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Abstract
Initiation and development of atherosclerosis are closely related to the mass transfer mechanism of blood

constituents onto the arterial wall. Investigation of mass transfer phenomenon in magnetohydrodynamic ( MHD)
flow of blood through a stenosed artery is the objective of this study. Carreau viscosity model is used to describe the
non-Newtonian character of streaming blood. Vessel wall flexibility is taken into account. Pulsatile flow of blood is
governed by the Navier-Stokes equations along with the mass conservation equation. Mass transfer phenomenon
is governed by the convection-diffusion equation coupled with the velocity field. A finite difference scheme is
developed and suitable initial and boundary conditions are imposed to solve these non-linear equations. Distributions
of several significant wall parameters, such as time-averaged wall shear stress, time-averaged Sherwood number
etc. are examined over the entire flow regime with the variations of stenosis height, Hartmann number and Schmidt
number. Comparison with the Newtonian fluid for these wall parameters are done. Patterns of stream lines and iso-
concentration lines are also shown for additional qualitative insight of the flow-field and concentration-field.
2020 Mathematical Sciences Classification: 76A05, 76W05, 76Z05.
Keywords and Phrases: MHD flow; mass transfer; non-Newtonian fluid; pulsatile flow; stenosed artery.

1. Introduction
Analytical and experimental investigations of arterial blood flow under stenotic condition have become an interesting
field of research during last few decades because of the fact that cardiovascular diseases are now a major cause of
mortality worldwide. Partial occlusion within an arterial wall due to formation of fibrous and fatty plaques is known
as an arterial stenosis which restricts the normal flow of blood to the distal bed. Dynamics of arterial blood flow is
believed to play a significant role in the genesis and development of atherosclerosis. Thus study of hemodynamics
past an arterial stenosis bears a good aspect due to its feasible medical application.

Experimental observations reveal that blood, being a complex suspension of cells, behaves like a non-Newtonian
fluid at low shear rates in tubes of small diameters [3,8,29]. There are quite a good number of experimental
as well as theoretical research works related to the hemodynamics of blood flow through stenosed arteries
([9],[14],[16],[18],[19],[21],[25]). But in most of these studies either the vascular wall deformability or the pulsatile
nature of blood flow has been disregarded.

Although, commencement and propagation of atherosclerotic plaques are often found associated with low and
oscillatory shear stress at arterial wall [11], some researchers reported that such constrictions may not be the effect
of only wall shear stress. According to Caro et al. [2], atherosclerotic lessons may develop due to the mass transfer
mechanism between streaming blood and the vessel wall. Several researchers [1,10,13,17,22,23,30] have investigated
the mass transfer phenomenon in unsteady flow of blood through constricted arteries. But in these studies either the
flow profile is not physiological or the vessel wall is considered to be rigid.

Recently the study of magnetohydrodynamics (MHD) of arterial blood flow has become important due to its several
significant clinical implications. Examples include the studies of magnetic drug targeting [28] and the development
of magnetic devices for cell separation [7]. A good number of research works can be found in open literature where
magnetohydrodynamics of blood flow through diseased arteries has been investigated [15,24,26,27].

The purpose of the present theoretical work is to investigate the influence of the externally imposed magnetic
field on the mass transfer mechanism of blood flowing through a stenosed artery. Non-Newtonian behaviour of blood
viscosity, flexibility of arterial wall, physiologically realistic pulsatile flow of blood all are taken into account to
represent the actual arterial flow. The arterial segment is assumed to be a cylindrical straight tube with deformable
wall geometry. Complete Navier-Stokes equations in cylindrical coordinates governing pulsatile flow of blood and the
mass transport equation coupled with the velocity field in dimensionless form are taken up along with suitable initial
and boundary conditions and are solved using the stream function-vorticity approach.
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2. Blood Viscosity Model
Experimental results reveal that human blood exhibits non-Newtonian character in small diameter arteries and its
viscosity is shear thinning. Selection of an appropriate non-Newtonian model for blood viscosity is essential to achieve
acceptable results. Carreau viscosity model is a good approximation to non-Newtonian viscosity of blood at low shear
rates which behaves like a Newtonian model at high shear rates [25].

The Carreau viscosity model for human blood is described as:

µ∗(γ̇∗) = µ∞ + (µ0 − µ∞)(1 + Λ∗2γ̇∗)(n−1)/2, (2.1)

where γ̇∗ is the shear rate, µ0 and µ∞ are the asymptotic zero and infinite shear viscosities, Λ∗ ≥ 0 is a material constant
that represents the degree of shear thinning. Values of these parameters for human blood are µ0 = 0.056Pas, µ∞ =

0.00345Pas,Λ∗ = 3.313s, n = 0.3568 [4].

