
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

In this paper, we introduce a new concept called Algebra of generalized Hukuhara symmetrically (gHs)
differentiable fuzzy function. We specifically state the prerequisites for the gHs differentiability of the product
and composition of a differentiable real function and a gHs differentiable fuzzy function, as well as the gHs
differentiability of the sum of two gHs differentiable fuzzy functions.
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1. Introduction
In optimization, there are two components namely, objective functions and constraints. Practically objective functions
rarely holds real number as coefficients. Most of the time, they have uncertainty. These values may not be accurate
also. The disadvantages of uncertainty or inaccuracy can be tackled by the use of fuzzy programming approach.
Works of Rommelfanger [10] and Delgado et al. [6] viewed this from 90s onwards. Lodwick [9] gives a detailed
literature review on this topic. Paper of Slowinski and Teghem [11] compares optimization problems with multiple
objectives. Inuiguchi [8] has done a similar comparison but for problems to solve portfolio selection.
Generalization of hukuhara differentiability(HD) of set valued functions will give HD of fuzzy valued functions where
the differentiability is based upon Hukuhara difference. Hukuhara [7] developed the subtraction of two sets. Hukuhara
derivatives introduced in [7] is widely used by researchers in the field of set and fuzzy valued functions due to its
importance in fuzzy differential equations as well as optimization problems.

It is found from the works of [1], [2],[3] and [5], compared to H differentiable functions gH differentiable fuzzy
functions are relatively general. H.C.Wu [13] studied the KKT optimality conditions for fuzzy function and also for
multiobjective fuzzy function.[14]
Here we propose a new idea known as generalized Hukuhara symmetrically(gHs) differentiable fuzzy functions. We
can see that gHs derivative of fuzzy functions is more general than gH derivative.
Section 2 contains preliminaries. we define our main definition, gHs differentiable fuzzy function and some theorems
related to it in section 3. Section 4 deals with fuzzy optimization of gHs differentiable functions. In last section, we
obtain the optimality conditions of non-dominated solution applying gHs derivative to fuzzy optimization.

2. Preliminaries
Assume IC represents the family of all intervals belongs to R which are bounded .
ie IC={[k, k]|k, k ∈ R and k <= k }.
Suppose A = [a, a] and B = [b, b] denote the two fuzzy intervals. Now we explain the HausdorffPompeiu distance(Hp)
from A to B as

Hp(A, B) = max{|a − b|, |a − b}. (2.1)

Clearly (IC,Hp) denotes a complete metric space .
Let Rn denotes a mapping l : Rn → [0,1]. We represent the α level set, [l]α ={t ∈ Rn|l(t) >= α } for any α ∈ (0,1].
Now we recall the definition of support as: supp(l) = {t ∈ Rn|l(t) > 0}.
Definition 2.1. Suppose l denotes fuzzy set on Rand l becomes a fuzzy interval only when the following conditions are
hold:

1. l is normal and upper semi continuous,
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2. The value of l(λx + (1 − λ)y) should be greater than or equal to min{l(x), l(y)}, x, y ∈ R, λ ∈ [0, 1],
3. [l]0 should be compact.

Assume FC stands for family of all fuzzy intervals. The α levels of fuzzy intervals are defined as, [l]α = [lα, lα],
where lα, lα ∈ R, ∀ α ∈ [0, 1] and [l]α ∈ IC, ∀ α ∈ [0, 1].
Now we define the arithmetic operations such as addition and scalar multiplication of fuzzy intervals l,m ∈ FC as
follows:

(l + m)(t) = sup
y+z=t

min{l(y),m(z)},

(λl)(t) =

 l(
t
λ

) i fλ , 0

0 i fλ = 0.

(2.2)

Clearly ∀ α ∈[0,1],
[l + m]α = [(l + m)α, (l + m)α] = [lα + mα, lα + mα] (2.3)

and
[(λl)]α = [(λl)α, (λl)α] = [min{λlα, λlα},max{λlα, λlα}]. (2.4)

Definition 2.2. A p dimensional fuzzy number l on R is defined as a mapping, l : R → [0, 1]p, l = (l1, l2, ..., lp) where
each li is a fuzzy number.

Assume FCp stands for family of all p dimensional fuzzy numbers.

Definition 2.3. (Stefanini [12]) l 	gH m = p⇔
 (1)l = m + p,

or(2)m = l + (−1)p.

