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Abstract

In this paper we study Schouten-van Kampen connection on a Lorentzian para-Kenmotsu manifolds M. We obtain
curvature tensor R, Ricci tensor S and scalar curvature 7, with respect to Schouten-van Kampen connection and study
their properties. Further, we take some curvature conditions like R-S = 0,5 -R = O etc., on M and prove R-C = R-R.
We also consider the cases when M is é-concircularly flat, pseudo-concircularly flat, ¢-concircularly semisymmetric
and obtain some interesting results.
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1. Introduction

The Schouten-van Kampen connection has been introduced for studying non holomorphic manifolds. It is one of
the most natural connections adapted to a pair of complementary distributions on a differentiable manifold endowed
with an affine connection [3, 7, 18]. Olszak [15] has studied the Schouten-van Kampen connection to adapt an almost
contact metric structure in 2014. He characterized some classes of almost contact metric manifolds with the Schouten-
van Kampen connection and established certain curvature properties with respect to this connection. In 2018, Ghosh
[4] studied the Schouten-van Kampen connection in Sasakian manifolds. Further, Nagaraja [14] in 2019 and Yildiz
[21] in 2017 studied this connection in Kenmotsu manifold and f-Kenmotsu manifold respectively. Recently, the
Schouten-van Kampen connection has been studied by Mondal [13] in f-kenmotsu manifold and by Zeren - Yildiz
[22] in Trans-Sasakian 3-manifolds.

The notion of an almost para contact Riemannain manifold have been defined by Sato [17] in 1976. Adati and
Matsumoto [1] defined and studied para-Sasakian and SP para-Sasakian manifolds which are regarded as a special kind
of an almost contact Riemannian manifolds. Before Sato, Kenmotsu [8] defined a class of almost contact Riemannian
manifolds which satisfies the two conditions viz.

Vx¢Y = -n(X)¢pX — g(X,¢Y)§ and  Vy& =X —nX)E.

Sinha and Prasad [19] defined a class of almost para contact metric manifolds namely para Kenmotsu and special
para Kenmotsu manifolds. In 1989, Matsumoto [9] introduced the notion of Lorentzian para-Sasakian manifold. Mihai
and Rosca [11] introduced the same notion independently and obtained several results on this manifold. LP-Sasakian
manifolds have also been studied by Matsumoto and Mihai [10], Mihai et al.[12], and Venkatesha and Bagewadi [20].
Recently, Haseeb and Prasad, [5, 6] studied Ricci-pseudosymmetricity, Ricci-generalized pseudosymmetricity etc.,
conditions to characterize LP-Kenmotsu manifolds. Moreover, they also explored Ricci solitons on LP-Kenmotsu
manifolds. Pandey et al. [16] investigated the geometric properties of n-Ricci solitons on this manifolds.

In the present paper, we study Lorentzian para-Kenmotsu manifold (LP-Kenmotsu manifold, in short) admitting
Schouten-van Kampen connection. After introduction in first section, the second section contains some basic results of
LP-Kenmotsu manifold. Further, the Schouten-van Kampen connection is defined in third section. We study curvature
properties of LP-Kenmotsu manifold with respect to Schouten-van Kampen connection and obtain some results in this
section. We conclude this paper by giving an example in last section.

2. Preliminaries
Let M be an n-dimensional Lorentzian metric manifold. If it is endowed with a structure (¢, £, 1, g), where ¢ is a (1,
1)-tensor field, £ is a vector field, 7 is a 1-form on M and g is a Lorentzian metric, satisfying the following [2]

¢*X = X +n(X)E, @.1)
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89X, pY) = g(X,Y) + n(X)n(Y), (2.2)
ne&) =-1 gX. & =nX), 2.3)
for any vector fields X, ¥ on M, then it is called Lorentzian almost paracontact manifold. In a Lorentzian almost
paracontact manifold, the following relations hold:
#©&) =0, n@X)=0, OXY)=dYX),
where the fundamental 2-form ® is defined by (X, Y) = g(X, ¢Y). If £ is killing vector field, the para contact structure
is called K-para contact structure. In such case we have
Vxé = ¢X.
A Lorentzian almost paracontact manifold M is called a Lorentzian para-Sasakian manifold if, for any vector fields
X and Y on M, we have:

(Vx@)Y = (X, V)& + n(Y)X + 2n(X)n(Y)&.

