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Abstract

This paper develops some general formulas to generate positive integers triples (a, b, c) ∈ Z3
+ satisfying equation

a−1 + b−1 = c−1, which is based on a positive integer parameter λ = b − c and a ≥ b > c . The paper also investigates
the area formed by the arcs arising from the equation.
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1. Introduction
Positive integer triples (a, b, c) ∈ Z3

+ (where Z+ is the set of positive integers) have been a subject of great interest
in mathematics, particularly those connected with the equation an + bn = cn, where n is a positive integer. The
famous Pythagorean theorem corresponds to the case of n = 2. Euclid’s formula is a tool for generating all possible
Pythagorean triples (a, b, c) such that a2 + b2 = c2 exactly once for a set of positive integers k and m > n (m relatively
prime to n, exactly one of the m and n is odd)

a = k(m2 − n2), b = k(2mn), c = k(m2 + n2).

In recent years the trees of primitive Pythagorean triples are being investigated as a rooted ternary trees. Some
useful and interesting information about these integers’ triples can be found in ([2],[3],[4],[7] and [8]).

It is well known that the equation an + bn = cn does not have positive integer solutions when n ≥ 3(Fermat Last
Theorem). Motivated by the great properties of such positive integer triples (a, b, c), we have tried to investigate the
equation an + bn = cn when n = −1.

In this note, we present some properties of positive integers triples (a, b, c) ∈ Z3
+ satisfying the equation

a−1 + b−1 = c−1, (1.1)

based on a parameter λ ∈ Z+.
We consider the case of positive integer triples (a, b, c), witha ≥ b > c, and b = c + λ.

a.) First, we consider the case when λ , 4k, and k ∈ Z+, (i.e., λ = 1, 2, 3, 5, 6, 7, 9, . . . ), we can start probing
the smallest values for a and b, analyzing a−1 + b−1 >=< c−1 until we find those values satisfying the equation
a−1 + b−1 = c−1.

b.) Second, we analyze the case for λ = 4k and k ∈ Z+ , (i.e., λ = 4, 8, 12, 16, 20, ... ). For each “λ′′ we started
probing since the smallest n values for a and b, analyzing a−1 + b−1 >=< c−1 until we find those values that
satisfy the equation a−1 + b−1 = c−1

It is important to note that the two subsets Z1
+ = {λ : λ , 4k} and Z2

+ = {λ : λ = 4k} defines a partition of Z+ of
the set of positive integers.

c.) The paper also investigates the area of the region formed by the arcs arising from these equations.

The organization of the paper is as follows. The section 1 is mainly the introduction of the proposed work and its
relevance. In section 2 we propose a theorem and some corollaries to generate positive integer triples (a, b, c) satisfying
equation a−1 +b−1 >= c−1 and provide the proof of the theorem by mathematical induction. In section 3 we investigate
the region formed by certain arcs arising from these equations. In section 4, we present some remarks associated with
the equation a−1 + b−1 >= c−1, and its connections with Fermat last theorem, and the Pythagorean triples.

Finally, in section 5 we present some concluding remarks.
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2. Interesting Theorem
In this section, we propose a theorem and some corollaries to generate positive integer triples (a, b, c) ∈ Z3

+ satisfying
equation a−1 + b−1 = c−1 , which is based on a parameter λ ∈ Z+ and prove them using mathematical induction.

Theorem 2.1. If (a, b, c) ∈ Z3
+, such that a−1 + b−1 = c−1 , where a ≥ b > c , b = c + λ , if λ ∈ Z1

+, a = λn(n + 1) ,
b = λ(n + 1) , and c = λn; and if λ ∈ Z2

+, a = k(n + 1)(n + 3), b = 2k(n + 3), c = 2k(n + 1).

Corollary 2.1. The integers that satisfy the Theorem 2.1 must have the following combinations for a, b, and c.

Table 2.1

a b c
even even odd
even odd even
even even even
odd even even

Corollary 2.2. The integers that satisfy the Theorem 2.1 never can have the following combinations for a, b, and c.

