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Abstract

In this paper, we study the growth of generalised iterated entire functions which improve and generalise some
earlier results.
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1. Introduction
Let f (z) =

∑∞
n=0 anzn be an entire function defined in the open complex plane C. Then M(r, f ) = max|z|=r | f (z)| is

called maximum modulus function and

T (r, f ) =
1

2π

∫ 2π

0
log+| f (reiθ)|dθ

is Nevanlinna characteristic function of f (z).
For any two transcendental entire functions f (z) and g(z), J. Cluni [3] proved that limr→∞

T (r, f◦g)
T (r, f ) = ∞ and

limr→∞
T (r, f◦g)

T (r,g) = ∞. Later on Singh [14] investigated some comparative growth of logT (r, fog) and T (r, f ). Further in
[14] he raised the problem of investing the comparative growth of logT (r, fog) and T (r, g). However some results on
the comparative growth of logT (r, fog) and T (r, g) are proved in [9].

Recently Banerjee and Dutta [1], and Dutta [4, 5, 6] made close investigation on comparative growth properties of
iterated entire functions to generalise some earlier results. Also Dutta [7], investigated comparative growth property
of generalise iterated entire functions.

In order to study the growth properties of generalised iterated entire functions, it is very much necessary to mention
some relevant notations and definitions which refer to [8].

Definition 1.1. The order ρ f and lower order λ f of a meromorphic function f (z) is defined as

ρ f = lim sup
r→∞

log T (r, f )
log r

and
λ f = lim inf

r→∞
log T (r, f )

log r
.

If f (z) is entire then

ρ f = lim sup
r→∞

log log M(r, f )
log r

and
λ f = lim inf

r→∞
log log M(r, f )

log r
.

Definition 1.2. The hyper order ρ f and hyper lower order λ f of a meromorphic function f (z) is defined as

ρ f = lim sup
r→∞

log log T (r, f )
log r
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and
λ f = lim inf

r→∞
log log T (r, f )

log r
.

If f (z) is entire then

ρ f = lim sup
r→∞

log[3] M(r, f )
log r

and

λ f = lim inf
r→∞

log[3] M(r, f )
log r

.

Definition 1.3. A function λ f (r) is called a lower proximate order of a meromorphic function f (z) if
(i) λ f (r) is nonnegative and continuous for r ≥ r0, say;
(ii) λ f (r) is differentiable for r ≥ r0 except possibly at isolated points at which λ

′
f (r − 0) and λ

′
f (r + 0) exist;

(iii) limr→∞ λ f (r) = λ f < ∞;
(iv) limr→∞ rλ

′
f (r) log r = 0; and

(v) lim infr→∞
T (r, f )
rλ f (r) = 1.

In 2011, Banerjee and Dutta [1] proved the following results:
Theorem A ([1]). Let f and g be two non-constant entire functions such that 0 < λ f ≤ ρ f < ∞ and 0 < λg ≤ ρg < ∞.
Then for k = 0, 1, 2, 3, ...

λg

ρg
≤ lim inf

r→∞
log[n+1] T (r, fn)
log T (r, g(k))

≤ lim sup
r→∞

log[n+1] T (r, fn)
log T (r, g(k))

≤ ρg

λg
,

when n is even and
λ f

ρ f
≤ lim inf

r→∞
log[n+1] T (r, fn)
log T (r, f (k))

≤ lim sup
r→∞

log[n+1] T (r, fn)
log T (r, f (k))

≤ ρ f

λ f
,

when n is odd, where f (k) denote the k-th derivative of f .
Theorem B ([1]). Let f and g be two non-constant entire functions such that 0 < λ f ≤ ρ f < ∞ and 0 < λg ≤ ρg < ∞.
Then

(i)
λg

ρg
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, g)

≤ 1 ≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, g)

≤ ρg

λg
,

when n is even and

(ii)
λ f

ρ f
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, f )

≤ 1 ≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, f )

≤ ρ f

λ f
,

when n is odd.
Theorem C ([1]). Let f and g be two entire functions such that 0 < λ f ≤ ρ f < ∞ and 0 < λg ≤ ρg < ∞. Then for
k = 0, 1, 2, 3, ...

