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Abstract

Nowadays customer service, pricing strategies and trade credit financing scheme are effective, essential and
survival parameters for any kind of business setup in the market. In this study we have developed retailer’s ordering
policy for imperfect production in which we have applied the learning effect on inspection process on each and every
batch of imperfect product. To stimulate sales of product and to study the effects of trade credit financing scheme on
retailers business policy we have applied trade credit financing scheme on retailers ordering policy.

In this paper, we have developed, an economical order quantity (EOQ) model for retailer’s price sensitive demand
of product under two stage trade credit financing scheme.In the trade credit financing scheme we have assumed that
the supplier offers to the retailer a fixed credit period of payment and the retailer also offers t a fixed credit period
of payment o his customers. An optimal total profit function per unit time has been formulated under the different
trade credit financing periods of payment with different costs and related parameters. A numerical example has been
designed to verify the optimum results also we have done sensitive analysis through tables and graphically.
2020 Mathematical Sciences Classification: 90B05, 90B30, 90B50.
Keywords and Phrases: Learning Effect, Pricing, Imperfect quality items, Trade credit policy..

1. Introduction
The traditional economical order quantity (EOQ) inventory model was formulated first by Harris [6]. It was a time and
demand depended square root formula. Latter, several research articles have been designed to expand the fundamental
(EOQ) model by considering various kinds of assumptions.

Ebert [3] developed a systematic device for approximating optimal aggregate scheduling under condition of
changing productivity. Systematic changes in productivity constant can increase productivity of production system
Muth and Spremann [23] introduced the classical square root formula on the class of stationary lot sizing problem
with learning effect into the production cost.

Salameh et al. [28] suggested a economical production inventory model which was formulated under the learning
curve effect in a finite production rate. Cheng [1] developed an EMQ model which incorporates with declining setup
cost after effects of learning for large batch size in calculating the optimal manufacturing quantities and number of
orders. Salameh and Jaber [27] extended the traditional (EOQ/EPQ) model by considering the imperfect quality items
when using the (EOQ/EPQ) formulae. They also considered the assumption that at the end of 100 percent screening
process the poor-quality items are sold as a single batch with low price.

Jaber and Guiffrida [9] Suggested an (EPQ) model with rework for imperfect quality items using (WLC). For this
they proposed two different cases: (1) there is learning process with production, whereas there is no learning process in
the rework process. (2) there is learning process with production and rework both. Eroglu and Ozdemir [4] developed
an (EOQ) model in which they assumed that each ordered lot contains some defective items incorporating shortages
at retailers end. They analyzed effect of percentage defective on optimal solution. They also assumed that, after 100
percent screening of each lot the good and defective items are separated in two collection of imperfect quality and
scrap items.

Jaber et al. [8] extended the work of Salameh and Jaber [27] by assuming the percentage defective per lot decreases
according to a learning curve (LC), which was experimentally validated by data from the automotive industry. Jaber
et al. [10] developed a inventory model in which they assumed that the manufacturing process is interrupted during
the maintenance of machinery to control the quality of product. In this article they developed two cases: (1) learning
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process is applied only regular production whereas no learning in reworks and (2) learning process is applied on regular
production and reworks both.
Pan [24] investigated the impact of learning curve effects on setup cost by using the (CRI) uninterrupted review
inventory model under the controllable lead time with the mixture of backorder and partial lost sales. Lin [21]
investigated the marketing and manufacturing problem for a monopolist firm in which they assumed the demand
depends on price, quality and cumulative sales. They specify several optimal policies which are beneficial for policy
makers and could obtain insight into the consequence of their decisions.

Khedlekar et al.[14], developed three layer supply chain inventory model for price and suggested retail price
dependent demand which consisted manufacturer, multi supplier and multi retailers. Khedlekar et al. [15], developed
a production model for deteriorating product considering disruption in production with backlogging. Nigwal et al.
[16], developed a multi-layer, multi-channel reverse supply chain inventory model for used product which consisted
re-manufacturer, multi collector and multi-retailer.

Yoo et al. [7] focused on the problem that not only production process but also inspection processes are often not
perfect, thereby generating defects and inspection errors. For this they developed a profit-maximizing (EMQ) model
by incorporating both imperfect production process and two-way imperfect inspection process. Maity et al. [22]
developed an integrated production-recycling system in a finite planning time in which they considered a dynamic
demand rate is satisfied by production and recycling rate. Also they applied and studied Learning curve effects to
reduction of setup cost.Sui et al. [29] proposed a model for Vendor-Managed Inventory (VMI) system in place of
traditional retailer managed inventory with learning approach in which the supplier makes decisions of inventory
management for the retailer.

Khan et al. [17] extended the work of Salameh and Jaber [27] by incorporating the case of learning in the
inspection process. The model is more realistic than Salameh and Jabers [27] work because they also considered
situations of lost sales and backorders. Based on model of Salameh and Jaber [27], Wahab and Jaber [31] presented
a model for the optimal lot sizes of an item with imperfect quality by incorporating different holding cost for good
and defective items. Jaber and Khan [11] developed a model to maximize a combination of performance of average
processing time and process yield with respect to the number of batches. In this they incorporated the effect of varying
the learning curve parameters in production and in rework.

Das et al. [2] presented a production-inventory model for deteriorating items in an imprecise situations
characterized by inflation and timed value of money by considering with constant demand. They also considered
that the planning time of the business activity time is random in nature and follows exponential distribution with a
known mean. Khan et al. [18] extended the model of Salameh and Jaber [27] by incorporating the inspection error
during the screening process by considering the probability of inspection errors is assumed to be known. An inventory
model is developed by Raouf et al. [25] by considering an imperfect inspection process to describe the defective
proportion of a received lot.

