PPF AEPENDENCE AIXED AOINT AESULTS AVER A^{*}-ALGEBRA-VALUED AETRIC APACE R. Jahir Hussain, K Manoj and D. Dhamodharan

PG \& Research Department of Mathematics, Jamal Mohamed College(Autonomous)(Affiliated to Bharathidasan University), Tiruchirapplli-620020, Tamilnadu, India
Email: hssn-jhr@yahoo.com, manojguru542@gmail.com, dharan-raj28@yahoo.co.in
(Received: August 03, 2022; In format: September 01, 2022; Revised: November 25, 2022; Accepted: November 27, 2022)
DOI: https://doi.org/10.58250/jnanabha.2022.52230

Abstract

In this paper, we prove the existence of $P P F$ (Past,Present,Future) dependent fixed point results via using C^{*} -algebra-valued metric spaces. Also we use Banach contraction to find a $P P F$ dependent fixed point in the setting of C^{*}-algebra-valued metric spaces. 2020 Mathematical Sciences Classification: $46 \mathrm{~N} 20,47 \mathrm{H} 09,47 \mathrm{H} 10$. Keywords and Phrases: $P P F$ dependent fixed point, C^{*}-Algebra-valued metric space, Razumikhin class, Algebraically closed.

1. Introduction

One of the most fundamental results in fixed point theory is the Banach contraction principle. This approach is used to determine a unique metric fixed point. The result of Banach contraction is significant in developing the fixed point theorem, as well as the uniqueness and existence of fixed points.

Bernfeld et al. [5] introduced the $P P F$ (past, present, future) concept, which they defined with several domains and ranges. In the Razumikhin class, they also proposed the concept of Banach type contraction for non-self mappings of $P P F$ dependent fixed points. $P P F$ dependent fixed point in partially ordered metric spaces was established by Dirci et al [8]. Several mathematicians have induced a different type of mapping and have also produced significant results in the search for a fixed point in $P P F$ dependency and also in C^{*}-algebra-valued metric spaces; for more information, see $[1,2,3,4,6,7,9,10,11,12,13,14,15]$.

The idea of $P P F$ dependent fixed point in the setting of C^{*}-algebra-valued metric spaces is discussed in this work.

2. Preliminaries

Let X be a non-empty set. Suppose that \mathcal{B} is a C^{*}-algebra valued metric space with the $\left\|\left\|\|_{\mathcal{B}}\right.\right.$ and $[a, b]$ in \mathbb{R}. Let E_{0} be the set of all continuous C^{*}-algebra-valued metric space on $[a, b]$ equipped with the supremum norm $\|.\|_{E_{0}}$, defined by

$$
\begin{equation*}
\|\phi\|_{E_{0}}=\sup _{t \in I}\|\phi(t)\|_{\mathcal{B}}, \tag{2.1}
\end{equation*}
$$

for all $\phi \in E_{0}$. For a fixed element $c \in[a, b]$, the Razumikhin class of mappings in E_{0} is defined by

$$
\begin{equation*}
R_{c}=\left\{\phi \in E_{0}:\|\phi\|_{E_{0}}=\|\phi(c)\|_{\mathcal{B}}\right\} \tag{2.2}
\end{equation*}
$$

Definition 2.1 ([5]). Let $\mathcal{T}: E_{0} \rightarrow \mathcal{B}$ be a mapping. A function $\phi \in E_{0}$ is said to be PPF dependent fixed point of \mathcal{T}, if $\mathcal{T} \phi=\phi(c)$ for some $c \in[a, b]$.

Definition 2.2 ([5]). Let R_{c} be Razumikhin class of continuous functions in E_{0}. we say that
(i) The class R_{c} is algebraically closed with respect to the difference if $\phi-\psi \in R_{c}$, whenever $\phi, \psi \in R_{c}$,
(ii) the class R_{c} is topologically closed if it is closed with respect to the topology on E_{0} by the norm $\|.\|_{E_{0}}$.

