Jñānābha, Vol. 52(2) (2022), 228-236

(Dedicated to Professor D. S. Hooda on His $80^{\text {th }}$ Birth Anniversary Celebrations)

HYBRID CONTRACTION IN WEAK PARTIAL METRIC SPACES

Swati Saxena and U. C. Gairola
Department of Mathematics, H. N. B. Garhwal University, BGR Campus, Pauri Garhwal-246001, Uttrakhand, India
Email: swatisaxena567@gmail.com, ucgairola@rediffmail.com
(Received: July 18, 2022; In format: August 09, 2022; Revised November 16, 2022; Accepted: November 22, 2022)
DOI: https://doi.org/10.58250/jnanabha.2022.52227

Abstract

In this paper, a fixed point theorem is established for hybrid contraction in weak partial metric space. Our result is supported by examples. 2020 Mathematical Sciences Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$. Keywords and Phrases: Hybird contraction mapping, Weak Partial metric space, Partial Hausdroff metric, Coincidence Point.

1. Introduction and Preliminaries

The theory of non-linear analysis has emerged as a fascinating field. Many authors have generalized and extended Banach contraction principle. In 1969, Nadler [7] initiated the study of fixed points for multi-valued contraction mappings using Hausdorff metric.

Let (X, d) be a non-empty metric space and $C B(X)$, the class of all nonempty closed and bounded subsets of X. The Hausdorff metric [3] induced by d on $C B(X)$ is

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\},
$$

for every $A, B \in C B(X)$, where $d(a, B)=\inf \{d(a, b) ; b \in B\}$ is the distance from a to $B \subseteq X$.
Let $f: X \rightarrow X$ be a single-valued mapping and $U: X \rightarrow C B(X)$ be a multi-valued mapping.
(i) A point $w \in X$ is a fixed point of f (resp. U) if $f w=w\left(\right.$ resp. $\left.w \in U_{x}\right)$.

The set of all fixed points of f (resp. U) is denoted by Fix (f) (resp. Fix (U)).
(ii) A point $w \in X$ is a coincidence point of f and U if $f w \in U w$.

The set of all coincidence points of f and U is denoted by $C(f, U)$.
(iii) A point $w \in X$ is a common fixed point of f and U if $w=f w \in U w$.

The set of all common fixed points of f and U is denoted by $\operatorname{Fix}(f, U)$.
Nadler [7] proved the following
Theorem 1.1 ([7]). Let (X, d) be a complete metric space and $U: X \rightarrow C B(X)$ be a multi-valued mapping satisfying

$$
H(U x, U y) \leq k d(x, y), \quad \forall x, y \in X
$$

where $k \in[0,1)$ then $\exists x \in X$ such that $x \in U x$.
Afterward, a rapid progress has been observed using weak and generalized contraction mappings. Multi-valued contraction mapping has many applications in differential equations, control theory and economics.

Singh and Mishra [9] introduced the concept of (IT)- commutativity for a hybrid pair of single-valued and multivalued mappings. Further, in 2004, Kamran [12] introduced the notion of T - weak commutativity for a hybrid pair of single-valued and multivalued maps which is weaker than (IT)- commutativity. The definitions of (IT)commutativity and T - weak commutativity are as follows ([9]). A mapping $f: X \longrightarrow X$ and $U: X \longrightarrow C B(X)$ are said to be (IT)- commuting at $w \in X$ if $f U w \subseteq U f w$.

Definition 1.1 ([12]). Let $f: X \longrightarrow X$ and $U: X \longrightarrow C B(X)$, the map f is said to be T - weakly commuting at $w \in X$ if $f f w \in U f w$.

On the other hand, the distance notion in the metric fixed point theory has been introduced and generalized in several different ways by many authors. In 1992, Mathews [8] introduced the notion of partial metric space as a part of the study of denotational semantics of data flow networks. He presented a modified version of Banach contraction principle. Several authors have done work in this direction ([4], [2], [6]).

