ISSN 0304-9892 (Print)

www.vijnanaparishadofindia.org/jnanabha

Jñānābha, Vol. 52(2) (2022), 228-236

(Dedicated to Professor D. S. Hooda on His 80th Birth Anniversary Celebrations)

HYBRID CONTRACTION IN WEAK PARTIAL METRIC SPACES Swati Saxena and U. C. Gairola

Department of Mathematics, H. N. B. Garhwal University, BGR Campus, Pauri Garhwal-246001, Uttrakhand, India Email: swatisaxena567@gmail.com, ucgairola@rediffmail.com

(Received: July 18, 2022; In format: August 09, 2022; Revised November 16, 2022; Accepted: November 22, 2022)

DOI: https://doi.org/10.58250/jnanabha.2022.52227

Abstract

In this paper, a fixed point theorem is established for hybrid contraction in weak partial metric space. Our result is supported by examples.

2020 Mathematical Sciences Classification: 47H10, 54H25.

Keywords and Phrases: Hybird contraction mapping, Weak Partial metric space, Partial Hausdroff metric, Coincidence Point.

1. Introduction and Preliminaries

The theory of non-linear analysis has emerged as a fascinating field. Many authors have generalized and extended Banach contraction principle. In 1969, Nadler [7] initiated the study of fixed points for multi-valued contraction mappings using Hausdorff metric.

Let (X, d) be a non-empty metric space and CB(X), the class of all nonempty closed and bounded subsets of X. The Hausdorff metric [3] induced by d on CB(X) is

$$H(A, B) = max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\},\$$

for every $A, B \in CB(X)$, where $d(a, B) = inf\{d(a, b); b \in B\}$ is the distance from a to $B \subseteq X$.

Let $f: X \to X$ be a single-valued mapping and $U: X \to CB(X)$ be a multi-valued mapping.

- (i) A point $w \in X$ is a fixed point of f (resp. U) if fw = w(resp. $w \in U_x$).
- The set of all fixed points of f (resp. U) is denoted by Fix(f)(resp. Fix(U)).
- (ii) A point $w \in X$ is a coincidence point of f and U if $fw \in Uw$. The set of all coincidence points of f and U is denoted by C(f, U).
- (iii) A point $w \in X$ is a common fixed point of f and U if $w = fw \in Uw$.

The set of all common fixed points of f and U is denoted by Fix(f, U).

Nadler [7] proved the following

Theorem 1.1 ([7]). Let (X, d) be a complete metric space and $U : X \to CB(X)$ be a multi-valued mapping satisfying $H(Ux, Uy) \le kd(x, y), \quad \forall x, y \in X$

where $k \in [0, 1)$ then $\exists x \in X$ such that $x \in Ux$.

Afterward, a rapid progress has been observed using weak and generalized contraction mappings. Multi-valued contraction mapping has many applications in differential equations, control theory and economics.

Singh and Mishra [9] introduced the concept of (IT)- commutativity for a hybrid pair of single-valued and multivalued mappings. Further, in 2004, Kamran [12] introduced the notion of T- weak commutativity for a hybrid pair of single-valued and multivalued maps which is weaker than (IT)- commutativity. The definitions of (IT)- commutativity and T- weak commutativity are as follows ([9]). A mapping $f : X \longrightarrow X$ and $U : X \longrightarrow CB(X)$ are said to be (IT)- commuting at $w \in X$ if $fUw \subseteq Ufw$.

Definition 1.1 ([12]). Let $f : X \longrightarrow X$ and $U : X \longrightarrow CB(X)$, the map f is said to be T-weakly commuting at $w \in X$ if $ffw \in Ufw$.

On the other hand, the distance notion in the metric fixed point theory has been introduced and generalized in several different ways by many authors. In 1992, Mathews [8] introduced the notion of partial metric space as a part of the study of denotational semantics of data flow networks. He presented a modified version of Banach contraction principle. Several authors have done work in this direction ([4], [2], [6]).

