + bcdb(x1, x2) + ε0

≤ a db(x0, x1) + bs [db(x0, x1) + db(x1, x2)] + bc db(x1, x2) + ε0

⇒ db(x1, x2)(1 − 2bs − bc) ≤ adb(x0, x1) + bsdb(x0, x1) + ε0

Thus, db(x1, x2) ≤ (a + bs)
(1 − 2bs − bc)

db(x0, x1) + ε1, where ε1 =
ε0

(1 − 2bs − bc)
.

Similarly, there exists x3 ∈ T x2 such that

db(x2, x3) ≤ Hb(T x2, S x0) +
ε0

2

(1 − 2bs − bc)
≤ adb(x2,T x0) + b[db(x2, S x0) + cdb(T x2, S x0)]

+
ε0

2

(1 − 2bs − bc)

≤ adb(x2, x1) + bdb(x2, x2) + bcdb(x3, x2) +
ε0

2

(1 − 2bs − bc)
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≤ adb(x2, x1) + bs[db(x2, x3) + db(x3, x2)] + bcdb(x3, x2) +
ε0

2

(1 − 2bs − bc)

⇒ db(x2, x3)(1 − 2bs − bc) ≤ adb(x2, x1) + bsdb(x2, x1) +
ε0

2

(1 − 2bs − bc)

⇒ db(x2, x3) ≤ (a + bs)
(1 − 2bs − bc)

db(x1, x2) +
ε0

2

(1 − 2bs − bc)2 .

Continuing in this way, we obtain a sequence {xn}n∈N such that

db(xn, xn+1) ≤ (a + bs)
(1 − 2bs − bc)

db(xn−1, xn) + εn
1 ∀n ∈ N.

Let k =
(a+bs)

(1−2bs−bc) , then for each n ∈ N, we have
db(xn, xn+1) ≤ k db(xn−1, xn) + εn

1

≤ k[kdb(xn−2, xn−1) + εn−1
1 ] + εn

1

...

≤ kndb(x0, x1) +

n−1∑
r=0

krε1n − r

which shows that,
N∑

n=1

db(xn, xn+1) ≤
N∑

n=1

kndb(x0, x1) +

N∑
n=1

(
n−1∑
r=0

krεn−r
1 )

≤
N∑

n=1

kndb(x0, x1) +

N∑
n=1

εn
1 (

n−1∑
r=0

kr)

≤ db(x0, x1)
N∑

n=1

kn +

N∑
n=1

εn
1 ·

1 − kn

1 − k

< db(x0, x1)
N∑

n=1

kn +

N∑
n=1

εn
1 ·

1
1 − k

⇒
∞∑

n=1

db(xn, xn+1) = db(x0, x1)
∞∑

n=1

kn +
1

1 − k

∞∑
n=1

εn
1

≤ db(x0, x1)
k

1 − k
+

ε1

(1 − k)(1 − ε1)
< ∞.

Hence, we get limn→∞ db(xn, xn+1) = 0.
Now we show that {xn}n∈N is a Cauchy sequence in X. Let m, n > 0 with m > n, and so taking m = n + p, where

p ∈ N, we have
db(xn, xm) = db(xn, xn+p) ≤ sdb(xn, xn+1) + s2db(xn+1, xn+2) + . . . + spdb(xn+p−1, xn+p),

making n→ ∞, we get limn→∞ d(xn, xm) = 0. Hence the sequence {xn} is a Cauchy sequence. As (X, db, s) is complete,
then there exists z ∈ X such that xn → z and so, limn→∞ db(xn, z) = 0.

Now we show that z is a fixed point of T and S . To see this, we have
db(z,Tz) ≤ s[db(z, x2n+2) + db(x2n+2,Tz)]

≤ s[db(z, x2n+2) + Hb(S x2n,Tz)]
≤ s[db(z, x2n+2) + Hb(Tz, S x2n]
≤ s[db(z, x2n+2) + adb(z,T x2n) + b{db(z, S x2n) + cdb(Tz, S x2n}]
≤ s[db(z, x2n+2) + adb(z, x2n+1) + b{db(z, x2n+2) + cdb(Tz, x2n+2}]
≤ s[db(z, x2n+2) + adb(z, x2n+1) + bdb(z, x2n+2)