Table 2.2

a b c
odd odd odd
odd even odd
odd odd even
even odd odd

Proof of Theorem 2.1.
Case I: when λ ∈ Z1

+.
For n = 1 1

2 + 1
2 = 1

1
Hypothesis:

1
k(k + 1)

+
1

k + 1
=

1
k

for k ∈ Z. (1a)

Thesis:
1

(k + 1)(k + 2)
+

1
k + 2

=
1

k + 1
. (1b)

From (1a)
1

k + 1
=

1
k
− 1

k(k + 1)
. (1c)

Substituting (1c) in (1b)
1

(k + 1)(k + 2)
+

1
k + 2

=
1
k
− 1

k(k + 1)

i.e.
1 + (k + 1)

(k + 1)(k + 2)
=

(k + 1) − 1
k(k + 1)

Thus
1

k + 1
=

1
k + 1

.

Similarly, for λ = 2, 3, 5, 6, 7, 9, . . . we can obtain a = λn(n + 1) , b = λ(n + 1) and c = λn.
Empirical results were obtained using theorem 1 when λ ∈ Z1

+ can be depicted in the table below.
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Table 2.3

λ a c b = c + λ a−1 b−1 c−1

1 2 1 2 1
2

1
2

1
1

1 6 2 3 1
6

1
3

1
2

1 12 3 4 1
12

1
4

1
3

. . . . . . . . . . . . . . . . . . . . .
λ a c b = c + λ a−1 b−1 c−1

2 4 2 4 1
4

1
4

1
2

2 12 4 6 1
12

1
6

1
4

2 24 6 8 1
24

1
8

1
6

. . . . . . . . . . . . . . . . . . . . .
λ a c b = c + λ a−1 b−1 c−1

3 6 3 6 1
6

1
6

1
3

3 18 6 9 1
18

1
9

1
6

3 36 9 12 1
36

1
12

1
9

. . . . . . . . . . . . . . . . . . . . .

Case II: When λ ∈ Z2
+

For n = 1 result 1
8 + 1

8 = 1
4 .

Hypothesis:
1

(k + 1)(k + 3)
+

1
2(k + 3)

=
1

2(k + 1)
for k ∈ Z+. (2a)

Thesis:
1

(k + 2)(k + 4)
+

1
2(k + 4)

=
1

2(k + 2)
(2b)

Thus
1

2(k + 2)
=

1
2(k + 1) + 2

=
1

2(k + 1)
− 2

2(k + 1)2(k + 2)

=
1

2(k + 1)
− 1

2(k + 1)(k + 2)
(2c)

Substituting (2c) in (2b)

1
(k + 2)(k + 4)

+
1

2(k + 4)
=

1
2(k + 1)

− 1
2(k + 1)(k + 2)

. (2d)

Substituting (2a) in (2d)
1

(k + 2)(k + 4)
+

1
2(k + 4)

=
1

(k + 1)(k + 3)
+

1
2(k + 3)

− 1
2(k + 1)(k + 2)

k3 + 8k2 + 19k + 12 = k3 + 8k2 + 19k + 12.

The cases for λ = 4, 8, 12, . . . can be obtained from a = k(n + 1)(n + 3), b = 2k(n + 3), c = 2k(n + 1).
Empirical results were obtained using theorem 1 when λ ∈ Z2

+ can be depicted in the table below.
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Table 2.4

λ a c b = c + λ a−1 b−1 c−1

4 8 4 8 1
8

1
8

1
4

4 15 6 10 1
15

1
10

1
6

4 24 8 12 1
24

1
12

1
8

. . . . . . . . . . . . . . . . . . . . .
λ a c b = c + λ a−1 b−1 c−1

8 16 8 16 1
16

1
16

1
8

8 30 12 20 1
130

1
30

1
12

8 48 16 24 1
48

1
24

1
16

. . . . . . . . . . . . . . . . . . . . .

3. Area of a region enclosed by arcs
In this section, we obtain the area of the region enclosed by arcs (i.e., the area formed by the arcs arising from the
equation). Further details of such regions can be found in [2], [5], and [6].