Theorem 2.1 ([4]). Let R_{c} be the Razumikhin class of functions in E_{0} and $\left(\mathcal{B},\|\cdot\|_{\mathcal{B}}\right)$ is a real banach space it simply \mathcal{B}. Then
(i) $E_{0}=\cup_{c \in[a, b]} R_{c}$
(ii) for any $\phi \in R_{c}$ and $\alpha \in \mathbb{R}$, we have $\alpha \phi \in R_{c}$,
(iii) the Razumikhin class R_{c} is topologically closed with respect to the norm defined on E_{0},
(iv) $\cap_{c \in[a, b]} R_{c}=\left\{\phi \in E_{0} / \phi: I \rightarrow \mathcal{B i s}\right.$ constant $\}$.

Clearly every constant function from I to \mathcal{B} belongs to R_{c}.

Definition 2.3 ([5]). Let $\mathcal{T}: E_{0} \rightarrow \mathcal{B}$ be a mapping and if it is called Banach type contraction if there exist $s \in[0,1)$ such that $\|\mathcal{T} \phi-\mathcal{T} \psi\|_{\mathcal{B}} \leq s\|\phi-\psi\|_{E_{0}}$.

Definition 2.4 ([14]). Let X be a nonempty set. Suppose the mapping $d: \mathrm{X} \times \mathrm{X} \rightarrow \mathcal{B}$ satisfies
(i) $\theta \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=\theta \Longleftrightarrow x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then $(\mathrm{X}, \mathcal{B}, d)$ is called C^{*}-algebra -valued metric space.
Theorem 2.2 ([5]). Let $\mathcal{T}: E_{0} \rightarrow \mathcal{B}$ be a Banach type contraction. Let R_{c} be algebraically closed with respect to the difference and topologically closed. Then \mathcal{T} has a unique PPF dependent fixed point in R_{c}.

3. Main Results

Theorem 3.1. Let $(\mathrm{X}, \mathcal{B}, d)$ be complete C^{*}-algebra valued metric space and and E_{0} is set of all continuous C^{*} valued mapping equipped with $[a, b], a, b \in \mathbb{R}$. A mapping $T: E_{0} \rightarrow \mathcal{B}$ is non-decreasing. We make the following assumptions:
(i) for any $\phi, \psi \in E_{0},\|A\|^{2}<1$ and $\phi \leq \psi$ such that
$d(\mathcal{T} \phi, \mathcal{T} \psi) \leq A^{*} d(\phi, \psi) A$;
(ii) there exists a lower solution ϕ_{0} such that $\phi_{0}(c) \leq T \phi_{0}$ for some $c \in[a, b]$.

Then there exists a fixed point $\hat{\lambda}$ such that $\hat{\lambda}(c)=\mathcal{T} \hat{\lambda}, c \in[a, b]$.
Proof. Let us take $\mathcal{T} \phi_{0}=x_{1}$, where $x_{1} \in \mathcal{B}$. Choose $\phi_{1} \in E_{0}$ such that $x_{1}=\phi_{1}(c), c \in[a, b]$ and $\phi_{1} \geq \phi_{0}$. Since ϕ_{0} is a lower solution

$$
\Longrightarrow d\left(\phi_{1}(c), \phi_{0}(c)\right)=d\left(\phi_{1}, \phi_{0}\right) .
$$

Then $\mathcal{T} \phi_{0}=\phi_{1}(c) \leq \mathcal{T} \phi_{1}$, since \mathcal{T} is non-decreasing. Again $\mathcal{T} \phi_{1}=x_{2}, x_{2} \in B$. Also choose $\phi_{1} \in E_{0}$ such that $x_{2}=\phi_{2}(c), \phi_{2} \geq \phi_{1}$.

$$
\Longrightarrow d\left(\phi_{2}(c), \phi_{1}(c)\right)=d\left(\phi_{2}, \phi_{1}\right)
$$

Then $\mathcal{T} \phi_{0}=\phi_{1}(c) \leq \mathcal{T} \phi_{1}=\phi_{2}(c) \leq \mathcal{T} \phi_{2}$, continuing this process, we have a sequence

$$
\begin{gathered}
\mathcal{T} \phi_{0}=\phi_{1}(c) \leq \mathcal{T} \phi_{1}=\phi_{2}(c) \leq \mathcal{T} \phi_{2} \leq \ldots \leq \mathcal{T} \phi_{n}=\phi_{n+1}(c) \leq \mathcal{T} \phi_{n+1}, \\
\phi_{0} \leq \phi_{1} \leq \ldots \leq \phi_{n} \leq \phi_{n+1} \leq \ldots
\end{gathered}
$$