Rezaei and Salimi [26] developed a model in which they analyzed the problem under the following two different
assumptions: (1) there is a relationship among the selling price, purchasing price and customer’s demand (2) there is
no relationship among the selling price, purchasing price and customer’s demand. Konstantaras et al. [19] developed
an (EOQ) model for imperfect quality items considering with shortages, in which they assumed that the fraction of
perfect quality in each shipment increases due to learning effect. An inventory model for imperfect quality items has
been developed by Jaggi et al. [12] under the condition of permissible delay in payments. In this article they allowed
shortage with fully backlogged, which are ignored during screening process.

Teng et al. [30] developed an (EPQ) model from the seller’s point of view in which they determined his/her optimal
production lot size with trade credit financing period simultaneously. Finally, they concluded following that (i) trade
credit financing stimulate not only sales but also increses opportunity cost and reduces default risk. Kumar et al. [20]
studied the effect of learning on the economical ordering policy for deteriorating items allowing with shortages and
partial backlogging. They concluded that due to learning effect the ordering cost is partly constant and partly decrease
in each cycle.

Givi et al. [5] developed a Human Reliability Analysis (HRA) model that estimates the human error rate while
performing an collectively job under the influence of learning -forgetting and fatigue-recovery. This model is able to
measure the human error rate dynamically with time. Jayaswal et al. [13] developed trade credit financing inventory
model for imperfect quality items under the effects of learning on ordering quantity. They derived total profit function
per cycle by incorporating various costs and related parameters for the retailer. Yadav et al. [33], developed two layer
supply chain model to optimize the profit function for imperfect quality items under the asymmetric information with
market expenditure dependent demand.
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Generally, in the traditional economic order quantity model, It is assumed that the retailer has pay to the supplier
as soon as the items/products are received. But in the practice, supplier expects to stimulate his products and he tries
to increase the sales of his product and therefore he offers to the retailer a certain delay period of payment. In the
practice we call it a credit period of payment. In this article, we consider two stages trade credit financing periods, in
which firstly, the supplier offers to the retailer a permissible delay period of payment and the retailer also offers to his
customers a permissible delay period of payment without interest. Furthermore, in a real life every production system
may produce something defective items. Due to defective units of items the total profit of retailer may be impacted.
The defective units of items may be detected by applying the screening process after delivery of batches. For this, we
consider screening process on each batches of imperfect quality items on retailer’s end.

Learning curve (LC) or Experience curve (EC) was derived first by Wright [32] in 1936. It is a mathematical
tool which relates the learning variables and cumulative quantity of units. In this paper, we have studied the impact
of learning on screening process for imperfect quality items. Sigmoid function is the ideal shape of all other learning
curves and in this article, we have used Sigmoid function which is formulated as α(n) =

(
a

g+ebn

)
, where α(n) is defective

percentage rate of item in the single batch and n number of order b, g > 0 and a > 0 are model parameters.

Table 1.1: Comparative table for contribution of different authors:

Authors Learning Effects Screening Trade Credit Financing Pricing
Wright (1936) Yes No No No
Ebert (1976) Yes No No Yes

Muth and Spremann (1983) Yes No No No
Salameh et al.(1993) Yes No No No

Cheng (1994) Yes No No No
Salameh and Jaber (2000) Yes Yes No No

Jaber et al.(2004) Yes Yes No No
Eroglu and Ozdemir(2007) Yes Yes No No
Jaber and Guiffrida (2008) Yes Yes No No

Pan (2008) Yes No No No
Lin (2008) Yes No No Yes

Jaber et al. (2008) Yes Yes No No
Yoo et al. (2009) Yes Yes No No
Sui, et al. (2010) Yes Yes No No

Khan et al. (2010) Yes Yes No No
Wahab and Jaber (2010) Yes Yes No No
Jaber and Khan (2010) Yes No No No

Das et al. (2010) Yes No No No
Khan et al. (2011) No Yes No No

Konstantaras et al. (2012) Yes Yes No No
Jaggi et al. (2013) No Yes Yes No
Teng et al. (2013) Yes No No No

Kumar et al. (2013) Yes No No No
Givi et al. (2015) Yes No No No

Jayaswal et al. (2019) Yes Yes Yes No
This paper Yes Yes Yes Yes

2. The Mathematical Model
2.1. Notations
Following notations are used in this model:
φn : Lot size for the nth batch,
D : Demand rate of items in units per unit time for perfect quality items, Where,

D = α − βp,
Cs : Setup cost per order,
Cp : Purchasing cost per unit of items,

h : Inventory holding cost per unit time,
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p : Selling price per unit of perfect quality items,
v : Selling price (On discounted price) per unit of defective items (p > v),

α(n) : Percentage of defective units of item per lot,
Tn : Length of cycle for shipment per order,
χ : Screening rate per unit time (D < χ),

S c : Screening cost per unit,
tn : Screening time of φn in planing time Tn, where, tn =

φn
χ
< Tn,

Ie : Interest rate per unit $ earned by retailer,
Ip : Interest rate per unit $ paid by retailer,

S R : Sales revenue,
TC : Total cost,

Π(p, φn) : Retailer’s total profit per unit time,
l : Permissible delay period of payment offered per cycle time by supplier to the retailer,

m : Permissible delay period of payment offered per cycle time by retailer to customers,
2.2. Assumptions
The following assumptions are made in this model
• D = α − βp, is the demand rate per unit time,
• The supplier provides a fixed and predetermined credit period to settle the accounts to the retailer,
• Selling price p and optimal lot size φn, are decision variables,
• No scrap is obtained during the screening process,
• Holding costs are constant,
• Screening procedure and demand of items occur simultaneously (D < χ),
• Stock out situation is neglected,
• Lead time is zero,
• Supplier’s supplying capacity is infinite,
• It has been assumed that each lot size contains perfect and imperfect items both,
• It has been assumed that the price of the perfect quality items is greater than that of the imperfect quality items,
• It has been assumed that the earned interest rate is less than the payable interest rate,
• It has been assumed that the retailer offers a permissible delay period of payment to his customers without

interest to stimulate the sales,
• It has been assumed that l, m ∈ [0,Tn], only.

