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Abstract

In this paper, we prove the existence of PPF(Past,Present,Future) dependent fixed point results via using C∗-
algebra-valued metric spaces. Also we use Banach contraction to find a PPF dependent fixed point in the setting of
C∗-algebra-valued metric spaces.
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1. Introduction
One of the most fundamental results in fixed point theory is the Banach contraction principle. This approach is used
to determine a unique metric fixed point. The result of Banach contraction is significant in developing the fixed point
theorem, as well as the uniqueness and existence of fixed points.

Bernfeld et al. [5] introduced the PPF (past, present, future) concept, which they defined with several domains and
ranges. In the Razumikhin class, they also proposed the concept of Banach type contraction for non-self mappings of
PPF dependent fixed points. PPF dependent fixed point in partially ordered metric spaces was established by Dirci
et al [8]. Several mathematicians have induced a different type of mapping and have also produced significant results
in the search for a fixed point in PPF dependency and also in C∗-algebra-valued metric spaces; for more information,
see [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15].

The idea of PPF dependent fixed point in the setting of C∗-algebra-valued metric spaces is discussed in this work.

2. Preliminaries
Let X be a non-empty set. Suppose that B is a C∗ -algebra valued metric space with the ‖‖B and [a, b] in R. Let E0 be
the set of all continuous C∗-algebra-valued metric space on [a, b] equipped with the supremum norm ‖.‖E0 , defined by

‖φ‖E0 = supt∈I‖φ(t)‖B, (2.1)

for all φ ∈ E0. For a fixed element c ∈ [a, b], the Razumikhin class of mappings in E0 is defined by

Rc = {φ ∈ E0 : ‖φ‖E0 = ‖φ(c)‖B}. (2.2)

Definition 2.1 ([5]). Let T : E0 → B be a mapping . A function φ ∈ E0 is said to be PPF dependent fixed point of T ,
if Tφ = φ(c) for some c ∈ [a, b].

Definition 2.2 ([5]). Let Rc be Razumikhin class of continuous functions in E0. we say that

(i) The class Rc is algebraically closed with respect to the difference if φ − ψ ∈ Rc, whenever φ, ψ ∈ Rc,
(ii) the class Rc is topologically closed if it is closed with respect to the topology on E0 by the norm ‖.‖E0 .

Theorem 2.1 ([4]). Let Rc be the Razumikhin class of functions in E0 and (B, ‖.‖B) is a real banach space it simply B.
Then

(i) E0 = ∪c∈[a,b]Rc
(ii) for any φ ∈ Rc and α ∈ R, we have αφ ∈ Rc,
(iii) the Razumikhin class Rc is topologically closed with respect to the norm defined on E0,
(iv) ∩c∈[a,b]Rc = {φ ∈ E0/φ : I → Bis constant}.

Clearly every constant function from I to B belongs to Rc.
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Definition 2.3 ([5]). Let T : E0 → B be a mapping and if it is called Banach type contraction if there exist s ∈ [0, 1)
such that ‖Tφ − Tψ‖B ≤ s‖φ − ψ‖E0 .

Definition 2.4 ([14]). Let X be a nonempty set. Suppose the mapping d : X × X→ B satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ ⇐⇒ x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then (X,B, d) is called C∗-algebra -valued metric space.

Theorem 2.2 ([5]). Let T : E0 → B be a Banach type contraction. Let Rc be algebraically closed with respect to the
difference and topologically closed. Then T has a unique PPF dependent fixed point in Rc.

3. Main Results
Theorem 3.1. Let (X,B, d) be complete C∗-algebra valued metric space and and E0 is set of all continuous C∗-
valued mapping equipped with [a, b], a, b ∈ R. A mapping T : E0 → B is non-decreasing . We make the following
assumptions:

(i) for any φ, ψ ∈ E0, ‖A‖2 < 1 and φ ≤ ψ such that

d(Tφ,Tψ) � A∗d(φ, ψ)A;
(ii) there exists a lower solution φ0 such that φ0(c) � Tφ0 for some c ∈ [a, b].

Then there exists a fixed point λ̂ such that λ̂(c) = T λ̂, c ∈ [a, b].

Proof. Let us take Tφ0 = x1, where x1 ∈ B. Choose φ1 ∈ E0 such that x1 = φ1(c), c ∈ [a, b] and φ1 � φ0. Since φ0 is
a lower solution

=⇒ d(φ1(c), φ0(c)) = d(φ1, φ0).

Then Tφ0 = φ1(c) � Tφ1, since T is non-decreasing. Again Tφ1 = x2, x2 ∈ B. Also choose φ1 ∈ E0 such that
x2 = φ2(c), φ2 � φ1.

=⇒ d(φ2(c), φ1(c)) = d(φ2, φ1).