Also, $d\left(\phi_{n}(c), \phi_{n-1}(c)\right)=d\left(\phi_{n}, \phi_{n-1}\right)$.
Assume that R_{c} is algebraically closed with respect to the difference.

$$
\begin{aligned}
d\left(\phi_{n+1}, \phi_{n}\right) & =d\left(\phi_{n+1}(c), \phi_{n}(c)\right), c \in[a, b] \\
& =d\left(\mathcal{T} \phi_{n}, \mathcal{T} \phi_{n-1}\right) \\
& \leq A^{*} d\left(\phi_{n} \cdot \phi_{n-1}\right) A \\
& =A^{*} d\left(\phi_{n}(c) \cdot \phi_{n-1}(c)\right) A \\
& =A^{*} d\left(\mathcal{T} \phi_{n-1}, \mathcal{T} \phi_{n-2}\right) A \\
& \leq\left(A^{*}\right)^{2} d\left(\phi_{n-1}, \phi_{n-2}\right)(A)^{2} \\
& \vdots \\
d\left(\phi_{n+1}, \phi_{n}\right) & \leq\left(A^{*}\right)^{n} d\left(\phi_{1}, \phi_{0}\right)(A)^{n} \\
& =\left(A^{*}\right)^{n} D(A)^{n} .
\end{aligned}
$$

where $D=d\left(\phi_{1}, \phi_{0}\right)$. Next, we prove $\mathcal{T} \phi_{n}$ is Cauchy in \mathcal{B}. Let $m>n$

$$
\begin{aligned}
d\left(\phi_{m}, \phi_{n}\right) & =d\left(\phi_{m}(c), \phi_{n}(c)\right) \\
& =d\left(\mathcal{T} \phi_{m}, \mathcal{T} \phi_{n}\right) \\
& \leq d\left(\mathcal{T} \phi_{m}, \mathcal{T} \phi_{m-1}\right)+d\left(\mathcal{T} \phi_{m-1}, \mathcal{T} \phi_{m-2}\right)+d\left(\mathcal{T} \phi_{m-2}, \mathcal{T} \phi_{m-3}\right)+\ldots+d\left(\mathcal{T} \phi_{n+1}, \mathcal{T} \phi_{n}\right) \\
& \leq\left(A^{*}\right)^{m-1} D(A)^{m-1}+\left(A^{*}\right)^{m-2} D(A)^{m-2}+\left(A^{*}\right)^{m-3} D(A)^{m-3}+\ldots+\left(A^{*}\right)^{n} D(A)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=n}^{m-1}\left(A^{*}\right)^{i} D A^{i} \\
& =\sum_{i=n}^{m-1}\left(A^{*}\right)^{i} D^{1 / 2} D^{1 / 2} A^{i} \\
& =\sum_{i=n}^{m-1}\left(A^{i} D^{1 / 2}\right)^{*}\left(A^{i} D^{1 / 2}\right) \\
& =\sum_{i=n}^{m-1}\left|A^{i} D^{1 / 2}\right|^{2} \\
& \leq\left\|\sum_{i=n}^{m-1}\left|A^{i} D^{1 / 2}\right|^{2}\right\| I \\
& \leq \sum_{i=n}^{m-1}\left\|D^{1 / 2}\right\|^{2}\left\|A^{i}\right\|^{2} I \\
& \leq\left\|D^{1 / 2}\right\|^{2} \sum_{i=n}^{m-1}\left\|A^{i}\right\|^{2} I \\
& =\left\|D^{1 / 2}\right\|^{2}\left[\|A\|^{2 n}+\|A\|^{2(n+1)}+\ldots+\|A\|^{2(m-1)}\right] I \\
& =\left\|D^{1 / 2}\right\|^{2}\left[\lambda^{n}+\lambda^{n+1}+\ldots+\lambda^{2(m-1)}\right] \text { where } \lambda=\|A\|^{2} I \\
& =\left\|D^{1 / 2}\right\|^{2}\left[\frac{\lambda^{n}}{1-\lambda}\right] I \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore, it concludes that $\mathcal{T} \phi_{n}$ is Cauchy sequence. By the completeness of $\left(\mathrm{X}, B, d\right.$), we get $\lim _{n \rightarrow \infty} \phi_{n}=\hat{\lambda}$ for some $\phi \in E_{0}$ and