Definition 1.2. Let X be a non empty set. Then a mapping $p : X \times X \to \mathbb{R}^+$ is said to be a partial metric on X if for all $x, y, z \in X$, (P1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y)$; (P2) $p(x, x) \leq p(x, y)$; (P3) p(x, y) = p(y, x); (P4) $p(x, y) \leq p(x, z) + p(z, x) - p(z, z)$. The pair (X, p) is called a partial metric space.

Recently, a weaker form of partial metric space is introduced by Ismat Beg and H. K. Pathak [5] known as Weak Partial Metric Space and defined as:

Definition 1.4 ([5]). Let X be a non empty set. A function $q : X \times X \to \mathbb{R}^+$ is called a weak partial metric on X if for all $x, y, z \in X$, the following conditions hold:

(WP1) $q(x, x) = q(x, y) \Leftrightarrow x = y;$ (WP2) $q(x, x) \le q(x, y);$

(WP3) q(x, y) = q(y, x);

(WP4) $q(x, y) \le q(x, z) + q(z, x)$.

The pair (X, q) is a weak partial metric space. Further, many authors have worked on weak partial metric space ([1], [10], [11]).

Example 1.1.

(i) (\mathbb{R}^+, q) , where $q : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ defines as

$$q(x, y) = e^{|x-y|} \forall x, y \in \mathbb{R}^+.$$

(ii) (\mathbb{R}^+, q) , where $q : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ defines as

$$q(x,y) = |x-y| + \frac{1}{3}max\{x,y\} \quad \forall x,y \in \mathbb{R}^+.$$

Observe that

♦ If q(x, y) = 0, then (WP1) and (WP2) $\Rightarrow x = y$. But the converse need not be true.

♦ (P1) ⇒(WP1), but the converse need not be true.

 \diamond (*P4*) ⇒ (*WP4*), but the converse need not be true.

Each weak partial metric q on X generates a T_0 topology τ_q on X. Topology τ_q has as a base the family of open q-balls $\{B_q(x,\epsilon) : x \in X, \epsilon > 0\}$, where $B_q(x,\epsilon) = \{y \in X : q(x,y) < q(x,x) + \epsilon\}$ for all $x \in X$ and $\epsilon > 0$. If q is weak partial metric on X, then the function $q^s : X \times X \to \mathbb{R}^+$ given by

$$q^{s}(x, y) = q(x, y) - \frac{1}{2}[q(x, x) + q(y, y)]$$

defines a metric on X.

Definition 1.5 ([5]). Let (X, q) be a weak partial metric space. Then

(i) *P* is said to be a bounded subset in (X, q) if $\exists x \in X$ and $L \ge 0$ such that $\forall p \in P$, we have $p \in B_q(x_0, L)$ that is

$$q(x_0, p) < q(p, p) + L.$$

(ii) A sequence $\{x_n\}$ in (X, q) converges to a point $x \in X$, w.r.t. τ_q iff $q(x, x) = \lim_{n \to \infty} q(x, x_n)$. Moreover, a sequence $\{x_n\}$ converges in (X, q^s) to a point $x \in X$ iff

$$\lim_{n \to \infty m \to \infty} q(x_n, x_m) = \lim_{n \to \infty} q(x_n, x) = q(x, x)$$

- (iii) A sequence $\{x_n\}$ in X is said to be a Cauchy sequence if $\lim_{n,m\to\infty} q(x_n, x_m)$ exists and is finite.
- (iv) (X,q) is called complete if every Cauchy sequence $\{x_n\}$ in X converges to $x \in X$ with respect to topology τ_q .

Lemma 1.1 ([5]). Let (X, q) be a weak partial metric space. Then

- (a) A sequence $\{x_n\}$ in X is Cauchy sequence in (X, q) if and only if it is a Cauchy sequence in the metric space (X, q^s) .
- (b) (X,q) is called complete iff the metric space (X,q^s) is complete.

For $L, M \in CB^{q}(X)$ and $x \in X$ define $q(x, L) = inf\{q(x, l) : l \in L\}, \delta_{q}(L, M) = sup\{q(l, M) : l \in L\}$ and $\delta_{q}(M, L) = sup\{q(m, L) : m \in M\}$. Clearly $q(x, L) = 0 \Rightarrow q^{s}(x, L) = 0$ where $q^{s}(x, L) = inf\{q^{s}(x, l) : l \in L\}$.

