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Abstract

In this paper we study Schouten-van Kampen connection on a Lorentzian para-Kenmotsu manifolds M. We obtain
curvature tensor R̄, Ricci tensor S̄ and scalar curvature r̄, with respect to Schouten-van Kampen connection and study
their properties. Further, we take some curvature conditions like R̄ · S̄ = 0, S̄ · R̄ = 0 etc., on M and prove R̄ ·C̄ = R̄ · R̄.
We also consider the cases when M is ξ-concircularly flat, pseudo-concircularly flat, φ-concircularly semisymmetric
and obtain some interesting results.
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1. Introduction
The Schouten-van Kampen connection has been introduced for studying non holomorphic manifolds. It is one of

the most natural connections adapted to a pair of complementary distributions on a differentiable manifold endowed
with an affine connection [3, 7, 18]. Olszak [15] has studied the Schouten-van Kampen connection to adapt an almost
contact metric structure in 2014. He characterized some classes of almost contact metric manifolds with the Schouten-
van Kampen connection and established certain curvature properties with respect to this connection. In 2018, Ghosh
[4] studied the Schouten-van Kampen connection in Sasakian manifolds. Further, Nagaraja [14] in 2019 and Yildiz
[21] in 2017 studied this connection in Kenmotsu manifold and f -Kenmotsu manifold respectively. Recently, the
Schouten-van Kampen connection has been studied by Mondal [13] in f -kenmotsu manifold and by Zeren - Yildiz
[22] in Trans-Sasakian 3-manifolds.

The notion of an almost para contact Riemannain manifold have been defined by Sato [17] in 1976. Adati and
Matsumoto [1] defined and studied para-Sasakian and SP para-Sasakian manifolds which are regarded as a special kind
of an almost contact Riemannian manifolds. Before Sato, Kenmotsu [8] defined a class of almost contact Riemannian
manifolds which satisfies the two conditions viz.

∇XφY = −η(X)φX − g(X, φY)ξ and ∇Xξ = X − η(X)ξ.

Sinha and Prasad [19] defined a class of almost para contact metric manifolds namely para Kenmotsu and special
para Kenmotsu manifolds. In 1989, Matsumoto [9] introduced the notion of Lorentzian para-Sasakian manifold. Mihai
and Rosca [11] introduced the same notion independently and obtained several results on this manifold. LP-Sasakian
manifolds have also been studied by Matsumoto and Mihai [10], Mihai et al.[12], and Venkatesha and Bagewadi [20].
Recently, Haseeb and Prasad, [5, 6] studied Ricci-pseudosymmetricity, Ricci-generalized pseudosymmetricity etc.,
conditions to characterize LP-Kenmotsu manifolds. Moreover, they also explored Ricci solitons on LP-Kenmotsu
manifolds. Pandey et al. [16] investigated the geometric properties of η-Ricci solitons on this manifolds.

In the present paper, we study Lorentzian para-Kenmotsu manifold (LP-Kenmotsu manifold, in short) admitting
Schouten-van Kampen connection. After introduction in first section, the second section contains some basic results of
LP-Kenmotsu manifold. Further, the Schouten-van Kampen connection is defined in third section. We study curvature
properties of LP-Kenmotsu manifold with respect to Schouten-van Kampen connection and obtain some results in this
section. We conclude this paper by giving an example in last section.

2. Preliminaries
Let M be an n-dimensional Lorentzian metric manifold. If it is endowed with a structure (φ, ξ, η, g), where φ is a (1,
1)-tensor field, ξ is a vector field, η is a 1-form on M and g is a Lorentzian metric, satisfying the following [2]

φ2X = X + η(X)ξ, (2.1)
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g(φX, φY) = g(X,Y) + η(X)η(Y), (2.2)

η(ξ) = −1, g(X, ξ) = η(X), (2.3)

for any vector fields X, Y on M, then it is called Lorentzian almost paracontact manifold. In a Lorentzian almost
paracontact manifold, the following relations hold:

φ(ξ) = 0, η(φX) = 0, Φ(X,Y) = Φ(Y, X),
where the fundamental 2-form Φ is defined by Φ(X,Y) = g(X, φY). If ξ is killing vector field, the para contact structure
is called K-para contact structure. In such case we have

∇Xξ = φX.
A Lorentzian almost paracontact manifold M is called a Lorentzian para-Sasakian manifold if, for any vector fields

X and Y on M, we have:
(∇Xφ)Y = g(X,Y)ξ + η(Y)X + 2η(X)η(Y)ξ.