2.3. The Mathematical formulation of model
In this section we designed a mathematical model for imperfect quality items with price dependent demand and

trade-credit financing scheme. The working procedure of this mathematical model is depicted in the Figure 2.1.
Initially, at the time t = 0 the batch size contains φn units of items and a batch of nth shipment contains α(n) percentage
of defective units of items. After completion of screening procedure at a rate χ, units per unit time, at time t = tn, the
imperfect quality items are equal to φnα(n), which are immediately sold at discounted price v per unit in a single lot.
The remaining inventory level of perfect quality items at any time t, is governed by the following differential equation:

dI
dt

= −D = −(α − βp), 0 ≤ t ≤ Tn, (2.1)

with the boundary conditions: I(0) = (1 − α(n))φn and I(Tn) = 0.
Solution of this equation gives:

I(t) = −(α − βp)t + (1 − α(n))φn (2.2)

at time t = Tn, the Tn can be determined by the following formula

Tn =
(1 − α(n))φn

(α − βp)
(2.3)

and according to the assumptions the screening time tn is given by the following formula

tn =
φn

χ
. (2.4)
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Figure 2.1: Inventory Level Chart

Now we derive the various components of total profit. The Sales revenue must be equal to the sum of the selling
of perfect quality items and the selling of imperfect quality items i.e

S R = p(1 − α(n))φn + vα(n)φn, (2.5)

Ordering Cost = Cs, (2.6)

Purchaging Cost = Cpφn, (2.7)

Screening Cost = S cφn, (2.8)

Inventory Holding Cost = h
[
(1 − α(n))φnTn − (α − βp)

T 2
n

2
+
φ2

nα(n)
χ

]
, (2.9)

Now the total expenditure per cycle is given by:

TC = Cs + Cpφn + S cφn + h
[
(1 − α(n))φnTn − (α − βp)

T 2
n

2
+
φ2

nα(n)
χ

]
, (2.10)

The supplier offers to the retailer a permissible credit period l of payment to inspire sales and retailer also offers to
his customer a permissible credit period n of payment to inspire his sales of items. As result, depending on the credit
period and for l,m ∈ (0,Tn), tn , Tn, there are four separate cases available for the purchaser (retailer and customers).

(1) tn ≥ l ≥ m, (2) tn ≥ m ≥ l,

(3) l ≥ m ≥ tn, (4) m ≥ l ≥ tn.

Hence, the retailer’s whole profit Π j(p, φn), j=1,2,3, 4 per unit time can be defined as:

Π j(p, φn) =
SR-TC+(Earned Interest)-(Paid Interest)

Tn
, where j=1, 2, 3, 4. (2.11)

According to the credit periods l and m, the earned interest and paid interest for four different cases are estimated
as follows:

Case 2.1. tn ≥ l ≥ m

As per restriction of this case the credit period l is greater than the credit period m, therefore retailer earns the
interest till the period 0 to l.Obviously after the end of credit period l, retailer is not able to make all the payment of
supplier, because they do not able to sale all the units of item till the credit period l, consequently the retailer has to
pay interest along with basic dues to the supplier. Let Ie earned interest rate per unit time and Ip paid interest rate per
unit time, then
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Figure 2.2: Inventory Level Chart for Case 2.1

EIe = Ie p(α − βp)
(

l2 − m2

2

)
, (2.12)

PIp = IpCp(α − βp)(1 − α(n))φn
(Tn − l)2

2
+ CpIpα(n)φn(tn − l), (2.13)

S R1 = p(1 − α(n))φn + vα(n)φn + Ie p(α − βp)
(

l2 − m2

2

)
, (2.14)

TC1 = Cs + Cpφn + S cφn + h
[
(1 − α(n))φnTn − (α − βp)

T 2
n

2
+
φ2

nα(n)
χ

]
, (2.15)

+IpCp(α − βp)(1 − α(n))φn
(Tn − l)2

2
+ CpIpα(n)φn(tn − l),

Π1(p, φn) =
S R1 − TC1

Tn
, (2.16)

Π1(p, φn) = p(α − βp) +
vα(n)(α − βp)

(1 − α(n)
+

(α − βp)2l2(Ie p − Ipc)
2(1 − α(n)φn

− Cs(α − βp)
(1 − α(n)

− (Cp + S c −CpIpα(n))l(α − βp) −CpIp(1 − α(n)(α − βp)l
(1 − α(n)

−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CpIp(1−α(n)2

2(α−βp) +
CpIpα(n)

χ

(1 − α(n)

 φn(α − βp) − pIe(α − βp)2m2

2(1 − α(n))φn
.

