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Abstract

In this paper, a fixed point theorem is established for hybrid contraction in weak partial metric space. Our result
is supported by examples.
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1. Introduction and Preliminaries
The theory of non-linear analysis has emerged as a fascinating field. Many authors have generalized and extended
Banach contraction principle. In 1969, Nadler [7] initiated the study of fixed points for multi-valued contraction
mappings using Hausdorff metric.

Let (X, d) be a non-empty metric space and CB(X), the class of all nonempty closed and bounded subsets of X.
The Hausdorff metric [3] induced by d on CB(X) is

H(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}
,

for every A, B ∈ CB(X), where d(a, B) = in f {d(a, b); b ∈ B} is the distance from a to B ⊆ X.
Let f : X → X be a single-valued mapping and U : X → CB(X) be a multi-valued mapping.

(i) A point w ∈ X is a fixed point of f (resp. U) if f w = w(resp. w ∈ Ux).
The set of all fixed points of f (resp. U) is denoted by Fix( f )(resp. Fix(U)).

(ii) A point w ∈ X is a coincidence point of f and U if f w ∈ Uw.
The set of all coincidence points of f and U is denoted by C( f ,U).

(iii) A point w ∈ X is a common fixed point of f and U if w = f w ∈ Uw.
The set of all common fixed points of f and U is denoted by Fix( f ,U).

Nadler [7] proved the following

Theorem 1.1 ([7]). Let (X, d) be a complete metric space and U : X → CB(X) be a multi-valued mapping satisfying
H(Ux,Uy) ≤ kd(x, y), ∀x, y ∈ X

where k ∈ [0, 1) then ∃ x ∈ X such that x ∈ Ux.

Afterward, a rapid progress has been observed using weak and generalized contraction mappings. Multi-valued
contraction mapping has many applications in differential equations, control theory and economics.

Singh and Mishra [9] introduced the concept of (IT )- commutativity for a hybrid pair of single-valued and
multivalued mappings. Further, in 2004, Kamran [12] introduced the notion of T− weak commutativity for a hybrid
pair of single-valued and multivalued maps which is weaker than (IT )- commutativity. The definitions of (IT )-
commutativity and T - weak commutativity are as follows ([9]). A mapping f : X −→ X and U : X −→ CB(X)
are said to be (IT )- commuting at w ∈ X if f Uw ⊆ U f w.

Definition 1.1 ([12]). Let f : X −→ X and U : X −→ CB(X), the map f is said to be T− weakly commuting at w ∈ X
if f f w ∈ U f w.

On the other hand, the distance notion in the metric fixed point theory has been introduced and generalized in
several different ways by many authors. In 1992, Mathews [8] introduced the notion of partial metric space as a part
of the study of denotational semantics of data flow networks. He presented a modified version of Banach contraction
principle. Several authors have done work in this direction ([4], [2], [6]) .
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Definition 1.2. Let X be a non empty set. Then a mapping p : X × X → R+ is said to be a partial metric on X if for
all x, y, z ∈ X,
(P1) x = y⇔ p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, x) − p(z, z).
The pair (X, p) is called a partial metric space.

Recently, a weaker form of partial metric space is introduced by Ismat Beg and H. K. Pathak [5] known as Weak
Partial Metric Space and defined as:
Definition 1.4 ([5]). Let X be a non empty set. A function q : X × X → R+ is called a weak partial metric on X if for
all x, y, z ∈ X, the following conditions hold:

(WP1) q(x, x) = q(x, y)⇔ x = y;
(WP2) q(x, x) ≤ q(x, y);
(WP3) q(x, y) = q(y, x);
(WP4) q(x, y) ≤ q(x, z) + q(z, x).

The pair (X, q) is a weak partial metric space. Further, many authors have worked on weak partial metric space
([1], [10], [11]).

Example 1.1.

(i) (R+, q), where q : R+ × R+ → R+ defines as

q(x, y) = e|x−y| ∀ x, y ∈ R+.