Definition 1.2. Let X be a non empty set. Then a mapping $p: X \times X \rightarrow \mathbb{R}^{+}$is said to be a partial metric on X if for all $x, y, z \in X$,
(P1) $x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$;
(P2) $p(x, x) \leq p(x, y)$;
(P3) $p(x, y)=p(y, x)$;
(P4) $p(x, y) \leq p(x, z)+p(z, x)-p(z, z)$.
The pair (X, p) is called a partial metric space.
Recently, a weaker form of partial metric space is introduced by Ismat Beg and H. K. Pathak [5] known as Weak Partial Metric Space and defined as:
Definition 1.4 ([5]). Let X be a non empty set. A function $q: X \times X \rightarrow \mathbb{R}^{+}$is called a weak partial metric on X if for all $x, y, z \in X$, the following conditions hold:
(WP1) $q(x, x)=q(x, y) \Leftrightarrow x=y$;
(WP2) $q(x, x) \leq q(x, y)$;
(WP3) $q(x, y)=q(y, x)$;
(WP4) $q(x, y) \leq q(x, z)+q(z, x)$.
The pair (X, q) is a weak partial metric space. Further, many authors have worked on weak partial metric space ([1], [10], [11]).

Example 1.1.

(i) $\quad\left(\mathbb{R}^{+}, q\right)$, where $q: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defines as

$$
q(x, y)=e^{|x-y|} \forall x, y \in \mathbb{R}^{+} .
$$

(ii) $\quad\left(\mathbb{R}^{+}, q\right)$, where $q: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defines as

$$
q(x, y)=|x-y|+\frac{1}{3} \max \{x, y\} \quad \forall x, y \in \mathbb{R}^{+} .
$$

Observe that
\diamond If $q(x, y)=0$, then $(W P 1)$ and $(W P 2) \Rightarrow x=y$. But the converse need not be true.
$\diamond(P 1) \Rightarrow(W P 1)$, but the converse need not be true.
$\diamond(P 4) \Rightarrow(W P 4)$, but the converse need not be true.
Each weak partial metric q on X generates a T_{0} topology τ_{q} on X. Topology τ_{q} has as a base the family of open q-balls $\left\{B_{q}(x, \epsilon): x \in X, \epsilon>0\right\}$, where $B_{q}(x, \epsilon)=\{y \in X: q(x, y)<q(x, x)+\epsilon\}$ for all $x \in X$ and $\epsilon>0$. If q is weak partial metric on X, then the function $q^{s}: X \times X \rightarrow \mathbb{R}^{+}$given by

$$
q^{s}(x, y)=q(x, y)-\frac{1}{2}[q(x, x)+q(y, y)]
$$

defines a metric on X.

Definition 1.5 ([5]). Let (X, q) be a weak partial metric space. Then
(i) P is said to be a bounded subset in (X, q) if $\exists x \in X$ and $L \geq 0$ such that $\forall p \in P$, we have $p \in B_{q}\left(x_{0}\right.$, L) that is

$$
q\left(x_{0}, p\right)<q(p, p)+L
$$

(ii) A sequence $\left\{x_{n}\right\}$ in (X, q) converges to a point $x \in X$, w.r.t. τ_{q} iff $q(x, x)=\lim _{n \rightarrow \infty} q\left(x, x_{n}\right)$. Moreover, a sequence $\left\{x_{n}\right\}$ converges in $\left(X, q^{s}\right)$ to a point $x \in X$ iff

$$
\lim _{n \rightarrow \infty \rightarrow \infty} q\left(x_{n}, x_{m}\right)=\lim _{n \rightarrow \infty} q\left(x_{n}, x\right)=q(x, x)
$$

(iii) A sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence if $\lim _{n, m \rightarrow \infty} q\left(x_{n}, x_{m}\right)$ exists and is finite.
(iv) (X, q) is called complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges to $x \in X$ with respect to topology τ_{q}.

Lemma 1.1 ([5]). Let (X, q) be a weak partial metric space. Then
(a) A sequence $\left\{x_{n}\right\}$ in X is Cauchy sequence in (X, q) if and only if it is a Cauchy sequence in the metric space $\left(X, q^{s}\right)$.
(b) (X, q) is called complete iff the metric space $\left(X, q^{s}\right)$ is complete.

For $L, M \in C B^{q}(X)$ and $x \in X$ define $q(x, L)=\inf \{q(x, l): l \in L\}, \delta_{q}(L, M)=\sup \{q(l, M): l \in L\}$ and $\delta_{q}(M, L)=$ $\sup \{q(m, L): m \in M\}$.
Clearly $q(x, L)=0 \Rightarrow q^{s}(x, L)=0$ where $q^{s}(x, L)=\inf \left\{q^{s}(x, l): l \in L\right\}$.

