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Abstract

Many nonlinear systems are described with the nonlinear Fisher’s reaction-diffusion equation. The purpose of
this work is to propose the method of lines to find out the solution of the Fisher’s reaction-diffusion equation in one
dimension with quadratic and cubic nonlinearity using reproducing kernel Hilbert space method. In this method, the
partial derivatives of the space variable are discretized to get a system of ODEs in the time variable and then solve
the system of ODEs using reproducing kernel Hilbert space method. Four test examples are given to demonstrate the
technique’s efficacy and applicability. The results are compared with the exact and existing numerical solutions by
calculating the error norms L2 and L∞ at various time levels. It has been discovered that the recommended approach
is not only simple to use, but also produces superior outcomes.
2020 Mathematical Sciences Classification: 35G31, 46E22, 65M20.
Keywords and Phrases: Method of Lines, Reproducing kernel Hilbert space method, Fisher’s reaction-diffusion
equation.

1. Introduction
Partial differential equations (PDEs) are used to represent real-world issues in engineering, biology, chemistry, physics,
ecology, and other related disciplines of research. Most physical models are nonlinear in nature and are represented
by nonlinear PDEs, they are extremely significant. Fisher’s reaction-diffusion equation is a one-dimensional parabolic
nonlinear PDE developed by Fisher [18], which was first used to investigate the wave propagation of a advantageous
gene in a population. This equation is used in a variety of chemical and biological processes, as well as engineering
applications and so on [1, 13, 19]. As a result, studying Fisher’s reaction-diffusion equation is an interesting and
significant topic of study.
In this article, we consider the following one dimensional Fisher’s reaction-diffusion equation

∂u
∂t

= α
∂2u
∂x2 + F(u), (x, t) ∈ Ω × Γ, (1.1)

where u = u(x, t) represents the concentration of one substance and α is diffusion coefficients and F accounts for all
local reactions, subject to the initial condition

u(x, 0) = Θ(x), x ∈ Ω, (1.2)

the Dirichlet boundary conditions

u(a, t) = Φ1(t), u(b, t) = Φ2(t), t ∈ Γ, (1.3)

where Ω = (a, b), Γ = (0,T ] with 0 < T < ∞.
Many researchers have presented numerous approaches for solving the nonlinear Fisher’s reaction-diffusion

equation in the last few decades. Gazdag and Canosa [20] have used a pseudo-spectral method to explain one of the first
numerical solutions. For a special wave speed, Ablowitz and Zepetella [2] have found an explicit solution to Fisher’s
equation. The numerical study of Fisher’s equation was described by Parekh and Puri [33]. Carey and Shen [14] have
proposed a least-squares finite element formulation for solving Fisher’s equation. Mickens [27] has proposed a best
finite difference scheme for Fisher’s equation. Olmos and Shizgal [32] showed a pseudospectral method numerical
examination of Fisher’s equation. Mittal and Arora [28] have proposed an efficient numerical solution of Fisher’s
equation by using B-spline method. Burrage et al. [7] have presented an efficient implicit FEM scheme for fractional-
in-space reaction-diffusion equations. The numerical solutions of nonlinear Fisher’s reaction–diffusion equation with
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modified cubic B-spline collocation method was established by Mittal and Jain [29]. Shukla and Tamsir [38] have
proposed an extended modified cubic B-spline algorithm for nonlinear Fisher’s reaction-diffusion equation. Tamsir
et. al. [40] presented cubic trigonometric B-spline differential quadrature method for numerical treatment of Fishers
reaction-diffusion equations. Tamsir and Huntul [41] used a numerical approach for solving Fisher’s reaction–diffusion
equation via a new kind of spline functions.

In this paper we present a semi-analytical method of lines (MOL) solution. The MOL were applied to solve the
PDEs by Schiesser et al. [39]. This Schiesser’s method is a technique based on fully numerical scheme. In 2004,
Koto [23] applied this technique to approximations of delay differential equations using Runge-Kutta method. Hamdi
et al. [22] gave basic idea of MOL. The semi-analytic MOL is used actively for solving linear PDEs. For example see
[34, 35, 36].