(ii) (R+, q), where q : R+ × R+ → R+ defines as

q(x, y) = |x − y| + 1
3

max{x, y} ∀x, y ∈ R+.

Observe that
� If q(x, y) = 0, then (WP1) and (WP2)⇒ x = y. But the converse need not be true.
� (P1)⇒(WP1), but the converse need not be true.
� (P4)⇒ (WP4), but the converse need not be true.

Each weak partial metric q on X generates a T0 topology τq on X. Topology τq has as a base the family of open
q-balls {Bq(x, ε) : x ∈ X, ε > 0}, where Bq(x, ε) = {y ∈ X : q(x, y) < q(x, x) + ε} for all x ∈ X and ε > 0.
If q is weak partial metric on X, then the function qs : X × X → R+ given by

qs(x, y) = q(x, y) − 1
2

[q(x, x) + q(y, y)]

defines a metric on X.

Definition 1.5 ([5]). Let (X, q) be a weak partial metric space. Then
(i) P is said to be a bounded subset in (X, q) if ∃ x ∈ X and L ≥ 0 such that ∀ p ∈ P, we have p ∈ Bq(x0, L) that

is
q(x0, p) < q(p, p) + L.

(ii) A sequence {xn} in (X, q) converges to a point x ∈ X, w.r.t. τq iff q(x, x) = lim
n→∞ q(x, xn). Moreover, a sequence

{xn} converges in (X, qs) to a point x ∈ X iff

lim
n→∞m→∞ q(xn, xm) = lim

n→∞ q(xn, x) = q(x, x)

(iii) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞ q(xn, xm) exists and is finite.

(iv) (X, q) is called complete if every Cauchy sequence {xn} in X converges to x ∈ X with respect to topology τq.
Lemma 1.1 ([5]). Let (X, q) be a weak partial metric space. Then

(a) A sequence {xn} in X is Cauchy sequence in (X, q) if and only if it is a Cauchy sequence in the metric space
(X, qs).

(b) (X, q) is called complete iff the metric space (X, qs) is complete.
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For L,M ∈ CBq(X) and x ∈ X define q(x, L) = in f {q(x, l) : l ∈ L}, δq(L,M) = sup{q(l,M) : l ∈ L} and δq(M, L) =

sup{q(m, L) : m ∈ M}.
Clearly q(x, L) = 0⇒ qs(x, L) = 0 where qs(x, L) = in f {qs(x, l) : l ∈ L}.

Remark 1.1 ([4]). Let (X, q) be a weak partial metric space and L be any non empty set in (X, q), then

l ∈ L̄⇔ q(l, L) = q(l, l)

where L̄ denotes the closure of L with respect to weak partial metric q. Observe that L is closed in (X, q) iff L = L̄.

Now, we study the following properties of the mapping δq : CBq(X) ×CBq(X)→ [0,∞).

Proposition 1.1 ([5]). Let (X, q) be a weak partial metric space. For all L,M,N ∈ CBq(X), we have the following:
(a) δq(L, L) = sup{q(l, l) : l ∈ L},
(b) δq(L, L) ≤ δq(L,M),
(c) δq(L,M) = 0⇒ L ⊆ M,
(c) δq(L,M) ≤ δq(L,N) + δq(N,M).

Proposition 1.2 ([5]). Let (X, q) be a weak partial metric space. For all L,M,N ∈ CBq(X),we have
(wh1) H+

q (L, L) ≤ H+
q (L,M),

(wh2) H+
q (L,M) = H+

q (M, L),
(wh3) H+

q (L,M) ≤ H+
q (L,N) + H+

q (N,M).
Definition 1.6 ([5]). Let (X, q) be a weak partial metric space. For L,M ∈ CBq(X), define

H+
q (L,M) =

1
2
{δq(L,M) + δq(M, L)}.

The mapping H+
q : CBq(X) ×CBq(X)→ [0,+∞) is called H+

q - type Hausdorff metric induced by q.