Remark 1.1 ([4]). Let (X, q) be a weak partial metric space and L be any non empty set in (X, q), then

$$
l \in \bar{L} \Leftrightarrow q(l, L)=q(l, l)
$$

where \bar{L} denotes the closure of L with respect to weak partial metric q. Observe that L is closed in (X, q) iff $L=\bar{L}$.

Now, we study the following properties of the mapping $\delta_{q}: C B^{q}(X) \times C B^{q}(X) \rightarrow[0, \infty)$.
Proposition 1.1 ([5]). Let (X, q) be a weak partial metric space. For all $L, M, N \in C B^{q}(X)$, we have the following:
(a) $\delta_{q}(L, L)=\sup \{q(l, l): l \in L\}$,
(b) $\delta_{q}(L, L) \leq \delta_{q}(L, M)$,
(c) $\delta_{q}(L, M)=0 \Rightarrow L \subseteq M$,
(c) $\delta_{q}(L, M) \leq \delta_{q}(L, N)+\delta_{q}(N, M)$.

Proposition 1.2 ([5]). Let (X, q) be a weak partial metric space. For all $L, M, N \in C B^{q}(X)$, we have
(wh1) $H_{q}^{+}(L, L) \leq H_{q}^{+}(L, M)$,
$\left(\right.$ wh2) $H_{q}^{+}(L, M)=H_{q}^{+}(M, L)$,
(wh3) $H_{q}^{+}(L, M) \leq H_{q}^{+}(L, N)+H_{q}^{+}(N, M)$.
Definition 1.6 ([5]). Let (X, q) be a weak partial metric space. For $L, M \in C B^{q}(X)$, define

$$
H_{q}^{+}(L, M)=\frac{1}{2}\left\{\delta_{q}(L, M)+\delta_{q}(M, L)\right\}
$$

The mapping $H_{q}^{+}: C B^{q}(X) \times C B^{q}(X) \rightarrow[0,+\infty)$ is called H_{q}^{+}- type Hausdorff metric induced by q.

Definition 1.7 ([5]). Let (X, q) be a weak partial metric space. A multi-valued map $U: X \rightarrow C B^{q}(X)$ is called H_{q}^{+} contraction if
(1) $\exists \alpha \in(0,1)$ such that

$$
H_{q}^{+}(U(x) \backslash\{x\}, U(y) \backslash\{y\}) \leq \alpha q(x, y) \quad \text { for every } x, y \in X
$$

(2) For every x in X, y in $U(x)$ and $\epsilon>0$, there exists z in $U(y)$ such that

$$
q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon
$$

Remark 1.2. Since, $\max \{a, b\} \geq \frac{1}{2}(a+b) \quad \forall a, b \geq 0$, whichfollows that H_{q} contracion always implies H_{q}^{+}- contraction but the converse need not be true.

A variant of Nadler's fixed point theorem is given by Beg and Pathak [5], which is stated as:
Theorem 1.2 ([5]). Every H_{q}^{+}- type multi-valued contraction map $U: X \rightarrow C B^{q}(X)$ on a complete weak partial metric space has a fixed point.

We define H_{q}^{+}-type hybrid contraction mapping as follows:
Definition 1.8. Let (X, q) be a weak partial metric space. A mapping $f: X \rightarrow X$ be a single valued mapping and $U: X \rightarrow C B^{q}(X)$ be a multi-valued mapping. U is said to be a H_{q}^{+}- hybrid contraction if
(1) $\exists \alpha \in(0,1)$ such that

$$
H_{q}^{+}(U(x) \backslash\{x\}, U(y) \backslash\{y\}) \leq \alpha q(f x, f y) \quad \text { for every } x, y \in X
$$

(2) For every x in X, y in $U(x)$ and $\epsilon>0$, there exists z in $U(y)$ such that

