Jñānābha, Vol. 52(2) (2022), 158-164

(Dedicated to Professor D. S. Hooda on His $80^{\text {th }}$ Birth Anniversary Celebrations)

ON HANKEL TYPE CONVOLUTION OPERATORS
B. B. Waphare ${ }^{1}$, R. Z. Shaikh ${ }^{1}$ and N. M. Rane ${ }^{2}$
${ }^{1}$ Department of Mathematics, MAEER's MIT Arts, Commerec \& Science College Alandi(D), Pune-412105, Maharastra, India.
${ }^{2}$ Avantika University, Ujjain-456006, Madhya Pradesh, India.
Email: balasahebwaphare@gmail.com, shaikhrahilanaz@gmail.com, nitin@avantika.edu.in
(Received : May 31, 2022; In front : July 30, 2022; Accepted : October 17, 2022)
DOI: https://doi.org/10.58250/jnanabha.2022.52218

Abstract

Let $\mathcal{H}_{\alpha, \beta}^{\prime}$ be the Zemanian type space of Hankel transformable generalised functions and let $O_{\alpha, \beta, *}^{\prime}$, be the space of Hankel convolution operators for $\mathcal{H}_{\alpha, \beta}^{\prime}$. This $\mathcal{H}_{\alpha, \beta}^{\prime}$ is the dual of a subspace $\mathcal{H}_{\alpha, \beta}$ of $O_{\alpha, \beta, *}^{\prime}$ for which $O_{\alpha, \beta, *}^{\prime}$ is also the space of Hankel convolution. In this paper the elements of $O_{\alpha, \beta, *}^{\prime}$ are characterised as those in $\mathcal{L}\left(\mathcal{H}_{\alpha \beta}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$ that commute with Hankel translations. Moreover, necessary and sufficient condition on the generalised Hankel type transform $h_{\alpha, \beta}^{\prime} S$ of $S \in O_{\alpha \beta, *}^{\prime}$ are established in order that every $T \in O_{\alpha, \beta, *}^{\prime}$ such that $S * T \in \mathcal{H}_{\alpha, \beta}$ lie in $\mathcal{H}_{\alpha, \beta}$. 2020 Mathematical Sciences Classification: 46F12 Keywords and Phrases: Generalized functions, Hankel type transformation, Hankel type translation, Hankel type convolution.

1. Introduction

Following Zemanian [6], we denote by $\mathcal{H}_{\alpha, \beta}$ the space of Hankel transformable functions, $(\alpha-\beta) \in \mathbb{R}$. $\mathcal{H}_{\alpha, \beta}$ consists of all those infinitely differentiable functions $\phi=\phi(x)$ defined on $I=(0, \infty)$ such that

$$
\rho_{m, k}^{\alpha, \beta}=\sup _{x \in I}\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \phi(x)\right|<\infty, \quad m, k \in \mathbb{N} .
$$

$\mathcal{H}_{\alpha, \beta}$ being a Frechet Space when endowed with the topology generated by the family of seminorms $\left\{\rho_{m, k}^{\alpha, \beta}\right\}_{(m, k) \in \mathbb{N} \times \mathbb{N}}$. The Hankel type transformation

$$
\left(h_{\alpha, \beta} \phi\right)(t)=\int_{0}^{\infty} \phi(x)(x t)^{\alpha+\beta} J_{\alpha-\beta}(x t) d x
$$

is an automorphism of $\mathcal{H}_{\alpha, \beta}$; provided $(\alpha-\beta) \geq-\frac{1}{2}$, where $J_{\alpha-\beta}$ denotes the Bessel type function of first kind and of order $(\alpha-\beta)$. If $(\alpha-\beta) \geq-\frac{1}{2}$, the generalized Hankel type transformation $h_{\alpha, \beta}^{\prime}$ is defined on $\mathcal{H}_{\alpha, \beta}^{\prime}$, the dual space of $\mathcal{H}_{\alpha, \beta}$ as the adjoint of $h_{\alpha, \beta}$. Then $h_{\alpha, \beta}^{\prime}$ is an automorphism of $\mathcal{H}_{\alpha, \beta}^{\prime}$. Following [1],[2] and [4], for $(\alpha-\beta) \geq-\frac{1}{2}$, we introduce the subspace $O_{\alpha, \beta, *}^{\prime}$ of $\mathcal{H}_{\alpha, \beta}^{\prime}$ as the space of all those $T \in \mathcal{H}_{\alpha, \beta}^{\prime}$ such that $\theta(x)=x^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(x)$ is a smooth function on I with the property that for every $k \in \mathbb{N}$ there exists $n_{k} \in \mathbb{N}$ satisfying