Case 2.2. tn ≥ m ≥ l

As per restriction of this case the credit period l is less than the credit period m. Obviously after the end of credit
period l, retailer is not able to make all the payment of supplier, because they do not able to sale all the units of item
till the credit period l, consequently the retailer has to pay interest along with basic dues to the supplier. Let Ip paid
interest rate per unit time, then
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Figure 2.3: Inventory Level Chart for Case 2.2

PIp = IpCp(α − βp)(1 − α(n))φn
(Tn − l)2

2
+ vIpα(n)φn(tn − l), (2.17)

S R2 = p(1 − α(n))φn + vα(n)φn, (2.18)

TC2 = Cs + Cpφn + S cφn + h
[
(1 − α(n))φnTn − (α − βp)

T 2
n

2
+
φ2

nα(n)
χ

]
+IpCp(α − βp)(1 − α(n))φn

(Tn − l)2

2
+ vIpα(n)φn(tn − l), (2.19)

Π2(p, φn) =
S R2 − TC2

Tn
(2.20)

= p(α − βp) +
vα(n)(α − βp)

(1 − α(n)
− CpIp(α − βp)2l2

2(1 − α(n)φn
+

Cs(α − βp)
(1 − α(n)φn

− (Cp + S c −CpIpα(n)l)(α − βp) −CpIp((1 − α(n))l(α − βp)
(1 − α(n)

−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CpIp(1−α(n)2

2(α−βp) +
CpIpα(n)

χ

(1 − α(n)

 φn(α − βp).

Case 2.3. l ≥ m ≥ tn

As per restriction of this case the credit period l is greater than the credit period m. Obviously after the end of
credit period l, retailer is not able to make all the payment of supplier, because they do not able to sale all the units of
item till the credit period l, consequently the retailer has to pay interest along with basic dues to the supplier. Let Ie

earned interest per unit time and Ip paid interest rate per unit time, then
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Figure 2.4: Inventory Level Chart for Case 2.3

EIe = Ie p(α − βp)
(

l2 − m2

2

)
+ vIeα(n)φn(l − tn), (2.21)

PIp = IpCp(α − βp)(1 − α(n))φn
(Tn − l)2

2
, (2.22)

S R3 = p(1 − α(n))φn + vα(n)φn + Ie p(α − βp)
(

l2 − m2

2

)
+ vIeα(n)φn(l − tn), (2.23)

TC3 = Cs + Cpφn + S cφn + h
[
(1 − α(n))φnTn − (α − βp)

T 2
n

2
+
φ2

nα(n)
χ

]
+IpCp(α − βp)(1 − α(n))φn

(Tn − l)2

2
, (2.24)

Π3(p, φn) =
S R3 − TC3

Tn
, (2.25)

= p(α − βp) +
vα(n)(α − βp)

(1 − α(n)
+

(α − βp)2l2(Ie p − Ipc)
2(1 − α(n)φn

− Cs(α − βp)
(1 − α(n)φn

− (Cp + S c −CpIpα(n)l)(α − βp) −CpIp(1 − α(n)(α − βp)l
(1 − α(n)

−
h

(
(1−α(n))2

2(α−βp) +
α(n)
χ

)
+

CpIp(1−α(n))2

2(α−βp) +
CpIpα(n)

χ

(1 − α(n)

 φn(α − βp) − pIe(α − βp)2m2

2(1 − α(n))φn
.

Case 2.4. m ≥ l ≥ tn

As per restriction of this case the credit period l is less than the credit period m. Obviously after the end of credit
period l, retailer is not able to make all the payment of supplier, because they do not able to sale all the units of item
till the credit period l, consequently the retailer has to pay interest along with basic dues to the supplier. Let Ie earned
interest rate per unit time and Ip paid interest rate per unit time, then
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Figure 2.5: Inventory Level Chart for Case 2.4

EIe = Ie p(α − βp)
l2

2
+ vIeα(n)φn(l − tn), (2.26)

PIp = IpCp(α − βp)(1 − α(n))φn
(Tn − l)2

2
, (2.27)

S R4 = p(1 − α(n))φn + vα(n)φn + Ie p(α − βp)
l2

2
+ vIeα(n)φn(l − tn), (2.28)

TC4 = Cs + Cpφn + S cφn + h
[
(1 − α(n))φnTn − (α − βp)

T 2
n

2
+
φ2

nα(n)
χ

]
+IpCp(α − βp)(1 − α(n))φn

(Tn − l)2

2
, (2.29)

Π4(p, φn) =
S R4 − TC4

Tn
(2.30)

= p(α − βp) +
vα(n)(α − βp)

(1 − α(n)
+

(α − βp)2l2(Ie p − Ipc)
2(1 − α(n)φn

− Cs(α − βp)
(1 − α(n)φn

− (Cp + S c −CpIpα(n)l)(α − βp) −CpIp(1 − α(n)(α − βp)l
(1 − α(n)

−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CpIp(1−α(n)2

2(α−βp) +
CpIpα(n)

χ

(1 − α(n)

 φn(α − βp).

2.4. Optimality criteria
In this subsection we will find the optimal value of φn = φ∗n, p = p∗, to optimize the profit function Π j(p, φn) ( j=1,2,3,4)
for all the above four cases and we will check in which case gives the better results.
2.4.1. Optimality criteria for Case 2.1
Proposition 2.1. Retailer’s order quantity φn and retailing price p have an optimum point (p∗, φ∗n).