[l 	gH m]α = [l]α 	gH [m]α = [min{lα − mα, lα − mα},max{lα − mα, lα − mα}], ∀ α ∈[0,1], where [l]α 	gH [m]α

represents gH- difference from l to m. Let l,m ∈ FC, we can define distance from l to m by

D(l,m) = sup
α∈[0,1]

H([l]α, [m]α) = sup
α∈[0,1]

max{|lα − mα|, |lα − mα|}.

So (FC,D) denotes complete metric space.

Proposition 2.1. Suppose the length of the α cuts of l amd m be

[l]α 	gH [m]α =

 [lα − mα, lα − mα], i f len[l]α ≤ len[m]α

[lα − mα, lα − mα], i f len[l]α ≥ len[m]α,
(2.5)

where len[l]α = lα − lα.

2.1. gHs derivative of fuzzy functions
Let E be an open subset of Rn and define F : E → FC, ∀ α ∈ [0, 1]. The collection of all interval-valued fuzzy
functions represented by, Fα : E → IC and is given by Fα(t) = [F (t)]α. For any α ∈ [0, 1], with lower function f

α
(t)

and upper function fα(t) we denote Fα(t) = [f
α
(t), fα(t)].

Definition 2.4. Let E ⊂ R with F : E → FC be a fuzzy function and t0 ∈ E and t0 + h, t0 − h ∈ E. Then the
gHs-derivative of F at to is defined as

F s(t0) = lim
h→0

F (t0 + h) 	gH F (t0 − h)
2h

. (2.6)

If F s(t0) ∈ IC satisfying (2.6) exists, we say that F is gHs differentiable at t0.

Theorem 2.1. If F : E → FC is gHs differentiable then the fuzzy function defined on an interval Fα : E → IC is gHs
differentiable, ∀ α ∈ [0, 1]. Furthermore [F s(t)]α = F s

α (t).

Proof. Obvious from the definition of gHs differentiability.

Theorem 2.2. Assume F : E → FC and if F is gHs differentiable at t0 ∈ E uniformly ∀ α ∈ [0, 1], then one of the
following conditions is satisfied:
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1. fα and fα are symmetrically differentiable at t0. Also

[F s(t0)]α = [min{(fα)s(t0), (fα)s(t0)},max{(fα)s(t0), (fα)s(t0)}], (2.7)

2. (fα)s
−(t0), (fα)s

+(t0), (fα)s
−(t0), (fα)s

+(t0) exist and satisfy
(fα)s

−(t0) = (fα)s
+(t0)and(fα)s

+(t0) = (fα)s
−(t0). Moreover

[F s(t0)]α = [min{(fα)s
−(t0), (fα)s

−(t0)},max{(fα)s
−(t0), (fα)s

−(t0)}]
= [min{(fα)s

+(t0), (fα)s
+(t0)},max{(fα)s

+(t0), (fα)s
+(t0)}].

Proof. Assume that F is gHs differentiable at t0 and [F s(t0)]α = [g
α
(t0), gα(t0)] exists. According to (2.1) and

definition 2.3

g
α
(t0) = lim

h→0
min

{ fα(t0 + h) − fα(t0 − h)
2h

,
fα(t0 + h) − fα(t0 − h)

2h

}
,

gα(t0) = lim
h→0

max
{ fα(t0 + h) − fα(t0 − h)

2h
,

fα(t0 + h) − fα(t0 − h)
2h

}
,

exist. Therefore fs
α(t0), f

s
α(t0) must exist and (2.4) is satisfied.

Conversely suppose fα and fα are symmetrically differentiable at t0. If (fα)s(t0) ≥ (fα)s(t0) then by definition (2.4) and
proposition (2.1) we have

[(fα)s(t0), (fα)s(t0)] = [lim
h→0

fα(t0 + h) − fα(t0 − h)
2h

, lim
h→0

fα(t0 + h) − fα(t0 − h)
2h

]

= lim
h→0

Fα(t0 + h) 	gH Fα(t0 − h)
2h

= F s
α (t0)

= [F s(t0)]α.
So F is gHs differentiable. Similarly, if (fα)s(t0) <= (fα)s(t0) then [Fs(t0)]α = [(fα)s(t0), (fα)s(t0)].

Now we go through the explanation of a partial derivative of fuzzy function on E ⊂ Rn. Let F : E → FC, the
fuzzy interval , F (t) = [f(t), f(t)] ∀ α ∈ [0,1], is defined as

Fα(t) = [f
α
(t), fα(t)] = [f(α, t), f(α, t)].