(i)
λg

ρ f
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, f (k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, f (k))

≤ ρg

λ f
,

when n is even and

(ii)
λ f

ρg
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, g(k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, g(k))

≤ ρ f

λg
,

when n is odd.

In this paper we consider three entire functions f (z) , g (z) and h (z) and following Banerjee and Mandal [2] form
the iterations of f (z) with respect to g (z) and h (z) [define below] and generalise the Theorem A, Theorem B and
Theorem C of Banerjee and Dutta [1] in this direction.

Definition 1.4 ([2]). Let f (z), g(z) and h(z) be three entire functions defined in the open complex plane. Then the
generalise iterations of f (z) with respect to g(z) and h(z) are defined as follows:

f1 (z) = f (z) ,
f2 (z) = f (g (z)) = f (g1 (z)) ,
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f3 (z) = f (g (h (z))) = f (g (h1 (z))) = f (g2 (z)) ,
f4 (z) = f (g (h ( f (z)))) = f (g (h2 (z))) = f (g3 (z))

...

fn (z) = f (g(h( f ..( f (z) or g (z) or h (z) according as n = 3m − 2 or 3m − 1
or 3m)...)))

= f (gn−1 (z)) = f (g (hn−2 (z))) .

Similarly,

g1 (z) = g (z) ,
g2 (z) = g (h (z)) = g (h1 (z)) ,
g3 (z) = g (h ( f (z))) = g (h ( f1 (z))) = g (h2 (z)) ,
g4 (z) = g (h ( f (g (z)))) = g (h ( f2 (z))) = g (h3 (z)) ,

...

gn (z) = g(h( f (g...(g (z) or h (z) or f (z) according as n = 3m − 2 or 3m − 1
or 3m)...)))

= g (hn−1 (z)) = g (h ( fn−2 (z))) ,

and

h1 (z) = h (z) ,
h2 (z) = h ( f (z)) = h ( f1 (z)) ,
h3 (z) = h ( f (g (z))) = h ( f (g1 (z))) = h ( f2 (z)) ,
h4 (z) = h ( f (g (h (z)))) = h ( f (g2 (z))) = h ( f3 (z)) ,

...

hn (z) = h( f (g(h...(h (z) or f (z) or g (z) according as n = 3m − 2 or 3m − 1
or 3m)...)))

= h ( fn−1 (z)) = h ( f (gn−2 (z))) .

Clearly all fn(z), gn(z) and hn(z) are entire functions.

Notation 1.1 ([13]). Let log[0]x = x, exp[0]x = x and for positive integer m, log[m]x = log(log[m−1]x), exp[m]x =

exp(exp[m−1]x).

Throughout we assume f (z), g(z), h(z) etc. are non constant entire functions having respective orders ρ f , ρg, ρh and
respective lower orders λ f , λg, λh. Also we do not explain the standard notations and definitions of the theory of entire
and meromorphic functions because those are available in [8].

2. Main results
The following lemmas will be needed in the sequel.

Lemma 2.1 ([8]). Let f (z) be an entire function. For 0 ≤ r < R < ∞, we have

T (r, f ) ≤ log+ M(r, f ) ≤ R + r
R − r

T (R, f ).

Lemma 2.2 ([12]). Let f (z) and g(z) be two entire functions. Then we have

T (r, f (g)) ≥ 1
3

log M
(

1
8

M
( r
4
, g

)
+ O(1), f

)
.

Lemma 2.3 ([10]). Let f be an entire function. Then for k > 2,

lim inf
r→∞

log[k−1] M(r, f )
log[k−2] T (r, f )

= 1.
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Lemma 2.4 ([11]). Let f (z) be a meromorphic function. Then for δ(> 0) the function rλ f +δ−λ f (r) is an increasing
function of r.