3. Governing equations
Two-dimensional laminar and pulsatile flow of an electrically conducting incompressible viscous non-Newtonian fluid
with electrical conductivity σ and constant density ρ flowing through an axi-symmetric straight tube (modeled as an
artery) having a bell-shaped axi-symmetric constriction is taken. Cylindrical polar coordinates (r∗, θ∗, z∗) are used and
the arterial axis is taken as the z-axis. z∗ = 0 represents the inlet cross section. Let R∗(z∗, t∗) be the radius of the artery
at time t∗and R0 = R∗(0, 0). Also, let p∗ be the pressure, u∗ and v∗ be the axial and radial components of velocity
respectively. Axial symmetry makes all these variables independent of θ∗.

A uniform magnetic field B0 is considered in the transverse direction. The magnetic permeability of the conducting
medium is assumed to be constant.

Following non-dimensional variables are now introduced

z =
z∗

R0
, r =

r∗

R0
,R =

R∗

R0
, u =

u∗

U0
, v =

v∗

U0
, t =

t∗

T
, p =

p∗

ρU2
0

,

µ =
µ∗

µ∞
, λ =

µ0

µ∞
,Λ =

Λ∗U0

R0
, γ̇ =

γ̇∗R0

U0
, (3.1)

where U0 is the characteristic flow velocity and T is the period of the flow pulsation.
The Navier-Stokes equations for a homogeneous viscous incompressible fluid may be put in dimensionless form

as

S t
∂u
∂t

+
∂(uv)
∂r

+
∂(u2)
∂z

+
uv
r

= −∂p
∂z

+
1

Re
[µ(

∂2u
∂r2 +

1
r
∂u
∂r

+
∂2u
∂z2 )

(+
∂µ

∂r
(
∂u
∂r

+
∂v
∂z

) + 2
∂µ

∂z
∂u
∂z

] − Ha2

Re
u (3.2)

and

S t
∂v
∂t

+
∂(v2)
∂r

+
∂(uv)
∂z

+
v2

r
= −∂p

∂r
+

1
Re

[µ(
∂2v
∂r2 +

1
r
∂v
∂r

+
∂2v
∂z2 −

v
r2 )

(+2
∂µ

∂r
∂v
∂r

+
∂µ

∂z
(
∂v
∂z

+
∂u
∂r

)] (3.3)

Also the mass conservation equation is

r
∂u
∂z

+
∂(vr)
∂r

= 0. (3.4)

Re = U0R0ρ/µ∞, S t = R0/(U0T ) and Ha = B0

√
σR0
U0ρ

being the flow Reynolds number, Strouhal number and Hartmann
number respectively.

The mass transport mechanism in the blood stream is governed by the non-dimensional equation

S t
∂C
∂t

+ u
∂C
∂z

+ v
∂C
∂r

=
1

ReS c
[
∂2C
∂r2 +

1
r
∂C
∂r

+
∂2C
∂z2 ]. (3.5)

Here, S c =
µ
ρD is the Schmidt number, D being the coefficient of diffusion.

The dimensionless blood viscosity is obtained as

µ(γ̇) = 1 + (λ − 1){1 + Λ2γ̇}(n−1)/2 (3.6)

with
γ̇ = [2(

∂u
∂z

)2 + 2(
∂v
∂r

)2 + 2(
v
r

)2 + (
∂u
∂r

+
∂v
∂z

)2]
1
2 .
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A dimensionless physiological pulsatile flow rate proposed by Pedrizzetti [20]

f r(t) = 0.4355 + 0.05 cos 2πt + 0.25 sin 2πt − 0.13 cos 4πt + 0.13 sin 4πt − 0.10 cos 6πt − 0.02 sin 6πt

− 0.01 cos 8πt − 0.03 sin 8πt (3.7)

is assumed through the tube. Systolic and diastolic peak flow times of this flow profile are t = 0.18 and t = 0.45
respectively (Fig. 3.1).

Figure 3.1: Pulsatile flow rate proposed by Pedrizzetti [20].

4. Geometry of the tube
The wall geometry of the arterial segment under consideration at t = 0 may be represented in non-dimensional form
as:

R(z, 0) = [1 − δe−σ(z−a)2
]a(t), 0 ≤ z ≤ L, (4.1)

where a and δ describe the position and height of the stenosis, σ represents the rate at which the boundary profile
changes and L is the length of the flow regime under consideration.