Remark 1.1 ([4]). Let (X, q) be a weak partial metric space and L be any non empty set in (X, q), then

$$l \in \bar{L} \Leftrightarrow q(l,L) = q(l,l)$$

where \overline{L} denotes the closure of L with respect to weak partial metric q. Observe that L is closed in (X, q) iff $L = \overline{L}$.

Now, we study the following properties of the mapping $\delta_q : CB^q(X) \times CB^q(X) \rightarrow [0, \infty)$.

Proposition 1.1 ([5]). Let (X, q) be a weak partial metric space. For all $L, M, N \in CB^q(X)$, we have the following:

(a) $\delta_q(L,L) = \sup\{q(l,l) : l \in L\},\$

(b) $\delta_q(L,L) \leq \delta_q(L,M)$,

(c) $\delta_q(L, M) = 0 \Rightarrow L \subseteq M,$

(c) $\delta_q(L, M) \leq \delta_q(L, N) + \delta_q(N, M)$.

Proposition 1.2 ([5]). Let (X, q) be a weak partial metric space. For all $L, M, N \in CB^{q}(X)$, we have

(wh1) $H_q^+(L, L) \le H_q^+(L, M),$ (wh2) $H_q^+(L, M) = H_q^+(M, L),$ (wh3) $H_q^+(L, M) \le H_q^+(L, N) \le H_q^+(L, N),$

(wh3) $H_q^+(L, M) \le H_q^+(L, N) + H_q^+(N, M).$

Definition 1.6 ([5]). Let (X, q) be a weak partial metric space. For $L, M \in CB^q(X)$, define

$$H_q^+(L, M) = \frac{1}{2} \{ \delta_q(L, M) + \delta_q(M, L) \}.$$

The mapping H_q^+ : $CB^q(X) \times CB^q(X) \rightarrow [0, +\infty)$ is called H_q^+ - type Hausdorff metric induced by q.

Definition 1.7 ([5]). Let (X, q) be a weak partial metric space. A multi-valued map $U : X \to CB^q(X)$ is called H_q^+ contraction if

(1) $\exists \alpha \in (0, 1)$ such that

$$H_a^+(U(x)\setminus\{x\}, U(y)\setminus\{y\}) \le \alpha q(x, y) \text{ for every } x, y \in X$$

(2) For every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that

$$q(y,z) \le H_a^+(U(y), U(x)) + \epsilon.$$

Remark 1.2. Since, $max\{a, b\} \ge \frac{1}{2}(a+b) \quad \forall a, b \ge 0$, which follows that H_q contraction always implies H_q^+ - contraction but the converse need not be true.

A variant of Nadler's fixed point theorem is given by Beg and Pathak [5], which is stated as:

Theorem 1.2 ([5]). Every H_q^+ - type multi-valued contraction map $U : X \to CB^q(X)$ on a complete weak partial metric space has a fixed point.

We define H_a^+ -type hybrid contraction mapping as follows:

Definition 1.8. Let (X, q) be a weak partial metric space. A mapping $f : X \to X$ be a single valued mapping and $U : X \to CB^q(X)$ be a multi-valued mapping. U is said to be a H_q^+ - hybrid contraction if (1) $\exists \alpha \in (0, 1)$ such that

$$H_a^+(U(x)\setminus\{x\}, U(y)\setminus\{y\}) \le \alpha q(fx, fy) \text{ for every } x, y \in X$$

(2) For every x in X, y in U(x) and $\epsilon > 0$, there exists z in U(y) such that

$$q(y,z) \le H_q^+(U(y),U(x)) + \epsilon$$

2. Main Result

Theorem 2.1. Let (X,q) be a weak partial metric space, $f: X \longrightarrow X$ be a single-valued mapping and $U: X \longrightarrow X$