Now we give definition of Lorentzian para-Kenmotsu manifold.

Definition 2.1 ([5]). A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmotsu Manifold if

(Vx@)Y = —g(@X, Y)§ — n(Y)¢X,
for any vector field X and Y on M.

In a Lorentzian para-Kenmotsu manifold, we have
Vx& = —X - n(X)é, (2.4)
(VxmY = —g(X,Y) — n(X)n(Y), (2.5)
where V is the Levi-Civita connection with respect to the Lorentzian metric g.
Furthermore, from [5] on a Lorentzian para-Kenmotsu manifold M, the following relations holds:

8R(X,Y)Z,&) = n(R(X, V)Z) = g(Y, Z)n(X) — (X, Z)n(Y), (2.6)
R, X)Y = -R(X,§)Y = g(X, V)¢ - n(Y)X, 2.7

R(X, V)¢ = n(¥)X — n(X)Y, (2.8)

S(X, &) = (n— Hn(X), (2.9)

Q¢ = (n-1)¢, (2.10)

S(@X,¢Y) =S(X,Y) + (n— Dn(X)n(Y), (2.11)

for any vector fields X,Y and Z on M.
The Ricci Tensor S of the manifold M is defined as

n

S(X,Y) = ) g(Rei X)Y,e)),

i=1

n
r= Z €S (ei, €),
i=1

where {ej,es,....e, = &} is a frame of orthonormal basis of the tangent space at any point of the manifold M.
Furthemore, we also have

and the scalar curvature r is defined as

n

gX,¥) = " eg(X,e)g(Ye)

i=1
where X and Y are vector field on M and € = g(e;, e;) = =1.
Definition 2.2. A Lorentzian para-Kenmotsu manifold M is said to be an n-Einstein manifold if its Ricci tensor S is

of the form
SX,Y) =ag(X,Y) + bn(X)n(Y),

where a and b are scalar functions on M. In particular the manifold M is called Einstein manifold if b = 0.

Definition 2.3. The sectional curvature of a manifold is defined as
R(X,Y, X,Y)
KX, ¥) = - -,
8(X, X)g(Y.Y) - g(X,Y)

2.12)

where R(X, Y, Z, W) is associated curvature tensor.
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3. Curvature properties of a LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection
For an almost contact metric manifold M, the Schouten-van Kampen connection V is given by [15]
VxY = VxY —n(Y)Vx& + (Vxn)(Y)E, 3.1
using (2.4) and (2.5), (3.1) reduced to
VxY = VxY + (V)X — g(X, Y)&. (3.2)
We define the curvature tensor R of a LP-Kenmotsu manifold with respect to Schouten-van Kampen connection V
by
R(X,Y)Z = VxVyZ — VyVxZ — Vix v Z. (3.3)
In view of (3.2) and (3.3) we have
RX,Y)Z = R(X,Y)Z + 3g(Y,2)X = 38(X, 2)Y + 2g(Y, Z)n(X)¢
—28(X, Zn(Y)¢ + 2n(Y(2)X = 2n(X)n(2)Y. (34
Taking inner product in both sides of (3.4) with W, we have
RX,Y,Z,W) = RXX, Y, Z, W) + 3g(Y, Z)g(X, W) = 3g(X, Z)g(Y, W)
+28(Y, Zn(X)n(W) — 2g(X, Zn(Y)n(W)
) _ +2n(V)n2)g(X, W) = 2n(Xn(Z)g(Y, W), (3.5
where R(X, Y, Z, W) = g(R(X, Y)Z, W).
Putting X = W = ¢;, and taking sum over i, we have