For λ = 1 let us find the area of the region formed by three arcs ( arc-triangle), with sides 1
x from 0 to ∞, 1

x(x+1)

from 0 to the intersection with 1
x+1 , that is in x = 1, and 1

x+1 from 1 to ∞ . The details of such an arc triangle can be
found in [1, 2, and 5].

A = limb→0

{∫ 1
b

1
x dx −

∫ 1
b

1
x(x+1) dx

}
+ limb→∞

{∫ b
1

1
x dx −

∫ b
1

1
x+1 dx

}
= limb→0

∫ 1
b

1
x+1 dx + limb→∞ {lnb − ln1 − ln(b + 1) + ln2}

= limb→0 {ln2 − ln(b + 1)} + limb→∞ ln( 2b
b+1 )

= 2ln2.
For λ = 2 let us find the area of the region formed by three arcs (arc-triangle), with sides 1

2x from 0 to ∞, 1
2x(x+1)

from 0 to the intersection with 1
2(x+1) , that is in x = 1, and 1

2(x+1) from 1 to∞.

A = limb→0

{∫ 1
b

1
2x dx −

∫ 1
b

1
2x(x+1) dx

}
+ limb→∞

{∫ b
1

1
2x dx −

∫ b
1

1
2(x+1) dx

}
= 1

2 limb→0

{∫ 1
b

1
x dx −

∫ 1
b

1
x(x+1) dx

}
+ 1

2 limb→∞
{∫ b

1
1
x dx −

∫ b
1

1
x+1 dx

}
= ln2.

For λ = 3 let us find the area of the region formed by the three arcs in figure 3.1 with sides 1
3x from 0 to∞, 1

3x(x+1)

from 0 to the intersection with 1
3(x+1) , that is in x = 1, and 1

3(x+1) from 1 to∞ .

A = limb→0

{∫ 1
b

1
3x dx −

∫ 1
b

1
3x(x+1) dx

}
+ limb→∞

{∫ b
1

1
3x dx −

∫ b
1

1
3(x+1) dx

}
= 1

3 limb→0

{∫ 1
b

1
x dx −

∫ 1
b

1
x(x+1) dx

}
+ 1

3 limb→∞
{∫ b

1
1
x dx −

∫ b
1

1
x+1 dx

}
= 1

3 (2ln2) = 2
3 ln2.

From the previous results we can arrive at the following theorem:

Theorem 3.1. The areas of curved triangles with sides given by the curves 1
λx from x = 0 to ∞, 1

λx(x+1) from x = 0 to
the intersection with 1

λ(x+1) , that is in x = 1, and 1
λ(x+1) from x = 1 to∞ are given by:

A =
2
λ

ln2, λ ∈ Z1
+, (3.1)
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Figure 1.   Show areas and curves for the general case when 𝜆 ∈   𝑍+
1

For λ = 4  let us find the area of the curved region, with curved-sides 
( )

1

2 1x+
 from 0 to ∞ , 

1

( 1)( 3)x x+ +
 from 0 to the intersection with 

( )
1

2 3x+
, that is, 𝑥 = 1, and 

( )
1

2 3x+
 from 1 to 

∞ . 

𝐴 =  lim
𝑏 →0

{∫
( )

1

2 1x+

1

𝑏

 𝑑𝑥 − ∫
1

( 1)( 3)x x+ +

1

𝑏

 𝑑𝑥}

+  lim
𝑏 →∞

{∫
( )

1

2 1x+

𝑏

1

 𝑑𝑥 −  ∫
( )

1

2 3x+

𝑏

1

 𝑑𝑥} 

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

A =
1

𝑠
𝑙𝑛 2

A =
1

𝑠
𝑙𝑛 2

A =
1

𝑠
𝑙𝑛 2

A =
1

𝑠
𝑙𝑛 2

𝐀 = ∞

𝐀 = ∞

𝒚 =
𝟏

𝒔𝒙
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𝟏

𝒔𝒙(𝒙 + 𝟏)

𝒚 =
𝟏

𝒔(𝒙 + 𝟏)

𝒙 = 𝟏

Figure 3.1: Show areas and curves for the general case when λ ∈ Z1
+

For λ = 4 let us find the area of the curved region, with curved-sides 1
2(x+1) from 0 to ∞, 1

(x+1)(x+3) from 0 to the
intersection with 1

2(x+3) , that is, x = 1, and 1
2(x+3) from 1 to∞.