Lemma 2.5 ([7]). Let f (z), g(z) and h(z) be three non-constant entire functions of finite order and nonzero lower
order. Then for any ε (0 < ε <min{λ f , λg, λh}),

log[n−1] T (r, fn) ≤


(ρg + ε) log M(r, h) + O(1) when n = 3m,
(ρh + ε) log M(r, f ) + O(1) when n = 3m + 1,
(ρ f + ε) log M(r, g) + O(1) when n = 3m + 2

and

log[n−1] T (r, fn) ≥


(λg − ε) log M

(
r

4n−1 , h
)

+ O(1) when n = 3m,
(λh − ε) log M

(
r

4n−1 , f
)

+ O(1) when n = 3m + 1,
(λ f − ε) log M

(
r

4n−1 , g
)

+ O(1) when n = 3m + 2.

Theorem 2.1. Let f (z), g(z) and h(z) be three non-constant entire functions of finite order and nonzero lower order.
Then for k = 0, 1, 2, 3, ...

λh

ρh
≤ lim inf

r→∞
log[n+1] T (r, fn)
log T (r, h(k))

≤ lim sup
r→∞

log[n+1] T (r, fn)
log T (r, h(k))

≤ ρh

λh
,

when n = 3m
and

λ f

ρ f
≤ lim inf

r→∞
log[n+1] T (r, fn)
log T (r, f (k))

≤ lim sup
r→∞

log[n+1] T (r, fn)
log T (r, f (k))

≤ ρ f

λ f
,

when n = 3m + 1. Also when n = 3m + 2,

λg

ρg
≤ lim inf

r→∞
log[n+1] T (r, fn)
log T (r, g(k))

≤ lim sup
r→∞

log[n+1] T (r, fn)
log T (r, g(k))

≤ ρg

λg
,

where f (k), g(k), h(k) denote the k-th derivative of f , g, h respectively and m is positive integer.

Proof. First suppose that n = 3m, then for given ε(0 < ε < min{λ f , λg, λh}), we get from Lemma 2.5, for all large
values of r,

log[n−1] T (r, fn) ≥ (λg − ε) log M
( r
4n−1 , h

)
+ O(1)

≥ (λg − ε)T
( r
4n−1 , h

)
+ O(1),

that is, log[n] T (r, fn) ≥ log T
( r
4n−1 , h

)
+ O(1).

So, log[n+1] T (r, fn) ≥ log[2] T
( r
4n−1 , h

)
+ O(1).

Therefore for all large values of r,

log[n+1] T (r, fn)
log T (r, h(k))

≥
log[2] T

(
r

4n−1 , h
)

log r
4n−1

.
log r

4n−1

log T (r, h(k))
+ o(1). (2.1)

Since

lim sup
r→∞

log T (r, h(k))
log r

= ρh,

so for all large values of r and arbitrary ε > 0, we have

log T (r, h(k)) < (ρh + ε) log r. (2.2)

Since ε > 0 is arbitrary, so from (2.1) and (2.2) we have

lim inf
r→∞

log[n+1] T (r, fn)
log T (r, h(k))

≥ lim inf
r→∞

log[2] T
(

r
4n−1 , h

)
log r

4n−1

.

(
log r − log 4n−1

ρh log r

)
≥ λh

ρh
. (2.3)
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Again from Lemma 2.5, for all large values of r,

log[n−1] T (r, fn) ≤ (ρ f + ε) log M(r, h) + O(1)

i.e.
log[n+1] T (r, fn)
log T (r, h(k))

≤ log[3] M(r, h)
log T (r, h(k))

+ o(1). (2.4)

Therefore

lim inf
r→∞

log T (r, h(k))
log r

= λh,

so for all large values of r and arbitrary ε(0 < ε < λh), we have

log T (r, h(k)) > (λh − ε) log r. (2.5)

Since ε > 0 is arbitrary, so from (2.4) and (2.5) we have

lim sup
r→∞

log[n+1] T (r, fn)
log T (r, h(k))

≤ ρh

λh
. (2.6)

Combining (2.3) and (2.6) we obtain the first part of the theorem.
Similarly, for n = 3m + 1 and 3m + 2 we get the other results.
This proves the theorem.