Now we give definition of Lorentzian para-Kenmotsu manifold.

Definition 2.1 ([5]). A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmotsu Manifold if
(∇Xφ)Y = −g(φX,Y)ξ − η(Y)φX,

for any vector field X and Y on M.

In a Lorentzian para-Kenmotsu manifold, we have
∇Xξ = −X − η(X)ξ, (2.4)

(∇Xη)Y = −g(X,Y) − η(X)η(Y), (2.5)

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g.
Furthermore, from [5] on a Lorentzian para-Kenmotsu manifold M, the following relations holds:

g(R(X,Y)Z, ξ) = η(R(X,Y)Z) = g(Y,Z)η(X) − g(X,Z)η(Y), (2.6)
R(ξ, X)Y = −R(X, ξ)Y = g(X,Y)ξ − η(Y)X, (2.7)

R(X,Y)ξ = η(Y)X − η(X)Y, (2.8)

S (X, ξ) = (n − 1)η(X), (2.9)

Qξ = (n − 1)ξ, (2.10)

S (φX, φY) = S (X,Y) + (n − 1)η(X)η(Y), (2.11)

for any vector fields X,Y and Z on M.
The Ricci Tensor S of the manifold M is defined as

S (X,Y) =

n∑
i=1

εig(R(ei, X)Y, ei),

and the scalar curvature r is defined as

r =

n∑
i=1

εiS (ei, ei),

where {e1, e2, ....en = ξ} is a frame of orthonormal basis of the tangent space at any point of the manifold M.
Furthemore, we also have

g(X,Y) =

n∑
i=1

εig(X, ei)g(Y, ei)

where X and Y are vector field on M and εi = g(ei, ei) = ±1.

Definition 2.2. A Lorentzian para-Kenmotsu manifold M is said to be an η-Einstein manifold if its Ricci tensor S is
of the form

S (X,Y) = ag(X,Y) + bη(X)η(Y),

where a and b are scalar functions on M. In particular the manifold M is called Einstein manifold if b = 0.

Definition 2.3. The sectional curvature of a manifold is defined as

k(X,Y) = − R(X,Y, X,Y)
g(X, X)g(Y,Y) − g(X,Y)2 , (2.12)

where R(X,Y,Z,W) is associated curvature tensor.
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3. Curvature properties of a LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection
For an almost contact metric manifold M, the Schouten-van Kampen connection ∇̄ is given by [15]

∇̄XY = ∇XY − η(Y)∇Xξ + (∇Xη)(Y)ξ, (3.1)
using (2.4) and (2.5), (3.1) reduced to

∇̄XY = ∇XY + η(Y)X − g(X,Y)ξ. (3.2)
We define the curvature tensor R̄ of a LP-Kenmotsu manifold with respect to Schouten-van Kampen connection ∇̄

by
R̄(X,Y)Z = ∇̄X∇̄YZ − ∇̄Y ∇̄XZ − ∇̄[X,Y]Z. (3.3)

In view of (3.2) and (3.3) we have
R̄(X,Y)Z = R(X,Y)Z + 3g(Y,Z)X − 3g(X,Z)Y + 2g(Y,Z)η(X)ξ

−2g(X,Z)η(Y)ξ + 2η(Y)η(Z)X − 2η(X)η(Z)Y. (3.4)
Taking inner product in both sides of (3.4) with W, we have