A = limb→0

{∫ 1
b

1
2(x+1) dx −

∫ 1
b

1
(x+1)(x+3) dx

}
+ limb→∞

{∫ b
1

1
2(x+1) dx −

∫ b
1

1
2(x+3) dx

}
= limb→0

∫ 1
b

1
2(x+3) dx + 1

2 limb→∞[ln(x + 1) − ln(x + 3)]b
1

= limb→0[ 1
2 ln(x + 3)]1

b + 1
2 limb→∞

{
ln( b+1

b+3 ) − ln2 + ln4
}

= limb→0
1
2 ln( 4

b+3 ) + 1
2 ln( 4

2 )
= 1

2 ln( 4
3 ) + 1

2 ln2.
For λ = 8 let us find the area of the curved triangle in figure above, with sides 1

4(x+1) from 0 to∞, 1
2(x+1)(x+3) from 0

to the intersection with 1
4(x+3) , that is in x = 1, and 1

4(x+3) from 1 to∞ .

A = limb→0

{∫ 1
b

1
4(x+1) dx −

∫ 1
b

1
2(x+1)(x+3) dx

}
+ limb→∞

{∫ b
1

1
4(x+1) dx −

∫ b
1

1
4(x+3) dx

}
= limb→0

∫ 1
b

1
4(x+1) dx + 1

4 limb→∞ {ln(x + 1) − ln(x + 3)}b1
= limb→0

[
1
4 ln(x + 3)

]1

b
+ 1

4 limb→∞
{
ln( b+1

b+3 ) − ln2 + ln4
}

= limb→0
1
4 ln( 4

b+3 ) + 1
4 ln 4

2
= 1

4 ln( 4
3 ) + 1

4 ln2.
From the previous results we can arrive at the following theorem:
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Figure 2.  Show areas and curves for the general case when λ ∈ Z+
2  

Theorem 3. The areas of curved regions with sides given by the curves 
2

𝜆(𝑥+1)
  from 𝑥 = 0 to ∞ ,  

4

𝜆(𝑥+1)(𝑥+3)
 from 𝑥 = 0 to the intersection with 

2

𝜆(𝑥+3)
, that is in x = 1  , and   

2

𝜆(𝑥+3)
 from 𝑥 = 1  

to ∞   are given by: 

               𝐴 =
2

𝜆
 𝑙𝑛 (

4

3
) +

2

𝜆
ln 2   ,   𝜆 ∈   𝑍+

2                                                                    (4)                                                                                                                             

4. Further Remarks: 

 

Remark 1 

For  λ = 1, see Table 1, we have  
1

𝑎
=

1

𝑛(𝑛+1) 
  ,  

0

0.5
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1.5

2
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𝒚 =
𝟐

𝒔(𝒙 + 𝟏)

A =
2

𝑠
𝑙𝑛 2 −

4

𝑠
𝑙𝑛(

4

3
)

A =
2

𝑠
𝑙𝑛

4

3

A =
2

𝑠
𝑙𝑛

4

3

A = ∞

𝒚

=
𝟒

𝒔(𝒙 + 𝟏)(+𝟑)

𝒚 =
𝟐

𝒔(𝒙 + 𝟑)

Figure 3.2: Show areas and curves for the general case when λ ∈ Z2
+

.

Theorem 3.2. The areas of curved regions with sides given by the curves 2
λ(x+1) from x = 0 to ∞ , 4

λ(x+1)(x+3) from
x = 0 to the intersection with 2

λ(x+3) , that is in x = 1, and 2
λ(x+3) from x = 1 to∞ are given by:

A =
2
λ

ln(
4
3

) +
2
λ

ln2, λ ∈ Z2
+ (3.2)

4. Further Remarks
Remark 4.1. For λ = 1, see Table 1, we have 1

a = 1
n(n+1) .