Example 2.1. Let f (z) = g(z) = h(z) = exp z. Then λ f = λg = λh = ρ f = ρg = ρh = 1 and λ f = λg = λh = ρ f = ρg =

ρh = 0.
Now

fn(z) = expn z.

Therefore,
T (r, fn) ≤ log M(r, fn) = exp[n−1] r.

So,

log[n+1] T (r, fn) ≤ log[2] r.

Now
log T (r, f ) = logT (r, g) = logT (r, h) = log r − log π.

Therefore
log[n+1] T (r, fn)

log T (r, h)
≤ log[2] r

log r − log π
→ 0 as r → ∞ and n = 3m,

log[n] T (r, fn)
log T (r, f )

≤ log[2] r
log log r

→ 0 as r → ∞ and n = 3m + 1,

log[n] T (r, fn)
log T (r, g)

≤ log[2] r
log r − log π

→ 0 as r → ∞ and n = 3m + 2.

Theorem 2.2. Let f (z), g(z) and h(z) be three non-constant entire functions of finite order and nonzero lower order.
Then

(i)
λh

ρh
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, h)

≤ 1 ≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, h)

≤ ρh

λh
,

when n = 3m
and

(ii)
λ f

ρ f
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, f )

≤ 1 ≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, f )

≤ ρ f

λ f
,

when n = 3m + 1.
Also when n = 3m + 2,

(iii)
λg

ρg
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, g)

≤ 1 ≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, g)

≤ ρg

λg
.
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Proof. First suppose that n = 3m, then for given ε(0 < ε < min{λ f , λg, λh}), we get from Lemma 2.5, for all large
values of r

log[n−1] T (r, fn) ≤ (ρg + ε) log M(r, h) + O(1)
i.e. log[n] T (r, fn) ≤ log[2] M(r, h) + O(1)

i.e.
log[n] T (r, fn)
log T (r, h)

≤ log[2] M(r, h)
log T (r, h)

+ o(1), (2.7)

i.e. lim inf
r→∞

log[n] T (r, fn)
log T (r, h)

≤ 1 [by Lemma 2.3]. (2.8)

Also,
log[n−1] T (r, fn) ≥ (λ f − ε) log M

( r
4n−1 , h

)
+ O(1),

i.e. log[n] T (r, fn) ≥ log[2] M
( r
4n−1 , h

)
+ O(1).

Therefore,
log[n] T (r, fn)
log T (r, h)

≥
log T

(
r

4n−1 , h
)

log r
4n−1

.

(
log r − log 4n−1

ρh log r

)
+ o(1)

i.e. lim inf
r→∞

log[n] T (r, fn)
log T (r, h)

≥ λh

ρh
. (2.9)

Also from (2.7), we get for all large values of r,
log[n] T (r, fn)
log T (r, h)

≤ log[2] M(r, h)
log r

log r
log T (r, h)

+ o(1).

Therefore

lim sup
r→∞

log[n] T (r, fn)
log T (r, h)

≤ ρh

λh
. (2.10)

Again from Lemma 2.5,

log[n−1] T (r, fn) ≥ (λ f − ε) log M
( r
4n−1 , h

)
+ O(1)

i.e. log[n] T (r, fn) ≥ log[2] M
( r
4n−1 , h

)
+ O(1). (2.11)

Let 0 < ε <min{1, λ f , λg, λh}. Since

lim inf
r→∞

T (r, h)
rλh(r) = 1,

there is a sequence of values of r tending to infinity, for which
T (r, h) < (1 + ε)rλh(r) (2.12)

and for all large value of r,
T (r, h) > (1 − ε)rλh(r). (2.13)

From (2.13), we obtain for all large values of r and δ > 0, also for ε(0 < ε < 1)

log M
( r
4n−1 , h

)
> (1 − ε)

(
r

4n−1

)λh+δ

(
r

4n−1

)λh+δ−λh

(
r

4n−1

)

≥ 1 − ε
(4n−1)λh+δ

rλh(r),

because rλh+δ−λh(r) is an increasing function of r.
So by (2.12), we get for a sequence of value of r tending to infinity,

log M
( r
4n−1 , h

)
≥ 1 − ε

1 + ε

1
(4n−1)λh+δ

T (r, h)

i.e. log[2] M
( r
4n−1 , h

)
≥ log T (r, h) + O(1). (2.14)