 $CB^q(X)$ be a H_q^+ - type hybrid contraction mapping. Suppose fX is a complete subspace of X and $Ux \subset fX$. Then f and U have a coincidence point. Furthermore, if f is T-weakly commuting at coincidence points of f and U, then f and U have a common fixed point. Proof. Let x_0 be an arbitrary point of X and $y_0 = fx_0$ also let $\epsilon > 0$. We construct sequences $\{x_k\}, \{y_k\}$ in X respectively. Since $Ux \subset fX$, there exists $x_1 \in X$ such that $y_1 = fx_1 \in Ux_0$. If $q(fx_1, fx_0) = 0$, then x_0 is a coincidence point. Hence, assume $q(fx_1, fx_0) > 0$. Now, there exists $y_2 = fx_2 \in Ux_1$ such that $q(y_1, y_2) \leq H_q^+(Ux_0, Ux_1) + \epsilon$. Similarly, assume $q(y_1, y_2) > 0$. Again by (2) and the fact $Ux \subset fX$, there exists $y_3 = fx_3 \in Ux_2$ such that $q(y_2, y_3) \leq H_q^+(Ux_1, Ux_2) + \epsilon$, assume $q(y_2, y_3) > 0$.

Proceeding in this way, we can construct a sequence $y_{n+1} = fx_{n+1} \in Ux_n$, assume $q(y_n, y_{n+1}) > 0$ satisfying

$$(y_n, y_{n+1}) \le H_q^+(Ux_{n-1}, Ux_n) + \epsilon,$$
 (2.1)

Now, by (2.1) and choosing $\epsilon = (\frac{1}{\sqrt{\alpha}} - 1)H_q^+(Ux_{n-1}, Ux_n)$, we have

$$\begin{aligned} q(y_n, y_{n+1}) &\leq H_q^+(Ux_{n-1}, Ux_n) + (\frac{1}{\sqrt{\alpha}} - 1)H_q^+(Ux_{n-1}, Ux_n) \\ &\leq \frac{1}{\sqrt{\alpha}}H_q^+(Ux_{n-1}, Ux_n) \\ &= \frac{1}{\sqrt{\alpha}}H_q^+(Ux_{n-1}, \{x_{n-1}\}, Ux_n \setminus \{x_n\}) \\ &\leq \frac{1}{\sqrt{\alpha}}.\alpha q(f(x_{n-1}), f(x_n)) \\ &= \sqrt{\alpha}.q(f(x_{n-1}), f(x_n)) \\ &= \sqrt{\alpha}.q(y_{n-1}, y_n). \end{aligned}$$

Adopting similar process, we obtain

$$q(y_n, y_{n+1}) \le (\sqrt{\alpha})^n q(y_0, y_1)$$

Using property (WP4) of a weak partial metric, for any $m \in \mathbb{N}$, we have

$$\begin{split} q^{s}(y_{n}, y_{n+m}) &\leq q(y_{n}, y_{n+m}) \\ &\leq q(y_{n}, y_{n+1}) + q(y_{n+1}, y_{n+2}) + q(y_{n+2}, y_{n+3}) + \dots + q(y_{n+m-1}, y_{n+m}) \\ &\leq (\sqrt{\alpha})^{n} q(y_{0}, y_{1}) + (\sqrt{\alpha})^{n+1} q(y_{0}, y_{1}) + (\sqrt{\alpha})^{n+2} q(y_{0}, y_{1}) + \dots + (\sqrt{\alpha})^{n+m-1} q(y_{0}, y_{1}) \\ &= ((\sqrt{\alpha})^{n} + \sqrt{\alpha})^{n+1} + \sqrt{\alpha})^{n+2} + \dots + \sqrt{\alpha})^{n+m-1} q(y_{0}, y_{1}) \\ &\leq \frac{\sqrt{\alpha})^{n}}{1 - \sqrt{\alpha}} \cdot q(y_{0}, y_{1}) \longrightarrow 0 \quad as \quad n \to \infty. \end{split}$$

This implies that $\{y_k\} = \{fx_k\}$ where k = 1, 2, 3, ...; is a Cauchy sequence in (X, q^s) . Since fX is complete $\exists w \in X$ such that the sequence $y_n = fx_n$ converges to fw as $n \to \infty$ w.r.t. the metric q^s , that is, $\lim_{n \to \infty} q^s(fx_n, fw) = 0$. Moreover, we have

$$q(fw, fw) = \lim_{n \to \infty} q(y_n, fw) = \lim_{n \to \infty} q(y_n, y_n) = 0$$