R̄(X,Y,Z,W) = R(X,Y,Z,W) + 3g(Y,Z)g(X,W) − 3g(X,Z)g(Y,W)
+2g(Y,Z)η(X)η(W) − 2g(X,Z)η(Y)η(W)
+2η(Y)η(Z)g(X,W) − 2η(X)η(Z)g(Y,W), (3.5)

where R̄(X,Y,Z,W) = g(R̄(X,Y)Z,W).
Putting X = W = ei, and taking sum over i, we have

S̄ (Y,Z) = S (Y,Z) + (3n − 7)g(Y,Z) + 2nη(Y)η(Z). (3.6)
From which we can obtain

Q̄Y = QY + (3n − 7)Y + 2nη(Y)ξ. (3.7)

Again putting Y = Z = ei, in (3.6) and taking sum over i, we have
r̄ = r + (3n2 − 11n + 14), (3.8)

where r̄ and r, are the scalar curvatures with respect to the Schouten-van Kampen connection ∇̄ and Levi-Civita
connection ∇ respectively.

Further, from (3.4) and using Binachi’s first identity R(X,Y)Z + R(Y,Z)X + R(Z, X)Y = 0, we get
R̄(X,Y)Z + R̄(Y,Z)X + R̄(Z, X)Y = 0.

Again from (3.5), we get
R̄(X,Y,Z,W) = −R̄(Y, X,Z,W),

R̄(X,Y,Z,W) = −R̄(X,Y,W,Z),

R̄(X,Y,Z,W) = R̄(Z,W, X,Y).

Thus, in view of above discussion we state the following theorem:

Theorem 3.1. In an n-dimensional LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection the
following hold:

1. The curvature tensor R̄, given by (3.4),
2. The curvature tensor R̄, is symmetric in pair of slots, and skew-symmertic in first two and last two slots,
3. The Ricci tensor S̄ , is symmetric and is given by (3.6),
4. The scalar curvature r̄ is given by (3.8).

Now we give a Lemma which can be proved directly from (3.4), (3.6) and (3.7).

Lemma 3.1. Let M be an n-dimensional LP-Kenmotsu manifolds with respect to Schouten-van kampen connection,
then we have the followings:

R̄(X,Y)ξ = 2(η(Y)X − η(X)Y) = 2R(X,Y)ξ, (3.9)

R̄(ξ, X)Y = 2(g(X,Y)ξ − η(Y)X) = 2R(ξ, X)Y, (3.10)

R̄(X, ξ)Y = 2(−g(X,Y)ξ + η(Y)X) = 2R(X, ξ)Y = −R̄(ξ, X)Y, (3.11)

R̄(ξ, X)ξ = 2(η(X)ξ + X) = 2R(ξ, X)ξ, (3.12)

S̄ (X, ξ) = (2n − 8)η(X), (3.13)

Q̄ξ = (2n − 8)ξ, (3.14)

η(R̄(X,Y)Z = 2η(R(X,Y)Z), (3.15)

for all X,Y on M.
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Now consider a LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection ∇̄ satisfying the
condition

R̄(X,Y) · S̄ = 0.

Then we have
S̄ (R̄(X,Y)U,V) + S̄ (U, R̄(X,Y)V) = 0, (3.16)

for any vector fields X,Y,U and V on M. Putting X = ξ in (3.16), we obtain

S̄ (R̄(ξ,Y)U,V) + S̄ (U, R̄(ξ,Y)V) = 0. (3.17)

Using (3.10), we get from (3.17),

S̄ (2g(Y,U)ξ − η(U)Y,V) + S̄ (U, 2g(Y,V)ξ − η(V)Y) = 0.

Which implies,
2g(Y,U)S̄ (ξ,V) − η(U)S̄ (Y,V) + 2g(Y,V)S̄ (U, ξ) − η(V)S̄ (U,Y) = 0.

Replacing U by ξ gives,
S̄ (Y,V) = 2(2n − 8)g(Y,V) − (2n − 8)η(Y)η(V). (3.18)

Using (3.6), (3.18) becomes
S (Y,V) = (n − 9)g(Y,V) + 8η(Y)η(V).