$$
\lim _{n \rightarrow \infty} \mathcal{T} \phi_{n}=\mathcal{T} \hat{\lambda}=\lim _{n \rightarrow \infty} \phi_{n+1}(c), c \in[a, b] .
$$

To prove $\hat{\lambda}$ is a fixed point of \mathcal{T}. Also \mathcal{T} is continuous at $\hat{\lambda}$.Given $\frac{\epsilon}{2}>0$, there exists $\delta>0$ such that $d\left(\mathcal{T} \phi_{n+1}, \mathcal{T} \hat{\lambda}\right)<\frac{\epsilon}{2}$ whenever $d\left(\phi_{n+1}, \hat{\lambda}\right)<\delta$. Since $\mathcal{T} \phi_{n} \rightarrow \hat{\lambda}(c)$ for any $r=\min \left\{\frac{\epsilon}{2}, \delta\right\}$ and there exists $n_{0} \in \mathbb{N}$ such that

$$
d\left(\mathcal{T} \phi_{n}, \hat{\lambda}(c)\right)<r \text { for } n \geq n_{0} .
$$

Thus $d(\mathcal{T} \hat{\lambda}, \hat{\lambda}(c)) \leq d\left(\mathcal{T} \hat{\lambda}, \mathcal{T} \phi_{n}\right)+d\left(\mathcal{T} \phi_{n}, \hat{\lambda}(c)\right)<\frac{\epsilon}{2}+r<\epsilon$.
As ϵ is arbitrary, we get

$$
d(\mathcal{T} \hat{\lambda}, \hat{\lambda}(c))=\theta .
$$

Hence $\mathcal{T} \hat{\lambda}=\hat{\lambda}(c), \hat{\lambda}$ is a fixed point of \mathcal{T}.
Now suppose $\hat{\gamma} \neq \hat{\lambda}$ another fixed point of \mathcal{T}.
Therefore,

$$
\begin{aligned}
0 & \leq\|d(\hat{\lambda}(c), \hat{\gamma}(c))\|=\|d(\mathcal{T} \hat{\lambda}, \mathcal{T} \hat{\gamma})\| \\
& \leq\left\|A^{*} d(\hat{\lambda}, \hat{\gamma})\right\| \\
& \leq\left\|A^{*}\right\|\|d(\hat{\lambda}, \hat{\gamma})\| A \| \\
& =\|A\|^{2}\|d(\hat{\lambda}, \hat{\gamma})\|, \text { where }\|A\|^{2} \in(0,1) \\
& <\|d(\hat{\lambda}, \hat{\gamma})\| \\
\|d(\hat{\lambda}(c), \hat{\gamma}(c))\| & <\|d(\hat{\lambda}, \hat{\gamma})\| .
\end{aligned}
$$

This is imppossible, since $\hat{\lambda}, \hat{\gamma} \in E_{0}$ and R_{c} is Razumikhin class such that $\hat{\lambda}=\hat{\gamma}$.
Example 3.1. Consider $\mathrm{X}=\mathbb{R}, E_{0}=C([0,1], \mathbb{R}), \mathcal{B}=M_{2}(\mathbb{R})$ and $A \in \mathcal{B}^{+},\|A\| \leq 1$. Define $\mathcal{T} \phi=\phi(1 / 2)$ and $\phi(t)=t-\frac{1}{4}, \mathcal{B}^{+}=\{\phi \in \mathbb{R} ; \phi \geq 0\}$, the metric defined as $d(\phi, \psi)=\operatorname{diag}(|\phi-\psi|, \alpha|\phi-\psi|), \alpha>0$. Therefore $(\mathrm{X}, \mathcal{B}, d)$ is
complete.