As the wall deformation must be proportional to the flow rate, the time-variant parameter a1(t) is chosen as [16]

a(t) = 1 + k{ f r(t) − f r(0)} (4.2)

where k is the amplitude parameter and f r(t) is the pulsatileflow rate.
Schematic diagram of the artery is presented in Fig . 4.1. The parameter values σ = 5, a = 3.5, L = 10, k = 0.01 is

taken in this study.
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Figure 4.1: Schematic diagram of the stenosed flexible artery at time t = 0.

5. Stream function-Vorticity formulation
The dimensionless stream function ψ(z, r, t) is defined by

u =
1
r
∂ψ

∂r
, v = −1

r
∂ψ

∂z
(5.1)

and the corresponding vorticity function ω(z, r, t) by

ω =
∂v
∂z
− ∂u
∂r
. (5.2)

The pressure derivative terms in the momentum Eqs. (3.2) and (3.3) are now eliminated by cross-differentiation.
The vorticity transport equation is obtained as

S t
∂ω

∂t
+u

∂ω

∂z
+v

∂ω

∂r
− vω

r
=

1
Re

[µ(
∂2ω

∂z2 +
∂2ω

∂r2 +
1
r
∂ω

∂r
− ω

r2 )+2
∂µ

∂z
∂ω

∂z
+
∂µ

∂r
(2
∂ω

∂r
+
ω

r
)−2

∂2µ

∂r∂z
(
v
r

+2
∂u
∂z

)(+(
∂2µ

∂z2 −
∂2µ

∂r2 )

(
∂u
∂r

+
∂v
∂z

)] +
Ha2

Re
∂u
∂r
. (5.3)

Also, the continuity equation transforms to the pressure Poisson equation
∂2ψ

∂z2 +
∂2ψ

∂r2 −
1
r
∂ψ

∂r
= −ωr. (5.4)

6. Initial and Boundary Conditions
The initial conditions for the velocity and concentration field are set as [17]

u =
2 f r(0)
πR2 {1 − (

r
R

)2}, v = 0,C = 1 − (
r
R

)2. (6.1)

It is verified that the initial conditions do not affect the final results when the simulation is run for sufficiently
long time. It is also found that all transitional effects vanish and the final results do not alter significantly when the
simulation is carried out more than three time periods.

For the boundary condition at the inlet cross section of the tube, the flow is assumed to be fully developed i.e.
∂ω

∂z
=
∂ψ

∂z
= 0 at z = 0 (6.2)

and at the outlet cross section, the flow field is assumed to have no change which gives
∂2ω

∂z2 =
∂2ψ

∂z2 = 0 at z = L. (6.3)

The symmetry of flow field gives
ψ = 0, ω = 0 along r = 0. (6.4)

At the tube wall the usual ’no-slip’ condition is imposed, which gives
∂ψ

∂r
= 0 along r = R(z, t). (6.5)

240



Tube wall deformability gives
∂ψ

∂z
= −R

∂R
∂t

along r = R(z, t). (6.6)

The imposed axial symmetry of the concentration field gives
∂C
∂r

= 0 along r = 0. (6.7)

A constant concentration of the solute is taken at the inlet while at the outlet the concentration gradient is assumed
to be zero. Thus

C = 1 at z = 0 and
∂C
∂z

= 0 at z = L. (6.8)

A zero concentration on the vessel wall is set as
C = 0 at r = R(z, t) (6.9)

which essentially ignores any coupling between the blood-side and wall-side mass transfer processes and can be used
as a first approximation [6].

Now the flow rate across any cross-section is∫ R(z,t)

0
2πr(

1
r
∂ψ

∂r
)dr = Q(z, t).

This gives the stream function Ψ at the wall as

ψ(z,R(z, t), t) =
1

2π
Q(z, t). (6.10)

7. Coordinate transformation
A suitable radial coordinate transformation [12]

x =
r

R(z, t)
, (7.1)

is now employed which maps the constricted region into a rectangular one. This transforms the vorticity transport Eq.
(5.3) into
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) +

v
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=
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+ (

2x
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R
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R
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∂ω
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− x

R
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(
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)
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(
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(7.2)
Relation between vorticity and stream function becomes

∂2ψ

∂z2 + { x2

R2 (
∂R
∂z

)2 +
1

R2 }
∂2ψ

∂x2 −
2x
R
∂R
∂z

∂2ψ

∂x∂z
+ {2x

R2 (
∂R
∂z

)2 − x
R
∂2R
∂z2 −

1
xR2 }

∂ψ

∂x
= −Rxω. (7.3)

Value of the stream function at the boundary is

ψ(z, x = 1, t) =
1

2π
Q(z, t). (7.4)