We now show that $fw \in Uw$. By triangle inequality,

$$q(fw, Uw) \le q(fw, fx_{k}) + q(fx_{k}, Uw)$$

$$\le q(fw, fx_{k}) + H_{q}^{+}(Ux_{k-1}, Uw)$$

$$= q(fw, fx_{k}) + H_{q}^{+}(Ux_{k-1} \setminus \{x_{k-1}\}, Uw \setminus \{w\})$$

$$\le q(fw, fx_{k}) + \alpha q(fx_{k-1}, fw),$$

 $\forall k = 1, 2, 3, ...$ now we follow from $fx_k \to fw$ as $k \to \infty$ that $q(fw, fx_k)$ and $q(fx_{k-1}, fw) \to 0$ as $k \to \infty$. Therefore all terms in right hand side tend to 0 as $k \to \infty$ which implies that q(fw, Uw) = 0. Since Uw is closed, $fw \in Uw$. Therefore, f and U have a coincidence point $w \in X$. Let $t = fw \in Uw$. It follows from the definition of H_q^+ -type Hausdroff metric that

$$q(t, ft) \le q(t, Ut) = q(fw, Ut)$$

$$\leq H_q^+(Uw, Ut)$$

$$= H_q^+(Uw \backslash \{w\}, Ut \backslash \{t\})$$

$$\leq \alpha q(fw, ft)$$

$$= \alpha q(t, ft)$$

$$\implies q(t, ft) = 0.$$

It follows from $q(ft, Ut) = q(fw, Ut) \le H_q^+(Uw, Ut) = 0$. Since Ut is closed, $t = ft \in Ut$. Thus f and U have a common fixed point. Now, we give an example to support our result.

Example 2.1. Let (X, q) be a weak partial metric space w.r.t. weak partial metric $q : X \times X \to [0, \infty)$ where $X = \{0, \frac{1}{2}, 1\}$ and q is defined by

$$q(x, y) = |x - y| + max\{x, y\} \quad \forall \quad x, y \in X.$$

Define the maps $U: X \to CB^q(X)$ and such that

$$U(x) = \begin{cases} \{0\}, & if \ x = \{0, 1\} \\ \left\{0, \frac{1}{2}\right\}, & if \ x = \left\{\frac{1}{2}\right\} \end{cases}$$

and $f: X \to X$ such that

$$f(\frac{1}{2}) = 0, \ f(0) = 1, \ f(1) = \frac{1}{2}$$

Since $q(1, 1) = 1 \neq 0$, $q(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2} \neq 0$. Hence q is not a metric on X. Here $Ux \subset fX$. Also, $x \in \overline{\{0\}} \Leftrightarrow q(x, \{0\}) = q(x, x)$

$$x \in \{0\} \Leftrightarrow q(x, \{0\}) = q(x, x)$$
$$\Leftrightarrow 2x = x \Leftrightarrow x = 0$$
$$\Leftrightarrow x \in \{0\}.$$

Thus, $\{0\}$ is closed with respect to q.

$$\begin{aligned} x \in \overline{\left\{0, \frac{1}{2}\right\}} &\Leftrightarrow q\left(x, \left\{0, \frac{1}{2}\right\}\right) = q(x, x) \\ &\Leftrightarrow \min\left\{2x, |x - \frac{1}{2}| + \max\{x, \frac{1}{2}\}\right\} = x \\ &\Leftrightarrow x \in \left\{0, \frac{1}{2}\right\}. \end{aligned}$$

Hence, $\{0, \frac{1}{2}\}$ is closed with respect to *q*. Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

(i) x = 0, y = 0. We have

$$H_q^+(U(0)\setminus\{0\}, U(0)\setminus\{0\}) = H_q^+(\phi, \phi) = 0$$

and (1) is satisfied. (ii) $x = 0, y = \frac{1}{2}$. We have

$$H_q^+(U(0)\backslash\{0\}, U(\frac{1}{2})\backslash\{\frac{1}{2}\}) = H_q^+(\phi, \{0\}) = 0,$$

and (1) is satisfied. (iii) $x = \frac{1}{2}, y = 0$. We have

$$H_q^+(U(\frac{1}{2}) \setminus \{\frac{1}{2}\}, U(0) \setminus \{0\}) = H_q^+(\{0\}, \phi) = 0$$

and (1) is satisfied.