In this work a different approach is used, the usual finite difference scheme is employed for spatial discretization in
the nonlinear initial boundary valued PDE to convert nonlinear initial valued system of Ordinary differential equations
(ODEs) and then using reproducing kernel Hilbert space method (RKHSM) to find solution. The theory of reproducing
kernels dates to the first half of the 20th century, and its roots go back to the pioneering papers by S. Zeremba [44],
Mercer [30], and Bergman [8, 9, 10, 11, 12]. In 1950, N. Aronszajn [3] outlined the past works and gave a systematic
reproducing kernel theory and laid a good foundation for the research of each special case and greatly simplified the
proof. This theory has been successfully applied on linear and nonlinear application with different type conditions by
many authors [4, 5, 6, 15, 16, 21, 24, 25, 43]. The main idea is to construct the reproducing kernel space absorb the
conditions for determining solution of the nonlinear system of ODEs [37]. The analytic solution is represented in the
form of series. The RKHSM is easily implemented, grid - free and without time discretization. Also, we can evaluate
the solution for finite number of points and use it often.
The paper is laid out as follows. In the next section, we show how we use MOL to solve the Fisher’s reaction-diffusion
equation. The results of numerical experiments are presented in Section 3. Final Section is dedicated to a brief
conclusion. Finally some references are introduced at the end.

2. Method of Lines
In this section, we derive MOL to solve the Fisher’s reaction-diffusion equation using RKHSM. To do this, we divides
this section in to the two subsections. In first subsection, we discretize the spatial derivatives in the Fisher’s reaction-
diffusion equation to obtain system of ODEs in time variable. In second subsection, we explain RKHSM to solve
system of ODEs.
2.1. Discretization
To use MOL for solving (1.1)-(1.3), we discretize the spatial coordinate x with m − 1 grid points xi = xi−1 + h, h =

(b − a)/m, x0 = a, xm = b, i = 1, 2, . . . ,m − 1. We apply a second order difference approximation for the second
derivative in x in grid points x1, xm−1 and a fourth order difference approximation to the second derivative in x in grid
points xi, i = 2, 3, . . . ,m − 2.

Let us consider ui(t) approximate u(xi, t). Here, we are using the central difference approximations in second order
and forth order for the second derivative in x of (1.1), we get

du1

dt
=α

u0 − 2u1 + u2

h2 + F(u1),

dum−1

dt
=α

um−2 − 2um−1 + um

h2 + F(um−1),

dui

dt
=α
−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12h2 + F(ui),

i = 2, 3, . . . ,m − 2.

(2.1)

Further the conditions (1.2) and (1.3) becomes

ui(0) = Θ(xi), i = 1, 2, 3, . . . ,m − 1,
u0 = Φ1(t), um = Φ2(t).

(2.2)

In the next section, we will discuss the RKHSM to solve the first order nonlinear system of ODEs with
homogeneous initial conditions.
2.2. The Reproducing Kernel Hilbert Space Method
In this section, firstly we construct homogeneous initial values system of ODEs from the equations (2.1) and (2.2).
To do this, we take ui = Θ(xi)(1 − t) + wi, i = 1, 2, . . . ,m − 1, we get

dw1

dt
=Θ(x1) + α

Φ1(t) − 2(Θ(x1)(1 − t) + w1) + Θ(x2)(1 − t) + w2

h2
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+ F(Θ(x1)(1 − t) + w1),

dw2

dt
=Θ(x2) + α

−Φ1(t) + 16(Θ(x1)(1 − t) + w1) − 30(Θ(x2)(1 − t) + w2)
12h2

+ α
16(Θ(x3)(1 − t) + w3) − (Θ(x4)(1 − t) + w4)

12h2 + F(Θ(x2)(1 − t) + w2),

dwi

dt
=Θ(xi) + α

−(Θ(xi−2)(1 − t) + wi−2) + 16(Θ(xi−1)(1 − t) + wi−1)
12h2

+ α
−30(Θ(xi)(1 − t) + wi) + 16(Θ(xi+1)(1 − t) + wi+1) − (Θ(xi+2)(1 − t) + wi+2)

12h2

+ F(Θ(xi)(1 − t) + wi), i = 3, 4, . . . ,m − 3, (2.3)

dwm−2

dt
=Θ(xm−2) + α

−(Θ(xm−4)(1 − t) + wm−4) + 16(Θ(xm−3)(1 − t) + wm−3)
12h2

+ α
−30(Θ(xm−2)(1 − t) + wm−2) + 16Θm − 1 − Φ2(t)

12h2

+ F(Θ(xm−2)(1 − t) + wm−2),

dwm−1

dt
=Θ(xm−1) + α

Θ(xm−2)(1 − t) + wm−2 − 2(Θ(xm−1)(1 − t) + wm−1) + Φ2(t)
h2

+ F(Θ(xm−1)(1 − t) + wm−1),

with homogeneous initial conditions

wi(0) = 0, i = 1, 2, . . . ,m − 1. (2.4)

Now, we introduce the reproducing kernel Hilbert spacesW2
2[0,T ] andW1

2[0,T ] with corresponding reproducing
kernel functions R(t, s) and G(t, s), respectively, to generate the algorithm of the method to solve the system.

