ISSN 0304-9892 (Print) www.vijnanaparishadofindia.org/jnanabha *Jñānābha*, Vol. 52(2) (2022), 23-27 ISSN 2455-7463 (Online)

(Dedicated to Professor D. S. Hooda on His 80th Birth Anniversary Celebrations)

ESSENTIALLY λ-RATIONALIZED TOEPLITZ HANKEL OPERATORS Ruchika Batra

Ramjas College, University of Delhi, Delhi - 110007, India. Email: ruchikaverma@ramjas.du.ac.in (Received: April 10; 2022; In format : April 23, 2022; July 03, 2022)

DOI: https://doi.org/10.58250/jnanabha.2022.52202

Abstract

We introduce the notion of Essentially λ -Rationalized Toeplitz Hankel operator on the space L^2 for a general complex number λ . Precisely, we define such operators via operator equation $\lambda^{k_2} M_{z^{k_2}} X - X M_{z^{k_1}} = K_1$, where k_1 and k_2 are non zero integers and K_1 is a compact operator on L^2 . We investigate some properties of the set λ -*ERTHO*(L^2), the set of all Essentially λ -Rationalized Toeplitz Hankel operators of order (k_1, k_2).

2020 Mathematical Sciences Classification: 47B35,47B38

Keywords and Phrases: Essentially Rationalized Toeplitz Hankel operators, Toeplitz, Hankel operators.

1. Introduction

Toeplitz operators and Hankel operators is a subject of investigations for the researchers around the globe. The notion of Toeplitz operator was introduced in the year 1911 by O.Toeplitz [12], however subsequently many mathematicians worked on these operators on different spaces. Along with Toeplitz and Hankel operators, many generalizations have been studied by different mathematicians. Motivated by these Ho [9] in the year 1995 introduced a new class of operators called slant Toeplitz operators on the space $L^2(\mathbb{T})$, \mathbb{T} being the unit circle in the complex plane. Arora and Batra [2] have introduced slant Hankel operators and also generalized the notion of slant Toeplitz operator[1] as k^{th} order slant Toeplitz operator.

After that so much work has been done on these kinds of operators on different spaces. Sun [11] solved completely the operator equation $U^*XU = \lambda X$ for *a* general complex number λ , where *U* denotes the unilateral shift and, the solutions of this equation were referred as λ -Toeplitz operators. Later the study of Toeplitz and Hankel operators was also done on the calkin algebra [6], [7] and thereby introducing the notion of essentially Toeplitz and essentially Hankel operators

We introduced the k^{th} order slant Toeplitz operator on the space L^2 [1] which is characterized as the solution of the operator equation $M_z X = XM_{z^k}, k \ge 2$. Then a lot of generalizations of these equations have been studied by researchers. Inspired by all these various variants of Toeplitz and Hankel operators, recently the author [3] has generalized the notion of all kinds of Toeplitz, Hankel, slant Toeplitz and slant Hankel operators and a Rationalization of all such kinds of operators is introduced as the Rationalized Toeplitz Hankel operator $RTHO(L^2)$ on the space L^2 . Precisely, we define [3] for $\varphi \in L^{\infty}$, a Rationalized Toeplitz Hankel operator on the space L^2 of order (k_1, k_2) as $R_{\varphi}: L^2 \to L^2, R_{\varphi}(f) = W_{k_1}M_{\varphi}W_{k_2}^*(f) \forall f \in L^2$

where k_1 and k_2 are non zero integers and

$$W_k(z^i) = \begin{cases} z^{i/k} & \text{if } i \text{ is divisible by } k \\ 0 & \text{otherwise }. \end{cases}$$