$$
\sup _{x \in I}\left|\left(1+x^{2}\right)^{-n_{k}}\left(x^{-1} D\right)^{k} \phi(x)\right|<\infty .
$$

Clearly, $\mathcal{H}_{\alpha, \beta}$ is a subspace of $O_{\alpha, \beta, *}^{\prime}$. The space O of all those smooth functions $\theta=\theta(x)$ on I possessing the above property turns out to be the space of multiplication operators on $\mathcal{H}_{\alpha, \beta}$ and on $\mathcal{H}_{\alpha, \beta}^{\prime}((\alpha-\beta) \in \mathbb{R})$, whereas $O_{\alpha, \beta, *}^{\prime}$ is the space of convolution operators on $\mathcal{H}_{\alpha, \beta}$ and on $\mathcal{H}_{\alpha, \beta}^{\prime}((\alpha-\beta) \geq-1 / 2)$.
Throughout this paper we shall always assume that $(\alpha-\beta)$ is a real number $\geq-1 / 2$ and, unless otherwise stated, that $\mathcal{H}_{\alpha, \beta}^{\prime}$ is endowed with its weak* topology.

2. Characterization of $O_{\alpha, \beta, *}^{\prime}$ in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$

Let $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ (respectively, $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$) denote the space of all linear continuous operator from $\mathcal{H}_{\alpha, \beta}$ (resp. $\mathcal{H}_{\alpha, \beta}^{\prime}$) into itself. The characterization of elements in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$ that commute with Hankel type translation is our first objective.

We recall that the Hankel type translation $\tau_{x} \phi$ of $\phi \in \mathcal{H}_{\alpha, \beta}$ by $x \in I$ is defined as

$$
\left(\tau_{x} \phi\right)(y)=\int_{0}^{\infty} \phi(z) D_{\alpha, \beta}(x, y, z) d z, \quad y \in I
$$

where,

$$
D_{\alpha, \beta}(x, y, z)=\int_{0}^{\infty} t^{2 \beta-1} j_{\alpha-\beta}(x t) j_{\alpha-\beta}(y t) j_{\alpha-\beta}(z t) d t, \quad x, y, z \in I
$$

and $j_{\alpha-\beta}(z)=z^{\alpha+\beta} J_{\alpha-\beta}(z), \quad(z \in I)$. The map $\phi \mapsto \tau_{x} \phi$ is a continuous endomorphism of $\mathcal{H}_{\alpha, \beta}$.
Further

$$
\begin{equation*}
\left(h_{\alpha, \beta} \tau_{x} \phi\right)(t)=t^{2 \beta-1} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \phi\right)(t), \quad t \in I \tag{2.1}
\end{equation*}
$$

whenever $\phi \in \mathcal{H}_{\alpha, \beta}$ and $x \in I$.
If $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $x \in I$, we define $\tau_{x} u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ by traposition:

$$
\begin{equation*}
\left\langle\tau_{x} u, \phi\right\rangle=\left\langle u, \tau_{x} \phi\right\rangle, \quad \phi \in \mathcal{H}_{\alpha, \beta} \tag{2.2}
\end{equation*}
$$

The following analogue of (2.1) holds for the generalized translation (2.2).