Definition 2.5. Let F on E ⊂ Rn and suppose t0 = (t(0)
1 , ..., t(0)

n ) be a fixed element of E. ki(ti) = F (t(0)
1 , ..., ti−1(0), ti, ti +

1(0), ..., t(0)
n ). If ki is gHs differentiable at t(0)

i , then clearly F has the ith partial gHs derivative at t0
(

represented as(
∂sF
∂ti

)
(t0)

)
and

(
∂sF
∂ti

)
(t0) = (ki)s(t(0)

i ).

Definition 2.6. Suppose F is defined on E and assume that t0 ∈ E be fixed such that t0 = (t(0)
1 , ..., t(0)

n ). Then F is gHs
differentiable at t0 if the entire partial gHs derivatives

(
∂sF
∂t1

)
(t0), ...,

(
∂sF
∂tn

)
(t0) exist on some neighbourhood of t0. Also

they are continuous at t0.

If F is gHs differentiable at t0, then
(
∂sF
∂ti

)
(t0) is a fuzzy interval. Now we define,[

∂sF
∂ti

(t0)
]α

= ∂sF
∂ti

(t0) =
[ ∂sF

α

∂ti
(t0), ∂

sF α

∂ti
(t0)

]
, ∀ α ∈ [0, 1].

Proposition 2.2. If F : E → FC is gHs differentiable at t0 ∈ E then, ∀ α ∈ [0, 1], f
α

+ fα : E → R is symmetrically
differentiable at t0. Moreover

∂sFα
∂ti

(t0) +
∂sFα
∂ti

(t0) =
∂s(f

α
+ fα)

∂ti
(t0) (2.8)

Proof. Follows directly from Theorem 2.2.

Definition 2.7. The symmetric gradient of F : E → FC at t0, ∇sF (t0), is defined as

∇sF (t0) =
((∂sF
∂t1

)
(t0), ...,

(∂sF
∂tn

)
(t0)

)
, (2.9)

where ( ∂
sF
∂t j

)(t0) denotes the jth partial gHs derivative of F at t0.
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3. Algebra of gH Symmetric Differentiable Fuzzy Function
Suppose F ,G : E → FC be two fuzzy valued functions with F (t) = [f(t), f(t)] and G(t) = [g(t), g(t)]. Let σ and η be
two real valued functions so that σ : E → R and η : D → E, for some D ⊂ R. the basic algebraic operations are
defined by
(F + G)(t) = F (t) + G(t) = [f(t) + g(t), f(t) + g(t)],

(F 	gH G)(t) = F (t) 	gH G(t) = [min{f(t) − g(t), f(t) − g(t)},max{f(t) − g(t), f(t) − g(t)}],
(σ.F )(t) = σ(t).F (t) = [min{σ(t).f(t), σ(t).f(t)},max{σ(t).f(t), σ(t).f(t)}],
(F ◦ η)(t) = [min{f(η(t)), f(η(t))},max{f(η(t)), f(η(t))}].

This section examines the characteristics of the algebra of fuzzy functions that are gHs differentiable. We
specifically investigate the gHs-differentiability of F + G, given that F and G are gHs-differentiable and that σ and η
are differentiable. In this paper we discuss only the sum of gHs differentiable fuzzy function.
3.1. Sum of gHs differentiable fuzzy function
Theorem 3.1. Suppose F ,G : E → FC be two fuzzy valued functions. If F and G are gHs differentiable at t0 then
F + G is gHs differentiable at t0.

Moreover (F + G)
′
(t) = F ′

(t) + G′ (t).
Proof. Let F and G be two fuzzy valued functions such that F (t) = [f(t), f(t)] and G(t) = [g(t), g(t)]. If F and G are
gHs differentiable fuzzy functions at t0 then by the properties of lateral derivatives
(f + g)

′
−(t0), (f + g)

′
+(t0), (f + g)

′
−(t0) and (f + g)

′
+(t0) exist and satisfy

(f + g)
′
−(t0) = (f + g)

′
+(t0), (f + g)

′
+(t0) = (f + g)

′
−(t0). Also we have

(F + G)
′
(t0) = [min{(f+g)

′
−(t0), (f+g)

′
+(t0)},max{(f+g)

′
−(t0), (f+g)

′
+(t0)}]

=[(f+g)
′
−(t0), (f+g)

′
+(t0)].

Thus F + G is gHs differentiable at t0.