Then Tφ0 = φ1(c) � Tφ1 = φ2(c) � Tφ2, continuing this process, we have a sequence

Tφ0 = φ1(c) � Tφ1 = φ2(c) � Tφ2 � ... � Tφn = φn+1(c) � Tφn+1,

φ0 � φ1 � ... � φn � φn+1 � ... .
Also, d(φn(c), φn−1(c)) = d(φn, φn−1).
Assume that Rc is algebraically closed with respect to the difference.

d(φn+1, φn) = d(φn+1(c), φn(c)), c ∈ [a, b]
= d(Tφn,Tφn−1)
� A∗d(φn.φn−1)A
= A∗d(φn(c).φn−1(c))A
= A∗d(Tφn−1,Tφn−2)A

� (A∗)2d(φn−1, φn−2)(A)2

...

d(φn+1, φn) � (A∗)nd(φ1, φ0)(A)n

= (A∗)nD(A)n.

where D = d(φ1, φ0). Next, we prove Tφn is Cauchy in B. Let m > n

d(φm, φn) = d(φm(c), φn(c))
= d(Tφm,Tφn)
� d(Tφm,Tφm−1) + d(Tφm−1,Tφm−2) + d(Tφm−2,Tφm−3) + . . . + d(Tφn+1,Tφn)

� (A∗)m−1D(A)m−1 + (A∗)m−2D(A)m−2 + (A∗)m−3D(A)m−3 + . . . + (A∗)nD(A)n
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=

m−1∑
i=n

(A∗)iDAi

=

m−1∑
i=n

(A∗)iD1/2D1/2Ai

=

m−1∑
i=n

(AiD1/2)∗(AiD1/2)

=

m−1∑
i=n

|AiD1/2|2

≤ ‖
m−1∑
i=n

|AiD1/2|2‖I

≤
m−1∑
i=n

‖D1/2‖2‖Ai‖2I

≤ ‖D1/2‖2
m−1∑
i=n

‖Ai‖2I

= ‖D1/2‖2
[
‖A‖2n + ‖A‖2(n+1) + . . . + ‖A‖2(m−1)

]
I

= ‖D1/2‖2
[
λn + λn+1 + . . . + λ2(m−1)

]
where λ = ‖A‖2I

= ‖D1/2‖2
[
λn

1 − λ
]

I → 0 as n→ ∞.

Therefore, it concludes that Tφn is Cauchy sequence. By the completeness of (X, B, d), we get limn→∞ φn = λ̂ for
some φ ∈ E0 and

lim
n→∞Tφn = T λ̂ = lim

n→∞ φn+1(c), c ∈ [a, b].

To prove λ̂ is a fixed point of T . Also T is continuous at λ̂.Given ε
2 > 0, there exists δ > 0 such that

d(Tφn+1,T λ̂) ≺ ε
2 whenever d (φn+1, λ̂) ≺ δ. Since Tφn → λ̂(c) for any r = min{ ε2 , δ} and there exists n0 ∈ N

such that

d(Tφn, λ̂(c)) ≺ r for n ≥ n0.

Thus d(T λ̂, λ̂(c)) � d(T λ̂,Tφn) + d(Tφn, λ̂(c)) ≺ ε
2 + r ≺ ε.

As ε is arbitrary, we get
d(T λ̂, λ̂(c)) = θ.

Hence T λ̂ = λ̂(c), λ̂ is a fixed point of T .
Now suppose γ̂, λ̂ another fixed point of T .
Therefore,

0 ≤ ‖d(λ̂(c), γ̂(c))‖ = ‖d(T λ̂,T γ̂)‖
≤ ‖A∗d(λ̂, γ̂)‖
≤ ‖A∗‖‖d(λ̂, γ̂)‖‖A‖
= ‖A‖2‖d(λ̂, γ̂)‖,where‖A‖2 ∈ (0, 1)

< ‖d(λ̂, γ̂)‖
‖d(λ̂(c), γ̂(c))‖ < ‖d(λ̂, γ̂)‖.

This is imppossible, since λ̂, γ̂ ∈ E0 and Rc is Razumikhin class such that λ̂ = γ̂.

Example 3.1. Consider X = R, E0 = C([0, 1],R),B = M2(R) and A ∈ B+, ‖A‖ ≤ 1. Define Tφ = φ(1/2) and
φ(t) = t − 1

4 , B+ = {φ ∈ R; φ ≥ 0}, the metric defined as d(φ, ψ) = diag(|φ − ψ|, α|φ − ψ|), α > 0. Therefore (X,B, d) is
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complete.

d(Tφ,Tψ) = A∗
[|Tφ − Tψ| 0

0 α|Tφ − Tψ|
]

A

≤ A∗
[‖φ(1/2) − ψ(1/2)‖E 0

0 α‖φ(1/2) − ψ(1/2)‖E
]

A

≤ A∗
[‖φ − ψ‖E0 0

0 α‖φ − ψ‖E0

]
A

= A∗d(φ, ψ)A.

