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Abstract

In this paper, we study the growth of generalised iterated entire functions which improve and generalise some
earlier results.
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1. Introduction
Let f(z) = X", anz" be an entire function defined in the open complex plane C. Then M(r, f) = maxp=,|f(z)| is
called maximum modulus function and

1 21 )
T, = 5- fo log* £ (redo

is Nevanlinna characteristic function of f(z).
For any two transcendental entire functions f(z) and g(z), J. Cluni [3] proved that lim,_,
T(r.fo8)

T(r.fo8)
T(r.f)

lim, 0 = oo. Later on Singh [14] investigated some comparative growth of logT (v, f,g) and T (r, f). Further in
[14] he raised the problem of investing the comparative growth of logT (r, f,g) and T (r, g). However some results on
the comparative growth of logT (r, f,g) and T(r, g) are proved in [9].

Recently Banerjee and Dutta [1], and Dutta [4, 5, 6] made close investigation on comparative growth properties of
iterated entire functions to generalise some earlier results. Also Dutta [7], investigated comparative growth property
of generalise iterated entire functions.

= oo and

In order to study the growth properties of generalised iterated entire functions, it is very much necessary to mention
some relevant notations and definitions which refer to [8].

Definition 1.1. The order py and lower order Ay of a meromorphic function f(z) is defined as

. log T'(r, f)
=1 e e/
pr =tim s S
and oo T
A = lim inf 28700)

r—co  logr

If f(2) is entire then
loglog M(r, f)

=1
pr=1m rsgg logr
and s lon M
A = lim inf 210M])
' r—oo logr

Definition 1.2. The hyper order p; and hyper lower order Ef of a meromorphic function f(z) is defined as

. loglog T'(r, f)
Pr = lim sup T
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and
loglog T'(7, f)

As = lim inf
£=m rlgoo logr
If f(2) is entire then
— log® M(r, f)
= lim su
pf r%g log r
and 4
— log™! M(r,
A; = lim inf log” M(r. f)
r—0c0 log r

Definition 1.3. A function A4(r) is called a lower proximate order of a meromorphic function f(z) if
(i) A¢(r) is nonnegative and continuous for r > ry, say;
(ii) A¢(r) is differentiable for r > rq except possibly at isolated points at which /l}(r —0) and /l/f(r + 0) exist;
(iii) lim, 0o A¢(r) = Ay < 00;
(iv) lim,_,, r/l}(r) logr =0, and
I(rnf) _ 1.

(v) liminf,_,q T =

In 2011, Banerjee and Dutta [1] proved the following results:
Theorem A ([1]). Let f and g be two non-constant entire functions such that 0 < Ay < py < 00 and 0 < 1, < pg < oo,
Then fork =0,1,2,3, ...

1 [n+1]T - fa 1 [n+1]T £, —_—
<lim inf 28 TS iy 1087 T Ps

roe log T(r, g®) roeo log T(r,g®) — 2~

LT EN

when n is even and

A 1 [n+1] T i 1 [n+1] T i -
Y < im nf 08T S) o lo8T TPy

or r—e log T(r, f®) e log T(r, f®) = a5

when n is odd, where f® denote the k-th derivative of f.
Theorem B ([1]). Let f and g be two non-constant entire functions such that 0 < Ay < py < 00 and 0 < A, < pg < o,
Then
P! log™ T(r, f, log" T(r, £,
O 2% <lim inf 2 TCI) iy qup 0TS P
Py r—co log T(r,8) roe log T(r, g) Ag

b}

when n is even and

Ar log™ T i log™ T i .
i) 2 <tim inf 8 TCI) g gy g 8T TS Py

pf r—o0 log T(r,f) r—oo IOg T(I",f) - /lf7
when n is odd.
Theorem C ([1]). Let f and g be two entire functions such that 0 < Ay < py < 0 and 0 < A, < p, < co. Then for
k=0,1,2,3,..
A log"™ T(r, £, log" T(r, f,
() =% <lim inf og—(rf) < lim sup og—(rf) < &,
pr e log TG f®) T SR log T(rn f®) T Ay
when n is even and ] o]
/l 1 & T n . 1 " T sJn
i) 2L < lim inf & LCI) o 08 TS Pr
Py r- log T(r,g®) reo log T(r,g®) = A

when n is odd.