$$
q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon
$$

2. Main Result

Theorem 2.1. Let (X, q) be a weak partial metric space, $f: X \longrightarrow X$ be a single-valued mapping and $U: X \longrightarrow$
$C B^{q}(X)$ be a H_{q}^{+}- type hybrid contraction mapping. Suppose $f X$ is a complete subspace of X and $U x \subset f X$. Then f and U have a coincidence point. Furthermore, if f is T-weakly commuting at coincidence points of f and U, then f and U have a common fixed point. Proof. Let x_{0} be an arbitrary point of X and $y_{0}=f x_{0}$ also let $\epsilon>0$. We construct sequences $\left\{x_{k}\right\},\left\{y_{k}\right\}$ in X respectively. Since $U x \subset f X$, there exists $x_{1} \in X$ such that $y_{1}=f x_{1} \in U x_{0}$. If $q\left(f x_{1}, f x_{0}\right)=0$, then x_{0} is a coincidence point. Hence, assume $q\left(f x_{1}, f x_{0}\right)>0$. Now, there exists $y_{2}=f x_{2} \in U x_{1}$ such that $q\left(y_{1}, y_{2}\right) \leq H_{q}^{+}\left(U x_{0}, U x_{1}\right)+\epsilon$. Similarly, assume $q\left(y_{1}, y_{2}\right)>0$. Again by (2) and the fact $U x \subset f X$, there exists $y_{3}=f x_{3} \in U x_{2}$ such that $q\left(y_{2}, y_{3}\right) \leq H_{q}^{+}\left(U x_{1}, U x_{2}\right)+\epsilon$, assume $q\left(y_{2}, y_{3}\right)>0$.
Proceeding in this way, we can construct a sequence $y_{n+1}=f x_{n+1} \in U x_{n}$, assume $q\left(y_{n}, y_{n+1}\right)>0$ satisfying

$$
\begin{equation*}
q\left(y_{n}, y_{n+1}\right) \leq H_{q}^{+}\left(U x_{n-1}, U x_{n}\right)+\epsilon \tag{2.1}
\end{equation*}
$$

Now, by (2.1) and choosing $\epsilon=\left(\frac{1}{\sqrt{\alpha}}-1\right) H_{q}^{+}\left(U x_{n-1}, U x_{n}\right)$, we have

$$
\begin{aligned}
q\left(y_{n}, y_{n+1}\right) & \leq H_{q}^{+}\left(U x_{n-1}, U x_{n}\right)+\left(\frac{1}{\sqrt{\alpha}}-1\right) H_{q}^{+}\left(U x_{n-1}, U x_{n}\right) \\
& \leq \frac{1}{\sqrt{\alpha}} H_{q}^{+}\left(U x_{n-1}, U x_{n}\right) \\
& =\frac{1}{\sqrt{\alpha}} H_{q}^{+}\left(U x_{n-1} \backslash\left\{x_{n-1}\right\}, U x_{n} \backslash\left\{x_{n}\right\}\right) \\
& \leq \frac{1}{\sqrt{\alpha}} \cdot \alpha q\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \\
& =\sqrt{\alpha} \cdot q\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \\
& =\sqrt{\alpha} \cdot q\left(y_{n-1}, y_{n}\right)
\end{aligned}
$$

Adopting similar process, we obtain

$$
q\left(y_{n}, y_{n+1}\right) \leq(\sqrt{\alpha})^{n} q\left(y_{0}, y_{1}\right)
$$

Using property (WP4) of a weak partial metric, for any $m \in \mathbb{N}$, we have

$$
\begin{aligned}
q^{s}\left(y_{n}, y_{n+m}\right) & \leq q\left(y_{n}, y_{n+m}\right) \\
& \leq q\left(y_{n}, y_{n+1}\right)+q\left(y_{n+1}, y_{n+2}\right)+q\left(y_{n+2}, y_{n+3}\right)+\ldots+q\left(y_{n+m-1}, y_{n+m}\right) \\
& \leq(\sqrt{\alpha})^{n} q\left(y_{0}, y_{1}\right)+(\sqrt{\alpha})^{n+1} q\left(y_{0}, y_{1}\right)+(\sqrt{\alpha})^{n+2} q\left(y_{0}, y_{1}\right)+\ldots . .+(\sqrt{\alpha})^{n+m-1} q\left(y_{0}, y_{1}\right) \\
& \left.\left.\left.=\left((\sqrt{\alpha})^{n}+\sqrt{\alpha}\right)^{n+1}+\sqrt{\alpha}\right)^{n+2}+\ldots+\sqrt{\alpha}\right)^{n+m-1}\right) q\left(y_{0}, y_{1}\right) \\
& \leq \frac{\sqrt{\alpha})^{n}}{1-\sqrt{\alpha}} \cdot q\left(y_{0}, y_{1}\right) \longrightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