Thus we have the following theorem:

Theorem 3.2. If a LP-Kenmotsu manifold satisfy the condition R̄ · S̄ = 0, then the manifold is an η- Einstein manifold.

We now consider a LP -Kenmotsu manifold admitting Schouten-van Kampen connection ∇̄ satisfying the condition

(S̄ (X,Y) · R̄)(U,V)Z = 0,

for any vector fields X,Y,Z,U and U on M.
This implies that

(X ∧S̄ Y)R̄(U,V)Z + R̄((X ∧S̄ Y)U,V)Z + R̄(U, (X ∧S̄ Y)V)Z
+R̄(U,V)(X ∧S̄ Y)Z = 0, (3.19)

where the endomorphism X ∧S̄ Y is defined by

(X ∧S̄ Y)Z = S̄ (Y,Z)X − S̄ (X,Z)Y. (3.20)

Taking Y = ξ in (3.19), we have

(X ∧S̄ ξ)R̄(U,V)Z + R̄((X ∧S̄ ξ)U,V)Z + R̄(U, (X ∧S̄ ξ)V)Z
+R̄(U,V)(X ∧S̄ ξ)Z = 0. (3.21)

From (3.20), (3.21) and (3.13), we get

(2n − 8)[η(R̄(U,V)Z)X + η(U)R̄(X,V)Z + η(V)R̄(U, X)Z
+ η(Z)R̄(U,V)X] − S̄ (X, R̄(U,V)Z)ξ − S̄ (X,U)R̄(ξ,V)Z

−S̄ (X,V)R̄(U, ξ)Z − S̄ (X,Z)R̄(U,V)ξ = 0.

Taking inner product with ξ, we have

(2n − 8)[η(R̄(U,V)Z)η(X) + η(U)η(R̄(X,V)Z) + η(V)η(R̄(U, X)Z)
+ η(Z)η(R̄(U,V)X)] + S̄ (X, R̄(U,V)Z) − S̄ (X,U)η(R̄(ξ,V)Z)

−S̄ (X,V)η(R̄(U, ξ)Z − S̄ (X,Z)η(R̄(U,V)ξ) = 0. (3.22)

By taking U = Z = ξ, in (3.22) and using Lemma 3.1, we get

2(2n − 8)g(V, X) + 2S̄ (X,V) + 4(2n − 8)η(X)η(V) = 0. (3.23)

with the help of (3.6), (3.23) becomes

S (X,V) = −(5n − 15)g(X,V) − (5n − 16)η(X)η(V).

Therefore we state the following theorem:

Theorem 3.3. If a LP-Kenmotsu manifold satisfy the condition S̄ · R̄ = 0, then the manifold is an η- Einstein manifold.
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Now we consider Ricci-flat manifold with respect to Schouten-van Kampen connection.

Definition 3.1. A LP-Kenmotsu manifold M is Ricci-flat with respect to Schouten-van Kampen connection ∇̄ if
S̄ (Y,Z) = 0.

We now have the following theorem:

Theorem 3.4. A LP-Kenmotsu manifold M is Ricci-flat with respect to Schouten-van Kampen connection ∇̄, iff it is
η-Einstein Manifold with Ricci tensor S of the form

S (Y,Z) = −(3n − 7)g(Y,Z) − 2nη(Y)η(Z).

Proof. If M is Ricci-flat with respect to Schouten-van Kampen connection then by virtue of (3.6), we get S (Y,Z) =

−(3n−7)g(Y,Z)−2nη(Y)η(Z). Conversely if, S (Y,Z) = −(3n−7)g(Y,Z)−2nη(Y)η(Z), then again by (3.6), S̄ (Y,Z) = 0.
This completes the proof of the Theorem.
Next, let us suppose that, R̄(X,Y)Z = 0, on M. Let ξ⊥ denote the (n − 1)-dimensional distribution orthogonal to ξ,

then for any X ∈ ξ⊥, g(X, ξ) = η(X) = 0. from (3.5), we have

R̄(X,Y, X,Y) = R(X,Y, X,Y) + 3g(X,Y)g(X,Y) − 3g(X, X)g(Y,Y)
+2g(X,Y)η(X)η(Y) − 2g(X, X)η(Y)η(Y)

+ 2η(Y)η(X)g(X,Y) − 2η(X)η(X)g(Y,Y).

from (2.12), we get
k(X,Y) = −3.