Proof. The profit function Π1(φn, p) will be an optimum at point (p∗, φ∗n) if ∂Π1(φn,p)
∂φn

and ∂Π1(p,φn)
∂p , are vanishes at point

(p∗, φ∗n). Therefore,

− (α − βp)2l2(Ie p − IpCp)
2(1 − α(n)φ2

n
+

Cs(α − βp)
(1 − α(n)φ2

n
+

Ie p(α − βp)2m2

2(1 − α(n)φ2
n
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−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CIp(1−α(n)2

2(α−βp) +
CpIpα(n)

χ

(1 − α(n)

 (α − βp) = 0. (2.31)

(α − 2βp) − vα(n)β
(1 − α(n)

+
(α − βp)2l2Ie

2(1 − α(n)φn
− 2(α − βp)l2β(Ie p − Ipc)

2(1 − α(n)φn

+
Csβ

(1 − α(n)φn
+

(Cp + S c −CpIpα(n))lβ −CpIp(1 − α(n)βl
(1 − α(n)

−
[

hα(n)βφn

χ(1 − α(n))
+

CpIpα(n)βφn

χ(1 − α(n))

]
+

Iem2
[
(α − βp)2 − 2βp(α − βp)

]
2(1 − α(n))

= 0, (2.32)

solution of the above system of two equations will gives an optimal value of (p, φn)

Proposition 2.2. The profit function Π1(p, φn) is jointly concave for the value of φn, p if[
D2Ie p(l2 − m2) −CpIpD2l2 − 2CsD

] [
βηφn + 2Dβl2Ie − β2l2(Ie p − IpCp) + (2αβ − 3β2 p)φn

]
-

− 1
4n2

[
η
(
Ieη

2(p − m2) − 2ηIPCp − 2Cpβ
)

+ CpIpD2φ2
nβ

]2
> 0. where η = 1 − α(n)

Proof. The second order partial derivatives of Π1(φn, p) are:

∂2Π1(φn, p)
∂φ2

n
=

D2l2(Ie p − IpCp) − 2CsD − Ie pD2m2

ηφ3
n

(2.33)

∂2Π1(φn, p)
∂φn∂p

=
−D2Ie p − 2DIpCpβ − 2Csβ + IeD2m2

2ηφ2 +
(h + CpIp)ηβ

D
+

(h + CpIp)α(n)hβ
χη

(2.34)

∂2Π1(φn, p)
∂p2 = −2β − (1 − β)Dβl2Ie

ηφn
+

l2β2(Ie p − IpCp)
ηφn

− Iem2(2αβ − 3β2 p)
η

. (2.35)

After simplification of above terms, the jointly concavity condition rt− s2 > 0, of Π1(φn, p) is satisfied with respect
to φn and p if[

D2Ie p(l2 − m2) −CpIpD2l2 − 2CsD
] [
βηφn + 2Dβl2Ie − β2l2(Ie p − IpCp) + (2αβ − 3β2 p)φn

]
− 1

4n2

[
η
(
Ieη

2(p − m2) − 2ηIPCp − 2Cpβ
)

+ CpIpD2φ2
nβ

]2
> 0. where η = 1 − α(n). (2.36)

2.4.2. Optimality criteria for case 2.2
Proposition 2.3. Retailer’s order quantity φn and retailing price p have an optimum point (p∗, φ∗n).

Proof. The profit function Π2(p, φn) will be an optimum at point (p, φ∗n) if ∂Π2(p,φn)
∂φn

= 0 and ∂Π2(p,φn)
∂p = 0, will be

vanish at point (p∗, φ∗n). Therefore,
(α − βp)2l2IpCp

2(1 − α(n)φ2
n

+
Cs(α − βp)
(1 − α(n)φ2

n
,

−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CIp(1−α(n)2

2(α−βp) +
CIpα(n)

χ

(1 − α(n)

 (α − βp) = 0, (2.37)

(α − 2βp) − vα(n)β
(1 − α(n))

+
(α − βp)l2βIpCp

(1 − α(n)φn

+
Csβ

(1 − α(n)φn
+

(Cp + S c −CpIpα(n)l)β −CpIp(1 − α(n)βl
(1 − α(n)

−
[

hα(n)βφn

χ(1 − α(n))
+

CpIpα(n)βφn

χ(1 − α(n))

]
= 0. (2.38)

Solution of the above system of two equations will gives an optimal value of (p, φn).
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Proposition 2.4. The profit function Π2(φn, p) is jointly concave for the value of p, φn if[
(D2l2IpCp − 2CsD)(2βηφn + β2l2IpCp)

]
+

[
Dl2IpCpβ −Csβ − (h + IpCp)(ηφ2

n + α(n))β
]2
> 0.

Proof. The second order partial derivatives of Π2(φn, p) are:

∂2Π2(φn, p)
∂φ2

n
= −D2l2IpCp + 2CsD

ηφ3
n

, (2.39)

∂2Π2(φn, p)
∂φn∂p

= −Dl2IpCpβ −Csβ

ηφ2
n

+
(h + CpIp)(1 − α(n))β

D
+

(h + CpIp)α(n)β
ηχ

, (2.40)

∂2Π2(φn, p)
∂p2 = −2β − β

2l2IpCp

ηφn
. (2.41)

After simplification of above terms, the jointly concavity condition rt− s2 > 0, of Π2(φn, p) is satisfied with respect
to φn, and p if[

(D2l2IpCp − 2CsD)(2βηφn + β2l2IpCp)
]

+
[
Dl2IpCpβ −Csβ − (h + IpCp)(ηφ2

n + α(n))β
]2
> 0.

2.4.3. 2.4.3. Optimality criteria for case 2.3
Proposition 2.5. Retailer’s order quantity φn and retailing price p have an optimum point (p∗, φ∗n).