This implies that $\left\{y_{k}\right\}=\left\{f x_{k}\right\}$ where $k=1,2,3, \ldots$; is a Cauchy sequence in $\left(X, q^{s}\right)$. Since $f X$ is complete $\exists w \in X$ such that the sequence $y_{n}=f x_{n}$ converges to $f w$ as $n \longrightarrow \infty$ w.r.t. the metric q^{s}, that is, $\lim _{n \rightarrow \infty} q^{s}\left(f x_{n}, f w\right)=0$. Moreover, we have

$$
q(f w, f w)=\lim _{n \rightarrow \infty} q\left(y_{n}, f w\right)=\lim _{n \rightarrow \infty} q\left(y_{n}, y_{n}\right)=0
$$

We now show that $f w \in U w$.
By triangle inequality,

$$
\begin{aligned}
q(f w, U w) & \leq q\left(f w, f x_{k}\right)+q\left(f x_{k}, U w\right) \\
& \leq q\left(f w, f x_{k}\right)+H_{q}^{+}\left(U x_{k-1}, U w\right) \\
& =q\left(f w, f x_{k}\right)+H_{q}^{+}\left(U x_{k-1} \backslash\left\{x_{k-1}\right\}, U w \backslash\{w\}\right) \\
& \leq q\left(f w, f x_{k}\right)+\alpha q\left(f x_{k-1}, f w\right)
\end{aligned}
$$

$\forall k=1,2,3$,. now we follow from $f x_{k} \rightarrow f w$ as $k \rightarrow \infty$ that $q\left(f w, f x_{k}\right)$ and $q\left(f x_{k-1}, f w\right) \rightarrow 0$ as $k \rightarrow \infty$. Therefore all terms in right hand side tend to 0 as $k \rightarrow \infty$ which implies that $q(f w, U w)=0$. Since $U w$ is closed, $f w \in U w$. Therefore, f and U have a coincidence point $w \in X$. Let $t=f w \in U w$. It follows from the definition of H_{q}^{+}- type Hausdroff metric that

$$
q(t, f t) \leq q(t, U t)=q(f w, U t)
$$

$$
\begin{aligned}
& \leq H_{q}^{+}(U w, U t) \\
& =H_{q}^{+}(U w \backslash\{w\}, U t \backslash\{t\}) \\
& \leq \alpha q(f w, f t) \\
& =\alpha q(t, f t) \\
\Longrightarrow q(t, f t)=0 &
\end{aligned}
$$

It follows from $q(f t, U t)=q(f w, U t) \leq H_{q}^{+}(U w, U t)=0$. Since $U t$ is closed, $t=f t \in U t$. Thus f and U have a common fixed point. Now, we give an example to support our result.

Example 2.1. Let (X, q) be a weak partial metric space w.r.t. weak partial metric $q: X \times X \rightarrow[0, \infty)$ where $X=\left\{0, \frac{1}{2}, 1\right\}$ and q is defined by

$$
q(x, y)=|x-y|+\max \{x, y\} \quad \forall x, y \in X .
$$

Define the maps $U: X \rightarrow C B^{q}(X)$ and such that

$$
U(x)= \begin{cases}\{0\}, & \text { if } x=\{0,1\} \\ \left\{0, \frac{1}{2}\right\}, & \text { if } x=\left\{\frac{1}{2}\right\}\end{cases}
$$

and $f: X \rightarrow X$ such that

$$
f\left(\frac{1}{2}\right)=0, \quad f(0)=1, \quad f(1)=\frac{1}{2}
$$

Since $q(1,1)=1 \neq 0, q\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2} \neq 0$. Hence q is not a metric on X. Here $U x \subset f X$. Also,

$$
\begin{aligned}
x \in \overline{\{0\}} & \Leftrightarrow q(x,\{0\})=q(x, x) \\
& \Leftrightarrow 2 x=x \Leftrightarrow x=0 \\
& \Leftrightarrow x \in\{0\} .
\end{aligned}
$$

Thus, $\{0\}$ is closed with respect to q.

$$
\begin{aligned}
x \in \overline{\left\{0, \frac{1}{2}\right\}} & \Leftrightarrow q\left(x,\left\{0, \frac{1}{2}\right\}\right)=q(x, x) \\
& \Leftrightarrow \min \left\{2 x,\left|x-\frac{1}{2}\right|+\max \left\{x, \frac{1}{2}\right\}\right\}=x \\
& \Leftrightarrow x \in\left\{0, \frac{1}{2}\right\} .
\end{aligned}
$$