Thus we can state the following:

Theorem 3.5. If R̄(X,Y)Z = 0, in a LP-Kenmotsu manifold, then the sectional curvature of the plane section
determined by X,Y ∈ ξ⊥, is -3.

Now, we consider locally φ-symmetric LP-Kenmotsu manifold with respect to the Schouten-van Kampen
connection. We begin with the following definition.

Definition 3.2. A LP-Kenmotsu manifold is said to be locally φ-symmetric with respect to the Schouten-van Kampen
connection ∇̄ if its curvature tensor R̄ with respect to the connection ∇̄ satisfies the condition

φ2((∇̄W R̄)(X,Y)U) = 0.

for any vector fields X, Y, U, W orthogonal to ξ.

By the help of (3.2), we have

(∇̄W R̄)(X,Y)U = (∇W R̄)(X,Y)U + η(R̄(X,Y)U)W − g(W, R̄(X,Y)U)ξ, (3.24)

by virtue of (3.15), (3.24) reduces to

(∇̄W R̄)(X,Y)U = (∇W R̄)(X,Y)U + 2η(R(X,Y)U)W − g(W, R̄(X,Y)U)ξ. (3.25)

Covarient differentiation of (3.4) with respect to W gives

(∇W R̄)(X,Y)U = (∇WR)(X,Y)U + 2g(Y,U)[−g(W, X)ξ − 2η(X)η(W)ξ −
η(X)W] − 2g(X,U)[−g(W,Y)ξ − 2η(W)η(Y)ξ − η(Y)W]
− 2g(W,Y)η(U)X − 4η(W)η(Y)η(U)X − 2η(Y)g(W,U)X
+2g(W, X)η(U)Y + 4η(W)η(X)η(U)Y + 2η(X)g(W,U)Y. (3.26)

By virtue of (3.26),(3.25) becomes

(∇̄W R̄)(X,Y)U = (∇WR)(X,Y)U − 5g(Y,U)g(W, X)ξ − 6g(Y,U)η(X)η(W)ξ
+ 5g(X,U)g(W,Y)ξ + 4g(X,U)η(W)η(Y)ξ + 2g(X,U)η(Y)ξ

+ 2g(X,U)η(Y)η(W)ξ − 2g(W,Y)η(U)X − 4η(W)η(Y)η(U)X
− 2η(Y)g(W,U)X + 2g(W, X)η(U)Y + 4η(W)η(X)η(U)Y

+ 2η(X)g(W,U)Y − 2g(X,U)η(Y)W − R(X,Y,U,W)ξ
−2η(Y)η(V)g(X,W)ξ + 2η(X)η(V)g(Y,W)ξ. (3.27)
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Applying φ2 on both side of (3.27), and using (2.1), we have

φ2((∇̄W R̄)(X,Y)U) = φ2((∇WR)(X,Y)U) − 2g(Y,W)η(U)X − 2g(Y,W)η(X)η(U)ξ
− 4η(W)η(Y)η(U)X − 4η(W)η(Y)η(U)η(X)ξ − 2η(Y)g(W,U)X
− 2η(Y)g(W,U)η(X)ξ + 2g(W, X)η(U)Y + 2g(W, X)η(U)η(Y)ξ
+ 4η(X)η(W)η(U)Y + 4η(X)η(W)η(U)η(Y)ξ + 2g(W,U)η(X)Y
+2g(W,U)η(X)η(Y)ξ − 2g(X,U)η(Y)W − 2g(X,U)η(Y)η(W)ξ.

Now taking X,Y,U and W orthogonal to ξ we get

φ2((∇̄W R̄)(X,Y)U) = φ2((∇WR)(X,Y)U).