Definition 1.7 ([5]). Let (X, q) be a weak partial metric space. A multi-valued map U : X → CBq(X) is called H+
q -

contraction if
(1) ∃ α ∈ (0, 1) such that

H+
q (U(x)\{x},U(y)\{y}) ≤ αq(x, y) f or every x, y ∈ X

(2) For every x in X, y in U(x) and ε > 0, there exists z in U(y) such that

q(y, z) ≤ H+
q (U(y),U(x)) + ε.

Remark 1.2. Since, max{a, b} ≥ 1
2

(a+b) ∀ a, b ≥ 0 , which follows that Hq contracion always implies H+
q - contraction

but the converse need not be true.

A variant of Nadler’s fixed point theorem is given by Beg and Pathak [5], which is stated as:

Theorem 1.2 ([5]). Every H+
q - type multi-valued contraction map U : X → CBq(X) on a complete weak partial metric

space has a fixed point.

We define H+
q -type hybrid contraction mapping as follows:

Definition 1.8. Let (X, q) be a weak partial metric space. A mapping f : X → X be a single valued mapping and
U : X → CBq(X) be a multi-valued mapping. U is said to be a H+

q - hybrid contraction if
(1) ∃ α ∈ (0, 1) such that

H+
q (U(x)\{x},U(y)\{y}) ≤ αq( f x, f y) f or every x, y ∈ X

(2) For every x in X, y in U(x) and ε > 0, there exists z in U(y) such that

q(y, z) ≤ H+
q (U(y),U(x)) + ε.

2. Main Result

Theorem 2.1. Let (X, q) be a weak partial metric space, f : X −→ X be a single-valued mapping and U : X −→
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CBq(X) be a H+
q - type hybrid contraction mapping. Suppose f X is a complete subspace of X and Ux ⊂ f X. Then f

and U have a coincidence point. Furthermore, if f is T−weakly commuting at coincidence points of f and U, then
f and U have a common fixed point. Proof. Let x0 be an arbitrary point of X and y0 = f x0 also let ε > 0. We
construct sequences {xk}, {yk} in X respectively. Since Ux ⊂ f X, there exists x1 ∈ X such that y1 = f x1 ∈ Ux0. If
q( f x1, f x0) = 0, then x0 is a coincidence point. Hence, assume q( f x1, f x0) > 0. Now, there exists y2 = f x2 ∈ Ux1
such that q(y1, y2) ≤ H+

q (Ux0,Ux1) + ε. Similarly, assume q(y1, y2) > 0. Again by (2) and the fact Ux ⊂ f X, there
exists y3 = f x3 ∈ Ux2 such that q(y2, y3) ≤ H+

q (Ux1,Ux2) + ε, assume q(y2, y3) > 0.
Proceeding in this way, we can construct a sequence yn+1 = f xn+1 ∈ Uxn, assume q(yn, yn+1) > 0 satisfying

q(yn, yn+1) ≤ H+
q (Uxn−1,Uxn) + ε, (2.1)

Now, by (2.1) and choosing ε = (
1√
α
− 1)H+

q (Uxn−1,Uxn), we have

q(yn, yn+1) ≤ H+
q (Uxn−1,Uxn) + (

1√
α
− 1)H+

q (Uxn−1,Uxn)

≤ 1√
α

H+
q (Uxn−1,Uxn)

=
1√
α

H+
q (Uxn−1\{xn−1},Uxn\{xn})

≤ 1√
α
.αq( f (xn−1), f (xn))

=
√
α.q( f (xn−1), f (xn))

=
√
α.q(yn−1, yn).

Adopting similar process, we obtain

q(yn, yn+1) ≤ (
√
α)nq(y0, y1).