Hence, $\left\{0, \frac{1}{2}\right\}$ is closed with respect to q. Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:
(i) $x=0, y=0$. We have

$$
H_{q}^{+}(U(0) \backslash\{0\}, U(0) \backslash\{0\})=H_{q}^{+}(\phi, \phi)=0
$$

and (1) is satisfied.
(ii) $x=0, y=\frac{1}{2}$. We have

$$
H_{q}^{+}\left(U(0) \backslash\{0\}, U\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}\right)=H_{q}^{+}(\phi,\{0\})=0,
$$

and (1) is satisfied.
(iii) $x=\frac{1}{2}, y=0$. We have

$$
H_{q}^{+}\left(U\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}, U(0) \backslash\{0\}\right)=H_{q}^{+}(\{0\}, \phi)=0
$$

and (1) is satisfied.
(iv) $x=0, y=1$. We have

$$
H_{q}^{+}(U(0) \backslash\{0\}, U(1) \backslash\{1\})=H_{q}^{+}(\phi,\{0\})=0
$$

and (1) is satisfied.
(v) $x=1, y=0$. We have

$$
H_{q}^{+}(U(1) \backslash\{1\}, U(0) \backslash\{0\})=H_{q}^{+}(\{0\}, \phi)=0
$$

and (1) is satisfied.
(vi) $x=\frac{1}{2}, y=\frac{1}{2}$. We have

$$
H_{q}^{+}\left(U\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}, U\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}\right)=H_{q}^{+}(\{0\},\{0\})=0
$$

and (1) is satisfied.
(vii) $x=\frac{1}{2}, y=1$. We have

$$
H_{q}^{+}\left(U\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}, U(1) \backslash\{1\}\right)=H_{q}^{+}(\{0\},\{0\})=0
$$

and (1) is satisfied.
(viii) $x=1, y=\frac{1}{2}$. We have

$$
H_{q}^{+}\left(U(1) \backslash\{1\}, U\left(\frac{1}{2}\right) \backslash\left\{\frac{1}{2}\right\}\right)=H_{q}^{+}(\{0\},\{0\})=0
$$

and (1) is satisfied.
(ix) $x=1, y=1$. We have

$$
H_{q}^{+}(U(1) \backslash\{1\}, U(1) \backslash\{1\})=H_{q}^{+}(\{0\},\{0\})=0
$$

and (1) is satisfied.
Further, we shall show that for every x in X, y in $U(x)$ and $\epsilon>0, \exists z$ in $U(y)$ such that $q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon$. Indeed,
(1) if $x=0, y \in U(0)=\{0\}, \epsilon>0, \exists z \in U(y)=\{0\}$ such that

$$
0=q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon
$$

(2a) if $x=\frac{1}{2}, y \in U\left(\frac{1}{2}\right)=\left\{0, \frac{1}{2}\right\}$, say $y=0, \epsilon>0, \exists z \in U(y)=\{0\}$, such that

$$
0=q(y, z)<1+\epsilon=H_{q}^{+}(U(y), U(x))+\epsilon
$$

(2b) if $x=\frac{1}{2}, y \in U\left(\frac{1}{2}\right)=\left\{0, \frac{1}{2}\right\}$, say $y=\frac{1}{2}, \epsilon>0$, $\exists z \in U(y)=\left\{0, \frac{1}{2}\right\}$, such that

$$
\frac{1}{2}=q(y, z)<\frac{1}{2}+\epsilon=H_{q}^{+}(U(y), U(x))+\epsilon
$$

(3) If $x=1, y \in U(1)=\{0\}, \epsilon>0 \exists z \in U(0)=\{0\}$ such that

$$
0=q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon
$$

Hence, all the conditions of theorem are satisfied. Here $x=\frac{1}{2}$ is a coincidence point of f and U. In this example f is not T - weakly commuting at coincidence point.