S(Y,2)=S(Y,Z) + 3n—Tg(Y,Z) + 2nn(Y)n(Z). (3.6)
From which we can obtain
QY = QY + Bn = 7)Y + 2nn(Y)é. 3.7
Again putting Y = Z = ¢;, in (3.6) and taking sum over i, we have
F=r+@Gn®—11ln+14), (3.8)

where 7 and r, are the scalar curvatures with respect to the Schouten-van Kampen connection V and Levi-Civita
connection V respectively.
Further, from (3.4) and using Binachi’s first identity R(X, Y)Z + R(Y,Z2)X + R(Z, X)Y = 0, we get
RX,Y)Z+R(Y,2)X + R(Z, X)Y = 0.
Again from (3.5), we get
R(Xa Y’ Z’ W) = _R(Ya X7 Z? W)a
RX,Y,Z,W) = -R(X,Y, W, 2),
R(X,Y,Z,W) = RZ,W,X,Y).
Thus, in view of above discussion we state the following theorem:

Theorem 3.1. In an n-dimensional LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection the
following hold:

1. The curvature tensor R, given by (3.4),

2. The curvature tensor R, is symmetric in pair of slots, and skew-symmertic in first two and last two slots,
3. The Ricci tensor S, is symmetric and is given by (3.6),

4. The scalar curvature 7 is given by (3.8).

Now we give a Lemma which can be proved directly from (3.4), (3.6) and (3.7).

Lemma 3.1. Let M be an n-dimensional LP-Kenmotsu manifolds with respect to Schouten-van kampen connection,
then we have the followings:

R(X, Y)é = 2((V)X = n(X)Y) = 2R(X, Y ), (3.9

R, X)Y = 2(g(X, V)¢ = n(Y)X) = 2R(£. X)Y, (3.10)
R(X,O)Y = 2(=g(X, Y)¢ + n(V)X) = 2R(X, §)Y = -R(£, X)Y, (3.1D)
R X)é = 2(X)€ + X) = 2R, X, (3.12)

S(X.6) = (2n - 8)n(X), (3.13)

0¢ = (2n - 8)é, (3.14)

n(RX, V)Z = 2n(R(X, Y)Z), (3.15)

forall X,Y on M.

30



Now consider a LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection V satisfying the
condition

RX,Y)-S =0.
Then we have o o
SRX, VU, V)+S(U,R(X,Y)V) =0, (3.16)
for any vector fields X, Y, U and V on M. Putting X = £ in (3.16), we obtain
SRE YU, V) + 8 (U, R, Y)V) = 0. (3.17)

Using (3.10), we get from (3.17),
SQ2g(Y, U)¢ = n(U)Y, V) + S (U, 28(Y, V)é = n(V)Y) = 0.
Which implies, ) ) . .
22, U)SE V) —nU)S (X, V) +28(Y, V)S (U, &) —n(V)S (U, Y) = 0.
Replacing U by ¢ gives,
S, V) =2(2n - 8)g(Y, V) = (2n = 8)n(Y)n(V). (3.18)
Using (3.6), (3.18) becomes
S V)=m-9)gX. V) +8n¥)n(V).
Thus we have the following theorem:

Theorem 3.2. If a LP-Kenmotsu manifold satisfy the condition R-§ = 0, then the manifold is an n- Einstein manifold.

We now consider a LP -Kenmotsu manifold admitting Schouten-van Kampen connection V satisfying the condition
SX. V) R(U.V)Z =0,

for any vector fields X, Y, Z, U and U on M.
This implies that

(X As NRU,V)Z + R(X Ag Y)U,V)Z + R(U, (X Ag Y)V)Z
+R(U, V)X A Y)Z =0, (3.19)
where the endomorphism X Ag Y is defined by
XA VNZ=8Y,2)X-5(X,2)Y. (3.20)
Taking ¥ = £ in (3.19), we have
X As ORWU,VYZ + R(X A5 U, V)Z + R(U, (X A5 EV)Z
+R(U, V)(X Ag E)Z = 0. (3.21)
From (3.20), (3.21) and (3.13), we get
(2n - 8)[R(U, V)Z)X + n(U)R(X, V)Z + n(V)R(U, X)Z
+n(Z)RWU, V)X1 - §(X,R(U, V)Z)¢é = S(X, U)R(&,V)Z
-S(X, VIR(U,6Z - §(X,Z)R(U, V)é = 0.
Taking inner product with &, we have
2n = 8) R, V)Zn(X) + n(Un(R(X, V)Z) + n(V)n(R(U, X)Z)
+ (2R, V)X)] + S (X, RU, V)Z) = S(X, Un(R(, V)Z)