Lemma 2.1. Let $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $x \in I$. Then

$$
\left(h_{\alpha, \beta}^{\prime} \tau_{x} u\right)(t)=t^{2 \beta-1} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta}^{\prime} u\right)(t), \quad t \in I
$$

Proof. Let $u \in \mathcal{H}_{\alpha, \beta}^{\prime}, x \in I$ and $\phi \in \mathcal{H}_{\alpha, \beta}$. Then a combination of (2.1) and (2.2) gives

$$
\begin{aligned}
\left\langle h_{\alpha, \beta}^{\prime} \tau_{x} u, h_{\alpha, \beta} \phi\right\rangle & =\left\langle\tau_{x} u, \phi\right\rangle=\left\langle u, \tau_{x} \phi\right\rangle=\left\langle h_{\alpha, \beta}^{\prime} u, h_{\alpha, \beta} \tau_{x} \phi\right\rangle \\
& =\left\langle\left(h_{\alpha, \beta}^{\prime} u\right)(t), t^{2 \beta-1} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta} \phi\right)(t)\right\rangle \\
& =\left\langle t^{2 \beta-1} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta}^{\prime} u\right)(t),\left(h_{\alpha, \beta}^{\prime} \phi\right)(t)\right\rangle .
\end{aligned}
$$

This completes the proof. The classical Hankel convolution $\phi * \psi$ of $\phi, \psi \in \mathcal{H}_{\alpha, \beta}$ is the function

$$
\phi * \psi(x)=\int_{0}^{\infty} \phi(y)\left(\tau_{x} \psi\right)(y) d y, \quad x \in I
$$

The map $(\phi, \psi) \mapsto \phi * \psi$ is continuous from $\mathcal{H}_{\alpha, \beta} \times \mathcal{H}_{\alpha, \beta}$ into $\mathcal{H}_{\alpha, \beta}$. The generalized Hankel type convolution $u * \phi$ of $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $\phi \in \mathcal{H}_{\alpha, \beta}$ is the distribution given by

$$
\langle u * \phi, \psi\rangle=\langle u, \phi * \psi\rangle, \quad \psi \in \mathcal{H}_{\alpha, \beta} .
$$

The map $(u, \phi) \mapsto u * \phi$ is separately continuous from $\mathcal{H}_{\alpha, \beta}^{\prime} \times \mathcal{H}_{\alpha, \beta}$ into $\mathcal{H}_{\alpha, \beta}^{\prime}$, when $\mathcal{H}_{\alpha, \beta}^{\prime}$ is endowed either with its weak* or its strong topology.
Finally, for $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $T \in O_{\alpha, \beta, *}^{\prime}$, the generalized function $u * T \in \mathcal{H}_{\alpha, \beta}^{\prime}$ defined as

$$
\begin{equation*}
\langle u * T, \phi\rangle=\langle u, T * \phi\rangle, \quad \phi \in \mathcal{H}_{\alpha, \beta} . \tag{2.3}
\end{equation*}
$$

Note that each of these definitions, extends the previous one. Moreover,

$$
\begin{equation*}
\left(h_{\alpha, \beta}^{\prime} u * T\right)(t)=t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(h_{\alpha, \beta}^{\prime} u\right)(t), t \in I \tag{2.4}
\end{equation*}
$$

whenever $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $T \in O_{\alpha, \beta, *}^{\prime}$.
If $C_{\alpha, \beta}=2^{\alpha-\beta} \Gamma(3 \alpha+\beta)$ then the element $\delta_{\alpha-\beta}$ of $O_{\alpha, \beta, *}^{\prime}$ given by

$$
\left\langle\delta_{\alpha-\beta}, \phi\right\rangle=C_{\alpha, \beta} \lim _{x \rightarrow 0^{+}} x^{2 \beta-1} \phi(x), \quad \phi \in \mathcal{H}_{\alpha, \beta}
$$

is an identity for (2.3).
The generalized $*$-convolution commutes with Hankel type translations:
Lemma 2.2. Let $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $x \in I$. If $T \in O_{\alpha, \beta, *}^{\prime}$, then

$$
\tau_{x}(u * T)=\left(\tau_{x} u\right) * T=u *\left(\tau_{x} T\right)
$$

Proof. Since $h_{\alpha, \beta}^{\prime}$ is an automorphism of $\mathcal{H}_{\alpha, \beta}^{\prime}$, we prove the lemma by fixing $t \in I$ and using Lemma 2.1, along with (2.4) to write,