Now from (2.11) and (2.14),

lim sup
r→∞

log[n] T (r, fn)
log T (r, h)

≥ 1. (2.15)

So the theorem follows from (2.8), (2.9), (2.10) and (2.15), when n is even.
Similarly, when for n = 3m + 1 and 3m + 2 we get the results (ii) and (iii) respectively.
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Corollary 2.1. Using the hypothesis of Theorem 2.3 if f , g and h are of regular growth then

lim
r→∞

log[n] T (r, fn)
log T (r, f )

= lim
r→∞

log[n] T (r, fn)
log T (r, g)

= lim
r→∞

log[n] T (r, fn)
log T (r, h)

= 1.

Remark 2.1. The conditions λ f , λg, λh > 0 and ρ f , ρg, ρh < ∞ are necessary for Theorem 2.3 and Corollary 2.1, which
are shown by the following examples.

Example 2.2. Let f (z) = z, g(z) = h(z) = exp z. Then λ f = ρ f = 0 and 0 < λg = λh = ρg = ρh < ∞.
Now when n = 3m,

fn(z) = exp[ 2n
3 ] z.

Therefore,
T (r, fn) ≤ log M(r, fn) = exp[ 2n

3 −1] r.

So,

log[n] T (r, fn) ≤ log[n](exp[ 2n
3 −1] r)

= log[n− 2n
3 +1] r

= log[ n
3 +1] r.

Also when n = 3m + 1,
fn(z) = exp[ 2(n−1)

3 ] z.

Therefore,
T (r, fn) ≤ log M(r, fn) = exp[ 2(n−1)

3 −1] r.

So,

log[n] T (r, fn) ≤ log[n](exp[ 2(n−1)
3 −1] r)

= log[n− 2(n−1)
3 +1] r

= log[ n+2
3 +1] r.

If n = 3m + 2,
fn(z) = exp[ 2n−1

3 ] z.

Therefore,
T (r, fn) ≤ log M(r, fn) = exp[ 2n−1

3 −1] r.

So,

log[n] T (r, fn) ≤ log[n](exp[ 2n−1
3 −1] r)

= log[n− 2n−1
3 +1] r

= log[ n+1
3 +1] r.

Now
log T (r, f ) = log log r, log T (r, g) = log r − log π and log T (r, h) = log r − log π.

Therefore
log[n] T (r, fn)

log T (r, h)
≤ log[ n

3 +1] r
log r − log π

→ 0 as r → ∞ and n = 3m,

log[n] T (r, fn)
log T (r, f )

≤ log[ n+2
3 +1] r

log log r
→ 0 as r → ∞ and n = 3m + 1,

log[n] T (r, fn)
log T (r, g)

≤ log[ n+1
3 +1] r

log r − log π
→ 0 as r → ∞ and n = 3m + 2.
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Example 2.3. Let f (z) = exp[2] z, g(z) = h(z) = exp z. Then λ f = ρ f = ∞, λg = λh = ρg = ρh = 1.
Now when n = 3m,

fn(z) = exp[ 4n
3 ] z.

Therefore
3T (2r, fn) ≥ log M(r, fn) = exp[ 4n

3 −1] r

i.e. T (r, fn) ≥ 1
3

exp[ 4n
3 −1] r

2

∴ log[n] T (r, fn) ≥ log[n](exp[ 4n
3 −1] r

2
) + o(1)

= exp[ n
3−1] r

2
+ o(1).

Also when n = 3m + 1,
fn(z) = exp[ 4n+2

3 ] z.

Therefore
3T (2r, fn) ≥ log M(r, fn) = exp[ 4n+2

3 −1] r

i.e. T (r, fn) ≥ 1
3

exp[ 4n−1
3 ] r

2

∴ log[n] T (r, fn) ≥ log[n](exp[ 4n−1
3 ] r

2
) + o(1)

= exp[ n−1
3 ] r

2
+ o(1).