Example 2.2. Let (X, q) be a weak partial metric space w.r.t. weak partial metric $q: X \times X \rightarrow[0, \infty)$ where $X=\left\{0, \frac{1}{6}, 1\right\}$ and q is defined by

$$
q(x, y)=|x-y|+\frac{1}{3} \max \{x, y\} \quad \forall x, y \in X .
$$

Define the maps $U: X \rightarrow C B^{q}(X)$ such that

$$
U(x)= \begin{cases}\{0\}, & \text { if } x=\left\{0, \frac{1}{6}\right\} \\ \left\{1, \frac{1}{6}\right\}, & \text { if } x=\{1\}\end{cases}
$$

and $f: X \rightarrow X$ such that

$$
f(x)=x \quad \forall \quad x, y \in X
$$

Since $q(1,1)=\frac{1}{3} \neq 0, q\left(\frac{1}{6}, \frac{1}{6}\right)=\frac{1}{18} \neq 0$. Hence q is not a metric on X. Here $U x \subset f X$. Also,

$$
\begin{aligned}
x \in \overline{\{0\}} & \Leftrightarrow q(x,\{0\})=q(x, x) \\
& \Leftrightarrow \frac{4}{3} x=\frac{x}{3} \Leftrightarrow x=0 \\
& \Leftrightarrow x \in\{0\} .
\end{aligned}
$$

Thus, $\{0\}$ is closed with respect to q.

$$
\begin{aligned}
x \in \overline{\left\{1, \frac{1}{6}\right\}} & \Leftrightarrow q\left(x,\left\{1, \frac{1}{6}\right\}\right)=q(x, x) \\
& \Leftrightarrow \min \left\{|x-1|+\frac{1}{3} \max \{x, 1\},\left|x-\frac{1}{6}\right|+\max \left\{x, \frac{1}{6}\right\}\right\}=\frac{x}{3} \\
& \Leftrightarrow x \in\left\{1, \frac{1}{6}\right\} .
\end{aligned}
$$

Hence, $\left\{1, \frac{1}{6}\right\}$ is closed with respect to q. Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:
(i) $x=0, y=0$. We have

$$
H_{q}^{+}(U(0) \backslash\{0\}, U(0) \backslash\{0\})=H_{q}^{+}(\phi, \phi)=0
$$

and (1) is satisfied.
(ii) $x=0, y=\frac{1}{6}$. We have

$$
H_{q}^{+}\left(U(0) \backslash\{0\}, U\left(\frac{1}{6}\right) \backslash\left\{\frac{1}{6}\right\}\right)=H_{q}^{+}(\phi,\{0\})=0,
$$

and (1) is satisfied.
(iii) $x=\frac{1}{6}, y=0$. We have

$$
H_{q}^{+}\left(U\left(\frac{1}{6}\right) \backslash\left\{\frac{1}{6}\right\}, U(0) \backslash\{0\}\right)=H_{q}^{+}(\{0\}, \phi)=0
$$

and (1) is satisfied.
(iv) $x=0, y=1$. We have

$$
H_{q}^{+}(U(0) \backslash\{0\}, U(1) \backslash\{1\})=H_{q}^{+}\left(\phi,\left\{\frac{1}{6}\right\}\right)=0
$$

and (1) is satisfied.
(v) $x=1, y=0$. We have

$$
H_{q}^{+}(U(1) \backslash\{1\}, U(0) \backslash\{0\})=H_{q}^{+}\left(\left\{\frac{1}{6}\right\}, \phi\right)=0
$$

and (1) is satisfied.
(vi) $x=\frac{1}{6}, y=\frac{1}{6}$. We have

$$
H_{q}^{+}\left(U\left(\frac{1}{6}\right) \backslash\left\{\frac{1}{6}\right\}, U\left(\frac{1}{6}\right) \backslash\left\{\frac{1}{6}\right\}\right)=H_{q}^{+}(\{0\},\{0\})=0
$$

and (1) is satisfied.
(vii) $x=\frac{1}{6}, y=1$. We have

$$
H_{q}^{+}\left(U\left(\frac{1}{6}\right) \backslash\left\{\frac{1}{6}\right\}, U(1) \backslash\{1\}\right)=H_{q}^{+}\left(\{0\},\left\{\frac{1}{6}\right\}\right)=\frac{2}{9} \leq \alpha \cdot \frac{7}{6}
$$

and (1) is satisfied.
(viii) $x=1, y=\frac{1}{6}$. We have

$$
H_{q}^{+}\left(U(1) \backslash\{1\}, U\left(\frac{1}{6}\right) \backslash\left\{\frac{1}{6}\right\}\right)=H_{q}^{+}\left(\left\{\frac{1}{6}\right\},\{0\}\right)=\frac{2}{9} \leq \alpha \cdot \frac{7}{6}
$$

