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Abstract

In this article, an exponential Diophantine equation qx + py = z2 where p , q are Safe primes and q Sophie Germain
primes respectively and x, y, z are positive integers is measured for all the opportunities of x+y = 0, 1, 2, 3 and showed
that all conceivable integer solutions are (p, q, x, y, z) = (7, 3, 1, 0, 2), (11, 5, 1, 1, 4), (5, 2, 3, 0, 3), (2q + 1, q, 2, 1, q + 1)
by retaining basic rules of Mathematics.
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1. Introduction
The study of Diophantine equations is a huge piece of speculation in Number theory [3, 5]. In recent years, many
researchers showed their interest to work on the Diophantine equation in the form px + qy = z2 where p, q are distinct
primes and x, y, z are non-negative integers [1, 6]. In [2], Burshtein proved that the Diophantine equation px +(p+4)y =

z2 where x, y, z are positive integers and p, p + 4 are primes with p > 3 has no solution. In [4], the authors found all the
solutions of the Diophantine equation px + (p+6)y = z2 , where x, y, z are non-negative integers such that x+y = 2, 3, 4
and p, p + 6 are primes. For further analysis, one can refer [7]. In this paper, an exponential Diophantine equation
qx + py = z2 where p is a Safe prime, q is a Sophie Germain prime and x, y, z are non- negative integers is studied when
x + y = 0, 1, 2, 3 and all credible integer solutions are symbolized by the following set
(p, q, x, y, z) = (7, 3, 1, 0, 2), (11, 5, 1, 1, 4), (5, 2, 3, 0, 3), (2q + 1, q, 2, 1, q + 1).

2. Basic definition
Definition 2.1. A safe prime is a prime p of the form p = 2q + 1 where q is a prime as well. In such instances, q is
referred to be a Sophie Germain prime.

3. Attaining solutions to an exponential Diophantine equation
In this section, the possible solution to an exponential Diophantine equation qx + py = z2 where p and q are safe
prime and Sophie Germain prime such that x + y = 0, 1, 2, 3 is analysed by considering various cases in the following
theorem.

Theorem 3.1. Let p, q be Safe primes and Sophie Germain primes respectively. If x + y = 0, 1, 2, 3, then an
exponential Diophantine equation qx + py = z2 where x, y, z are positive integers has solutions (p, q, x, y, z) =

(7, 3, 1, 0, 2), (11, 5, 1, 1, 4), (5, 2, 3, 0, 3), (2q + 1, q, 2, 1, q + 1).

Proof. The stated Diophantine equation with exponents x and y is

qx + py = z2, (3.1)

where x, y, z are integers with positive values, p = 2q + 1 is a Safe prime such that q is a Sophie Germain prime.
Now, all the selections of x + y = 0, 1, 2, 3 are examined as follows.

Case 1. x + y = 0.
The unique possibility of each exponent x = 0 and y = 0 describes (3.1) as

z2 = 2. (3.2)

This postulation is impossible for any integer.
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As an effect, equation (3.2) and hence equation (3.1) does not have any solution.
Case 2. x + y = 1
Subcase 2(i). Consider x = 1, y = 0.

These two values of x and y condenses (3.1) as

1 + q = z2. (3.3)

The only guaranteed value of q nourishing (3.3) is pointed out by q = 3.
Then, p = 7 and z = 2.
Thus, the unique feasible solution of (3.1) is (p, q, x, y, z) = (7, 3, 1, 0, 2).

Subcase 2(ii). Allocate x = 0,y = 1
These inferences modernized (3.1) to the equation with degree two in terms of two variables as 1 + p = z2.
Corresponding formation of the above equation is defined by

2(1 + q) = z2. (3.4)

From (3.4), it is effortlessly detected that the left-hand side is a multiple of 2 however the right-hand is of the form
either 4k or 4k + 1 where k ∈ N.

Hence, the above hypothesis is constantly not possible. Consequently, equation (3.4) and hence equation (3.1)
does not acquire any solution.
Case 3. x + y = 2
Subcase 3(i). Let x = 2,y = 0.