=SX, VInRU,EZ - §(X, Z)n(R(U, V)é) = 0. (3.22)
By taking U = Z = £, in (3.22) and using Lemma 3.1, we get
2(2n - 8)g(V,X) + 25 (X, V) + 4(2n — 8)n(X)n(V) = 0. (3.23)

with the help of (3.6), (3.23) becomes
SX,V)=—-05n-15gX,V) - (5n - 16)n(X)n(V).

Therefore we state the following theorem:

Theorem 3.3. If a LP-Kenmotsu manifold satisfy the condition S - R = 0, then the manifold is an n- Einstein manifold.
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Now we consider Ricci-flat manifold with respect to Schouten-van Kampen connection.

Definition 3.1. A LP-Kenmotsu manifold M is Ricci-flat with respect to Schouten-van Kampen connection V if
§(,2)=0.

We now have the following theorem:
Theorem 3.4. A LP-Kenmotsu manifold M is Ricci-flat with respect to Schouten-van Kampen connection V, iff it is
n-Einstein Manifold with Ricci tensor S of the form
S(Y.Z) = =(3n =g, Z) = 2nn(Y)n(Z).
Proof. If M is Ricci-flat with respect to Schouten-van Kampen connection then by virtue of (3.6), we get S(Y,Z) =
—(3n-T7)g(Y, Z)-2nn(Y)n(Z). Conversely if, S (Y, Z) = —(3n—"T7)g(¥Y, Z)—2nn(Y)n(Z), then again by (3.6), §(¥,Z) = 0.
This completes the proof of the Theorem.

Next, let us suppose that, R(X, Y)Z = 0, on M. Let &* denote the (n — 1)-dimensional distribution orthogonal to &,
then for any X € &+, g(X, &) = n(X) = 0. from (3.5), we have

RX.Y,X,Y) = RX, Y, X, Y) + 3g(X. V)g(X, ) - 3g(X, X)g(Y.Y)
+28(X, V)n(X)n(Y) — 2g(X, X)n(Y)n(Y)
+2n(NnX)g(X, Y) = 2n(X)n(X)g(Y. Y).
from (2.12), we get
k(X,Y) = -3.
Thus we can state the following:

Theorem 3.5. If R(X,Y)Z = 0, in a LP-Kenmotsu manifold, then the sectional curvature of the plane section
determined by X, Y € &+, is -3.

Now, we consider locally ¢-symmetric LP-Kenmotsu manifold with respect to the Schouten-van Kampen
connection. We begin with the following definition.

Definition 3.2. A LP-Kenmotsu manifold is said to be locally ¢-symmetric with respect to the Schouten-van Kampen
connection V if its curvature tensor R with respect to the connection V satisfies the condition

P*(VwR)(X, Y)U) = 0.
for any vector fields X, Y, U, W orthogonal to &.

By the help of (3.2), we have

(VwR)(X, VU = (VwR)X, VU + n(RX, U)W — g(W,R(X, Y)U)¢, (3.24)
by virtue of (3.15), (3.24) reduces to
(VwR)(X, VU = (VwR)X, Y)U + 2n(R(X, V)UYW — g(W,R(X, Y)U)E. (3.25)