Making use of Eq. (7.3), the boundary condition for ω at x = 1, is obtained as

ω(z, x = 1, t) = − 1
R3 [1 + (

∂R
∂z

)2](
∂2ψ

∂x2 )x=1 + (
∂2R
∂z∂t

+
1
R
∂R
∂z

∂R
∂t

). (7.5)

The transformed form of the mass transport Eq. (3.5) is given by

S t(
∂C
∂t
− x

R
∂R
∂t
∂C
∂x

) + u(
∂C
∂z
− x

R
∂R
∂z

∂C
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) +
v
R
∂C
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=
1

ReS c
[

1
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∂2C
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1
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∂x
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R2 (
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∂z

)2 ∂
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∂x2 −

2x
R
∂R
∂z

∂2C
∂x∂z

+ (
2x
R2 (

∂R
∂z

)2 − x
R
∂2R
∂z2 )

∂C
∂x
}]. (7.6)
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8. Numerical Method
A finite difference scheme over a uniformly spaced grid is employed to solve the transformed governing equations.
All spatial derivatives in Eqs. (7.2) and (7.6) are discretized by central difference approximations, while the time
derivatives of ω and C are discretized by forward difference approximation.

A uniformly spaced grid is generated by introducing the mesh points (zi, x j) where zi = i∆z and x j = j∆x, where
∆z and ∆x are respective increments of z and x. The finite difference representation of t is tk = k∆t, ∆t being the time
increment.

Corresponding to each line z = zi in x-direction, a tri-diagonal system of algebraic equations is formed. Eq. (7.3)
is arranged as

A( j)ψk+1
i, j−1 + B( j)ψk+1

i, j + C( j)ψk+1
i, j+1 = D( j), (8.1)

where the quantities A( j), B( j),C( j) and D( j) have following values

A( j) =
L2

(∆x)2 −
L1

2∆x
, B( j) = − 2

(∆z)2 −
2L2

(∆x)2 ,C( j) =
L2

(∆x)2 +
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2∆x
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D( j) = −Rxωk
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(∆z)2 + L3
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4∆z∆x
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1
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1
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R
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.

The well-known Thomas algorithm is now employed to solve the tri-diagonal system of Eqs. (8.1) and we obtain
the current value of the stream function. u and v are obtained from Eq. (5.1).

Updated values of the stream function are used to find the wall vorticity as

ω(z, x = 1, t) = − 2
R3 [1 + (

∂R
∂z

)2]
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(∆x)2 + (
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), (8.2)

where jstp represents the value of j at the tube wall.
Same technique is applied to solve the momentum Eq. (7.2). Discretization of the momentum Eq. (7.2) is given

by
P( j)ωk+1
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+{∂
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The mass transport Eq. (7.6) is solved using its discretized version

Ck+1
i, j = Ck

i, j +
∆t
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where
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Once the velocity and concentration field are obtained, the dimensionless wall shear stress and Sherwood number,
representing the local mass flux to the arterial wall, are computed by using the formulae

WS S = −(µ
∂u
∂r

)wall and S h = −2(
∂C
∂r

)wall. (8.5)

To have a better insight in a pulsatile flow, time-averaged wall shear stress and time-averaged Sherwood number
are calculated using the formulae

T AWS S =

∫ 1

0
τwdt and T AS h =

∫ 1

0
S hdt. (8.6)

9. Stability Criteria of the numerical scheme
The time step ∆t is selected through some restrictions on the fluid flow. The first restriction is the well known CFL
(Courant, Friedrichs & Lewy) condition. It states that the fluid can move through at most one cell in each time step i.e.

∆t1 ≤ Min[
∆z
|u| ,

∆x
|v| ](i, j). (9.1)

The viscous effect of the fluid gives the second restriction and is given by

∆t2 ≤ Min[
Re
2

∆z2∆x2

∆z2 + ∆x2 ](i, j). (9.2)

Finally, ∆t is calculated by the relation

∆t = βMin[∆t1,∆t2], 0 < β < 1. (9.3)

10. Results and Discussion
Present mathematical model is employed for a detailed quantitative analysis to study the distribution of wall shear
stress and mass transfer phenomenon in MHD flow of blood. Qualitative similarity of obtained results with existing
and available literature confirms the applicability of present model.