$$
\begin{aligned}
d(\mathcal{T} \phi, \mathcal{T} \psi) & =A^{*}\left[\begin{array}{cc}
|\mathcal{T} \phi-\mathcal{T} \psi| & 0 \\
0 & \alpha|\mathcal{T} \phi-\mathcal{T} \psi|
\end{array}\right] A \\
& \leq A^{*}\left[\begin{array}{cc}
\|\phi(1 / 2)-\psi(1 / 2)\|_{E} & 0 \\
0 & \alpha\|\phi(1 / 2)-\psi(1 / 2)\|_{E}
\end{array}\right] A \\
& \leq A^{*}\left[\begin{array}{cc}
\|\phi-\psi\|_{E_{0}} & 0 \\
0 & \alpha\|\phi-\psi\|_{E_{0}}
\end{array}\right] A \\
& =A^{*} d(\phi, \psi) A .
\end{aligned}
$$

Therefore, theorem 3.1 is satisfied and $\frac{1}{2}$ is a unique $P P F$ dependent fixed point.
Theorem 3.2. Let $(\mathrm{X}, \mathcal{B}, d)$ be a complete C^{*}-algebra valued metric space and E_{0} is set of all continuous C^{*}-valued mapping equipped with $[a, b]$, where $a, b \in \mathbb{R}$. A non decreasing mapping $\mathcal{T}: E_{0} \rightarrow \mathcal{B}$ and We make the following assumptions:
(i) For any $\phi, \psi \in E_{0},\|A\|<\frac{1}{2}$ and $\phi \leq \psi$ such that
$d(\mathcal{T} \phi, \mathcal{T} \psi) \leq A(d(\phi, \mathcal{T} \psi)+d(\psi, \mathcal{T} \phi))$,
(ii) There exist a lower solution ϕ_{0} such that $\phi_{0}(c) \leq \mathcal{T} \phi_{0}$ for some $c \in[a, b]$.

Then there exist a fixed point $\hat{\lambda}$ such that $\hat{\lambda}(c)=\mathcal{T} \hat{\lambda}, c \in[a, b]$
Proof. Without loss of generality $A \neq 0$. Note that $A \in \mathcal{B}^{+}$and $A(d(\phi, \mathcal{T} \psi)+d(\psi, \mathcal{T} \phi))$ is a positive element. Let us take $\mathcal{T} \phi_{0}=x_{1}$, where $x_{1} \in \mathcal{B}$. Choose $\phi_{1} \in E_{0}$ such that $x_{1}=\phi_{1}(c), c \in[a, b]$ and $\phi_{1} \geq \phi_{0}$. Since ϕ_{0} is a lower solution

$$
\Longrightarrow d\left(\phi_{1}(c), \phi_{0}(c)\right)=d\left(\phi_{1}, \phi_{0}\right) .
$$

Then $\mathcal{T} \phi_{0}=\phi_{1}(c) \leq \mathcal{T} \phi_{1}$, since \mathcal{T} is non-decreasing. Again $\mathcal{T} \phi_{1}=x_{2}, x_{2} \in B$. Also choose $\phi_{1} \in E_{0}$ such that $x_{2}=\phi_{2}(c), \phi_{2} \geq \phi_{1}$.

Then $\mathcal{T} \phi_{0}=\phi_{1}(c) \leq \mathcal{T} \phi_{1}=\phi_{2}(c) \leq \mathcal{T} \phi_{2}$, continuing this process, we get

$$
\begin{gathered}
\mathcal{T} \phi_{0}=\phi_{1}(c) \leq \mathcal{T} \phi_{1}=\phi_{2}(c) \leq \mathcal{T} \phi_{2} \leq \ldots \leq \mathcal{T} \phi_{n}=\phi_{n+1}(c) \leq \mathcal{T} \phi_{n+1}, \\
\phi_{0} \leq \phi_{1} \leq \ldots \leq \phi_{n} \leq \phi_{n+1} \leq \ldots
\end{gathered}
$$