Let us consider 1
n(n+1) = d

n + e
n+1 i. e, d(n + 1) + en = 1.

For n = 0 we obtain d = 1.
For n = −1 we get e = −1, then 1

n(n+1) = 1
n − 1

n+1 , i.e., 1
n(n+1) + 1

n+1 = 1
n

It means that a = n(n + 1), b = n + 1, and c = n , then a = bc and (a, b, c) ≡ (n(n + 1), n + 1, n)
These results for λ = 1 can be well described in the formula (1)

1
n(n+1) + 1

n+1 = 1
n , where n ∈ Z.

Remark 4.2. We get the conclusion that the first term a−1, see Table 2, can be well described in the formula 1
(n+1)(n+3)

then the other two terms can be obtained for simple fractions as
1

(n+1)(n+3) = r
n+1 + s

n+3
r(n + 3) + s(n + 1) = 1
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For n = −1 we obtain r = 1
2 and for n = −3 we get s = − 1

2 then
1

(n + 1)(n + 3)
+

1
2(n + 3))

=
1

2(n + 1)
.

It means that a = (n + 1)(n + 3), b = (n + 3), and c = (n + 1), then a = bc/λ and

(a, b, c) ≡ ((n + 1)(n + 3), (n + 3), (n + 1))

The results in table 2 for λ = 4 can be well described in the formula (5)
1

(n + 1)(n + 3)
+

1
2(n + 3)

=
1

2(n + 1)
, where n ∈ Z+ (4.1)

Remark 4.3. Fermat’s Last Theorem states that no three positive integers a, b, and c satisfy the equation

an + bn = cn, when n > 2. (4.2)

If we divide both sides of equation (4.2) by anbncn we get 1
bncn + 1

ancn = 1
anbn i.e., 1

(ac)n + 1
(bc)n = 1

(ab)n . Now if we take
A = (bc)n, B = (ac)n, and C = (ab)n then equation (4.2) can be expressed in the form

A−1 + B−1 = C−1, (4.3)

as Z+ is closed under multiplication. Thus, equation (4.2) can be expressed as equation (4.3), but getting a solution to
equation (4.2) does not imply a solution to equation (4.2).

Remark 4.4. All Pythagorean triples are related to inverse triples.

Theorem 4.1. For each Pythagorean Triple (a, b, c) being a < b < c arise from a circular permutation a→ b→ c→ a
that A > B > C , being A = (bc)2, = (ac)2 , C = (ab)2 results A−1 + B−1 = C−1.

Let’s consider Euclid’s formula for generating all possible Pythagorean triples (a, b, c) such that a2 + b2 = c2

exactly once for a set of positive integers k and m > n (m relatively prime to n, exactly one of m and n odd)

a = k(m2 − n2), b = k(2mn), c = k(m2 + n2).

Then (a, b, c) ≡ (k(m2 − n2), k(2mn), k(m2 + n2)) then A = (bc)2 = A = (k(2mn)k(m2 + n2))2, B = (ac)2 =(k(m2 −
n2)k(m2 + n2))2, C = (ab)2 = (k(m2 − n2)k(2mn))2.

Now, 1
A + 1

B = 1
C implies 1

(k2(2mn)(m2+n2))2 + 1
(k2(m2−n2)(m2+n2))2 = 1

(k2(m2−n2)(2mn))2 .
This results as an equation (m2 − n2)2 + (2mn)2 = (m2 + n2)2, which is an identity.

5. Concluding Remarks
This paper develops some formulas to generate positive integer triples (a, b, c) satisfying equation a−1 + b−1 = c−1, and
shows that the equation an + bn = cn can be expressed as A−1 + B−1 = C−1. It is expected that this connection will be
helpful in investigating the data structures arising from the rooted ternary trees for n = 2.
Acknowledgement. Authors are very much thankful to the Editors and Reviewers for their suggestions to bring the
paper in its present form.
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