Using property (WP4) of a weak partial metric, for any m ∈ N, we have

qs(yn, yn+m) ≤ q(yn, yn+m)
≤ q(yn, yn+1) + q(yn+1, yn+2) + q(yn+2, yn+3) + ... + q(yn+m−1, yn+m)

≤ (
√
α)nq(y0, y1) + (

√
α)n+1q(y0, y1) + (

√
α)n+2q(y0, y1) + ..... + (

√
α)n+m−1q(y0, y1)

= ((
√
α)n +

√
α)n+1 +

√
α)n+2 + ... +

√
α)n+m−1)q(y0, y1)

≤
√
α)n

1 − √α.q(y0, y1) −→ 0 as n→ ∞.
This implies that {yk} = { f xk}where k = 1, 2, 3, ...; is a Cauchy sequence in (X, qs). Since f X is complete ∃ w ∈ X such
that the sequence yn = f xn converges to f w as n −→ ∞ w.r.t. the metric qs, that is, lim

n→∞ qs( f xn, f w) = 0. Moreover,
we have

q( f w, f w) = lim
n→∞ q(yn, f w) = lim

n→∞ q(yn, yn) = 0.

We now show that f w ∈ Uw.
By triangle inequality,

q( f w,Uw) ≤ q( f w, f xk) + q( f xk,Uw)
≤ q( f w, f xk) + H+

q (Uxk−1,Uw)

= q( f w, f xk) + H+
q (Uxk−1\{xk−1},Uw\{w})

≤ q( f w, f xk) + αq( f xk−1, f w),

∀ k = 1, 2, 3, .. now we follow from f xk → f w as k → ∞ that q( f w, f xk) and q( f xk−1, f w)→ 0 as k → ∞. Therefore
all terms in right hand side tend to 0 as k → ∞ which implies that q( f w,Uw) = 0. Since Uw is closed, f w ∈ Uw.
Therefore, f and U have a coincidence point w ∈ X. Let t = f w ∈ Uw. It follows from the definition of H+

q - type
Hausdroff metric that

q(t, f t) ≤ q(t,Ut) = q( f w,Ut)
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≤ H+
q (Uw,Ut)

= H+
q (Uw\{w},Ut\{t})

≤ αq( f w, f t)
= αq(t, f t)

=⇒ q(t, f t) = 0.

It follows from q( f t,Ut) = q( f w,Ut) ≤ H+
q (Uw,Ut) = 0. Since Ut is closed, t = f t ∈ Ut. Thus f and U have a

common fixed point. Now, we give an example to support our result.

Example 2.1. Let (X, q) be a weak partial metric space w.r.t. weak partial metric q : X × X → [0,∞) where

X =

{
0,

1
2
, 1

}
and q is defined by

q(x, y) = |x − y| + max{x, y} ∀ x, y ∈ X.

Define the maps U : X → CBq(X) and such that

U(x) =


{0}, i f x = {0, 1}{

0,
1
2

}
, i f x =

{
1
2

}
and f : X → X such that

f (
1
2

) = 0, f (0) = 1, f (1) =
1
2

.

Since q(1, 1) = 1 , 0, q(
1
2
,

1
2

) =
1
2
, 0. Hence q is not a metric on X. Here Ux ⊂ f X. Also,

x ∈ {0} ⇔ q(x, {0}) = q(x, x)
⇔ 2x = x⇔ x = 0
⇔ x ∈ {0}.

Thus, {0} is closed with respect to q.

x ∈
{

0,
1
2

}
⇔ q

(
x,

{
0,

1
2

})
= q(x, x)

⇔ min
{

2x, |x − 1
2
| + max{x, 1

2
}
}

= x

⇔ x ∈
{

0,
1
2

}
.

Hence,
{

0,
1
2

}
is closed with respect to q. Now, for all x, y ∈ X, we shall show that the contractive condition (1) is

satisfied. For this, consider the following cases:
(i) x = 0, y = 0. We have

H+
q (U(0)\{0},U(0)\{0}) = H+

q (φ, φ) = 0

and (1) is satisfied.

(ii) x = 0, y =
1
2

. We have

H+
q (U(0)\{0},U(

1
2

)\{1
2
}) = H+

q (φ, {0}) = 0,

and (1) is satisfied.