Proof. The profit function Π3(φn, p) will be an optimum at point (p∗, φ∗n) if ∂Π3(φn,p)
∂φn

= 0 and ∂Π3(φn,p)
∂p = 0, will vanish

at point (φ∗n, p∗). Therefore,

− (α − βp)2l2(Ie p − IpCp)
2(1 − α(n)φ2

n
+

Cs(α − βp)
(1 − α(n)φ2

n
+

pIe(α − βp)2m2

2(1 − α(n)φ2
n

−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CIp(1−α(n)2

2(α−βp) +
CIpα(n)

χ

(1 − α(n)

 (α − βp) = 0, (2.42)

(α − 2βp) − vα(n)β
(1 − α(n))

+
(α − βp)2l2Ie

2(1 − α(n))φn
+

Csβ

(1 − α(n)φn

(α − βp)l2β(Ie p − IpCp)
(1 − α(n))φn

+
(Cp + S c − vIeα(n)l)β −CpIp(1 − α(n)l)β

(1 − α(n)

−
[

hα(n)βφn

χ(1 − α(n))
+

vIeα(n)βφn

χ(1 − α(n))

]
+

pIe(α − βp)βm2

(1 − α(n)φn
= 0. (2.43)

Solution of the above system of two equations will gives an optimal value of (p, φn).

Proposition 2.6. Proposition 2.6. The profit function Π3(φn, p) is jointly concave for the value of p, φn if[
D2Ip p(l2 − m2) − D2l2IpCp − 2CsD

] [
2βηφn + βIeD(2l2 − m2) − β2Ie p(l2 − m2) + l2β2IpCp

]
[
D2l2Ie − 2Dl2(Ie p − IpCp)β + 2Csβ + (2pIem2β − IeD2m2) − 2β(h + CpIp)α(n)φ2

n

χ

]2

> 0,

where, η = (1 − α(n)), and D = α − βp.

Proof. The second order partial derivatives of Π3(φn, p) are:

∂2Π3(p, φn)
∂φ2

n
=

D2Ie p(l2 − m2) − D2l2IpCp − 2CsD

ηφ3
n

, (2.44)

∂2Π3(p, φn)
∂φn∂p

= −
(

DIe(l2 − m2) − 2Dl2(Ie p − IpCpβ) + 2(Cs + pDIem2)β
2ηχ

)
+
β(h + IcCp)α(n)

ηχ
, (2.45)

∂2Π3(p, φn)
∂p2 = −2β − 2Dβl2Ie

ηφn
+
β2Ie p(l2 − m2)

ηφn
− l2β2IpCp

ηφn
+

IeDβ2m2

ηφn
. (2.46)
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After simplification of above terms, the jointly concavity condition rt− s2 > 0, of Π2(p, φn) is satisfied with respect
to φn, and p if[

D2Ip p(l2 − m2) − D2l2IpCp − 2CsD
] [

2βηφn + βIeD(2l2 − m2) − β2Ie p(l2 − m2) + l2β2IpCp

]
[
D2l2Ie − 2Dl2(Ie p − IpCp)β + 2Csβ + (2pIem2β − IeD2m2) − 2β(h + CpIp)α(n)φ2

n

χ

]2

> 0,

where, η = (1 − α(n)), and D = α − βp.

2.4.4. Optimality criteria for case 2.4
Proposition 2.7. Retailer’s order quantity φn and retailing price p have an optimum point (p∗, φ∗n).

Proof. The profit function Π4(p, φn) will be optimum at point (p∗, φ∗n) if ∂Π4(φn,p)
∂φn

= 0 and ∂Π4(p,φn)
∂p = 0, must be

vanishes at the point (p∗, φ∗n). Therefore,

− (α − βp)2l2(Ie p − IpCp)
2(1 − α(n)φ2

n
+

Cs(α − βp)
(1 − α(n)φ2

n

−
h

(
(1−α(n)2

2(α−βp) +
α(n)
χ

)
+

CIp(1−α(n)2

2(α−βp) +
CIpα(n)

χ

(1 − α(n)

 (α − βp) = 0, (2.47)

(α − 2βp) − vα(n)β
(1 − α(n))

+
(α − βp)2l2Ie

2(1 − α(n))φn
+

Csβ

(1 − α(n)φn

(α − βp)l2β(Ie p − IpCp)
(1 − α(n))φn

+
(Cp + S c − vIeα(n)l)β −CpIp(1 − α(n)l)β

(1 − α(n)

−
[

hα(n)βφn

χ(1 − α(n))
+

vIeα(n)βφn

χ(1 − α(n))

]
= 0 (2.48)

Solution of the above system of two equations will gives an optimal value of (φn, p).

Proposition 2.8. The profit function Π3(p, φn) is jointly concave for the value of p, φn if[
D2l2(Ie p − IpCp) − 2CsD

] [
l2β2(Ie p − IpCp) − 2βηφn − 2Dl2Ieβ

]
−

[
2Dl2β(Ie p − IpCp) − 2CsD +

2β(h + IeCp)α(n)φ2
n

χ
− D2l2Ie

]2

> 0,

where D = α − βpand η = 1 − α(n).

Proof. The second order partial derivatives of Π4(p, φn) are:

∂2Π4(p, φn)
∂φ2

n
=

D2l2(Ie p −CpIp) − 2CsD
ηφ3 (2.49)

∂2Π4(p, φn)
∂φn∂p

=
2Dl2β(Ie p − IpCp) − 2CsD +

2φ2
nβ(h+CpIp)α(n)

χ

2ηφ3
n

(2.50)

∂2Π4(φn, p)
∂p2 = −2βηφn + 2Dl2βIe − l2β2(Ie p − IpCp)

ηφn
. (2.51)

After simplification of above terms, the jointly concavity condition rt− s2 > 0, of Π4(p, φn) is satisfied with respect
to φn, and p if [

D2l2(Ie p − IpCp) − 2CsD
] [

l2β2(Ie p − IpCp) − 2βηφn − 2Dl2Ieβ
]

−
[
2Dl2β(Ie p − IpCp) − 2CsD +

2β(h + IeCp)α(n)φ2
n

χ
− D2l2Ie

]2

> 0,

where D = α − βpand η = 1 − α(n).
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3. Algorithm
Stage 3.1: Find out φ∗n = φn and p∗ = p (say) by solving the equations (2.31) and (2.32) and substituting the values

of φ∗n = φn, p∗ = p into the equations (2.3) and (2.4) and compute the values of Tn and tn respectively. If
tn ≥ l ≥ m, then maximum total profit is derived from the equation (2.16).