Definition 2.1 ([17]). Consider H = { f (t) : f (t) ∈ R or f (t) ∈ C, t is in abstract set} is endowed with 〈 f (t), g(t)〉H ,
with respect to whichH is a Hilbert space.
For an abstract set X, a function R(t, s) : X × X → F (F denotes R or C) is called the reproducing kernel of Hilbert
spaceH if its satisfies,

〈 f (t),R(t, s)〉H = f (s), (2.5)

for each fixed s ∈ X.

The equation (2.5) is known as “the reproducing property”.

Definition 2.2 ([31]). The inner product spaceW2
2[0,T ] is defined asW2

2[0,T ] = {w : w,w′ are absolutely continuous
real valued functions on [0,T ], w′′ ∈ L2[0,T ], and w(0) = 0} with the inner product and the norm ofW2

2[0,T ] are
defined, respectively, by

〈w(t), y(t)〉W2
2

=

1∑
i=0

diw(0)
dti

diy(0)
dti +

∫ T

0

d2w(t)
dt2

d2y(t)
dt2 dt,

‖w‖W2
2

=
√
〈w(t),w(t)〉W2

2
.

Theorem 2.1 ([31]). The Hilbert spaceW2
2[0,T ] is a complete reproducing kernel and its reproducing kernel function

R(t, s) can be written as

R(t, s) =

 s
6 (6t + 3ts − s2), s ≤ t,
t
6 (6s + 3ts − t2), s > t.

Definition 2.3 ([26]). The inner product spaceW1
2[0,T ] is defined asW1

2[0,T ] = {w : w are absolutely continuous
real valued functions on [0,T ], w′ ∈ L2[0,T ]} with the inner product and the norm of W1

2[0,T ] are defined,
respectively, by

〈w(t), y(t)〉W1
2

= w(0)y(0) +

∫ T

0

dw(t)
dt

dy(t)
dt

dt,

‖w‖W1
2

=
√
〈w(t),w(t)〉W1

2
.
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Theorem 2.2 ([26]). The Hilbert spaceW1
2[0,T ] is a complete reproducing kernel and its reproducing kernel function

G(t, s) can be written as

G(t, s) =

 1 + s, s ≤ t,
1 + t, s > t.

Now, we develop the differential linear operator in the spaceW2
2[0,T ] for the system (2.3).

We interpret a differential operator for Lwi(t) = dwi
dt , i = 1, 2, . . . ,m − 1 as

L :W2
2[0,T ]→W1

2[0,T ],

such that, we converted (2.3) and (2.4) into the form,

Lwi = fi(t,w1(t),w2(t), . . . ,wm−1(t)), 0 < t < T,

subject to the initial conditions,
wi(0) = 0, i = 1, 2, . . . ,m − 1,

where wi(t) ∈ W2
2[0,T ] and fi(t,w1(t),w2(t), . . . ,wm−1(t)) ∈ W1

2[0,T ].

Theorem 2.3. The operator L :W2
2[0,T ]→W1

2[0,T ] is bounded and linear.

Proof. For the proof, we refer to [17]. Now, we consider orthogonal function in the form ψ j(t) = L∗G(t, t j),
j = 1, 2, 3, . . ., where {t j}∞j=1 is dense on [0,T ] and L∗ is the adjoint operator of L. Like, 〈wi(t), ψ j(t)〉W2

2
=

〈wi(t), L∗G(t, t j)〉W2
2

= 〈Lwi(t),G(t, t j)〉W1
2

= Lwi(t j), j = 1, 2, 3, . . ., i=1,2,. . . ,m-1. Since, ψ j(t) = L∗G(t, t j) =

〈L∗G(t, t j),R(t, s)〉W2
2

= 〈G(t, t j), LsR(t, s)〉W1
2

= 〈LsR(t, s),G(t, t j)〉W1
2

= LsR(t, s)|s=t j , j = 1, 2, 3, . . . .. Thus, ψ j(t)
can be evaluated by ψ j(t) = LsR(t, s)|s=t j , j = 1, 2, 3, . . ..