These propositions make things easier to (3.1) as the resultant equation

q2 = z2 − 1. (3.5)

Since, the square of an integer minus one can never be a square, the above supposition is always impracticable.
As a result, equation (3.5) and hence equation (3.1) does not own any solution.

Subcase 3(ii).Opt x = 1, y = 1
Replacing the overhead values of x and y well-found (3.1) as

3q = (z − 1)(z + 1). (3.6)

If q|(z − 1), then (z − 1) = Aq , A is any positive integer and (z + 1) = Aq + 2.
Consequently (3.6) turned out to be 3q = Aq(Aq + 2) which is not possible for any values of q and A and hence

q-(z − 1).
If q | (z + 1) then (z + 1) = Bq , B is any positive integer and (z − 1) = Bq − 2.
Accordingly, equation (3.6) is converted into 3 = B(Bq − 2) which is possible only when q = 5 and B = 1.
This will lead the choices of p and z as p = 11, z = 4.
Thus, the solution to (3.1) is indicated by (p, q, x, y, z) = (11, 5, 1, 1, 4).

Subcase 3(iii). Select x = 0, y = 2.
These predilections of x and y enhance (3.1) to the equation affianced with q and z as

2(2q2 + 2q + 1) = z2. (3.7)

According to an amplification given in Subcase 2(ii), the statement fabricated above does not hold. As an outcome,
equation (3.7) and hence equation (3.1) has no solution in integer.
Case 4. x + y = 3
Subcase 4(i). Permit x = 3, y = 0.

Replacements of these predispositions trim down (3.1) as

1 + q3 = z2. (3.8)

The credible choice of q = 2 in (3.8) offered the optimal values of p and z as p = 5, z = 3 and there is no other
probable solution for any additional choice of q.

Thus, the assured solution of (3.1) is (p, q, x, y, z) = (5, 2, 3, 0, 3).
Subcase 4(ii). Let x = 2, y = 1.

These two values of x and y express (3.1) to the successive equation in two unknowns

(1 + q)2 = z2. (3.9)

In view of (3.9), it is visible that for all Sophie Germain prime q , (3.1) has solutions belong to the set of all
non-negative integers which is denoted by (p, q, x, y, z) = (2q + 1, q, 2, 1, q + 1) .
Subcase 4(iii). Admit x = 1, y = 2.
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Under these assumptions, the subsequent form of equation (3.1) is evaluated by

q + p2 = z2. (3.10)

An equivalent structure of (3.10) is precised as below

q(4q + 5) = (z − 1)(z + 1). (3.11)

Suppose q | (z − 1), then (z − 1) = Cq , C is any positive integer and (z + 1) = Cq + 2.
Thus, the equation (3.11) is articulated into

4q + 5 = C(Cq + 2)⇒ q =
C(Cq + 2) − 5

4
. (3.12)

In the vision of (3.12), it is apparent that the right-hand side of (3.12) not at all equal to q for any value of the
parameter C.

This confirms that (3.12) is not possible and hence q - (z − 1).
If q | (z + 1), then (z + 1) = Dq , D is any positive integer and (z − 1) = Dq − 2.
From (3.11), it is monitored by

4q + 5 = D(Dq − 2)⇒ q =
D(Dq − 2) − 5

4
. (3.13)

It is intensely experimental that (3.13) is not conceivable for any numerical value of D.
This shows that q - (z + 1).
The conclusion is (3.1) does not offer a solution.

Subcase 4(iv). State x = 0, y = 3.
Manipulation of these alternatives abbreviated (3.1) to the cubic equation as

1 + p3 = z2. (3.14)

This is true only for p = 2 which is not a safe prime because the least safe prime is 5.
Hence, there exists no integer solution for (3.1).

4. Conclusion
In this manuscript, it is accredited that positive integer solutions to an exponential equation qx + py = z2 such that
x + y = 0, 1, 2, 3 where, q are Safe primes and Sophie Germain primes respectively and x, y, z are positive integers. It
is accomplished that one can also examine solutions of the specified equation forx + y > 3 and p, q are some other
prime numbers.
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