Stage 3.2: Find out φ∗n = φn and p∗ = p (say) by solving the equations (2.37) and (2.38) and substituting the values
of φ∗n = φn, p∗ = p into the equations (2.3) and (2.4) and compute the values of Tn and tn respectively. If
tn ≥ m ≥ l, then maximum profit is derived from the equation (2.20).

Stage 3.3: Find out φ∗n = φn and p∗ = p (say) by solving the equations (2.42) and (2.43) and substituting the values
of φ∗n = φn, p∗ = p into the equations (2.3) and (2.4) and compute the values of Tn and tn respectively. If
l ≥ m ≥ tn, then maximum profit is derived from the equation (2.25).

Stage 3.4: Find out φ∗n = φn and p∗ = p (say) by solving the equations (2.47) and (2.48) and substituting the values
of φ∗n = φn, p∗ = p into the equations (2.3) and (2.4) and compute the values of Tn and tn respectively. If
m ≥ l ≥ tn, then maximum profit is derived from the equation (2.30).

Stage 3.5: Compare the calculated profit for Case 2.1, Case 2.2, Case 2.3 and Case 2.4 at m, l for choosing an optimal
value of φn and p associated with maximum profit.

4. Numerical Examples
4.1. Case 2.1

We have considered the following data set of input parameters as: α = 4000 units/unit time, β = 0.5, Cs = $100,
h = $0.5 unit/unit time, Cp = $3500 /unit, v = $2500 per/unit, χ = 5000 units, S c = $0.5/unit, Ie = 0.003/unit time,
Ip = $0.004/unit time, α(n) = 0.03994, n = 2, a = 40, b = 1, g = 999 as Jaber et al. [8], l = 0.03/per planning,
m = 0.025/per planning.

By using of the proposed algorithm we get the optimal order quantity (EOQ) φn = 130 units per unit time, p =

5771 per unit and after substituting the optimum value of φn and p into the equation (??) we get the retailer’s profit
Π(φn, p) = 2482766 per unit time, screening time tn = 0.026 per unit time and time interval Tn = 0.112. At the
optimum point φn = 126, p = 5771 the necessary and sufficient condition of optimality of profit function is satisfied,

i.e. ∂2Π(φn,p)
∂φ2

n
= −0.108 < 0 and

(
∂2Π(φn,p)

∂φ2
n

) (
∂2Π(φn,p)

∂p2

)
−

(
∂2Π(φn,p)
∂φn∂p

)2
= 0.190 > 0.

4.2. Case 2.2
We have considered the following data set of input parameters as: α = 4000 units/unit time, β = 0.5, Cs = $100,

h = $0.5 unit/ unit time, Cp = $3500 /unit, v = $2500 per/unit, χ = 5000 units, S c = $0.5/unit, Ie = 0.003/unit time,
Ip = $0.004/unit time, α(n) = 0.03994, n = 2, a = 40, b = 1, g = 999 as Jaber et al. [8], m = 0.03/per planning,
l = 0.025/per planning.

By using of the proposed algorithm we get the optimal order quantity (EOQ) φn = 178 units per unit time, p =

3958 per unit and after substituting the optimum value of φn and p into the equation (??) we get the retailer’s profit
Π(φn, p) = 840580 per unit time, screening time tn = 0.035 per unit time and time interval Tn = 0.084. At the
optimum point φn = 178, p = 3958 the necessary and sufficient condition for the profit function is satisfied, i.e.
∂2Π(φn,p)

∂φ2
n

= −0.005 < 0 and
(
∂2Π(φn,p)

∂φ2
n

) (
∂2Π(φn,p)

∂p2

)
−

(
∂2Π(φn,p)
∂φn∂p

)2
= 0.0053 > 0.

4.3. Case 2.3
We have considered the following data set of input parameters as: α = 4000 units/unit time, β = 0.5, Cs = $100,

h = $0.5 unit/ unit time, Cp = $3500 /unit, v = $2500 per/unit, χ = 5000 units, S c = $0.5/unit, Ie = 0.003/unit time,
Ip = $0.004/unit time, α(n) = 0.03994, n = 2, a = 40, b = 1, g = 999 as Jaber et al. [8], l = 0.045/per planning,
m = 0.04/per planning.

By using of the proposed algorithm we get the optimal order quantity (EOQ) φn = 133 units per unit time, p =

5822 per unit and after substituting the optimum value of φn and p into the equation (??) we get the retailer’s profit
Π(φn, p) = 2481794 per unit time, screening time tn = 0.026 per unit time and time interval Tn = 0.118. At the
optimum point φn = 133, p = 552 the necessary and sufficient condition for the profit function is satisfied, i.e.
∂2Π(φn,p)

∂φ2
n

= −0.104 < 0 and
(
∂2Π(φn,p)

∂φ2
n

) (
∂2Π(φn,p)

∂p2

)
−

(
∂2Π(φn,p)
∂φn∂p

)2
= 0.093 > 0.