(iii) x =
1
2
, y = 0. We have

H+
q (U(

1
2

)\{1
2
},U(0)\{0}) = H+

q ({0}, φ) = 0

and (1) is satisfied.

232



(iv) x = 0, y = 1. We have
H+

q (U(0)\{0},U(1)\{1}) = H+
q (φ, {0}) = 0

and (1) is satisfied.
(v) x = 1, y = 0. We have

H+
q (U(1)\{1},U(0)\{0}) = H+

q ({0}, φ) = 0

and (1) is satisfied.

(vi) x =
1
2
, y =

1
2

. We have

H+
q (U(

1
2

)\{1
2
},U(

1
2

)\{1
2
}) = H+

q ({0}, {0}) = 0

and (1) is satisfied.

(vii) x =
1
2
, y = 1. We have

H+
q (U(

1
2

)\{1
2
},U(1)\{1}) = H+

q ({0}, {0}) = 0

and (1) is satisfied.

(viii) x = 1, y =
1
2

. We have

H+
q (U(1)\{1},U(

1
2

)\{1
2
}) = H+

q ({0}, {0}) = 0

and (1) is satisfied.
(ix) x = 1, y = 1. We have

H+
q (U(1)\{1},U(1)\{1}) = H+

q ({0}, {0}) = 0

and (1) is satisfied.
Further, we shall show that for every x in X, y in U(x) and ε > 0, ∃ z in U(y) such that q(y, z) ≤ H+

q (U(y),U(x)) + ε.
Indeed,

(1) if x = 0, y ∈ U(0) = {0}, ε > 0, ∃ z ∈ U(y) = {0} such that

0 = q(y, z) ≤ H+
q (U(y),U(x)) + ε

(2a) if x =
1
2
, y ∈ U

(
1
2

)
=

{
0,

1
2

}
, say y = 0, ε > 0, ∃ z ∈ U(y) = {0}, such that

0 = q(y, z) < 1 + ε = H+
q (U(y),U(x)) + ε

(2b) if x =
1
2
, y ∈ U

(
1
2

)
=

{
0,

1
2

}
, say y =

1
2
, ε > 0, ∃ z ∈ U(y) =

{
0,

1
2

}
, such that

1
2

= q(y, z) <
1
2

+ ε = H+
q (U(y),U(x)) + ε

(3) If x = 1, y ∈ U(1) = {0}, ε > 0 ∃ z ∈ U(0) = {0} such that

0 = q(y, z) ≤ H+
q (U(y),U(x)) + ε

Hence, all the conditions of theorem are satisfied. Here x =
1
2

is a coincidence point of f and U. In this example f is
not T - weakly commuting at coincidence point.

Example 2.2. Let (X, q) be a weak partial metric space w.r.t. weak partial metric q : X × X → [0,∞) where

X =

{
0,

1
6
, 1

}
and q is defined by

q(x, y) = |x − y| + 1
3

max{x, y} ∀ x, y ∈ X.

Define the maps U : X → CBq(X) such that

U(x) =


{0}, i f x =

{
0,

1
6

}
{

1,
1
6

}
, i f x = {1}
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and f : X → X such that
f (x) = x ∀ x, y ∈ X

Since q(1, 1) =
1
3
, 0, q

(
1
6
,

1
6

)
=

1
18
, 0. Hence q is not a metric on X. Here Ux ⊂ f X. Also,

x ∈ {0} ⇔ q(x, {0}) = q(x, x)

⇔ 4
3

x =
x
3
⇔ x = 0

⇔ x ∈ {0}.
Thus, {0} is closed with respect to q.

x ∈
{

1,
1
6

}
⇔ q

(
x,

{
1,

1
6

})
= q(x, x)

⇔ min
{
|x − 1| + 1

3
max{x, 1}, |x − 1

6
| + max{x, 1

6
}
}

=
x
3

⇔ x ∈
{

1,
1
6

}
.