In this paper we consider three entire functions f (z), g (z) and 4 (z) and following Banerjee and Mandal [2] form
the iterations of f (z) with respect to g (z) and h(z) [define below] and generalise the Theorem A, Theorem B and
Theorem C of Banerjee and Dutta [1] in this direction.

Definition 1.4 ([2]). Let f(z), g(z) and h(z) be three entire functions defined in the open complex plane. Then the
generalise iterations of f(z) with respect to g(z) and h(z) are defined as follows:

f1 @ f@,
@ f(g@)=f(g1 @),
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L@ = fgh)=f(ghi () =[(g20),
fa@ = f(f@)))=f(gh()=1f(g3()

@ = f(gth(f..(f (z) org(z) orh(z) according asn =3m—2 or3m—1
or3m)...)))

= f(8n1(@) = f(gh2(2).

Similarly,
g1(@m = g@,
8@ = gh@)=gl (),
g@ = gh(f@)=¢gh(fi@)=g0(2),
g1(@ = gh(f(g@)N)=gh(f2() =ghs;(2),
gn(@ = gh(f(g...(g(2) orh(z) or f(z) according asn =3m —2 or3m — 1
or3m)...)))
= g1 (2) = g(h(fu2(2)),
and

h () = h),

hh(z) = h(f@)=h(f{i @),

h3(z) = h(f(g@))=h(f(g1@))=r(2(2),
hy(z) = h(f(gh(@)))=h(f(g@))=nr(@),

h,(z) = h(f(gh...(h(z) or f(2) or g(z) according asn =3m—2 or3m—1
or3m)...)))
= h(fim1 (@) =h(f(g2@)).

Clearly all f,(z), g.(z) and h,(z) are entire functions.

Notation 1.1 ([13]). Let log!"x = x, exp!®'x = x and for positive integer m, log"'x = log(log" x), exp™x =
exp(exptx).

Throughout we assume f(z), g(z), h(z) etc. are non constant entire functions having respective orders py, pg, o, and
respective lower orders Ay, Ag, A, Also we do not explain the standard notations and definitions of the theory of entire
and meromorphic functions because those are available in [8].

2. Main results
The following lemmas will be needed in the sequel.

Lemma 2.1 ([8]). Let f(z) be an entire function. For 0 < r < R < oo, we have
R
T(:f) < log" M(r, f) < 7 T(R. ).
Lemma 2.2 ([12]). Let f(z) and g(z) be two entire functions. Then we have

! |
T(, f(8) > 5 1ogM(§M(£,g) + 0(1),f).

Lemma 2.3 ([10]). Let f be an entire function. Then for k > 2,

log*11 M1
lim inf ngz—(r’f) - 1.
r—00 log[ -2] T(r, f)
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Lemma 2.4 ([11]). Let f (z) be a meromorphic function. Then for 6(> 0) the function rY =) is an increasing

function of r.

Lemma 2.5 ([7]). Let f(2), g(z) and h(z) be three non-constant entire functions of finite order and nonzero lower

order. Then for any & (0 < & <min{Ay, Ag, A4}),
(pg + &) log M(r, h) + O(1)
log" 7@, £,) <3 (on + &) log M(r, f) + O(1)

and

(A = &)log M (3. h) + O(1)  when n = 3m,
log" N T(r, fi) 2§ (hh—e) IOgM(#I’f) +0(1)  whenn=3m+1,
(Ar — &) log M (75.8) + O(1)  whenn =3m+2.

whenn = 3m,
whenn =3m+ 1,
(or +&)logM(r,g) + O(1) whenn =3m+2

Theorem 2.1. Let f(z), g(z) and h(z) be three non-constant entire functions of finite order and nonzero lower order.

Then fork =0,1,2,3, ...

/_1 log"+1l T £ 1 [n+1] T, f, vy
2 < lim inng—(rf)Slimsup 08 “\hja) (rf)s'%,
Ph r—oo log T(r, h(k)) r—oo 10g T(r, h(k)) /1/1
when n = 3m
and _ 1] (1]
A log"* ' T(r, £, . log™ " T(r, £,
_f S lim inf Og—(r‘f) S llm Sup Og—(r‘f) < —
Ps r=e log T(r, f®) row log T(r, f®)
whenn =3m+ 1. Also whenn =3m + 2,
/_l 1 [n+1] T i 1 [n+1] T .
pe e log T(rg®) 2R Tog T, M)

where f®,g® K® denote the k-th derivative of f, g, h respectively and m is positive integer.
4 8 )4 y p g

Proof.  First suppose that n = 3m, then for given (0 < & < min{dy, A, 43}), we get from Lemma 2.5, for all large

values of r,

log"™ " T(r, f) > (/lg—a)logM(
.
> (/lg—s)T(M—_l,h)+O(1),
thatis, log™ T(r, f) > 1ogT(ML_1,h)+0(1).
So, log T(r, f) > 1og12'T(L h)+0(1).