It is also proved in [3] that if k_1 and k_2 are relatively prime then a bounded linear operator on L^2 is a Rationalized Toeplitz Hankel operator if and only if $M_{z^{k_2}}R = RM_{z^{k_1}}$. Further if k_1 and k_2 are not relatively prime and if $d = g.c.d(k_1, k_2)$. i.e. $k_1 = dn$ and $k_2 = dm$ then a bounded operator R on L^2 is Rationalized Toeplitz Hankel operator if and only if

$$R|N_i = W_m M_{\tilde{\varphi}_i} W_n^* | N_i ,$$

for some $\tilde{\varphi}_i$ in L^{∞} and for i = 1, 2, ..., d - 1

$$L^2 = \tilde{N}_0 \oplus \tilde{N}_1 \oplus \ldots \oplus \tilde{N}_{d-1} ,$$

where

$$\begin{split} N_0 &= N_0 \oplus N_1 \oplus \dots N_{m-1} ,\\ \tilde{N}_1 &= \tilde{N}_m \oplus \tilde{N}_{m+1} \dots \tilde{N}_{2m-1} ,\\ \vdots &= \vdots \\ \tilde{N}_{d-1} &= \tilde{N}_{(d-1)m} \oplus \tilde{N}_{(d-1)m+1} \oplus \dots \tilde{N}_{dm-1} . \end{split}$$

 N_i = The closed linear span of $\{z^{k_1t+1} : t \in \mathbb{Z}\}$.

Further in [4], we introduced a class of operators on L^2 as Essentially Rationalized Toeplitz Hankel operators of order (k_1, k_2) satisfying the operator equation $M_{z^{k_2}}X - XM_{z^{k_1}} = K_0$, for some compact operator K_0 on L^2 .

Also λ -Rationalized Toeplitz Hankel operators [5] were introduced and studied for a fixed complex number λ , $\lambda \neq 0$ as the class of operators on L^2 satisfying $\lambda^{k_2} M_{z^{k_2}} X = X M_{z^{k_1}}$.

Our focus in this paper is to introduce and study the class of operators on the space L^2 satisfying the operator equation $\lambda^{k_2} M_{z^{k_2}} X - X M_{z^{k_1}} \in K$ for a fixed complex number $\lambda \neq 0$ and K, denote the set of all compact operators on L^2 .

2. Essentially *λ*-Rationalized Toeplitz Hankel operators

It is known [3] that a bounded linear operator *R* on the space L^2 is the Rationalized Toeplitz Hankel operator of order (k_1, k_2) if and only if $M_{\neq 2}R = RM_{\neq 1}$.

Also we have seen [5] that for a fixed complex number λ and non zero integers k_1 and k_2 , a λ -Rationalized Toeplitz Hankel operator is solution of the equation

$$\lambda^{k_2} M_{z^{k_2}} X = X M_{z^{k_1}}$$

We introduce the following

Definition 2.1. A bounded linear operator R on the space L^2 is said to be an Essentially λ -Rationalized Toeplitz Hankel operator of order (k_1, k_2) if

$$\lambda^{k_2} M_{z^{k_2}} R - R M_{z^{k_1}} \in K .$$

That is, $\lambda^{k_2} M_{z^{k_2}} R - R M_{z^{k_1}} = K_0$ for some compact operater K_0 on L^2 . The class of all Essentially λ -Rationalized Toeplitz Hankel operators on L^2 of order (k_1, k_2) is denoted as λ -*ERTHO* (L^2) .

We observe that if $\lambda = 1$ then the set coincides with *ERTHO*(L^2) the set of all essentially Rationalized Toeplitz Hankel operaters on L^2 .

Observation 2.1. If *R* is a λ -Rationalized Toeplitz Hankel operator of order (k_1, k_2) then it must satisfy $\lambda^{k_2} M_{z^{k_2}} R = RM_{z^{k_1}}$ and therefore $\lambda^{k_2} M_{z^{k_2}} R - RM_{z^{k_1}} = 0$ As zero operator is compact, so we conclude that *R* is Essentially λ -Rationalized Toeplitz Hankel operator. Thus, every λ -Rationalized Toeplitz Hankel operator is a member of λ -*ERTHO*(L^2). Infact any compact perturbation of a λ -Rationalized Toeplitz Hankel operator on L^2 is in λ -*ERTHO*(L^2). **Observation 2.2.** As every compact operator is in λ -*ERTHO*(L^2), therefore we observe that λ -*ERTHO*(L^2) $\cap K = K$. As we have observed earlier that every λ -Rationalized Toeplitz Hankel operator is a member of λ -*ERTHO*(L^2), however the following example shows that the converse need not be true.