(iv) x = 0, y = 1. We have

and (1) is satisfied.

(v) x = 1, y = 0. We have

and (1) is satisfied.
(vi)
$$x = \frac{1}{2}, y = \frac{1}{2}$$
. We have

and (1) is satisfied. (vii) $x = \frac{1}{2}, y = 1$. We have

$$H_q^+(U(0) \setminus \{0\}, U(1) \setminus \{1\}) = H_q^+(\phi, \{0\}) = 0$$

 $H_{q}^{+}(U(1) \setminus \{1\}, U(0) \setminus \{0\}) = H_{q}^{+}(\{0\}, \phi) = 0$

$$H_{q}^{+}(U(\frac{1}{2}) \setminus \{\frac{1}{2}\}, U(\frac{1}{2}) \setminus \{\frac{1}{2}\}) = H_{q}^{+}(\{0\}, \{0\}) = 0$$

$$H_q^+(U(\frac{1}{2})\backslash\{\frac{1}{2}\},U(1)\backslash\{1\})=H_q^+(\{0\},\{0\})=0$$

and (1) is satisfied. (viii) $x = 1, y = \frac{1}{2}$. We have

$$H_q^+(U(1)\setminus\{1\}, U(\frac{1}{2})\setminus\{\frac{1}{2}\}) = H_q^+(\{0\}, \{0\}) = 0$$

and (1) is satisfied. (ix) x = 1, y = 1. We have

$$H_q^+(U(1)\setminus\{1\}, U(1)\setminus\{1\}) = H_q^+(\{0\}, \{0\}) = 0$$

and (1) is satisfied.

Further, we shall show that for every x in X, y in U(x) and $\epsilon > 0$, $\exists z$ in U(y) such that $q(y, z) \le H_q^+(U(y), U(x)) + \epsilon$. Indeed,

(1) if $x = 0, y \in U(0) = \{0\}, \epsilon > 0, \exists z \in U(y) = \{0\}$ such that $0 = q(y, z) \le H_q^+(U(y), U(x)) + \epsilon$ (2a) if $x = \frac{1}{2}, y \in U\left(\frac{1}{2}\right) = \left\{0, \frac{1}{2}\right\}$, say $y = 0, \epsilon > 0, \exists z \in U(y) = \{0\}$, such that $0 = q(y, z) < 1 + \epsilon = H_q^+(U(y), U(x)) + \epsilon$ (2b) if $x = \frac{1}{2}, y \in U\left(\frac{1}{2}\right) = \left\{0, \frac{1}{2}\right\}$, say $y = \frac{1}{2}, \epsilon > 0, \exists z \in U(y) = \left\{0, \frac{1}{2}\right\}$, such that $\frac{1}{2} = q(y, z) < \frac{1}{2} + \epsilon = H_q^+(U(y), U(x)) + \epsilon$ (3) If $x = 1, y \in U(1) = \{0\}, \epsilon > 0 \exists z \in U(0) = \{0\}$ such that $0 = q(y, z) \le H_q^+(U(y), U(x)) + \epsilon$

Hence, all the conditions of theorem are satisfied. Here $x = \frac{1}{2}$ is a coincidence point of *f* and *U*. In this example *f* is not *T*- weakly commuting at coincidence point.

Example 2.2. Let (X, q) be a weak partial metric space w.r.t. weak partial metric $q : X \times X \to [0, \infty)$ where $X = \{0, \frac{1}{6}, 1\}$ and q is defined by

$$q(x, y) = |x - y| + \frac{1}{3}max\{x, y\} \quad \forall \ x, y \in X.$$

Define the maps $U: X \to CB^q(X)$ such that

$$U(x) = \begin{cases} \{0\}, & \text{if } x = \left\{0, \frac{1}{6}\right\} \\ \left\{1, \frac{1}{6}\right\}, & \text{if } x = \{1\} \end{cases}$$