Covarient differentiation of (3.4) with respect to W gives
(VwR(X, VYU = (VwR)(X, VU + 2g(Y, U)[-g(W, X)¢ = 2n(X)n(W)é —
NX)W] = 2¢(X, D)[-g(W, Y)§ = 2n(W)n(Y)s — n(Y)W]
= 28(W, V()X — 4n(W)n(Y)n(U)X - 2n(Y)g(W, U)X
+28(W, Xon(U)Y + 4n(Wn(X)n(U)Y + 2n(X)g(W, U)Y. (3.26)
By virtue of (3.26),(3.25) becomes
(TwRX, VU = (VwR)YX, )U — 5g(Y, U)g(W, X)é — 6(Y, U)n(X)n(W)é
+5g(X, U)g(W, V)¢ + 4g(X, Um(W)n(Y)é + 2g(X, Un(Y)é
+28(X, U(Y (W)€ — 2g(W, V(U)X — dn(Wyn(¥)n(U)X
= 2n(Y)g(W, U)X + 2g(W, X)n(U)Y + 4n(W)n(X)n(U)Y
+2n(X)g(W, U)Y = 28X, Un(Y)W — R(X, Y, U, W)§
—20(Y)n(V)g(X, W)E + 20(Xn(V)g(Y, W)E. (3.27)
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Applying ¢* on both side of (3.27), and using (2.1), we have
P (VwRX, NU) = *(YwR)(X, )U) = 2g(Y, W)n(U)X = 2(Y, Win(Xn(U)é
— An(Win(¥)n(U)X — an(Wn(¥)n(U)n(X)¢ — 2n(Y)g(W, U)X
= 2n(Y)g(W, Un(X)¢ + 2g(W, X)n(U)Y + 2g(W, X)n(U)n(Y)¢&
+4nXOn(W)n()Y + dn(Xn(Wn(U)n(Y)é + 2g(W, Un(X)Y
+2g(W, Un(Xn(Y)& — 2g(X, Un(Y)W = 2g(X, Un(Y)n(W)§.
Now taking X, ¥, U and W orthogonal to & we get
P (VwRY(X, V)U) = ¢*(VwR)(X, V)U).

Thus we can state the following:

Theorem 3.6. A LP-Kenmotsu manifold is locally ¢-symmetric with respect to the Schouten-van Kampen connection
V if and only if it is so with respect to the Levi-Civita connection V.

Now, we study concircular curvature tensor with respect to the Schouten-van Kampen connection on the LP-
Kenmotsu manifold.

Definition 3.3. For an n-dimensional LP-Kenmotsu manifold the concircular curvature tensor C with respect to the
Schouten-van Kampen connection is defined by

CX,Y)Z =R(X,Y)Z - ( ) [e(Y,2)X — g(X,2)Y]. (3.28)

nn-1)
Using (3.4) and (3.8), (3.28) becomes

8n—14
z ) [2(Y, Z)X — g(X. Z)Y] + 2g(Y, Z)n(X)é
nn—-1)

-28(X, Zn(Y)é + 2n(Yn(2)X - 2n(X)n(2)Y.

C(X,Y)Z = C(X,Y)Z + (

Using R(X, Y)Z + R(Y,Z)X = 0, we get
C(X,Y)Z+ C(Y,X)Z = 0.
Further, one can easily verify that
CX,"Z+CY,2)X + C(Z,X)Y =0.
Thus we can say that the concircular curvature tensor C with respect to the Schouten-van Kampen connection is
skew-symmetric and cyclic.

Now suppose that, a LP-Kenmotsu manifold M is concircularly flat with respect to Schouten-van Kampen

connection, then we have
CX,V)Z =0. (3.29)

By virtue of (3.29), (3.28) becomes

RX,Y)Z = . [2(Y, 2)X — (X, 2)Y]. (3.30)

7
(n—1)
Taking inner product in both side of (3.30) with &, we get

[g(Y, Z2n(X) - g(X, Z)n(Y)].

(RX.V)Z.£) = n(nr_ 5

Now, using (3.4), (3.8) and (2.6), we get

9 —r— 14
T oY, Zyn(X) - g(X. Z(Y)] = 0,
nn-1)

Which implies either the scalar curvature of M is r = —n?+9n—14, or
8, Zm(X) — g(X,Z)n(Y) = 0.
Replacing Y by &, X by QX and using (2.10), we get
S(X,2) = (1 —nmnXm(2).

Thus we can state the following:
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Theorem 3.7. For a concircularly flat LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection,
either the scalar curvature is r = —n®> + 9n — 14 or the manifold is a special type of n- Einstein manifold.

We now consider locally concircular ¢-symmetric LP-Kenmotsu manifold with respect to the Schouten-van
Kampen connection V.