Theorem 2.4. If {t j}∞j=1 is dense on [0,T ], then {ψ j(t)}∞j=1 is a complete system of the spaceW2
2[0,T ].

Proof. For the proof, we refer to [24].
Now, we will derive the method of analytical solution of the equations (2.3) and (2.4) in the reproducing kernel

Hilbert spaceW2
2[0,T ].

Since, ψ j(t) = L∗G(t, t j), where L∗ is the adjoint operator of L. The orthonormal system ψ j(t) of W2
2[0,T ], j =

1, 2, 3, . . . can be constructed from Gram-Schmidt orthogonalization process of ψ j(t), j = 1, 2, 3, . . . with orthogonal
coefficients β jk, as,

ψ j(t) =

j∑
k=1

β jkψk(t), j = 1, 2, 3, . . . . (2.6)

Using these orthogonal vectors ψ j(t), j = 1, 2, 3, . . ., we shall derive the analytic solution of (2.3) and (2.4) in
infinite series form as following theorem.

Theorem 2.5. If {t j}∞j=1 is dense on [0,T ], then the analytic solution of (2.3) and (2.4) represented by

wi(t) =

∞∑
j=1

j∑
k=1

β jk fi(t,w1(t),w2(t), . . . ,wm−1(t))ψ j(t), i = 1, 2, . . . ,m − 1. (2.7)

Proof. Let wi(t), i = 1, 2, . . . ,m−1 be the solution of (2.3) and (2.4) inW2
2[0,T ]. Therefore,

∑∞
j=1〈wi(t), ψ j(t)〉W2

2
ψ j(t), i =

1, 2, . . . ,m− 1 are the expansion of about orthonormal system ψ j(t), andW2
2[0,T ] is the Hilbert space, then the series∑∞

j=1 〈wi(t), ψ j(t)〉W2
2
ψ j(t), i = 1, 2, . . . ,m − 1 are convergent in the sense of ‖.‖W2

2
. On the other hand, using (2.6),

yields

wi(t) =

∞∑
j=1

〈wi(t), ψ j(t)〉W2
2
ψ j(t)

=

∞∑
j=1

〈wi(t),
j∑

k=1

β jkψk(t)〉W2
2
ψ j(t)

=

∞∑
j=1

j∑
k=1

β jk〈wi(t), ψk(t)〉W2
2
ψ j(t)
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=

∞∑
j=1

j∑
k=1

β jk〈wi(t), L∗G(t, tk)〉W2
2
ψ j(t)

=

∞∑
j=1

j∑
k=1

β jk〈Lwi(t),G(t, tk)〉W1
2
ψ j(t)

=

∞∑
j=1

j∑
k=1

β jk〈 fi(t,w1(t),w2(t), . . . ,wm−1(t)),G(t, tk)〉W1
2
ψ j(t)

=

∞∑
j=1

j∑
k=1

β jk fi(tk,w1(tk),w2(tk), . . . ,wm−1(tk))ψ j(%), i = 1, 2, . . . ,m − 1.

Thus, (2.7) is the analytical solution of (2.3) and (2.4).
Hence, the proof is complete.
Here, equation (2.7) is the analytic solution of (2.3) and (2.4). Now, for the solution, we can define initial conditions

as wi,0(t1) = wi(t1) and set n-term truncation to wi(t), i = 1, 2, . . . ,m − 1 by

wi,n(t) =

n∑
j=1

A{i}j ψ j(t), i = 1, 2, . . . ,m − 1,

where the coefficients A{i}j of ψ j(t) are given as

A{i}j =
∑ j

k=1 β jk fi(tk,w1,k−1(tk),w2,k−1(tk), . . . ,wm−1,k−1(tk)), i = 1, 2, . . . ,m − 1.

3. Numerical Experiments
In this section, we contemplate four nonlinear time-dependent Fisher’s reaction-diffusion equation on finite interval are
implemented to demonstrate the accuracy and capability of the proposed algorithm, and all of them were performed
on the computer using a program written in Matlab. To show the efficiency of the presented scheme we calculate the
error norms L2 and L∞ as

L2 = ‖uexact − uMOL‖2 =

√√ m∑
i=1

∣∣∣(uexact)i − (uMOL)i

∣∣∣2,
L∞ = ‖uexact − uMOL‖∞ = max

i

∣∣∣(uexact)i − (uMOL)i

∣∣∣ .
Where uexact and uMOL represent exact and MOL solutions respectively.