$$
\begin{array}{ll}
\left(h_{\alpha, \beta}^{\prime} \tau_{x}(u * T)\right)(t)=t^{2 \beta-1} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta}^{\prime} u * T\right)(t) & =t^{4 \beta-2} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(h_{\alpha, \beta}^{\prime} u\right)(t) \\
\left(h_{\alpha, \beta}^{\prime}\left(\tau_{x} u\right) * T\right)(t)=t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(h_{\alpha, \beta}^{\prime} \tau_{x} u\right)(t) & =t^{4 \beta-2} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(h_{\alpha, \beta}^{\prime} u\right)(t) \\
\left(h_{\alpha, \beta}^{\prime} u *\left(\tau_{x} T\right)\right)(t)=t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} \tau_{x} T\right)(t)\left(h_{\alpha, \beta}^{\prime} u\right)(t) & =t^{4 \beta-2} j_{\alpha-\beta}(x t)\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(h_{\alpha, \beta}^{\prime} u\right)(t)
\end{array}
$$

Thus proof is completed. Now we are ready to prove the following theorem.

Theorem 2.1. If $T \in O_{\alpha, \beta, *}^{\prime}$ and L is the element of $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ defined by

$$
\begin{equation*}
L \phi=T * \phi, \quad \phi \in \mathcal{H}_{\alpha, \beta} \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\tau_{x} L=L \tau_{x}, \quad x \in I \tag{2.6}
\end{equation*}
$$

conversely, if $L \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ satisfies (2.6) then there exists a unique $T \in O_{\alpha, \beta, *}^{\prime}$ for which (2.5) holds.
Proof. Let $T \in O_{\alpha, \beta, *}^{\prime}$. The fact that $L \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ defined by (2.5) satisfies (2.6) is contained in Lemma 2.2.On the other hand, assume that $L \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ is such that (2.6) holds, and define $T \in \mathcal{H}_{\alpha, \beta}^{\prime}$ by

$$
\langle T, \phi\rangle=\left\langle\delta_{\alpha-\beta}, L \phi\right\rangle, \quad \phi \in \mathcal{H}_{\alpha, \beta} .
$$

Then

$$
\begin{aligned}
(T * \phi)(x) & =\left\langle T, \tau_{x} \phi\right\rangle=\left\langle\delta_{\alpha-\beta}, L \tau_{x} \phi\right\rangle=\left\langle\delta_{\alpha-\beta}, \tau_{x} L \phi\right\rangle \\
& =\left(\delta_{\alpha-\beta} * L \phi\right)(x)=(L \phi)(x), \quad x \in I,
\end{aligned}
$$

whenever $\phi \in \mathcal{H}_{\alpha, \beta}$, which proves (2.5). As $O_{\alpha, \beta, *}^{\prime}$ is the space of convolution operators of $\mathcal{H}_{\alpha, \beta}$, it follows from (2.5) that $T \in O_{\alpha, \beta, *}^{\prime}$. As to the uniqueness assertion, note that if $S \in O_{\alpha, \beta, *}^{\prime}$ is such that $S * \phi=0$ for every $\phi \in \mathcal{H}_{\alpha, \beta}$, then $S=0$. In fact, $S * \phi=0\left(\phi \in \mathcal{H}_{\alpha, \beta}\right)$ and (2.4) imply $t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right) \psi(t)=0,\left(\psi \in \mathcal{H}_{\alpha, \beta}, t \in I\right)$. By particularizing $\psi(t)=t^{2 \alpha} e^{-t^{2}}(t \in I)$ we find that $t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)=0$, whence $\left(h_{\alpha, \beta}^{\prime} S\right)=0$ and $S=0$. This completes the proof. The following result will help in characterising the elements of $O_{\alpha, \beta, *}^{\prime}$ as those in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ that commute with Hankel type translations.