Example 2.1. For a complex number λ with unit modulus, let $D_{\overline{\lambda}}$ be the composition operator on L^2 defined as $D_{\overline{\lambda}}f(z) = f(\lambda z)$ for all $f \in L^2$ as

$$T = D_{\bar{\lambda}} W_{k_1} M_{z^{k_2}} + K'$$

where $W_k : L^2 \longrightarrow L^2$ be defined as

$$W_k(z^i) = \begin{cases} z^{i/k} & \text{if i is divisible by } k \\ 0 & \text{otherwise} \end{cases}$$

and k_1 and k_2 be non zero integers and K is defined on L^2 as

$$K'e_n = \begin{cases} e_1 \ ifn = 0\\ 0 \ otherwise \end{cases}$$

Then T is Essentially λ -Rationalized Toeplitz Hankel operator however it is not λ -Rationalized Toeplitz Hankel operator. For this, we consider

$$\begin{split} \lambda^{k_2} M_{z^{k_2}} T &- T M_{z^{k_1}} \\ &= \lambda^{k_2} \bar{\lambda}^{k_2} D_{\bar{\lambda}} M_{z^{k_2}} W_{k_1} M_{z^{k_2}} - D_{\bar{\lambda}} W_{k_1} M_{z^{k_2+k_1}} + K_1 \\ &= |\lambda|^{2k} D_{\bar{\lambda}} (M_{z^{k_2}} W_{k_1}) M_{z^{k_2}} - D_{\bar{\lambda}} W_{k_1} M_{z^{k_1+k_2}} + K_1 \end{split}$$

 $= K_1$, where K_1 is a non zero compact operator.

Hence $\lambda^{k_2} M_{r^{k_2}} T - T M_{r^{k_2}} \in K$. Therefore T is an essentially λ -Rationalized Toeplitz Hankel operator on L^2 which is

not a λ -Rationalized Toeplitz Hankel operator.

Further as we have seen the following results in [5].

1) *X* is a solution of the equation $\lambda^{k_2} M_{z^{k_2}} X = X M_{z^{k_1}}, |\lambda| \neq 1$ Then X = 0

2) For $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, the equation $\lambda^{k_2} M_{z^{k_2}} X = X M_{z^{k_1}}$ admits of a non zero solution and each non zero solution is of the form $X = D_{\bar{\lambda}} R_{\varphi}$, where $D_{\bar{\lambda}}$ is the composition operator on L^2 defined as $D_{\bar{\lambda}} f(z) = f(\lambda z)$ for all $f \in L^2$ and $R_{\varphi}, \varphi \in L^{\infty}$ is the Rationalized Toeplitz Hankel operator.

we begin with the following

Theorem 2.1. If $B(L^2)$ is the set of all bounded linear operators on the space L^2 . Then λ -ERTHO (L^2) is a norm closed vector subspace of $B(L^2)$ for a fixed complex number λ .

Proof. Let T_1, T_2 be in λ -*ERTHO*(L^2) and let α, β are complex numbers Then consider $\alpha T_1 + \beta T_2$ we get

$$\lambda^{k_2} M_{z^{k_2}}(\alpha T_1 + \beta T_2) - (\alpha T_1 + \beta T_2) M_{z^{k_1}}$$

$$=\alpha(\lambda^{k_2}M_{z^{k_2}}T_1 - T_1M_{z^{k_1}}) + \beta(\lambda^{k_2}M_{z^{k_2}}T_2 - T_2M_{z^{k_1}}) \in K$$

 $\Rightarrow \alpha T_1 + \beta T_2 \in K$ Now for each n if T_n is in λ -*ERTHO*(L^2) then

$$\lambda^{k_2} M_{z^{k_2}} T_n - T_n M_{z^{k_1}} \rightarrow \lambda^{k_2} M_{z^{k_2}} T - T M_{z^{k_1}}$$

uniformly in $B(L^2)$. This implies that $T \in \lambda$ -*ERTHO* (L^2) as *K* is uniformly closed. Hence λ -*ERTHO* (L^2) is a norm closed vector subspace of $B(L^2)$.

As example 2.1 ensures that the set of λ -*RTHO*(L^2) is properly contained in the set λ -*ERTHO*(L^2). As *T* is a non compact operator on L^2 , so we can assert that λ -*ERTHO*(L^2) is a proper superset of λ -*RTHO*(L^2). The following theorem determines the intersection of two classes of essentially λ -Rationalized Toeplitz Hankel operators.