Therefore $d\left(\phi_{n}(c), \phi_{n-1}(c)\right)=d\left(\phi_{n}, \phi_{n-1}\right)$.
Assume that R_{c} is algebraically closed with respect to the difference

$$
\begin{aligned}
d\left(\phi_{n+1}, \phi_{n}\right) & =d\left(\phi_{n+1}(c), \phi_{n}(c)\right), c \in[a, b] \\
& =d\left(\mathcal{T} \phi_{n}, \mathcal{T} \phi_{n-1}\right) \\
& \leq A\left(d\left(\mathcal{T} \phi_{n}, \phi_{n}\right)+d\left(\mathcal{T} \phi_{n-1}, \phi_{n-1}\right)\right) \\
& \leq\left(\frac{A}{1-A}\right) d\left(\phi_{n}, \phi_{n-1}\right) .
\end{aligned}
$$

Since $A \in \mathcal{B}^{+}$with $\|A\|<\frac{1}{2}$. Also $\frac{A}{1-A} \in \mathcal{B}^{+}$and is lessthan 1 .

$$
d\left(\phi_{n+1}, \phi_{n}\right) \leq H d\left(\phi_{n}, \phi_{n-1}\right), \text { where } H=\frac{A}{1-A} .
$$

On continuing this process we get $d\left(\phi_{n+1}, \phi_{n}\right) \leq H^{n} d\left(\phi_{1}, \phi_{0}\right)$. To prove $\mathcal{T} \phi_{n}$ is cauchy sequence in \mathcal{B}. Let $n+1>m$. Here $D=d\left(\mathcal{T} \phi_{(}(c), \mathcal{T} \phi_{0}(c)\right)$.

Therefore,

$$
\begin{aligned}
d\left(\phi_{n+1}, \phi_{m}\right) & =d\left(\phi_{n+1}(c), \phi_{m}(c)\right) \\
& =d\left(\mathcal{T} \phi_{n}, \mathcal{T} \phi_{m-1}\right) \\
& \leq\left(H^{n-1}+H^{n-2}+\cdots+H^{m}\right) D \\
& =\sum_{k=m}^{n-1}\left(H^{k / 2} D^{1 / 2}\right)^{*}\left(H^{k / 2} D^{1 / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=m}^{n-1}\left|H^{k / 2} D^{1 / 2}\right|^{2} \\
& \leq\left\|D^{1 / 2}\right\|^{2} \sum_{k=m}^{n-1} \frac{\|H\|^{m}}{1-\|H\|} I \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

By the completeness of (X, B, d), then we get $\lim _{n \rightarrow \infty} \phi_{n}=\hat{\lambda}$ for some $\phi \in E_{0}$

$$
\lim _{n \rightarrow \infty} \mathcal{T} \phi_{n}=\mathcal{T} \hat{\lambda}=\lim _{n \rightarrow \infty} \phi_{n+1}(c), c \in[a, b] .
$$

To prove $\hat{\lambda}$ is a fixed point of \mathcal{T}. Also \mathcal{T} is continuous at $\hat{\lambda}$.Given $\frac{\epsilon}{2}>0$, there exist $\delta>0$ such that $d\left(\mathcal{T} \phi_{n+1}, \mathcal{T} \hat{\lambda}\right)<\frac{\epsilon}{2}$ whenever $d\left(\phi_{n+1}, \hat{\lambda}\right)<\delta$. Since $\mathcal{T} \phi_{n} \rightarrow \hat{\lambda}(c)$ for any $r=\min \left\{\frac{\epsilon}{2}, \delta\right\}$ and there exist $n_{0} \in \mathbb{N}$ such that

$$
d\left(\mathcal{T} \phi_{n}, \hat{\lambda}(c)\right)<r \text { for } n \geq n_{0} .
$$

Thus

$$
d(\mathcal{T} \hat{\lambda}, \hat{\lambda}(c))<\epsilon .
$$

As ϵ is arbitrary, we get

$$
d(\mathcal{T} \hat{\lambda}, \hat{\lambda}(c))=\theta .
$$

Hence $\mathcal{T} \hat{\lambda}=\hat{\lambda}(c), \hat{\lambda}$ is a fixed point of \mathcal{T}.