It is well established that the initiation and development of arterial diseases are closely associated with the
distribution of wall shear stress. Higher magnitudes of wall shear stress may damage the vessel wall. On the contrary,
excess fatty substances, borne by the blood stream, get an opportunity to be deposited on the inner wall of an artery in
the regions of low wall shear stress and this propagates atherosclerosis. Thus investigation of the distribution of wall
shear stress at the stenotic and post-stenotic region deserves special attention.
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Fig. 10.1(a)

Fig. 10.1(b)

Fig. 10.1. Distributions of time-averaged wall shear stress for different (a) constriction heights and Ha = 2; (b)
Hartmann numbers and δ = 0.25.

Distributions of time-averaged wall shear stress for variations of δ and Ha are presented in Figs. 10.1(a) and
10.1(b). Time-averaged wall shear stress rises considerably in the stenotic zone and attains its maximum slightly
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upstream of the throat (the vertical line indicates the position of stenosis throat). In some region of the downstream
side of the stenosis, wall shear stress becomes negative. This negative value indicates the flow separation zone. Flow
separation changes the flow structure, forms vortex and the separation length gives an idea about the size of vortex.
Formation of recirculation zone is of pathological significance, since this region prolongs the residing time of blood
constituents which may eventually be put down onto the arterial wall and forms secondary stenosis.

One may note that the peak T AWS S and the time-averaged length of separation increases with severity of
constriction. For δ = 0.3 (51% area reduction), two separation zones are noticed. Increasing magnetic field increases
the peak T AWS S but reduces the separation length. Peak value of T AWS S increases, but the time-averaged length of
separation decreases in case of non-Newtonian fluid compared to Newtonian fluid (Fig. 10.1(a)).

Fig. 10.2(a)

Fig. 10.2(b)
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Fig. 10.2(c)

Fig. 10.2. Distributions of time-averaged Sherwood number for different (a) constriction heights and Ha = 2, S c = 3;
(b) Schmidt numbers and δ = 0.25,Ha = 2; (c) Hartmann numbers and δ = 0.25, S c = 3.

Mass flux from the blood stream onto the arterial wall is measured with the help of the Sherwood number.
Distributions of the time-averaged Sherwood number over the entire flow regime under consideration are computed
for several of δ,Ha and S c and are presented in Figs. 10.2(a) to 10.2(c). Maximum mass transfer rate is noted slightly
upstream of the stenosis throat in all cases like the time-averaged wall shear stress. This result was also obtained
by earlier researchers like Kaazempur-Mofrad et al. [10] and Sarifuddin et al. [23]. In the lee of the constriction
another prominent peak is noted. Thus the mass transfer rate again rises just behind the stenosis. This phenomenon
could explain the development of secondary stenosis which is observed in clinical practice [5] with the enlargement
of existing one.

Mass transfer rate over the entire flow regime increases with the degree of stenosis (Fig. 10.2(a)). Thus
advancement of the disease further deteriorates the health condition of arterial wall and the disease propagates.
Increasing Schmidt number also increases the mass transfer rate (Fig. 10.2(b)). Increasing strength of magnetic
field, however, reduces the mass transfer rate at the arterial wall. Applied magnetic field affects the velocity field of
the moving fluid, which, in turn, slowed down the mass transfer rate ( Fig. 10.2(c)). Mass transfer phenomenon takes
place less in case of non-Newtonian fluid compared to that of Newtonian fluid. Lower viscosity of Newtonian fluid is
responsible for greater rate of mass transfer.
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(a)

(b)

(c)
Figure 10.3: Patterns of iso-concentration lines at t = 0.18 for Ha = 2 and (a) δ = 0.2; (b) δ = 0.25; (c) δ = 0.3

Patterns of iso-concentration lines describe the concentration field very nicely. Figs. 10.3(a) to 10.3(c) are
prepared to depict the concentration field for various constriction heights. Formation of a stenosis disturbs the normal
flow of blood. This flow disturbance causes the iso-concentration lines to be intense in the stenotic and post-stenotic
region. Thus the concentration gradient and hence the mass transfer rate along the arterial wall rises up significantly
in these regions.

11. Conclusions
Normal arterial flow becomes perturbed by the initiation of atherosclerosis and the changed hemodynamic environment
propagates the disease. Mathematical modeling and numerical simulation of arterial flow is helpful to explore possible
causes and effects of such arterial disease. Major findings of this numerical study are as follows:
1. Blood flow becomes more instable in the stenotic and post stenotic regions.
2. Wall shear stress rises considerably in the stenotic region and gains its peak value slightly upstream of the

stenosis throat. Flow separation takes place in the rear side of the constriction.
3. Applied magnetic field increases the wall shear stress but reduces the separation length.
4. Formation of a mild stenosis further helps to propagate the disease.
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5. Externally imposed magnetic field can delayed the development of atherosclerosis.
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