Theorem 2.2. If λ and μ are two complex numbers such that $\lambda \neq \mu$ then the intersection λ -ERTHO $(L^2) \cap \mu$ - ERTHO $(L^2) = K$.

Proof. Let $T \in \lambda$ -*ERTHO* $(L^2) \cap \mu$ -*ERTHO* (L^2) Then $\lambda^{k_2}M_{z^{k_2}}T - TM_{z^{k_1}}$ and $\lambda^{k_2}M_{z^{k_2}}T - TM_{z^{k_1}}$ are both compact operators on L^2 . Therefore $(\lambda^{k_2} - \mu^{k_2})M_{z^{k_2}}T$ is a compact operator. Since $\lambda \neq \mu$, so this implies that T is a compact operator. The Converse inclusion is trivial. Thus we get λ -*ERTHO* $(L^2) \cap \mu$ -*ERTHO* $(L^2) = K$.

One can also show with trivial computations that if $|\lambda| \neq |\mu|$ and if λ -*ERTHO*(L^2) is the set of all such operators of order (k_1, k_2) and μ -*ERTHO*(L^2) is the set of all such operators of order (m, n) where $(k_1, k_2) \neq (m, n)$ then λ -*ERTHO*(L^2) $\cap \mu$ -*ERTHO*(L^2) = K.

Remark. However, we can see that in general the product of two essentially λ -Rationalized Toeplitz Hankel operators is not an Essentially λ -Rationalized Toeplitz Hankel operator, therefore for λ -*ERTHO*(L^2) is not an algebra of operators on L^2 and also it is not a self-adjoint set.

Example 2.2. Let λ be a complex number with $|\lambda| = 1$. Consider the operator T on the space L^2 defined as

$$T = D_{\bar{\lambda}} W_{k_1} M_{z^{k_2}} + K' ,$$

where $D_{\bar{\lambda}}$, W_K and K' are defined in Example 2.1. We have proved in example 1 that $T \in \lambda$ -*ERTHO*(L^2). Here we claim that $T^2 \notin \lambda$ -*ERTHO*(L^2). As if $T^2 \in \lambda$ -*ERTHO*(L^2) then the operator $\lambda^{k_2} M_{z^{k_2}} T^2 - T^2 M_{z^{k_1}}$, must be a compact opreator on L^2 . This implies that $\lambda^{k_2} M_{z^{k_2}} (D_{\bar{\lambda}} W_{k_1} M_{z^{k_2}})^2 - (D_{\bar{\lambda}} W_{k_1}, M_{z^{k_2}})^2 M_{z^{k_2}}$ must be a compact operator. But we can check that it in not so. Hence λ -ERTHO(L^2), $|\lambda| = 1$ is not an algebra.

Further this set is also not self adjoint since $T^* \notin \lambda$ -*ERTHO*(L^2). Here, we have $T^* = M_{\bar{z}^{k_2}} W^*_{k_1} D_{\lambda}$ and we can check that $\lambda^{k_2} M_{z^{k_2}} T^* - T^* M_{z^{k_1}}$ is not a compact operator on L^2 .

As in general, the product of two λ -*ERTHO*(L^2) is not a member of λ -*ERTHO*(L^2) so we attempt to investigate the condition which ensures this to happen in the following theorem.

Theorem 2.3. If $T_1, T_2 \in \lambda$ -ERTHO (L^2) then the product $T_1T_2 \in \lambda$ -ERTHO (L^2) if and only if

$$T_1 M_{z^{k_1}} T_2 - \lambda^{k_2} T_1 M_{z^{k_2}} T_2 \in K$$

Proof. Let $T_1, T_2 \in \lambda$ -*ERTHO* (L^2) . Then for the product T_1T_2 , consider

$$\begin{split} \lambda^{k_2} M_{z^{k_2}}(T_1 T_2) &- (T_1 T_2) M_{z^{k_1}} \\ &= \lambda^{k_2} M_{z^{k_2}} T_1 T_2 - T_1 T_2 M_{z^{k_1}} \\ &= T_1 M_{z^{k_1}} T_2 - T_1 T_2 M_{z^{k_1}} (mod \ K) \\ as \ T_1 &\in \lambda - ERTHO(L^2) \\ &= T_1 M_{z^{k_1}} T_2 - \lambda^{k_2} T_1 M_{z^{k_2}} T_1 (mod \ K) \\ as \ T_1 &\in \lambda - ERTHO(L^2) \ . \end{split}$$

This shows that $T_1T_2 \in \lambda$ -*ERTHO*(L^2) if and only if $T_1M_{z^{k_1}}T_2 - \lambda^{k_2}T_1M_{z^{k_2}}T_2 \in K$..