and (1) is satisfied.
(ix) $x=1, y=1$. We have

$$
H_{q}^{+}(U(1) \backslash\{1\}, U(1) \backslash\{1\})=H_{q}^{+}\left(\left\{\frac{1}{6}\right\},\left\{\frac{1}{6}\right\}\right)=\frac{1}{9} \leq \alpha \cdot \frac{1}{3}
$$

and (1) is satisfied.
Further, we shall show that for every x in X, y in $U(x)$ and $\epsilon>0, \exists z$ in $U(y)$ such that $q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon$. Indeed,
(1) if $x=0, y \in U(0)=\{0\}, \epsilon>0, \exists z \in U(y)=\{0\}$ such that

$$
0=q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon
$$

(2a) if $x=1, y \in U(1)=\left\{1, \frac{1}{6}\right\}$, say $y=1, \epsilon>0, \exists z \in U(y)=\left\{1, \frac{1}{6}\right\} z=1$, such that

$$
\frac{1}{3}=q(y, z)<\frac{1}{3}+\epsilon=H_{q}^{+}(U(y), U(x))+\epsilon
$$

(2b) if $x=1, y \in U(1)=\left\{1, \frac{1}{6}\right\}$, say $y=\frac{1}{6}, \epsilon>0, \exists z \in U(y)=\{0\}$, such that

$$
\frac{2}{9}=q(y, z)<\frac{7}{9}+\epsilon=H_{q}^{+}(U(y), U(x))+\epsilon
$$

(3) If $x=\frac{1}{6}, y \in U\left(\frac{1}{6}\right)=\{0\}, \epsilon>0 \exists z \in U(y)=U(0)=\{0\}$ such that

$$
0=q(y, z) \leq H_{q}^{+}(U(y), U(x))+\epsilon
$$

Here $x=0,1$ are the coincidence points of f and U. Now we shall show that f is T-weakly commuting at coincidence points.
(i) For $x=0, f f(0)=0$ and $U f(0)=\{0\}$

Thus $f f(0) \in U f(0)$.
(ii) For $x=1, f f(1)=1$ and $U f(1)=\left\{1, \frac{1}{6}\right\}$

Thus $f f(1) \in U f(1)$.
(iii) For $x=\frac{1}{6}, f f\left(\frac{1}{6}\right)=\frac{1}{6}$ and $U f\left(\frac{1}{6}\right)=\{0\}$

Thus $f f\left(\frac{1}{6}\right) \notin U f\left(\frac{1}{6}\right)$
Hence, all the conditions of theorem are satisfied. Here $\mathbf{x}=\mathbf{0}, \mathbf{1}$ are the common fixed points of f and U.

3. Conclusion

In this article, we established a coincidence and common fixed point theorem for hybrid contraction in weak partial metric space. We give a counter example to show that it is necessary to f satisfies T-weakly commuting condition on coincidence point for obtaining the common fixed point. We also give an example in support of our result.

References

[1] H. Aydi, M. A. Barakat, Z. D. Mitrovć, V. S. Cavic, A Suzuki type multi-valued contraction on weak partial metric Space and applications, J. Inequal. Appl., 2018 (2018), 270.
[2] H. Aydi, M. Abbas, C. Vetro, Common fixed points for multivalued generalized contraction on partial metric spaces, RACSAM, 108 (2014), 483-501.
[3] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric space, Topology Appl., 159 (2012), 3234-3242.
[4] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157 (2010), 27782785.
[5] I. Beg, H. K. Pathak, A variant of Nadler's theorem on weak partial metric spaces with application to homotopy result, Vietnam J. math., 46 (2018), 693-706.
[6] L. Ciric, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contraction on partial metric spaces and an application, Appl. Math. Comp., 218 (2011), 2398-2406.
[7] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488.
[8] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1) (1994), 183-197.
[9] S. L. Singh, S. N. Mishra, Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl., 256 (2001), 486-497.
[10] S. Negi, U. C. Gairola, Common fixed points for generalized multivalued contraction mappings on weak partial metric spaces, Jñānābha, 49 (2) (2019), 34-44.
[11] S. Negi, U. C. Gairola, Fixed point of Suzuki-type generalized multivalued contraction mappings on weak partial metric spaces, Jñānābha, 50 (1) (2020), 35-42.
[12] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., 299 (2004), 235-241.