Lemma 2.3. The linear hull of the set of generalized functions of the form $\tau_{x} \delta_{\alpha-\beta}(x \in I)$ is weakly* dense in $\mathcal{H}_{\alpha, \beta}^{\prime}$.
Proof. As $\left(h_{\alpha, \beta}^{\prime} \delta_{\alpha-\beta}\right)(t)=t^{2 \alpha}(t \in I)$ by Lemma 2.1, we have

$$
\left(h_{\alpha, \beta}^{\prime} \tau_{x} \delta_{\alpha-\beta}\right)(t)=j_{\alpha-\beta}(x t), \quad x, t \in I .
$$

If $\phi \in \mathcal{H}_{\alpha, \beta}$ does not vanish identically then there exists $x \in I$ such that $\phi(x) \neq 0$ and hence

$$
\begin{aligned}
\left\langle\tau_{x} \delta_{\alpha-\beta}, \phi\right\rangle & =\left\langle h_{\alpha, \beta}^{\prime} \tau_{x} \delta_{\alpha-\beta}, h_{\alpha, \beta} \phi\right\rangle \\
& =\int_{0}^{\infty}\left(h_{\alpha, \beta} \phi\right)(t) j_{\alpha-\beta}(x t) d t=\phi(x) \neq 0
\end{aligned}
$$

This shows that the subset $\left\{\tau_{x} \delta_{\alpha-\beta}\right\}_{x \in I}$ of $\mathcal{H}_{\alpha, \beta}^{\prime}$ separates points in $\mathcal{H}_{\alpha, \beta}$. By [3], problem $W(b)$, this family is total in $\mathcal{H}_{\alpha, \beta}^{\prime}$ with respect to the weak* topology.
Thus proof is completed.
Theorem 2.2. If $T \in O_{\alpha, \beta, *}^{\prime}$ and $L \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$ is defined by

$$
\begin{equation*}
L u=u * T, \quad u \in \mathcal{H}_{\alpha, \beta}^{\prime}, \tag{2.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\tau_{x} L=L \tau_{x}, \quad x \in I \tag{2.8}
\end{equation*}
$$

and also

$$
\begin{equation*}
L \delta_{\alpha-\beta} \in O_{\alpha, \beta, *}^{\prime} \tag{2.9}
\end{equation*}
$$

Conversely, given $L \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$ satisfying (2.8) and (2.9), a unique $T \in O_{\alpha, \beta, *}^{\prime}$, may be found so that (2.7) holds.
Proof. Note that L given by (2.7) satisfies (2.8) is a consequence of Lemma2.2. Clearly it also satisfies (2.9). Conversely, Let $L \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ be such that both (2.8) and (2.9) hold. Then

$$
\begin{equation*}
L\left(u * \delta_{\alpha-\beta}\right)=u *\left(L \delta_{\alpha-\beta}\right), \quad u \in \mathcal{H}_{\alpha, \beta}^{\prime} \tag{2.10}
\end{equation*}
$$

To demonstrate (2.10), define from $\mathcal{H}_{\alpha, \beta}^{\prime}$ into $\mathcal{H}_{\alpha, \beta}^{\prime}$ the linear map

$$
\Lambda u=L\left(u * \delta_{\alpha-\beta}\right)-u *\left(L \delta_{\alpha-\beta}\right), \quad u \in \mathcal{H}_{\alpha, \beta}^{\prime}
$$

The definition of Λ is consistent by virtue of (2.9). Since $\Lambda \in \mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$, its kernel is a closed subspace of $\mathcal{H}_{\alpha, \beta}^{\prime}$. In view of (2.8) this kernel contains $\tau_{x} \delta_{\alpha-\beta}(x \in I)$, and hence (Lemma 2.3) it is also dense in $\mathcal{H}_{\alpha, \beta}^{\prime}$. Therefore (2.10) holds.