+bcs{db(Tz, z) + db(z, x2n+2)}].
Letting n → ∞ in the inequality above, we obtain db(z,Tz) ≤ s2bcdb(z,Tz), then we have db(z,Tz) = 0 (since
b + bc < 1

s2 ), i.e. z ∈ Tz. Hence F(T ) , φ, where F(T ) denotes the collection of fixed points of T . Also,
Hb(Tz, S z) ≤ adb(z,Tz) + b[db(z, S z) + cdb(Tz, S z)]
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≤ bdb(z, S z) + bcdb(z, S z)
≤ (b + bc)Hb(Tz, S z),

thus Hb(Tz, S z) = 0, i.e., Tz = S z. Hence F(S ) , φ, here F(S ) is the set of fixed points of S .
We arrive at the proof of our final result which require the following steps:

1. F(T ) = Tz,
2. S x = T x for all x ∈ F(T ),
3. F(T ) = F(S ).

Firstly, let x ∈ F(T ), i.e. x ∈ T x,

db(x,Tz) ≤ Hb(T x,Tz)
≤ Hb(T x, S z)
≤ adb(x,Tz) + b[db(x, S z) + cdb(T x, S z)]
≤ adb(x,Tz) + bdb(x,Tz) + bcdb(x, S z)
≤ adb(x,Tz) + bdb(x,Tz) + +bcdb(x,Tz),

thus db(x,Tz) = 0, i.e., x ∈ Tz. Hence T x ⊂ Tz and F(T ) ⊂ Tz.
Now, let x ∈ Tz. We show that x ∈ T x

db(x,T x) ≤ Hb(Tz,T x)
≤ Hb(S z,T x)
≤ Hb(T x, S z)
≤ adb(x,Tz) + b[db(x, S z) + cdb(T x, S z)]
≤ adb(x,Tz) + bdb(x, S z) + +bcdb(T x, S z)
≤ adb(x, x) + bdb(x, x) + bcdb(T x, x).

Thus db(x,T x) = 0, i.e., x ∈ T x. Hence Tz ⊂ T x, Tz ⊂ F(T ), and so F(T ) = Tz.
Next, we show that T x = S x. For all x ∈ F(T ), we get

Hb(T x, S x) ≤ adb(x,T x) + b[db(x, S x) + cdb(T x, S x)]
≤ adb(x,T x) + bdb(x, S x) + bcdb(x, S x)
≤ bdb(x, S x) + bcdb(x, S x)
≤ (b + bc)db(x, S x)
≤ (b + bc)Hb(T x, S x),

thus Hb(T x, S x)] = 0, i.e., T x = S x for all x ∈ F(T ).
Now, we show that F(T ) = F(S ). Let x ∈ F(T ), i.e. x ∈ T x. By previous result T x = S x, we get x ∈ S x ⇒ x ∈

F(S ), so we automatically get F(T ) ⊂ F(S ).
It remains to show that F(S ) ⊂ F(T ). Let x ∈ F(s), i.e. x ∈ S x

db(x,T x) ≤ Hb(S x,T x)
≤ adb(x,T x) + b[db(x, S x) + cdb(T x, S x)]
≤ adb(x,T x) + bdb(x, S x) + bcdb(T x, S x)
≤ adb(x,T x) + bdb(x,T x) + bcdb(T x, x)
≤ (a + b + bc)db(T x, x),

thus db(x,T x) = 0, i.e., x ∈ T x, and we get F(S ) = F(T ). Hence F(T ) = F(S ) , φ and S x = T x = F(T ) for all
x ∈ F(T ).

At last, we have to show that the common fixed point is unique. Let z, v be two common fixed points of T and S
such that u , v. Then,

db(u, v) ≤ Hb(Tz,Tv)
≤ Hb(Tz, S v)
≤ adb(z,Tv) + b[db(z, S v) + cdb(Tz, S v)]
≤ adb(z,Tv) + bdb(z, S v) + bcdb(z, v)
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⇒ (1 − bc)db(z, v) ≤ adb(z,Tv) + bdb(z, S v)
≤ adb(z,Tv) + bdb(z,Tv)

⇒ db(z, v) = 0, i.e., z = v.

which completes the proof.
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