Example 3.1. To test the MOL in the domain [−0.2, 0.8], we consider the equation (1.1) with F(u) = −10000u(u − 1)
and constant α = 1. Also, the conditions (1.2) and (1.3) are given as

Θ(x) =
1[

1 + e
(√

5000
3 x

)]2 ,Φ1(t) =
1[

1 + e
(
−
√

5000
3 0.2− 25000

3 t
)]2 ,Φ2(t) =

1[
1 + e

(√
5000

3 0.8− 25000
3 t

)]2 .

The analytic solution is given as

u(x, t) =
1[

1 + e
(√

5000
3 x− 25000

3 t
)]2 .

Table 3.1: Solution u(x, t) at t = 0.003 for Example 3.1.

x Exact solution Proposed method Tamsir and Huntul [41] Mittal and Jain [29]
-0.1 1.00000 1.00000 1.00000 1.00000
0.1 1.00000 1.00000 1.00000 1.00000
0.2 1.00000 1.00000 1.00000 1.00000
0.3 0.99999 0.99999 0.99999 0.99999
0.4 0.99966 0.99964 0.99963 0.99964
0.5 0.97995 0.97889 0.97816 0.97839
0.6 0.38895 0.36920 0.34762 0.36191
0.7 0.00074 0.00059 0.00048 0.00057
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Figure 3.1: The graph of the solution for Example 3.1 with h = 0.0125. (a) The analytic solution. (b) The MOL solution. (c) The
absolute error.

We compare MOL solution with some past works in the Table 3.1 with h = 0.0125 and ∆t = 0.00001 for the
Example 3.1, which gives that proposed method is the most accurate one. The analytic solution, the approximate
solution and the absolute errors are displayed in Figures 3.1(a), 3.1(b) and 3.1 (c), respectively.

Example 3.2. In this problem the MOL solution of (1.1) is calculated in the computational domain [−30, 30] with
α = 1 and F(u) = −u2 + 0.5u. Also, the conditions (1.2) and (1.3) are given as

Θ(x) =
−1
8

sech2

−√
1

48
x

 − 2 tanh

−√
1

48
x

 − 2

 ,
Φ1(t) =

−1
8

sech2

30

√
1
48

+
5

24
t

 − 2 tanh

30

√
1

48
+

5
24

t

 − 2

 ,
Φ2(t) =

−1
8

sech2

−30

√
1

48
+

5
24

t

 − 2 tanh

−30

√
1

48
+

5
24

t

 − 2

 .
The analytic solution is given as

u(x, t) =
−1
8

sech2

−√
1

48
x +

5
24

t

 − 2 tanh

−√
1

48
x +

5
24

t

 − 2

 .
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Figure 3.2: The graph of the solution for Example 3.2 with h = 0.5. (a) The analytic solution. (b) The MOL solution. (c) The
absolute error.

Table 3.2: Solution u(x, t) at t = 2 for Example 3.2.

x Exact solution Proposed method Tamsir and Huntul [41] Mittal and Jain [29]
-20 0.498652 0.498652 0.498652 0.498652
-16 0.495740 0.495740 0.495740 0.495741
-12 0.486669 0.486669 0.486669 0.486670
-8 0.459478 0.459477 0.459478 0.459477
-4 0.386791 0.386791 0.386789 0.386787
2 0.158850 0.158849 0.158852 0.158859
6 0.041851 0.041851 0.041851 0.041852

10 0.006465 0.006465 0.006464 0.006462
14 0.000755 0.000755 0.000754 0.000754
18 7.882E-05 7.915E-05 7.915E-05 7.900E-05

The Fisher equation in Example 3.2 is solved with h = 0.5 and ∆t = 0.01. The MOL results compare with solution
given by Tamsir and Huntul [41] (h = 0.25) and Mittal and Jain [29] (h = 0.5) are shown in Table 3.2. Also, plot of
the analytical solution, the MOL solution and the absolute error are depicted in Figure 3.2.

Example 3.3. In this problem the MOL solution of (1.1) are calculated in the domain [0, 1] with α = 1 and F(u) =

u2 − u3. Also, the conditions (1.2) and (1.3) are given as

Θ(x) =0.5
(
1 − tanh

(
1 + 0.25

√
2x

))
,

Φ1(t) =0.5 (1 − tanh (1 − 0.25t)) ,Φ2(t) = 0.5
(
1 − tanh

(
1 + 0.25

√
2 − 0.25t

))
.