Now, letting $T=L \delta_{\alpha-\beta}$ we have

$$
u * T=u *\left(L \delta_{\alpha-\beta}\right)=L\left(u * \delta_{\alpha-\beta}\right)=L u
$$

which proves (2.7).
As to the uniqueness assertion, assume that $S \in O_{\alpha, \beta, *}^{\prime}$ is not the zero distribution, so that $\phi \in \mathcal{H}_{\alpha, \beta}$ exists for which $S * \phi \neq 0$. Since $\mathcal{H}_{\alpha, \beta}^{\prime}$ separates points in $\mathcal{H}_{\alpha, \beta}$ we may find $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ such that

$$
\langle u * S, \phi\rangle=\langle u, S * \phi\rangle \neq 0
$$

This completes the proof.
3. A property of convolution operators

Motivated by Theorem 2 in [5], our aim in this section is to prove the following theorem.
Theorem 3.1. Let $(\alpha-\beta) \geq-1 / 2$. For $S \in O_{\alpha, \beta, *}^{\prime}$, the following are euivalent:
(i) To every $k \in \mathbb{N}$ there correspond $m, n \in \mathbb{N}$ and a positive constant M, such that

$$
\max _{0 \leq l \leq m} \sup \left\{\left|\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right|: t \in I,|x-t| \leq\left(1+x^{2}\right)^{-k}\right\} \geq\left(1+x^{2}\right)^{-n}
$$

whenever $x \in I, x \geq M$.
(ii) If $T \in O_{\alpha, \beta, *}^{\prime}$ and $S * T \in \mathcal{H}_{\alpha, \beta}$, then $T \in \mathcal{H}_{\alpha, \beta}$.

Proof. Suppose that (ii) is not satisfied. Then there exist $T \in O_{\alpha, \beta, *}^{\prime}$ such that $S * T \in \mathcal{H}_{\alpha, \beta}$, but $T \notin \mathcal{H}_{\alpha, \beta}$. This shows that $t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t) \in O, t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t) \in \mathcal{H}_{\alpha, \beta}$, and $h_{\alpha, \beta}^{\prime} T \notin \mathcal{H}_{\alpha, \beta}$.
As both $t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)$ and $t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)$ lie in O, to every $t \in \mathbb{N}$ there correspond $r_{l} \in \mathbb{N}, M_{l}>0$ satisfying

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right| \leq M_{l}\left(1+t^{2}\right)^{r_{l}}, \quad t \in I \tag{3.1}
\end{equation*}
$$

and $s_{l} \in \mathbb{N}, N_{l}>0$ satisfying

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right| \leq N_{l}\left(1+t^{2}\right)^{s_{l}}, \quad t \in I \tag{3.2}
\end{equation*}
$$

Moreover, as $h_{\alpha, \beta}^{\prime} T \notin \mathcal{H}_{\alpha, \beta}$, there are $l_{0}, n_{0} \in \mathbb{N}$ and a sequence $\left\{t_{j}\right\}_{j \in \mathbb{N}}$ in I, such that $t_{j} \rightarrow \infty$ as $j \rightarrow \infty$ and

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{l_{0}} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right|_{t=t_{j}} \mid \geq\left(1+t_{j}^{2}\right)^{-n_{0}}, \quad j \in \mathbb{N} . \tag{3.3}
\end{equation*}
$$

Set $k=s_{l_{0}+1}+n_{0}+2$, and define

$$
\begin{equation*}
B_{j, k}=\left\{t \in I:\left|t-t_{j}\right| \leq\left(1+t_{j}^{2}\right)^{-k}\right\}, \quad j \in \mathbb{N} . \tag{3.4}
\end{equation*}
$$

From (3.2) and (3.3) we can infer that, for sufficiently large j,

$$
\begin{equation*}
\inf _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{l_{0}} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right| \geq \frac{1}{2}\left(1+t_{j}^{2}\right)^{-n_{0}}>0 \tag{3.5}
\end{equation*}
$$

Indeed, if j is large enough and if $t \in B_{j, k}$, then

$$
\begin{aligned}
& \left|\left(t^{-1} D\right)^{l_{0}} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right| \\
& \geq\left|\left(y^{-1} D\right)^{l_{0}} y^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(y)\right|_{y=t_{j}}\left|-\left(t_{j}+\left(1+t_{j}^{2}\right)^{-k}\right)\left(1+t_{j}^{2}\right)^{-k} \sup _{y \in B_{j, k}}\right|\left(y^{-1} D\right)^{l_{0}+1} y^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(y) \mid \\
& \geq\left(1+t_{j}^{2}\right)^{-n_{0}}-C\left(1+t_{j}^{2}\right)^{s_{0}+1}-k+1 \\
& =\left(1+t_{j}^{2}\right)^{-n_{0}}-C\left(1+t_{j}^{2}\right)^{-n_{0}-1},
\end{aligned}
$$