4n—1 ’
Therefore for all large values of r,

log"* 1 7(r £,) _ log™ T(3.h)  log -

log T(r,h®) —  log 75  log T(r,h®)

Since
. log T'(r, )
lim sup ——— =

Ph>
r—o0 10g r

so for all large values of r and arbitrary £ > 0, we have

log T'(r, hP) < (o + €) logr.

Since € > 0 is arbitrary, so from (2.1) and (2.2) we have

logr —log 4n-1

1 [n+1|T - long %’
lim inf 28 TS ing (&
Do Tlog T(r, h®) e log 7
> M
Ph

2.1)

(2.2)

(2.3)
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Again from Lemma 2.5, for all large values of r,
log""" T(r, ) (o +&)log M(r,h) + O(1)

log" " T(r. fu) _ log" M(r. )
log T(r,h®) = log T(r,h®)

IA

+o(1). 24

Therefore ©
log T(r, K
Jim inf 22TCAT) )

hs
r—oco logr

so for all large values of r and arbitrary (0 < & < 4;,), we have

log T(r, AP > (A, — &) log r-. (2.5)
Since € > 0 is arbitrary, so from (2.4) and (2.5) we have

. log™" " T(r, £) _ pn
1 —_— < —. 2.6
1m rSEEo log T(r,h®) ~ 4, 26)
Combining (2.3) and (2.6) we obtain the first part of the theorem.
Similarly, for n = 3m + 1 and 3m + 2 we get the other results.
This proves the theorem.

Example 2.1. Let f(z) = g(z) = h(z) =expz. Then Ay = 4, = 4, =ps =p, =py = land Ay = A4, = 4, = p; = pg =
o = 0.

Now
fn(Z) = exp” Z.
Therefore,
T(r, f,) < log M(r, f,) = exp"” ! r.
So,
logln+1l T(r,f) < logm ’
Now
lOg T(ry f) = logT(r, g) = logT(r’ h) — log r— lOg -

Therefore

log™ ' 7(r, £,) < log?! r

— 0 as r > coand n = 3m,

logT(r,h) = logr—logn

log™ T(r, £, logt

0g (r, fu) < og }’_)0 as r > ooandn=3m+ 1,
log T'(r, ) loglog r

log" T(r, £, log™?!

og" T'(r, fy) < 8 " .0 asr—ooandn=3m+2.
log T(r,g) logr —logn

Theorem 2.2. Let f(z), g(z) and h(z) be three non-constant entire functions of finite order and nonzero lower order.
Then

Ap log™ T L 1 [n]T,n

(i) == <lim inf log " T /0) <1 Slimsupog—(rf) <P
Ph r—eo log T(r, h) roe0 log T(r, h) A

when n = 3m

and

pl loe™ T £, log" T - fa
i) 2 <lim inf 2 LEI) iy g 108 TSPy
o r—eo log T(r, f) roe 1l0g T(1, f) Ay

whenn =3m+ 1.
Also whenn =3m+ 2,

1 log™ T(r, 1, log T(r, £,
(iii)—ggliminfog—(rf)glslimsu og" T(r fu) _ Ps

o rooo log T(r, g) rooo log T(r,8) ~— A
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Proof.  First suppose that n = 3m, then for given £(0 < & < min{dy, A,, 4;}), we get from Lemma 2.5, for all large

values of r
log"™ M T(r, ) < (o +&)log M(r,h) + O(1)
ie. log" T(r,f) < log® M(r,h) +O(1)
[n] 2]
log™ T(r, f) < log'“! M(r, h) +o(l),
log T(r, h) log T(r,h)
log™ T £,
i.e. lim inf og—(rf) 1 [by Lemma 2.3].
r—co log T(r, h)
Also,
log" ! T(r, £) > (/lf—s)logM(ML_l,h)+0(l),
ie. log" T(rf) > log[z]M(ML_],h)+0(l).
Therefore,
log" 7 £ loeT(#.4) (logr—logay | 0
log T(r,h) log 5= pnlog r ©
[n]
ie. liminf Q& LSl A
r—co log T(r, h) Oh

Also from (2.7), we get for all large values of r,
log™ T(r, £,) < log® M(r,h) logr
log T(r,h) — logr log T'(r, h)

lim sup —log[”] T Ju) < br
row logT(r,h)  — A

o(1).