Theorem 3.2. Suppose F ,G : E → FC be two fuzzy valued functions.
(i) If F is gHs differentiable at t0 and G is gHs differentiable at t0 then F + G is gHs differentiable at t0.

Proof. Since F and G are gHs differentiable at t0, the end point functions f, f, g, g are also differentiable at t0. Thus
from the previous results and theorems F + G is gHs differentiable at t0 and
(F +G)

′
(t0) = [min{(f)′ (t0)+(g)

′
(t0), (f)

′
(t0)+(g)

′
(t0)},max{(f)′ (t0)+(g)

′
(t0), (f)

′
(t0)+(g)

′
(t0)}]. The gHs differentiability

of the product for a real-valued function h is now examined. When F is gHs differentiable, the following theorem
specifies the prerequisites for hF to be gHs differentiable.
3.2. Product of gHs differentiable fuzzy function
Theorem 3.3. Suppose F : E → FC be a fuzzy valued functions and h be a real valued function which is gHs
differentiable at t0
(a) if F is gHs differentiable at t0 and h(t0).h

′
(t0) > 0 then h.F is gHs differentiable at t0

(b) if F is gHs differentiable at t0 and h(t0).h
′
(t0) < 0 then h.F is gHs differentiable at t0.

Moreover (h.F ′
(t0)) = h(t0).F ′

(t0) + h
′
(t0).F (t0)

Proof. Let F (t) = [f(t), f(t)], the product is given by

(h.F (t) = h(t).F (t)) =

 [h(x)f(t), h(x)f(t)], i f h(x) > 0,
[h(x)f(t), h(x)f(t)], i f h(x) < 0.

If h(t0) > 0, h
′
(t0) > 0 and F is gHs differentiable then

(h.F )
′
(t0) = [h

′
(t0)f(t0) + h(t0)(f)

′
(t0), h

′
(t0)f(t0) + h(t0)(f)

′
(t0)]

implying that h.F is gHs differentiable. Also we have

h
′
(t0).F (t0) + h(t0).F ′

(t0) = h
′
(t0)[f(t0), f(t0)] + h(t0)[(f)

′
(t0), (f)

′
(t0)]

= [h
′
(t0)f(t0), h

′
(t0)f(t0)] + [h(t0)(f)

′
(t0), h(t0)(f)

′
(t0)]

= [h
′
(t0)f(t0) + h(t0)(f)

′
(t0), h

′
(t0)f(t0) + h(t0)(f)

′
(t0)]

= (h.F )
′
(t0).
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If h(t0) < 0, h
′
(t0) < 0 and F is gHs differentiable then

(h.F )
′
(t0) = [h

′
(t0)f(t0) + h(t0)(f)

′
(t0), h

′
(t0)f(t0) + h(t0)(f)

′
(t0)]

implying that h.F is gHs differentiable. Also we have

h
′
(t0).F (t0) + h(t0).F ′

(t0) = h
′
(t0)[f(t0), f(t0)] + h(t0)[(f)

′
(t0), (f)

′
(t0)]

= [h
′
(t0)f(t0), h

′
(t0)f(t0)] + [h(t0)(f)

′
(t0), h(t0)(f)

′
(t0)]

= [h
′
(t0)f(t0) + h(t0)(f)

′
(t0), h

′
(t0)f(t0) + h(t0)(f)

′
(t0)]

= (h.F )
′
(t0).

3.3. Composition of gHs differentiable fuzzy function
In this section we derive the gHs differentiability of the composition of a gHs differentiable function and a real valued
function.

Theorem 3.4. Let F : E → FC be a fuzzy valued functions at y0, suppose S ⊂ R be an open set, Let h be a real valued
function differentiable at t0 so that h(S ) ⊆ E and y0 = h(t0). Then the composite function (F ◦ h) = F (g(t)) is gHs
differentiable at t0 and (F ◦ h)

′
(t0) = F ′

(y0).h
′
(t0)

Proof. We assume that F is gHs differentiable at y0. Then f ◦ h and f ◦ h are differentiable at t0. From the theorem
above (F ◦ h) is gHs differentiable and

(F ◦ h)
′
(t0) = [min{(f ◦ h)

′
(t0), (f ◦ h)

′
(t0)},max{(f ◦ h)

′
(t0), (f ◦ h)

′
(t0)}]

= [min{(f)′ (h(t0)).h
′
(t0), (f)

′
(h(t0)).h

′
(t0)},max{(f)′ (h(t0)).h

′
(t0), (f)

′
(h(t0)).h

′
(t0)}]

= g
′
(t0).[min{(f)′ (y0), (f)

′
(y0)},max{(f)′ (y0), (f)

′
(y0)}]

= F ′
(y0).h(t0).