4.4. Case 2.4
We have considered the following data set of input parameters as: α = 4000 units/unit time, β = 0.5, Cs = $100,

h = $0.5 unit/ unit time, Cp = $3500 /unit, v = $2500 per/unit, χ = 5000 units, S c = $0.5/unit, Ie = 0.003/unit time,
Ip = $0.004/unit time, α(n) = 0.03994, n = 2, a = 40, b = 1, g = 999 as Jaber et al. [8], l = 0.03/per planning,
m = 0.025/per planning.
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By using of the proposed algorithm we get the optimal order quantity (EOQ) φn = 125 units per unit time, p =

5822 per unit and after substituting the optimum value of φn and p into the equation (??) we get the retailer’s profit
Π(φn, p) = 2481845 per unit time, screening time tn = 0.025 per unit time and time interval Tn = 0.11. At the
optimum point φn = 126, p = 5771 the necessary and sufficient condition for the profit function is satisfied, i.e.
∂2Π(φn,p)

∂φ2
n

= −0.112 < 0 and
(
∂2Π(φn,p)

∂φ2
n

) (
∂2Π(φn,p)

∂p2

)
−

(
∂2Π(φn,p)
∂φn∂p

)2
= 0.097 > 0.

5. Sensitivity Analysis
We performed the sensitivity analysis with respect to key parameters to show the sensitivity of model and to

determine the situation, which gives the optimal results. We consider the various values of key parameters like trade
credit periods m, l interest earn rate Ie, interest payable rate Ip, defective percentage items α(n), number of shipment
(n), the impact on the optimal lot size φn, selling price p, time period T and total profit Π(φn, p) are given in the
following tables.

Table 5.1: Effect of learning rate on the profit for Case 2.1:

No. of Learning Rate
Shipment (n) b=1 b=1.2 b=1.4

Case 2.1 Π(φn, p) Case 2.1 Π(φn, p) Case 2.1 Π(φn, p)
1 2482766 2482795 2482830
2 2482990 2483163 2483418
3 2483588 2484344 2485658
4 2485139 2487865 2492871
5 2488869 2496420 2507499

Table 5.2: Effect of number of shipment on order quantity, defective percentage, selling price and profit for Case 2.1:

No. of Order quantity Defective percentage Selling price Profit
Shipment (n) φn per order p Π(φn, p)

1 130.67 0.039931 5771.25 2482766
2 130.65 0.039746 5771.10 2482990
3 130.61 0.039251 5770.83 2483588
4 130.50 0.037965 5770.14 2485139
5 130.23 0.034861 5768.47 2488869

Table 5.3: Effect of credit periods on order quantity, time interval, screening time, selling price and profit for Case 2.1:

Credit Order quantity Time Interval Screening time Selling price Profit
periods (n) φn Tn tn p Π(φn, p)
with l, m 130.67 0.1125 0.0261 5771.20 2482766
without l 131.70 0.1134 0.0263 5771.42 2482340
without m 126.83 0.1092 0.0254 5771.26 2482710

without l, m 127.90 0.1102 0.0255 5771.47 2482287
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Figure 5.1: Impact of credit period l and m on profit for Case 2.1

Figure 5.2: Impact of credit period m, l both and earned interest on profit for Case 2.1

From all the data Tables (5.1-5.3) and Figures (5.1-5.3) and based on computational results, we can see that, (since
we are seeking that situation in which total expenditure will be minimum and total profit will be maximum). We have
seen that Case 2.1 is most favorable with respect to profit for l, m ∈ [0, tn]. Further we have analyzed this Case 2.1 with
respect to key parameters. From the Figures (5.1-5.3), we can see that (l,m)→ tn the earned interest Ie φn, tn and Tn

are increasing and paid interest Ip, p decreasing. Figure 5.3. The total profit also increases exponentially if increases
the number of shipments.

Data Table 5.1 shows that if as the learning exponential parameter increases from b = 1.00 to b = 1.40along with
the number of shipment, then the total profit increases and decreases the percentage of defective items simultaneously.
From the sensitivity analysis we have observed that learning effects, trade credit financial policy and selling price
strategies are all important tools which are helpful to gain more and more profit.

Figure 5.3: Impact of paid interest and no. of shipment on profit for Case 2.1
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6. Conclusion
This article proposed an economical order quantity model for imperfect quality items by considering three real
assumptions. These three assumptions are:

(1) we have applied learning effects on screening process to separate the good and defective units of items,
(2) we have used two stage trade credit financing to promote the retailer’s business and
(3) we have also used pricing strategies to determine optimal selling price. A comprehensive sensitivity has done to

reflects the importance of key parameters and assumed assumptions. We have shown that from in the above four
cases of credit periods Case 2.1 is more beneficial for any kind of business setup. We have optimized total profit,
selling price and order quantity with respect to key elements like credit periods, number of shipment, earned
interest and paid interest. Retailer can earn more profit by increasing efficiency of workers, credit periods and
ordering smaller size of batch.

6.1. Limitations and Future Scope
1. Study hasn’t considered rework process on imperfect quality units of items, one can be extended this study by

incorporating this concept,
2. Study hasn’t considered shortage of item at retailer’s end, and due to shortage it also hasn’t considered partially

or fully backlog of demand. One can be extended this study by incorporating shortage along with backlog of
demand,

3. The present study is developed for non-deteriorating items. One can be extended this study for deteriorating
items,

4. Study hasn’t considered competitive environment for retailer. One can be extended this model by incorporating
competitive environment at retailers end.

5. Study focused on only retailer’s ordering policy and pricing strategies, one can be extended it for economical
production quantity and pricing strategies.

Acknowledgement. We thank the Editor and the anonymous referees for their valuable and constructive comments
that led to a significant improvement of the initial paper.
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