Thus we can state the following:

Theorem 3.6. A LP-Kenmotsu manifold is locally φ-symmetric with respect to the Schouten-van Kampen connection
∇̄ if and only if it is so with respect to the Levi-Civita connection ∇.

Now, we study concircular curvature tensor with respect to the Schouten-van Kampen connection on the LP-
Kenmotsu manifold.

Definition 3.3. For an n-dimensional LP-Kenmotsu manifold the concircular curvature tensor C̄ with respect to the
Schouten-van Kampen connection is defined by

C̄(X,Y)Z = R̄(X,Y)Z −
(

r̄
n(n − 1)

)
[g(Y,Z)X − g(X,Z)Y]. (3.28)

Using (3.4) and (3.8), (3.28) becomes

C̄(X,Y)Z = C(X,Y)Z +

(
8n − 14
n(n − 1)

)
[g(Y,Z)X − g(X,Z)Y] + 2g(Y,Z)η(X)ξ

−2g(X,Z)η(Y)ξ + 2η(Y)η(Z)X − 2η(X)η(Z)Y.

Using R(X,Y)Z + R(Y,Z)X = 0, we get

C̄(X,Y)Z + C̄(Y, X)Z = 0.

Further, one can easily verify that

C̄(X,Y)Z + C̄(Y,Z)X + C̄(Z, X)Y = 0.

Thus we can say that the concircular curvature tensor C̄ with respect to the Schouten-van Kampen connection is
skew-symmetric and cyclic.

Now suppose that, a LP-Kenmotsu manifold M is concircularly flat with respect to Schouten-van Kampen
connection, then we have

C̄(X,Y)Z = 0. (3.29)

By virtue of (3.29), (3.28) becomes

R̄(X,Y)Z =
r̄

n(n − 1)
[g(Y,Z)X − g(X,Z)Y]. (3.30)

Taking inner product in both side of (3.30) with ξ, we get

g(R̄(X,Y)Z, ξ) =
r̄

n(n − 1)
[g(Y,Z)η(X) − g(X,Z)η(Y)].

Now, using (3.4), (3.8) and (2.6), we get

−n2 + 9n − r − 14
n(n − 1)

[g(Y,Z)η(X) − g(X,Z)η(Y)] = 0.

Which implies either the scalar curvature of M is r = −n2 + 9n − 14, or

g(Y,Z)η(X) − g(X,Z)η(Y) = 0.

Replacing Y by ξ, X by QX and using (2.10), we get

S (X,Z) = (1 − n)η(X)η(Z).

Thus we can state the following:
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Theorem 3.7. For a concircularly flat LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection,
either the scalar curvature is r = −n2 + 9n − 14 or the manifold is a special type of η- Einstein manifold.

We now consider locally concircular φ-symmetric LP-Kenmotsu manifold with respect to the Schouten-van
Kampen connection ∇̄.

Definition 3.4. A LP-Kenmotsu manifold is said to be locally concircular φ-symmetric with respect to the Schouten-
van Kampen connection ∇̄, if its concircular curvature tensor C̄ with respect to the connection ∇̄ satisfies the condition

φ2((∇̄WC̄)(X,Y)Z) = 0.

We now give a theorem, whose proof runs on similar lines as of Theorem 3.6.

Theorem 3.8. A LP-Kenmotsu manifold is locally concircular φ-symmetric with respect to the Schouten-van Kampen
connection ∇̄ if and only if it is so with respect to the Levi-Civita connection ∇.

Definition 3.5. A LP-Kenmotsu manifold M with respect to the Schouten-van Kampen connection ∇̄ is said to be ξ-
concircularly flat if C̄(X,Y)ξ = 0.

Now, we assume that the manifold M with respect to the Schouten-van Kampen connection is ξ-concircularly flat,
that is C̄(X,Y)ξ = 0. Then from (3.28), it follows that

R̄(X,Y)ξ =
r̄

n(n − 1)
[η(Y)X − η(X)Y].

Using (3.8) and (3.9), we get
−n2 + 9n − r − 14

n(n − 1)
[η(Y)X − η(X)Y] = 0.