and $f: X \to X$ such that

$$f(x) = x \quad \forall \quad x, y \in X$$

Since $q(1,1) = \frac{1}{3} \neq 0$, $q\left(\frac{1}{6}, \frac{1}{6}\right) = \frac{1}{18} \neq 0$. Hence q is not a metric on X. Here $Ux \subset fX$. Also,

$$x \in \{0\} \Leftrightarrow q(x, \{0\}) = q(x, x)$$
$$\Leftrightarrow \frac{4}{3}x = \frac{x}{3} \Leftrightarrow x = 0$$
$$\Leftrightarrow x \in \{0\}.$$

Thus, $\{0\}$ is closed with respect to q.

$$\begin{aligned} x \in \overline{\left\{1, \frac{1}{6}\right\}} &\Leftrightarrow q\left(x, \left\{1, \frac{1}{6}\right\}\right) = q(x, x) \\ &\Leftrightarrow \min\left\{|x - 1| + \frac{1}{3}\max\{x, 1\}, |x - \frac{1}{6}| + \max\{x, \frac{1}{6}\}\right\} = \frac{x}{3} \\ &\Leftrightarrow x \in \left\{1, \frac{1}{6}\right\}. \end{aligned}$$

Hence, $\left\{1, \frac{1}{6}\right\}$ is closed with respect to *q*. Now, for all $x, y \in X$, we shall show that the contractive condition (1) is satisfied. For this, consider the following cases:

(i) x = 0, y = 0. We have

$$H_a^+(U(0)\setminus\{0\}, U(0)\setminus\{0\}) = H_a^+(\phi, \phi) = 0$$

and (1) is satisfied. (ii) $x = 0, y = \frac{1}{6}$. We have

$$H_q^+(U(0)\backslash\{0\}, U(\frac{1}{6})\backslash\{\frac{1}{6}\}) = H_q^+(\phi, \{0\}) = 0,$$

and (1) is satisfied.
(iii)
$$x = \frac{1}{6}, y = 0$$
. We have

$$H_q^+(U(\frac{1}{6}) \setminus \{\frac{1}{6}\}, U(0) \setminus \{0\}) = H_q^+(\{0\}, \phi) = 0$$

and (1) is satisfied. (iv) x = 0, y = 1. We have

$$H_q^+(U(0)\setminus\{0\}, U(1)\setminus\{1\}) = H_q^+(\phi, \{\frac{1}{6}\}) = 0$$

and (1) is satisfied. (v) x = 1, y = 0. We have

$$H_q^+(U(1) \setminus \{1\}, U(0) \setminus \{0\}) = H_q^+(\{\frac{1}{6}\}, \phi) = 0$$

and (1) is satisfied.
(vi)
$$x = \frac{1}{6}, y = \frac{1}{6}$$
. We have

$$H_q^+(U(\frac{1}{6}) \setminus \{\frac{1}{6}\}, U(\frac{1}{6}) \setminus \{\frac{1}{6}\}) = H_q^+(\{0\}, \{0\}) = 0$$

 $H_q^+(U(\frac{1}{6}) \setminus \{\frac{1}{6}\}, U(1) \setminus \{1\}) = H_q^+(\{0\}, \{\frac{1}{6}\}) = \frac{2}{9} \le \alpha \cdot \frac{7}{6}$

and (1) is satisfied. (vii) $x = \frac{1}{6}, y = 1$. We have

and (1) is satisfied.

(viii) $x = 1, y = \frac{1}{6}$. We have

$$H_q^+(U(1) \setminus \{1\}, U(\frac{1}{6}) \setminus \{\frac{1}{6}\}) = H_q^+(\{\frac{1}{6}\}, \{0\}) = \frac{2}{9} \le \alpha.\frac{7}{6}$$

and (1) is satisfied.

(ix) x = 1, y = 1. We have

$$H_q^+(U(1) \setminus \{1\}, U(1) \setminus \{1\}) = H_q^+(\{\frac{1}{6}\}, \{\frac{1}{6}\}) = \frac{1}{9} \le \alpha \cdot \frac{1}{3}$$

and (1) is satisfied.