Corollary 3.1. Let (X, \mathcal{B}, d) be a C^{*}-algebra valued metric space and E_{0} is set of all continuous C^{*}-valued mapping equipped with $[a, b]$, where $a, b \in \mathbb{R}$. A non decreasing mapping $\mathcal{T}: E_{0} \rightarrow \mathcal{B}$ and We make the following assumptions:
(i) For any $\phi, \psi \in E_{0},\|A\|<\frac{1}{2}$ and $\phi \leq \psi$ such that
$d(\mathcal{T} \phi, \mathcal{T} \psi) \leq A(d(\phi, \mathcal{T} \psi)+d(\psi, \mathcal{T} \phi))$
(ii) There exists a lower solution ϕ_{0} such that $\phi_{0}(c) \leq \mathcal{T} \phi_{0}$ for some $c \in[a, b]$.

Then there exists a fixed point $\hat{\lambda}$ such that $\hat{\lambda}(c)=\mathcal{T} \hat{\lambda}, c \in[a, b]$.

4. Conclusion

In this paper we concluded that the PPF (past, present, future) dependent fixed point results in C^{*}-algebra valued metric space using different contraction. This paper can be extended to Banach algebra instead of C^{*}-algebra valued metric space.

Acknowledgment

The authors are thankful to the Editor and Referees for their fruitful suggestions to improve the paper in present form.

References

[1] M. Asim and M. Imdad, C^{*} - algebra valued symmetric spaces and fixed point results with an application, The Korean Journal of Mathematics, 28(1) (2020), 17-30.
[2] M. Asim and M. Imdad, C^{*} - algebra valued extended b-metric spaces and fixed point results with an application, University Polytechnica of Bucharest Scientific Bulletin, Series A 82(1) (2020), 207-218.
[3] H. H. Alsulami, R. P. Agarwal, E. Karapinar and F. Khojasteh, A short note on C^{*}-valued contraction mappings,Journal of Inequalities and Applications, 50 (2016), 1-3.
[4] G. V. R. Babu, G. Satyanarayana and M. Vinod Kumar, Properties of Razumikhin class of functions and PPF dependent fixed point of Weakly contractive type mappings, Bulletin of the international mathematical Virtual Institute, 9(1) (2019), 65-72.
[5] S. R. Bernfeld, V. Lakshmikantham and Y. M. Reddy, Fixed point theorems of operators with PPF dependence in Banach spaces, Applicable Analysis, 6(4) (1977), 271280.
[6] B. C. Dhage, On some common fixed point theorems with PPF dependence in Banach spaces, Journal of Nonlinear Science and Its Applications, 5(3) (2012), 220232.
[7] B. C. Dhage, Fixed point theorems with PPF dependence and functional differential equations, Fixed Point Theory, 13(2) (2012), 439452.
[8] Z. Drici, F. A. McRae and J. Vasundhara Devi, Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear Analysis: Theory, Methods and Applications, 67(2) (2007), 641647.
[9] Z. Drici, F. A.McRae, and J.VasundharaDevi, Fixed point theorems for mixed monotone operators with PPF dependence, Nonlinear Analysis: Theory, Methods and Applications, 69(2) (2008), 632636.
[10] A. Farajzadeh, A. Kaewcharoen and Anchalee. (2014). On fixed point theorems for mappings with PPF dependence, Journal of Inequalities and Applications, 372 (2014), 1-14.
[11] A. Kaewcharoen, PPF dependent common fixed point theorems for mappings in Banach spaces, Journal of Inequalities and Applications, 2013(287) (2013), 1-14.
[12] Z. Kadelburg and S. Radenovi, Fixed point results in C^{*}-algebra-valued metric spaces are direct consequences of their standard metric counterparts, Fixed Point Theory and Applications, 53 (2016), 1-6.
[13] W. Sintunavarat and P. Kumam, PPF dependent fixed point theorems for rational type contraction mappings in Banach spaces, Journal of Nonlinear Analysis and Optimization, 4(2) (2013), 157162.
[14] Z. Ma, J. Lining and H. Sun, C^{*}-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory and Applications, 206 (1) (2014), 1-11.
[15] N Mlaiki, M Asim and M Imdad, C^{*}-algebra-valued partial b-metric spaces and fixed point results with an application, Mathematics, 8(1381) (2020), 1-11.