Putting Y = ξ, we get
−n2 + 9n − r − 14

n(n − 1)
[−η(X)ξ − X] = 0.

Taking inner product with U, we have

−−n2 + 9n − r − 14
n(n − 1)

[η(X)η(U) + g(X,U)] = 0.

Which implies either the scalar curvature of M is r = −n2 + 9n − 14, or

g(X,U) = −η(X)η(U).

Replacing X by QX and using (2.10), we get

S (X,U) = (1 − n)η(X)η(U). (3.31)

Thus we have the following:

Theorem 3.9. For a ξ-concircularly flat LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection,
either the scalar curvature is r = −n2 + 9n − 14 or the manifold is a special type of η- Einstein manifold.

Corollary 3.1. If a LP-Kenmotsu M, admitting Schouten-van Kampen connection is ξ- concircullarly flat, then M is
of constant scalar curvature.

Proof. The proof directly follows from (3.31), by putting X = U = ei, and taking sum over i.

Definition 3.6. A LP-Kenmotsu manifold is said to be pseudo-concircularly flat with respect to the Schouten-van
Kampen connection ∇̄ if it satisfies,

g(C̄(φX,Y)Z, φW)) = 0, (3.32)

for any vector fields X, Y, Z on M.
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In view of (3.28) and (3.32) we get

g(R̄(φX,Y)Z, φW)) − r̄
n(n − 1)

[g(Y,Z)g(φX, φW) − g(φX,Z)g(Y, φW)] = 0.

Making use of (3.4) and (3.8), we get

g(R(φX,Y)Z, φW)) + 3g(Y,Z)g(φX, φW) − 3g(φX,Z)g(Y, φW) + 2η(Y)η(Z)g(φX, φW)

− r + 3n2 − 11n + 14
n(n − 1)

[g(Y,Z)g(φX, φW) − g(φX,Z)g(Y, φW)] = 0.

Putting Y = Z = ei and summing for i, we get

S (φX, φY) =

[
(−3n + 7) +

(r + 3n2 − 11n + 14)(n + 3)
n(n − 1)

]
g(φX, φY). (3.33)

Again putting
[
(−3n + 7) +

(r + 3n2 − 11n + 14)(n + 3)
n(n − 1)

]
= α, and making use of (2.11) and (2.2), (3.33) becomes

S (X,Y) = αg(X,Y) + (α − n + 1)η(X)η(Y). (3.34)

Hence, we state the following:

Theorem 3.10. Let the LP-Kenmotsu manifold M is pseudo-concircularly flat with respect to Schouten-van Kampen
connection ∇̄, then M is an η- Einstein manifold.

Corollary 3.2. If a LP-Kenmotsu M, admitting Schouten-van Kampen connection is pseudo-concircullarly flat, then
M is of constant scalar curvature.

Proof. The proof directly follows from (3.34), by putting X = Y = ei, and taking sum over i.

Definition 3.7. A LP-Kenmotsu manifold is said to be φ-concircularly semisymmetric with respect to Schouten-van
Kampen connection ∇̄, if C̄(X,Y) · φ = 0 holds on M.

Now, we consider φ-concircularly semisymmetric LP-Kenmotsu manifold with respect to Schouten-van Kampen
connection ∇̄. Then we have

(C̄(X,Y) · φ)Z = C̄(X,Y)φZ − φC̄(X,Y)Z = 0.

Replacing Z by ξ, we get
φ(C̄(X,Y)ξ) = 0.

By virtue of (3.28) and (3.9), we get(
2 − r̄

n(n − 1)

)
[η(Y)φX − η(X)φY] = 0.

Using (3.8), we get
−n2 + 9n − r − 14

n(n − 1)
[η(Y)φX − η(X)φY] = 0.

Replacing Y by ξ and X by φX, we have

−n2 + 9n − r − 14
n(n − 1)

[X + η(X)ξ] = 0.

Taking inner product with ξ, we get

−n2 + 9n − r − 14
n(n − 1)

[g(X,U) + η(X)η(U)] = 0.