Hence,
{

1,
1
6

}
is closed with respect to q. Now, for all x, y ∈ X, we shall show that the contractive condition (1) is

satisfied. For this, consider the following cases:
(i) x = 0, y = 0. We have

H+
q (U(0)\{0},U(0)\{0}) = H+

q (φ, φ) = 0

and (1) is satisfied.

(ii) x = 0, y =
1
6

. We have

H+
q (U(0)\{0},U(

1
6

)\{1
6
}) = H+

q (φ, {0}) = 0,

and (1) is satisfied.

(iii) x =
1
6
, y = 0. We have

H+
q (U(

1
6

)\{1
6
},U(0)\{0}) = H+

q ({0}, φ) = 0

and (1) is satisfied.
(iv) x = 0, y = 1. We have

H+
q (U(0)\{0},U(1)\{1}) = H+

q (φ, {1
6
}) = 0

and (1) is satisfied.
(v) x = 1, y = 0. We have

H+
q (U(1)\{1},U(0)\{0}) = H+

q ({1
6
}, φ) = 0

and (1) is satisfied.

(vi) x =
1
6
, y =

1
6

. We have

H+
q (U(

1
6

)\{1
6
},U(

1
6

)\{1
6
}) = H+

q ({0}, {0}) = 0

and (1) is satisfied.

(vii) x =
1
6
, y = 1. We have

H+
q (U(

1
6

)\{1
6
},U(1)\{1}) = H+

q ({0}, {1
6
}) =

2
9
≤ α.7

6
and (1) is satisfied.
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(viii) x = 1, y =
1
6

. We have

H+
q (U(1)\{1},U(

1
6

)\{1
6
}) = H+

q ({1
6
}, {0}) =

2
9
≤ α.7

6
and (1) is satisfied.

(ix) x = 1, y = 1. We have

H+
q (U(1)\{1},U(1)\{1}) = H+

q ({1
6
}, {1

6
}) =

1
9
≤ α.1

3
and (1) is satisfied.

Further, we shall show that for every x in X, y in U(x) and ε > 0, ∃ z in U(y) such that q(y, z) ≤ H+
q (U(y),U(x)) + ε.

Indeed,
(1) if x = 0, y ∈ U(0) = {0}, ε > 0, ∃ z ∈ U(y) = {0} such that

0 = q(y, z) ≤ H+
q (U(y),U(x)) + ε

(2a) if x = 1, y ∈ U(1) =

{
1,

1
6

}
, say y = 1, ε > 0, ∃ z ∈ U(y) =

{
1,

1
6

}
z = 1, such that

1
3

= q(y, z) <
1
3

+ ε = H+
q (U(y),U(x)) + ε

(2b) if x = 1, y ∈ U(1) =

{
1,

1
6

}
, say y =

1
6
, ε > 0, ∃ z ∈ U(y) = {0}, such that

2
9

= q(y, z) <
7
9

+ ε = H+
q (U(y),U(x)) + ε

(3) If x =
1
6
, y ∈ U

(
1
6

)
= {0}, ε > 0 ∃ z ∈ U(y) = U(0) = {0} such that

0 = q(y, z) ≤ H+
q (U(y),U(x)) + ε

Here x = 0, 1 are the coincidence points of f and U. Now we shall show that f is T -weakly commuting at coincidence
points.

(i) For x = 0, f f (0) = 0 and U f (0) = {0}
Thus f f (0) ∈ U f (0).

(ii) For x = 1, f f (1) = 1 and U f (1) =

{
1,

1
6

}
Thus f f (1) ∈ U f (1).

(iii) For x =
1
6
, f f

(
1
6

)
=

1
6

and U f
(

1
6

)
= {0}

Thus f f
(

1
6

)
< U f

(
1
6

)
Hence, all the conditions of theorem are satisfied. Here x = 0, 1 are the common fixed points of f and U.

3. Conclusion

In this article, we established a coincidence and common fixed point theorem for hybrid contraction in weak partial
metric space. We give a counter example to show that it is necessary to f satisfies T-weakly commuting condition on
coincidence point for obtaining the common fixed point. We also give an example in support of our result.
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