Definition 3.4. A LP-Kenmotsu manifold is said to be locally concircular ¢-symmetric with respect to the Schouten-
van Kampen connection V, if its concircular curvature tensor C with respect to the connection V satisfies the condition

P (TwOX, V)Z) =
We now give a theorem, whose proof runs on similar lines as of Theorem 3.6.

Theorem 3.8. A LP-Kenmotsu manifold is locally concircular ¢-symmetric with respect to the Schouten-van Kampen
connection V if and only if it is so with respect to the Levi-Civita connection V.

Definition 3.5. A LP-Kenmotsu manifold M with respect to the Schouten-van Kampen connection V is said to be &-
concircularly flat if C(X, Y)¢ = 0.

Now, we assume that the manifold M with respect to the Schouten-van Kampen connection is é-concircularly flat,
that is C(X, Y)¢ = 0. Then from (3.28), it follows that

RX. V)¢ = n(nr_ 5

(X — n(X)Y].

Using (3.8) and (3.9), we get

2 o
w1 - gxoY) =

nn—1)
Putting Y = £, we get
%[ N0 - X] =
Taking inner product with U, we have
B - +9n—r

14
[n(XOn(U) + g(X, U)] = 0.
nn-1)

Which implies either the scalar curvature of M is r = —n®+9n— 14, or
gX, U) = —n(X)n(U).
Replacing X by QX and using (2.10), we get
SX,U) =1 —nmnXnU). (3.31)

Thus we have the following:

Theorem 3.9. For a &-concircularly flat LP-Kenmotsu manifold with respect to the Schouten-van Kampen connection,
either the scalar curvature is r = —n®> + 9n — 14 or the manifold is a special type of n- Einstein manifold.

Corollary 3.1. If a LP-Kenmotsu M, admitting Schouten-van Kampen connection is &- concircullarly flat, then M is
of constant scalar curvature.

Proof. The proof directly follows from (3.31), by putting X = U = ¢;, and taking sum over i.

Definition 3.6. A LP-Kenmotsu manifold is said to be pseudo-concircularly flat with respect to the Schouten-van
Kampen connection V if it satisfies,

g(C(@X.Y)Z ¢W)) = 0, (3.32)
for any vector fields X, Y, Z on M.
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In view of (3.28) and (3.32) we get
Making use of (3.4) and (3.8), we get
8(R(@X,Y)Z,¢W)) + 38(Y, 2)g(¢pX, pW) — 38(¢X, Z)g(Y, pW) + 2n(Y)n(Z)g (¢ X, W)
r+3n®-11ln+ 14
- [8(Y, Z)g(¢X, pW) — g(¢pX, Z)g(Y, $W)] = 0.

nn-1)
Putting Y = Z = ¢; and summing for i, we get

7

n(n—1)

[g(Y, 2)g(9X, pW) — g(¢X, Z)g(Y, pW)] = 0.

(r+3n* - 1ln+14)(n + 3)

S(@X, oY) =|(-3n+7)+ g(oX, ¢Y). (3.33)
nn-1)
2 _
Again putting | (=3n +7) + (r + 3n nznln—i)M)(n 3 = «, and making use of (2.11) and (2.2), (3.33) becomes
SX,Y)=ag(X,Y) + (@ —n+ DHnX)n(Y). (3.34)

Hence, we state the following:

Theorem 3.10. Let the LP-Kenmotsu manifold M is pseudo-concircularly flat with respect to Schouten-van Kampen
connection V, then M is an n- Einstein manifold.

Corollary 3.2. If a LP-Kenmotsu M, admitting Schouten-van Kampen connection is pseudo-concircullarly flat, then
M is of constant scalar curvature.

Proof. The proof directly follows from (3.34), by putting X = Y = ¢;, and taking sum over i.

Definition 3.7. A LP-Kenmotsu manifold is said to be ¢-concircularly semisymmetric with respect to Schouten-van
Kampen connection V, if C(X,Y) - ¢ = 0 holds on M.

Now, we consider ¢-concircularly semisymmetric LP-Kenmotsu manifold with respect to Schouten-van Kampen
connection V. Then we have
(CX,Y)-¢)Z=CX,Y)¢Z - ¢C(X,Y)Z = 0.