Now if we put $\lambda = 1$, then from here we can draw the conclusion that the product of two Essentially Rationalized Toeplitz Hankel operators is an Esssentially Rationalized Toeplitz Hankel operator if and only if $T_1 M_{z^{k_1}} T_2 = T_1 M_{z^{k_2}} T_2 (mod K)$ which is also proved in [4]. In general, we can prove the following.

Theorem 2.4. Let $T \in \lambda$ -ERTHO (L^2) and $r \in \mathbb{N}$, r > 1, If n(r) denotes the number of partitions of r as the sum of two natural numbers $r = s_i + t_i$.

$$(s_i, t_i \in \mathbb{N}, i = 1, 2, ..., n(r))$$

The T^{s_i} , $T^{t_i} \in \lambda$ -ERTHO (L^2) Then the following are equivalent i) $T^r \in \lambda$ -ERTHO (L^2) , ii) $T^{s_i}M_{z^{k_1}}T^{t_i} = \lambda^{k_2}T^{s_i}M_{z^{k_2}}T^{t_i} (mod K)$,

iii) $T^{t_i}M_{\tau^{k_1}}T^{s_i} = \lambda^{k_2}T^{t_i}M_{\tau^{k_2}}T^{s_i} (mod \ K)$.

The following theorem provides a sufficient condition so that the product of any two bounded operators on L^2 lies in the set λ -*ERTHO*(L^2).

Theorem 2.5. Let $T_1, T_2 \in B(L^2)$, then the product $T_1T_2 \in \lambda$ -ERTHO (L^2) if any one of the following conditions holds *i*) T_1 is in essential commutant of $M_{z^{k_2}}$ and $T_2 \in \lambda$ -ERTHO (L^2)

ii) $T_1 \in \lambda$ -*ERTHO* (L^2) and T_2 is in essential commutant of $M_{z^{k_1}}$.

Proof. Let $T_1, T_2 \in B(L^2)$ such that $T_1M_{z^{k_1}} - M_{z^{k_2}}T_1 \in K$ an $T_2 \in \lambda$ -*ERTHO*(L^2). Consider for the product T_1T_2 , the equation

$$\begin{split} \lambda^{k_2} M_{z^{k_2}} T_1 T_2 &- T_1 T_2 M_{z^{k_1}} \\ &= \lambda^{k_2} M_{z^{k_2}} T_1 T_2 - \lambda^{k_2} T_1 M_{z^{k_1}} T_2 (mod \ K) \\ &= \lambda^{k_2} M_{z^{k_2}} T_1 T_2 - \lambda^{k_2} M_{z^{k_2}} T_1 T_2 (mod \ K) \\ &= 0 (mod \ K) \ . \end{split}$$

Hence $T_1T_2 \in \lambda$ -*ERTHO*(L^2). Similarly for the (ii) part If $T_1 \in \lambda$ -*ERTHO*(L^2) and $T_2M_{z^{k_1}} - M_{z^{k_1}}T_2 \in K$. Then $\lambda^{k_2}M_{z^{k_2}}T_1T_2 - T_1T_2N_z^{k_2}$

$$\begin{aligned} T_2 - T_1 T_2 M_{z^{k_1}} \\ &= T_1 M_{z^{k_1}} T_2 - T_1 T_2 M_{z^{k_1}} \\ &= T_1 M_{z^{k_1}} T_2 - T_1 M_{z^{k_1}} T_2 (mod \ K) \\ &= 0 (mod \ K) \ . \end{aligned}$$

which gives $T_1T_2 \in \lambda$ -*ERTHO*(L^2).

Corollary 2.1. For φ in L^{∞} , if M_{φ} is the Multiplication operator on L^2 induced by φ and $T \in \lambda$ -ERTHO (L^2) then both TM_{φ} and $M_{\varphi}T$ are in λ - ERTHO (L^2) .