Now we assume that F is gHs differentiable at y0 and the lateral derivatives (f ◦ h)
′
−(t0), (f ◦ h)

′
+(t0), (f ◦ h)

′
−(t0), (f ◦

h)
′
+(t0) exist. Also

(f ◦ h)
′
−(t0) = (f)

′
−(h(t0)).h

′
(t0) = (f)

′
−(h(t0)).h

′
(t0) = (f ◦ h)

′
+(t0)

and
(f ◦ h)

′
+(t0) = (f)

′
+(h(t0)).h

′
(t0) = (f)

′
+(h(t0)).h

′
(t0) = (f ◦ h)

′
−(t0).

Therefore F ◦ h is gHs differentiable. In addition

(F ◦ h)
′
(t0) = [min{(f ◦ h)

′
−(t0), (f ◦ h)

′
−(t0)},max{(f ◦ h)

′
−(t0), (f ◦ h)

′
−(t0)}]

= [min{(f)′−(h(t0)).h
′
(t0), (f)

′
−(h(t0)).h

′
(t0)},max{(f)′−(h(t0)).h

′
(t0), (f)

′
−(h(t0)).h

′
(t0)}]

= g
′
(t0).[min{(f)′−(y0), (f)

′
−(y0)},max{(f)′−(y0), (f)

′
−(y0)}]

= F ′
(y0).h(t0).

Definition 3.1. The symmetric gradient of F : E → FC at t0, ∇sF (t0), became a p dimensional fuzzy number and is
defined as

∇sF (t0) =
((∂sF
∂t1

)
(t0), ...,

(∂sF
∂tn

)
(t0)

)
, (3.1)

where ( ∂
sF
∂t j

)(t0) denotes the jth partial gHs derivative of F at t0.

4. gHs differentiable functions in fuzzy optimization
The efficient solutions in the crisp multiobjective optimization problem are also stationary points, which can be
discovered by reducing the gradient to zero. We can independently determine if each of these stationary positions
is an efficient solution from these stationary points. However, we lack suitable definitions of stationary points for
issues involving fuzzy multiobjective programming. Furthermore, it is yet to be demonstrated that all viable solutions
to a multiobjective fuzzy optimization problem are stationary points. Now, we create a prerequisite for the resolution
of p-dimensional fuzzy optimization issues. It is crucial to note that no finding of this kind has ever been obtained in
prior study. We begin by defining the fuzzy p-dimensional stationary point:
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Definition 4.1. Let F : E → FCp be a p dimensional fuzzy function. It is said that t ∈ E is

1. a strongly efficient solution if there exists no t ∈ E such that F (t) 5 F (t∗) and
F (t) , F (t∗),

2. an efficient solution if there exists not ∈ E such that F j(t) 5 F j(t∗),∀ j = 1, 2, ..., p and ∃k such that Fk(t) <
Fk(t∗),

3. a midly weakly efficient solution if there exists no t ∈ E such that F j(t) ≤ F j(t∗),∀ j = 1, 2, ..., p,
4. a weakly efficient solution if there exists no t ∈ E such that F (t) < F (t∗).

The following relations are immediate:
efficient ⇐= strongly efficient

⇓ ⇓
weakly efficient⇐= midly weakly efficient.

Definition 4.2. Let F be a p dimensional gHs differentiable function on E, t ∈ E is said to be a fuzzy p dimensional
stationary point for F , if for every i = 1, 2, ..., n there exist a non-negative matrix

λi ×
[∂F
∂ti

(t∗)
]0

= 0.

Proposition 4.1. Suppose F be a p dimensional gHs differentiable function on E. If t∗ is a weakly efficient solution
for F , then the following system has no solution at y ∈ R, for any i = 1, 2, ..., n

y
(∂F
∂ti

(t∗)
)
< 0p.

Theorem 4.1. Let F be a p dimensional gHs differentiable function at t∗ ∈ E. If t∗ is a weakly efficient solution for
F , then t∗ is a fuzzy p dimensional stationary point for F .