Which implies, either the scalar curvature of the manifold M is r = −n2 + 9n − 14, or

g(X,U) = −η(X)η(U)

replacing X by QX and using (2.10), we have

S (X,U) = (1 − n)η(X)η(U). (3.35)

Thus we can state the following:
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Theorem 3.11. For a φ-concircularly semisymmetric LP-Kenmotsu manifold M with respect to the Schouten-van
Kampen Connection ∇̄, either the scalar curvature is r = −n2 + 9n − 14 or the manifold is a special type of η-Einstein
Manifold.

Corollary 3.3. If a LP-Kenmotsu M, admitting Schouten-van Kampen connection is φ- concircullarly semisymmetric,
then M is of constant scalar curvature.

Proof. The proof directly follows from (3.35), by putting X = U = ei, and taking sum over i.
Further, we also have

(R̄(X,Y) · C̄)(U,V,W) = R̄(X,Y)C̄(U,V)W − C̄(R̄(X,Y)U,V)W
−C̄(U, R̄(X,Y)V)W − C̄(U,V)R̄(X,Y)W. (3.36)

By the help of (3.28), (3.36) becomes
(R̄(X,Y) · C̄)(U,V,W) = R̄(X,Y)R̄(U,V)W − R̄(R̄(X,Y)U,V)W

− R̄(U, R̄(X,Y)V)W − R̄(U,V)R̄(X,Y)W +

r̄
n(n − 1)

[g(R̄(X,Y)V,W)U + g(V, R̄(X,Y)W)U

−g(R̄(X,Y)U,W)V − g(U, R̄(X,Y)W)V].
By the symmetricity of R̄(X,Y)Z, we get

(R̄(X,Y) · C̄)(U,V,W) = R̄(X,Y)R̄(U,V)W − R̄(R̄(X,Y)U,V)W
−R̄(U, R̄(X,Y)V)W − R̄(U,V)R̄(X,Y)W.

Finally, we have
(R̄(X,Y) · C̄)(U,V,W) = (R̄(X,Y) · R̄)(U,V,W).

Thus we can state the following:

Theorem 3.12. Let M be a LP-Kenmotsu manifold equipped with Schouten-van Kampen connection, then we have
R̄ · C̄ = R̄ · R̄.

4. Example
Example 4.1. Consider the three dimensional manifold

M3 = {(x, y, z) ∈ R3 : z > 0},
where (x, y, z) are the standard coordinates in R3. Let e1, e2 and e3 be the vector fields on M3 given by

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z
= ξ,

which are linearly independent at each point of M3 and hence form a basis of TpM3. Define a Lorentzian metric g on
M3 as,

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

The 1-form η is defined by η(X) = g(X, e3) for all X ∈ χ(M). Further we define the (1,1)-tensor field φ by,
φe1 = −e2, φe2 = −e1, φe3 = 0.

It has been shown in [5] that this manifold is a LP-Kenmotsu manifold.
Using (3.2) we calculate the following

∇̄e1 e1 = −2e3, ∇̄e1 e2 = 0, ∇̄e1 e3 = −e1,
∇̄e2 e1 = 0, ∇̄e2 e2 = −2e3, ∇̄e2 e3 = −e2

∇̄e3 e1 = 0, ∇̄e3 e2 = 0, ∇̄e3 e3 = 0.

Further using (3.4) we can calculate
R̄(e1, e2)e1 = −4e2, R̄(e1, e3)e1 = −4e3, R̄(e2, e3)e1 = 0,
R̄(e1, e2)e2 = 4e1, R̄(e1, e3)e2 = 0, R̄(e2, e3)e2 = −2e3,

R̄(e1, e2)e3 = 0, R̄(e1, e3)e3 = −2e1, R̄(e2, e3)e3 = −2e2.

similarly using (3.6) we get

S̄ (e1, e1) = 4, S̄ (e2, e2) = 4, S̄ (e3, e3) = 2.

which implies r̄ =
∑3

i=1 S̄ (ei, ei) = 10, which can also be verified from (3.8).
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