Replacing Z by &, we get )
H(C(X, Y)E) = 0.

By virtue of (3.28) and (3.9), we get

(2— ’ )[n(Y)¢X—n(X)¢Y]=o.

n(n—1)

Using (3.8), we get
-n*+9n-r-14

[(n(Y)¢X —n(X)$pY] = 0.

nn—-1)
Replacing Y by ¢ and X by ¢X, we have
-n?+9n—r—14
———— X +nX)é] = 0.
nn—-1)
Taking inner product with &, we get
-n*+9n—-r-14
———— X U) +n(X)nU)] = 0.
nn-1)

Which implies, either the scalar curvature of the manifold M is r = —n® +9n - 14, or
8X,U) = —n(X)n(U)
replacing X by QX and using (2.10), we have
SX,U) =1 —-nmnXnU). (3.35)

Thus we can state the following:
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Theorem 3.11. For a ¢-concircularly semisymmetric LP-Kenmotsu manifold M with respect to the Schouten-van
Kampen Connection V, either the scalar curvature is r = —n’> + 9n — 14 or the manifold is a special type of n-Einstein
Manifold.

Corollary 3.3. If a LP-Kenmotsu M, admitting Schouten-van Kampen connection is ¢- concircullarly semisymmetric,
then M is of constant scalar curvature.

Proof. The proof directly follows from (3.35), by putting X = U = ¢;, and taking sum over i.
Further, we also have
(RX,Y)-C)(U,V,W) = R(X,Y)C(U, V)W - C(R(X, Y)U, V)W
-C(U,RX, V)W = C(U, V)R(X, Y)W. (3.36)
By the help of (3.28), (3.36) becomes
(R(X,Y)- C)(U,V,W) = R(X, )R(U, V)W — R(R(X, Y)U, V)W
—R(U,RX, V)W — R(U,V)RX, Y)W +
L [gRX. V)V W)U + g(V.R(X. V)W)U
nn—1)
—g(R(X, Y)U, W)V = g(U,R(X, Y)W)V].

By the symmetricity of R(X, Y)Z, we get
(R(X,Y) - C)(U, V, W) = R(X, Y)R(U, V)W - RR(X, Y)U, V)W
-R(U,RX, )V)W - R(U, V)R(X, Y)W.
Finally, we have
(RX.Y)- YU, V.W) = (RX.Y) - R)(U, V. W).
Thus we can state the following:

Theorem 3.12. Let M be a LP-Kenmotsu manifold equipped with Schouten-van Kampen connection, then we have
R-C=R-R.
4. Example
Example 4.1. Consider the three dimensional manifold
M ={(x,y,2) € R’ : 2> 0},

where (x, y, z) are the standard coordinates in R3. Let e}, e, and e3 be the vector fields on M?> given by
0

e = Za,ez = Za—y,€3 = Za—Z =¢,
which are linearly independent at each point of M? and hence form a basis of T,M 3. Define a Lorentzian metric g on
M3 as,

gler,er) = glez,e2) =1, gles,e3) = -1, gler, e2) = gler, e3) = glez, e3) = 0.
The 1-form 7 is defined by n(X) = g(X, e3) for all X € y(M). Further we define the (1,1)-tensor field ¢ by,
per = —ez2, ¢er =—er, pe3 =0.
It has been shown in [5] that this manifold is a LP-Kenmotsu manifold.
Using (3.2) we calculate the following
Ve er = —2es, Ve e2 =0, Ve ez = —en,
ngel = 0, nge2 = —263, Vg es %)

66361 = 0, 63362 = O, 66363 =0.

Further using (3.4) we can calculate
R(e1, e2)er = —4es, R(ey, e3)e; = —4es, R(ez, e3)e; =0,
R(e1, e2)er = dey, R(e1,e3)ex = 0, R(e, e3)er = —2e3,

R(ey,ez)e3 =0, R(ey, e3)e3 = —2ey, R(es, e3)e3 = —2es.

similarly using (3.6) we get
S(er,e1) =4, S(er, e2) =4, S(e3,e3) = 2.
which implies 7 = Z?zl S (e;, e;) = 10, which can also be verified from (3.8).
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