The analytic solution is given as

u(x, t) = 0.5
(
1 − tanh

(
1 + 0.25

√
2x − 0.25t

))
.

256



Figure 3.3: The graph of the solution for Example 3.3 with h = 0.05. (a) The analytic solution. (b) The MOL solution. (c) The
absolute error.

Table 3.3: L2 and L∞ errors of Example 3.3 with at different time.

Proposed method Tamsir and Huntul [41] Verma et. al. [42]
t h = 0.05 h = 0.02 h = 0.02

L2 L∞ L2 L∞ L2 L∞
0.2 7.185E-09 3.221E-09 0.912E-07 6.823E-07 2.105E-05 4.475E-03
0.5 1.226E-08 5.239E-09 1.004E-06 8.230E-07 1.736E-05 4.444E-03
1.0 2.512E-08 9.248E-09 1.002E-06 9.298E-07 1.103E-05 2.690E-03
3.0 7.480E-08 1.762E-08 1.017E-06 9.064E-07 3.788E-05 2.277E-05
5.0 2.862E-08 1.257E-08 9.987E-08 9.977E-08 2.777E-07 1.823E-07

The problem is solved using the proposed method with h = 0.05 and ∆t = 0.0001. The results in terms of L2 and
L∞ in Table 3.3 demonstrate the accuracy of the proposed method. Also, the graphs of the analytical solution, the
MOL solution and the absolute error are depicted in Figures 3.3(a), 3.3(b) and 3.3(c), respectively.

Example 3.4. In this problem the MOL solution of (1.1) is calculated in the computational domain [0, 1] with α = 1
and F(u) = −u3 + (1 + c)u2 − cu. Also, the conditions (1.2) and (1.3) are given as

Θ(x) =0.5 + 0.5c + (0.5 − 0.5c) tanh
(
1 + 0.25

√
2(−1 + c)x

)
,

Φ1(t) =0.5 + 0.5c + (0.5 − 0.5c) tanh
(
1 − 0.25(c2 − 1)t

)
,

Φ2(t) =0.5 + 0.5c + (0.5 − 0.5c) tanh
(
1 + 0.25

√
2(−1 + c)

(
1 − (1 + c)t√

2

))
.

The analytic solution is given as

u(x, t) = 0.5 + 0.5c + (0.5 − 0.5c) tanh
(
1 + 0.25

√
2(−1 + c)

(
x − (1 + c)t√

2

))
.
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Figure 3.4: The graph of the solution for Example 3.4 with h = 0.05. (a) The analytic solution. (b) The MOL solution. (c) The
absolute error.

Table 3.4: L2 and L∞ errors of Example 3.4 with at different time.

Proposed method Tamsir and Huntul [41] Verma et. al. [42]
t h = 0.05 h = 0.02 h = 0.02

L2 L∞ L2 L∞ L2 L∞
0.2 7.185E-09 3.221E-09 0.912E-07 6.823E-07 2.105E-05 4.475E-03
0.5 1.226E-08 5.239E-09 1.004E-06 8.230E-07 1.736E-05 4.444E-03
1.0 2.512E-08 9.248E-09 1.002E-06 9.298E-07 1.103E-05 2.690E-03
3.0 7.480E-08 1.762E-08 1.017E-06 9.064E-07 3.788E-05 2.277E-05
5.0 2.862E-08 1.257E-08 9.987E-08 9.977E-08 2.777E-07 1.823E-07

In Table 3.4, we introduce the L2 and L∞ errors between the MOL and analytic solutions with c = 0.5, h = 0.05
and ∆t = 0.0001 for the Example 3.4. Also, a comparison of some past works is given in the table, which gives that
proposed method is accurate. The analytic solution, the MOL solution and the absolute error of Example 3.4 with
h = 0.05 are displayed in Figures 3.4(a), 3.4(b) and 3.4(c), respectively.

4. Conclusion
In this study, we proposed an efficient algorithm to solve nonlinear time-dependent Fisher’s reaction-diffusion
equation. It is analyzed that the proposed method is well suited for use in solution of nonlinear time dependent
Fisher’s reaction-diffusion equation. The numerical examples presented in this paper show good performance in using
MOL. High solution accuracy is observed in all problems. It is worth noting that the MOL with RKHSM is appropriate
for solving various nonlinear PDEs and can be used to do so.
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