Therefore, theorem 3.1 is satisfied and
1
2

is a unique PPF dependent fixed point.

Theorem 3.2. Let (X,B, d) be a complete C∗-algebra valued metric space and E0 is set of all continuous C∗-valued
mapping equipped with [a, b], where a, b ∈ R. A non decreasing mapping T : E0 → B and We make the following
assumptions:

(i) For any φ, ψ ∈ E0, ‖A‖ < 1
2 and φ ≤ ψ such that

d(Tφ,Tψ) � A(d(φ,Tψ) + d(ψ,Tφ)),
(ii) There exist a lower solution φ0 such that φ0(c) � Tφ0 for some c ∈ [a, b].

Then there exist a fixed point λ̂ such that λ̂(c) = T λ̂, c ∈ [a, b]

Proof. Without loss of generality A , 0. Note that A ∈ B+ and A(d(φ,Tψ) + d(ψ,Tφ)) is a positive element. Let us
take Tφ0 = x1, where x1 ∈ B. Choose φ1 ∈ E0 such that x1 = φ1(c), c ∈ [a, b] and φ1 � φ0. Since φ0 is a lower solution

=⇒ d(φ1(c), φ0(c)) = d(φ1, φ0).

Then Tφ0 = φ1(c) � Tφ1, since T is non-decreasing. Again Tφ1 = x2, x2 ∈ B. Also choose φ1 ∈ E0 such that
x2 = φ2(c), φ2 � φ1.

Then Tφ0 = φ1(c) � Tφ1 = φ2(c) � Tφ2, continuing this process, we get

Tφ0 = φ1(c) � Tφ1 = φ2(c) � Tφ2 � ... � Tφn = φn+1(c) � Tφn+1,

φ0 � φ1 � ... � φn � φn+1 � ... .
Therefore d(φn(c), φn−1(c)) = d(φn, φn−1).
Assume that Rc is algebraically closed with respect to the difference

d(φn+1, φn) = d(φn+1(c), φn(c)), c ∈ [a, b]
= d(Tφn,Tφn−1)
� A(d(Tφn, φn) + d(Tφn−1, φn−1))

≤
( A
1 − A

)
d(φn, φn−1).

Since A ∈ B+ with ‖A‖ < 1
2

. Also
A

1 − A
∈ B+ and is lessthan 1.

d(φn+1, φn) � Hd(φn, φn−1), where H =
A

1 − A
.

On continuing this process we get d(φn+1, φn) � Hnd(φ1, φ0). To prove Tφn is cauchy sequence inB. Let n+1 > m.
Here D = d(Tφ(c),Tφ0(c)) .

Therefore,

d(φn+1, φm) = d(φn+1(c), φm(c))
= d(Tφn,Tφm−1)

� (Hn−1 + Hn−2 + · · · + Hm)D

=

n−1∑
k=m

(Hk/2D1/2)∗(Hk/2D1/2)
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=

n−1∑
k=m

|Hk/2D1/2|2

� ‖D1/2‖2
n−1∑
k=m

‖H‖m
1 − ‖H‖ I → 0 as m→ ∞.

By the completeness of (X, B, d), then we get limn→∞ φn = λ̂ for some φ ∈ E0

lim
n→∞Tφn = T λ̂ = lim

n→∞ φn+1(c), c ∈ [a, b].

To prove λ̂ is a fixed point of T . Also T is continuous at λ̂.Given ε
2 > 0, there exist δ > 0 such that

d(Tφn+1,T λ̂) ≺ ε
2 whenever d (φn+1, λ̂) ≺ δ. Since Tφn → λ̂(c) for any r = min{ ε2 , δ} and there exist n0 ∈ N

such that

d(Tφn, λ̂(c)) ≺ r for n ≥ n0.

Thus
d(T λ̂, λ̂(c)) ≺ ε.

As ε is arbitrary, we get
d(T λ̂, λ̂(c)) = θ.

Hence T λ̂ = λ̂(c), λ̂ is a fixed point of T .

Corollary 3.1. Let (X,B, d) be a C∗-algebra valued metric space and E0 is set of all continuous C∗-valued mapping
equipped with [a, b], where a, b ∈ R. A non decreasing mapping T : E0 → B and We make the following assumptions:

(i) For any φ, ψ ∈ E0, ‖A‖ < 1
2 and φ ≤ ψ such that

d(Tφ,Tψ) � A(d(φ,Tψ) + d(ψ,Tφ))
(ii) There exists a lower solution φ0 such that φ0(c) � Tφ0 for some c ∈ [a, b].

Then there exists a fixed point λ̂ such that λ̂(c) = T λ̂, c ∈ [a, b].

4. Conclusion
In this paper we concluded that the PPF (past, present, future) dependent fixed point results in C∗-algebra valued
metric space using different contraction. This paper can be extended to Banach algebra instead of C∗-algebra valued
metric space.
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