Further, we shall show that for every x in X, y in U(x) and $\epsilon > 0$, $\exists z$ in U(y) such that $q(y, z) \le H_q^+(U(y), U(x)) + \epsilon$. Indeed,

(1) if $x = 0, y \in U(0) = \{0\}, \epsilon > 0, \exists z \in U(y) = \{0\}$ such that

$$0 = q(y, z) \le H_q^+(U(y), U(x)) + \epsilon$$
(2a) if $x = 1, y \in U(1) = \left\{1, \frac{1}{6}\right\}$, say $y = 1, \epsilon > 0, \exists z \in U(y) = \left\{1, \frac{1}{6}\right\}$ $z = 1$, such that

$$\frac{1}{3} = q(y, z) < \frac{1}{3} + \epsilon = H_q^+(U(y), U(x)) + \epsilon$$
(2b) if $x = 1, y \in U(1) = \left\{1, \frac{1}{6}\right\}$, say $y = \frac{1}{6}, \epsilon > 0, \exists z \in U(y) = \{0\}$, such that

$$\frac{2}{9} = q(y, z) < \frac{7}{9} + \epsilon = H_q^+(U(y), U(x)) + \epsilon$$
(3) If $x = \frac{1}{6}, y \in U\left(\frac{1}{6}\right) = \{0\}, \epsilon > 0 \exists z \in U(y) = U(0) = \{0\}$ such that

$$0 = q(y, z) \le H_a^+(U(y), U(x)) + \epsilon$$

Here x = 0, 1 are the coincidence points of f and U. Now we shall show that f is T-weakly commuting at coincidence points.

- (i) For x = 0, ff(0) = 0 and $Uf(0) = \{0\}$ Thus $ff(0) \in Uf(0)$.
- (ii) For x = 1, ff(1) = 1 and $Uf(1) = \left\{1, \frac{1}{6}\right\}$ Thus $ff(1) \in Uf(1)$.

(iii) For
$$x = \frac{1}{6}$$
, $ff\left(\frac{1}{6}\right) = \frac{1}{6}$ and $Uf\left(\frac{1}{6}\right) = \{0\}$
Thus $ff\left(\frac{1}{6}\right) \notin Uf\left(\frac{1}{6}\right)$

Hence, all the conditions of theorem are satisfied. Here $\mathbf{x} = \mathbf{0}, \mathbf{1}$ are the common fixed points of f and U.

3. Conclusion

In this article, we established a coincidence and common fixed point theorem for hybrid contraction in weak partial metric space. We give a counter example to show that it is necessary to f satisfies T-weakly commuting condition on coincidence point for obtaining the common fixed point. We also give an example in support of our result.

References

- H. Aydi, M. A. Barakat, Z. D. Mitrovć, V. S. Cavic, A Suzuki type multi-valued contraction on weak partial metric Space and applications, *J. Inequal. Appl.*, 2018 (2018), 270.
- [2] H. Aydi, M. Abbas, C. Vetro, Common fixed points for multivalued generalized contraction on partial metric spaces, *RACSAM*, 108 (2014), 483-501.
- [3] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric space, *Topology Appl.*, 159 (2012), 3234-3242.
- [4] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, *Topology Appl.*, 157 (2010), 2778-2785.

- [5] I. Beg, H. K. Pathak, A variant of Nadler's theorem on weak partial metric spaces with application to homotopy result, *Vietnam J. math.*, **46** (2018), 693-706.
- [6] L. Ciric, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contraction on partial metric spaces and an application, *Appl. Math. Comp.*, **218** (2011), 2398-2406.
- [7] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488.
- [8] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1) (1994), 183-197.
- [9] S. L. Singh, S. N. Mishra, Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl., 256 (2001), 486-497.
- [10] S. Negi, U. C. Gairola, Common fixed points for generalized multivalued contraction mappings on weak partial metric spaces, *Jñānābha*, 49 (2) (2019), 34-44.
- [11] S. Negi, U. C. Gairola, Fixed point of Suzuki-type generalized multivalued contraction mappings on weak partial metric spaces, *Jñānābha*, **50** (1) (2020), 35-42.
- [12] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., 299 (2004), 235-241.