If n = 3m + 2,
fn(z) = exp[ 4n+1

3 ] z.

Therefore
3T (2r, fn) ≥ log M(r, fn) = exp[ 4n+1

3 −1] r

i.e. T (r, fn) ≥ 1
3

exp[ 4n−2
3 ] r

2

∴ log[n] T (r, fn) ≥ log[n](exp[ 4n−2
3 ] r

2
) + o(1)

= exp[ n−2
3 ] r

2
+ o(1).

If
T (r, f ) ≤ er and T (r, g) = T (r, h) =

r
π
.

Therefore
log[n] T (r, fn)

log T (r, h)
≥ exp[ n

3−1] r
2 + o(1)

log r − log π
→ ∞ as r → ∞ and n = 3m,

log[n] T (r, fn)
log T (r, f )

≥ exp[ n−1
3 ] r

2 + o(1)
r

→ ∞ as r → ∞ and n = 3m + 1,

log[n] T (r, fn)
log T (r, g)

≥ exp[ n−2
3 ] r

2 + o(1)
log r − log π

→ ∞ as r → ∞ and n = 3m + 2.

Theorem 2.3. Let f , g and h be three entire functions such that 0 < λ f ≤ ρ f < ∞, 0 < λg ≤ ρg < ∞ and 0 < λh ≤
ρh < ∞. Then for k = 0, 1, 2, 3, ...

(i)
λh

ρ f
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, f (k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, f (k))

≤ ρh

λ f
,

(ii)
λh

ρg
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, g(k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, g(k))

≤ ρh

λg
,

when n = 3m and

(iii)
λ f

ρg
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, g(k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, g(k))

≤ ρ f

λg
,
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(iv)
λ f

ρh
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, h(k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, h(k))

≤ ρ f

λh
,

when n = 3m + 1.
Also when n = 3m + 2,

(v)
λg

ρ f
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, f (k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, f (k))

≤ ρg

λ f
,

(vi)
λg

ρh
≤ lim inf

r→∞
log[n] T (r, fn)
log T (r, h(k))

≤ lim sup
r→∞

log[n] T (r, fn)
log T (r, h(k))

≤ ρg

λh
.

Proof. First suppose that n = 3m, then for given ε (0 < ε < min{λ f , λg, λh}), we have from Lemma 2.5, for all large
values of r,

log[n−1] T (r, fn) ≤ (ρg + ε) log M(r, h) + O(1)
i.e. log[n] T (r, fn) ≤ log[2] M(r, h) + O(1).

Also we know that

lim inf
r→∞

log T (r, f (k))
log r

= λ f .

Now

lim sup
r→∞

log[n] T (r, fn)
log T (r, f (k))

≤ lim sup
r→∞

log[2] M(r, h)
log T (r, f (k))

≤ lim sup
r→∞

[
log[2] M(r, h)

log r
.

log r
log T (r, f (k))

]
=

ρh

λ f
. (2.16)

Again from Lemma 2.5, we have for all large values of r,

log[n−1] T (r, fn) ≥ (λg − ε) log M
( r
4n−1 , h

)
+ O(1)

≥ (λg − ε)
( r
4n−1

)λh−ε
+ O(1)

i.e., log[n] T (r, fn) ≥ (λh − ε) log r + O(1).

Also
log T (r, f (k)) < (ρ f + ε) log r.

Therefore,
log[n] T (r, fn)
log T (r, f (k))

≥ (λh − ε) log r + O(1)
(ρ f + ε) log r

.

Since ε > 0 is arbitrary, we get

lim inf
r→∞

log[n] T (r, fn)
log T (r, f (k))

≥ λh

ρ f
. (2.17)

Therefore from (2.16) and (2.17), we have the result (i) for n = 3m.
Similarly we get other results.
This proves the Theorem.

3. Conclusion
Some growth properties of iterated entire functions with non zero finite iterated order with respect to their Nevanlinna
characteristic function have been discussed in this article. Similar study may be done with respect to maximum terms.
These results may be applied to the growth of entire solution of complex differential equations. These applications are
open for further research works.
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