Finally, we obtain a necessary condition for an essentially λ -Rationalized Toeplitz Hankel operator to be self adjoint. **Theorem 2.6.** If $T, T^* \in \lambda$ -ERTHO (L^2) then $ST^* = T^*S^* (mod \ K)$ where $S = \lambda^{k_2} M_{z^{k_2}} + M_{\overline{z}^{k_1}}$.

Proof. It is given that both T and T^* are members of λ -ERTHO(L^2). So by definition

$$\lambda^{k_2} M_{z^{k_2}} T - T M_{z^{k_1}} = K_1 \tag{2.1}$$

$$\lambda^{k_2} M_{r^{k_2}} T^* - T^* M_{r^{k_1}} = K_2 \tag{2.2}$$

where K_1 and K_2 are compact operators (ie $K_1, K_2 \in K$). From equation (1) and (2) we get $(\lambda^{k_2}M_{z^{k_2}}T - TM_{z^{k_1}})^* - (\lambda^{k_2}M_{z^{k_2}}T^* - T^*M_{z^{k_1}}) = K_0$ for some $K_0 \in K$. This yields that if $T, T^* \in \lambda$ -ERTHO(L^2), then $ST^* - T^*S^* \in K$, where $S = \lambda^{k_2}M_{z^{k_2}} + M_{\overline{z}^{k_1}}$. With this we have following theorem. **Theorem 2.7.** A necessary condition for any operator $T \in \lambda$ -ERTHO (L^2) to be self adjoint is that ST is essentially self adjoint where $S = \lambda^{k_2}M_{z^{k_2}} + M_{\overline{z}^{k_1}}$.

3. Conclusion

In this paper, we have ensured that the set of all λ -Rationalized Toeplitz Hankel operators is properly contained in the set $\lambda - ERTHO(L^2)$ which is a proper subset of K (the set of all compact operators on L^2). We have also got the conditions which ensure the product of two Essentially λ -Rationalized Toeplitz Hankel operators is again

an Essentially λ -Rationalized Toeplitz Hankel operator. In the end, we have obtained a necessary condition for an Essentially λ -Rationalized Toeplitz Hankel operator to be self adjoint.

Acknowledgement. The author is thankful to the Editor and reviewer for their suggestions to brin the paper in its present form.

References

- [1] S.C. Arora and R. Batra, Generalized slant Toeplitz Operators on H^2 , *Mathematische Nachrichten*, **278**(4) (2005), 347-355.
- [2] S.C. Arora and R. Batra, On Slant Hankel Operators, *Bulletin of Calcutta Mathematical Society*, **99**(1), (2007), 95-100.
- [3] R. Batra, Rationalization of Toeplitz Hankel Operators, Gulf Journal of Mathematics, 12(2) (2022), 86-96.
- [4] R. Batra, Essentially Rationalized Toeplitz Hankel Operators, *Poincare Journal of Analysis and Applications*, **9**(1) (2022), 69-75.
- [5] R. Batra, Essentially Rationalized Toeplitz Hankel Operators via Operator Equations, *Annals of Mathematics and Computer Science*, **7** (2022), 25-31.
- [6] G. Dutt and N. Ohri, Essentially generalized λ -slant Toeplitz Operators, *Tbillisi Mathematical Journal*, **10**(4) (2017), 66-72.
- [7] A. Devinatz, Toeplitz Operator on H² space, Trans. Amer.Math. Soc, **112**, (1964), 304-317.
- [8] P.R. Halmos, A Hilbert space Problem Book, Springer Verlag, New York 1979.
- [9] M.C. Ho, Properties of Slant Toeplitz Operators, Indiana Univ. Math. J, 45 (1996), 843-862.
- [10] M. Schechter, Principles of Functional Analysis, Academic Press, New York and London, 1971.
- [11] S. Sun, On the operator equations $U^*TU = \lambda T$, Kexue Tongbao (English ed) **29** (1984), 298-299.
- [12] O. Toeplitz, Zur theorie der quadratischen und bilinearan Formen von unendlichvielen, Veranderlichen, Math. Ann., 70 (1911), 351376.
- [13] L. Villemoes, Wavelet analysis of refinement Equations, SIAMJ Math, Analysis, 25 (1994), 1433-1460.