Therefore

Again from Lemma 2.5,

_ r
log" ! T(r, f) > (Af-—g)logM(m,h)+0(1)
ie. log" T(rf) > 1og[2]M(M%l,h)+0(1).
Let 0 < & <min{1, Ay, 4,, 43}. Since
TRy
hmr14r>1£o rflh(") - 1’

there is a sequence of values of r tending to infinity, for which
T(r,h) < (1 + )rt
and for all large value of r,
T(r,h) > (1 — e)r’,
From (2.13), we obtain for all large values of  and 6 > 0, also for (0 < & < 1)
r A+
(#)

()

.
logM(F,h) > (I-g)

> 1= e
= @rhylts

)

because r4+9-4" ig an increasing function of r.
So by (2.12), we get for a sequence of value of r tending to infinity,

r 1-¢
logM(Mfl’h) = Tre@um

log T'(r, h) + O(1).

T(r,h)

\

i.e. logm M( d ,h)
4n-1

Now from (2.11) and (2.14),

- log" TG )

1 — >

1m rSB?O log T(r, h)
So the theorem follows from (2.8), (2.9), (2.10) and (2.15), when 7 is even.
Similarly, when for n = 3m + 1 and 3m + 2 we get the results (ii) and (iii) respectively.

2.7)

(2.8)

2.9

(2.10)

@2.11)

2.12)

(2.13)

(2.14)

(2.15)
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Corollary 2.1. Using the hypothesis of Theorem 2.3 if f, g and h are of regular growth then

log" T(r, ) . log" T(r,f) . log" T(r, f,)
i = lim = lim —=—J70 _
r—c log T(r, f) r—c log T(r, g) r—c log T(r, h)

Remark 2.1. The conditions Ay, Ag, Ay > 0 and py, pg, pj < o0 are necessary for Theorem 2.3 and Corollary 2.1, which
are shown by the following examples.

Example 2.2. Let f(z) = z,8(z) = h(z) =expz. Then Ay = py =0and 0 < A, = A, = pg = pj, < 00.
Now when n = 3m,

2n
3

fu(2) = expl3z.
Therefore, ,
T(r, f,) < log M(r, f,) = expl™ 1 r.
So,
log™ T(r, f,) < log[”](exp[%_l] r)
= logl"_%Jr1| r
= logh*r.

Also whenn =3m + 1,
2(n—1)

fi@) =expt™s 2

Therefore,
2(n-1)
T, 1) < log MO ) = expl™51) .
So,
log™ T(r, £,) < log™(exp!™5 1)
= loghh= 51,
— log[%ﬂ] -
Ifn=3m+2, -
fu(@) =expl T 1z
Therefore, B
T(r, f) <logM(r, f,) = expl 5 7.
So,
log" T(r, £) < log"(exp!™™~117)
= 1 [n-2=141]
= Og 3 r
= log'v*!p.
Now
log T(r, f) = loglog r, log T(r,g) = logr —logn and log T(r, h) = log r — log .
Therefore

log"' T(rnfy) _ _logh*!r

— 0 as r » oo and n = 3m,

logT(r,h) = logr—lognm

log™ T £, 1 [22+1]

og™ T(r, fn) < 0g r_>() as r »ooandn =3m+ 1,
log T(r, f) loglogr

log™ T ; 1 [=+1]

og" T'(r, fu) < 27 7 .0 asr—ocoandn=3m+2.
log T(r, g) logr —logn
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Example 2.3. Let f(z) = exp'® z,g(z) = h(z) = expz. Then 4y = py =00, Ay = A, =p, =pp = L.
Now when n = 3m, \
fr(2) = explilz.

Therefore
3T(2r3ﬁl) > IOgM(V,ﬁ,) = exp[%n_l]r
1 H
ie. T(rf) > 3 expl® Ul %
log" T /) = log"(exp! ¥ 2+ 0(1)

= exp[%_l] % +o(1).