Proof. If t∗ is a weakly efficient solution for F , then

λi ×
[∂F
∂ti

(t∗)
]0

= 0

has no solution for any i = 1, 2, ..., p.

y
(∂F
∂ti

(t∗)
)
< 0p ⇔ y

(∂F j

∂ti
(t∗)

)α
< [0, 0],∀α ∈ [0, 1],∀ j = 1, 2, ..., p⇔ y

(∂F j

∂ti
(t∗)

)0
< [0, 0],

∀ j = 1, 2, ..., p.
Now, for every i = 1, 2, ..., n, let us consider the following linear system
yAi < 0 and yBi < 0 where Ai and Bi are

Ai =



∂F10

∂ti
(t∗)L

.

.

.
∂Fp0

∂ti
(t∗)L


, Bi =



∂F10

∂ti
(t∗)U

.

.

.
∂Fp0

∂ti
(t∗)U


.

If the system yAi < 0 and yBi < 0 has a solution for some i = 1, 2, ..., n, then the system

λi ×
[∂F
∂ti

(t∗)
]0

= 0

has a solution for some i. This is impossible from proposition 4.1. Since yAi < 0 and yBi < 0 is a system of linear
inequalities and it has no solution for any i, from known theorem, for

AT
i αi + BT

i βi = 0⇔
p∑

j=1

[αi j(
∂F j0

∂ti
(t∗)L) + βi j(

∂F j0

∂ti
(t∗)U)] = 0.

By redefining Λi = (αi j, βi j), it can be stated that, for every i, there exists Λi ∈ Mp×2 such that Λi ×
[∂F
∂ti

(t∗)
]0

= 0.

Hence the proof.
Now consider the fuzzy optimization problem, ∀ α ∈ [0, 1]

min
(
f
α
(t), fα(t)

)
,

subject to t ∈ T. (4.1)
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Lemma 4.1. Suppose t∗ denotes a pareto efficient result for
minF (x)

sub ject to gi(x) ≤ 0, i = 1, 2, ...,m
x ∈ X ⊂ Rn (4.2)

∀ α ∈ [0, 1], then t∗ is a non-dominated result for the multiobjective fuzzy optimization problem (4.1).

Proof. We prove the result by assuming the converse of the statement ie. we assume that t∗ is a dominated solution.
Then ∃ t̃ ∈ T | F (t̃) � F (t∗). In otherwords ∃ α∗ such that

f
α
∗(t̃) ≤ f

α
∗(t∗),

fα∗(t̃) ≤ fα∗(t
∗).

Definition 4.3. Let E ⊂ Rn and assume that E is convex. Consider the fuzzy function F on E and F become convex
when

F (λt∗ + (1 − λ)x) � λF (t∗) + (1 − λ)F (t)

∀ λ ∈ (0, 1) and each t, t∗ ∈ E.

Definition 4.4. We assume that the constraint function of (4.2) be fuzzy. Then (4.2) becomes a fuzzy pseudoinvex 2
problem if it satisfies following conditions:

1. F is gHs differentiable.
2. g is symmetrically differentiable on E.

Furthermore ∀t, t∗ ∈ T , ∃ η(t∗, t) ∈ Rn such that
F (t) � F (t∗)⇒ ∇̃sF (t∗).η(t, t∗) � 0,

−∇sgi(t∗)η(t, t∗) ≤ 0 i ∈ I(t∗),
where I(t∗) represents index set of constraints.

Result 4.1. Suppose that optimization problem (4.2) be a fuzzy pseudoinvex 2 on E. Let ∀α ∃ non negative numbers
µ j(α), j = 1, ...,m, which satisfy the following conditions ∀ α ∈ [0, 1]

1. ∇s
(
f
α

+ fα
)
(t∗) +

m∑
j=1

µ j(α)∇sg j(t∗) = 0 ∀α ∈ [0, 1],

2. µ j(α)g j(t∗) = 0 ∀α j = 1, ...,m.

Then t∗ becomes a non-dominated result of optimization problem (4.2).

5. Conclusion
In this paper we defined a new concept called algebra of gHs derivative of fuzzy valued functions. We specifically
gave conditions for the gHs differentiability of the sum, product and the composition of a gHs differentiable fuzzy
function. Moreover the necessary efficiency criteria are found using a new notion of a p-dimensional fuzzy stationary
point.
Acknowledgement. We are very much thankful to the Editor and Reviewer for their fruitful suggestions to bring the
paper in its present form.

References
[1] B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications

to fuzzy differential equations,Fuzzy Sets and Systems, 151 (2005), 581-599.
[2] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230

(2013),119-141.
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