Also whenn =3m + 1, .
fu(2) = expt s 1z

Therefore
3TQrf) > logM(r, f,) = expl™s 1
1 2
ie. T(r,f,) = 3 exp[%] %
log" T(r. f) > log"(exp!"51 =) +o(1)
= explT 1= +o(1)
Ifn=3m+2, "
fu@) = expt™ 1z
Therefore
372 f) = logM(r, f,) = expl™s "7
1
ie. T(r,f,) = 3 exp[AT] %
log" 7( fy) > log"(exp! 51 2) + o(1)
= exp! L +o(1)
5 .
If -
T(r,f)<e and T(r,g) = T(r,h) = —.
T
Therefore
log™ T(r, f, expl3~U L +o(1
Og—(r"f) 2 p—z()ﬁmasr_)ooandnzsm’
log T'(r, h) logr —logm
log™ T(r, £, expl'T1 £ +o(1
og—(rf) > p—z()—>oo as r—oooandn=3m+1,
logT(r, f) r
log' T expl'5 L + o(1
og—(r,fn) > p—z()—>oo as r »ocoandn =3m+ 2.
log T(r, ) logr —lognm

Theorem 2.3. Let f, g and h be three entire functions such that 0 < Ay < py < 00,0 < Ay < p, < c0oand 0 < 4, <
pp < o0o. Then fork =0,1,2,3, ...

An log™ T(r, f, log™ T(r, f,
O M < gimint & TCS) o 08T T o
pr ro log T(r, f®) row log T(r, f®) = Af
1 log" T(r, £, log" T(r, f, )
i) M < fim ing TS 08 TS o
Pg r—e log T(r, g0) rooo log T(r,g®) = A,
when n = 3m and
Ay log" T(r, f, log" T(r, f, :
(iii) el < lim inf o8 L Jn) (F’ch) < lim sup og 1 Jn) (r,]]:) < &,
Pg r—co log T(r, g®) roo0 log T(r,g®) ~ 2,
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A
(iv) =L
Ph

whenn =3m + 1.
Also whenn =3m + 2,

Q) A
pr

A
i) =
Ph

log" T(r, f,)

< llmrlilgo Iog T 1) <l
log™ T(r, f,
< liminf (28 T/
F—00 log T(r’ f(k))
log™ T(r, f,
< lim inf 28 T /0)

rhe Tog T(r, h®) =

< lim su

log" T(r.fu) _ Py

R Jog T(ron®) = 2,

sup log™ T(r, f,) P
r—00 log T(r,f(k)) - /lf’

Sl TG _pe
log T(r,h®) — A,

r—co

Proof. First suppose that n = 3m, then for given & (0 < & < min{Ay, A,, 4;}), we have from Lemma 2.5, for all large

values of r,

i.e.

Also we know that

Now

lim sup

r—0o0

log™ T(r, f,) B
log T(r, f®) ~

log™ " 7(r, f) <
log" T(r, f) <

lim inf
r—oo

logr

lim sup

r—00

IA

lim sup [

r—o0
P
vy ’

Again from Lemma 2.5, we have for all large values of r,

lo

ie.,
Also

Therefore,

Since € > 0 is arbitrary, we get

g T f)

v

\

logh" T(r. ) >

(pg + &) log M(r, h) + O(1)
log! M(r, h) + O(1).

loc T (k)
og T f™) _
log!?! M(r, h)

log T(r, f®)
log!! M(r, h)

(g - &) logM(

(g = 2
(A —e)log r+ O(1).

logr ]

logr log T(r, f®)

(2.16)

r
4n-1 ’

4 ))/’_8 +0(1)

h) +0(1)

4n—1

log T(r, f©) < (os + &) log r.

log" T(r, f,)

(A —e)log r+ O(1)

log T(r, f®) ~

lim inf

log"' T(r f) _ An
= log T(r, f®) =

(or+e)log r

—. (2.17)
Pr

Therefore from (2.16) and (2.17), we have the result (i) for n = 3m.

Similarly we get other results.

This proves the Theorem.

3. Conclusion

Some growth properties of iterated entire functions with non zero finite iterated order with respect to their Nevanlinna
characteristic function have been discussed in this article. Similar study may be done with respect to maximum terms.
These results may be applied to the growth of entire solution of complex differential equations. These applications are

open for further research works.
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