where $C>0$ is a constant independent from j.This proves (3.5).
Now $t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t) \in \mathcal{H}_{\alpha, \beta}$, and therefore

$$
\begin{equation*}
\sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{l} t^{4 \beta-2}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right), \quad l, n \in \mathbb{N}, j \rightarrow \infty . \tag{3.6}
\end{equation*}
$$

Clearly, For fixed $l, n \in \mathbb{N}$ we may write

$$
\begin{aligned}
\sup _{t \in B_{j, k}} & \left|\left(t^{-1} D\right)^{l} t^{4 \beta-2}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right| \\
& =\sup _{|t| \leq\left(1+t_{j}^{2}\right)^{-k}}\left|\left(y^{-1} D\right)^{l} y^{4 \beta-2}\left(h_{\alpha, \beta}^{\prime} S\right)(y)\left(h_{\alpha, \beta}^{\prime} T\right)(y)\right|_{y=t+t_{j}} \mid \\
& \leq C_{n, l} \sup _{|t| \leq\left(1+t_{j}^{2}\right)^{2}-k}\left|\left(1+\left(t+t_{j}\right)^{2}\right)^{-n} \leq C_{n, l}\right|\left(1+t_{j}^{2}-\left(1+t_{j}^{2}\right)^{-k}\right)^{-n},
\end{aligned}
$$

where $C_{n, l}>0$ is a constant, and the right hand side of this inequality is clearly $O\left(\left(1+t_{j}^{2}\right)^{-n}\right)$ as $j \rightarrow \infty$.
Next we prove that

$$
\begin{equation*}
\max _{0 \leq l \leq m} \sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right), \quad m, n \in \mathbb{N}, j \rightarrow \infty \tag{3.7}
\end{equation*}
$$

a contradiction to (i). In the sequal, n will denote an arbitrary positive integer.
We first assume that $l_{0}=0$ and proceed by induction on m.In view of (3.5) and (3.6), we have

$$
\begin{aligned}
\sup _{t \in B_{j, k}}\left|t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right| & \leq 2\left(1+t_{j}^{2}\right)^{-n_{0}} \sup _{t \in B_{j, k}}\left|t^{4 \beta-2}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right| \\
& =O\left(\left(1+t_{j}^{2}\right)^{-n}\right), \quad j \rightarrow \infty
\end{aligned}
$$

Thus, condition (3.7) is satisfied for $m=0$.
Now suppose that (3.7) holds for some m. We must prove that it also holds for $m+1$.
By Leibnitz's rule,

$$
\begin{aligned}
t^{2 \beta-1} & \left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(t^{-1} D\right)^{m+1} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t) \\
& =\sum_{i=0}^{m+1}(-1)^{i}\binom{m+1}{i}\left(t^{-1} D\right)^{m+1-i} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(t^{-1} D\right)^{i} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t), \quad t \in I
\end{aligned}
$$

Bearing in mind (3.2), (3.6) and the induction hypothesis, we find that

$$
\sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{m+1-i} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(t^{-1} D\right)^{i} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right)
$$

as $j \rightarrow \infty$, whenever $0 \leq i \leq m+1$. Consequently

$$
t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(t^{-1} D\right)^{m+1} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)
$$

satisfies this very estimate, and from (3.5) we conclude

$$
\begin{aligned}
\sup _{t \in B_{j, k}} & \left|\left(t^{-1} D\right)^{m+1} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right| \\
& \leq 2\left(1+t_{j}^{2}\right)^{-n_{0}} \sup _{t \in B_{j, k}}\left|t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\left(t^{-1} D\right)^{m-1} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right| \\
& =O\left(\left(1+t_{j}^{2}\right)^{-n}\right), \quad j \rightarrow \infty .
\end{aligned}
$$

This shows that (3.7) holds when $l_{0}=0$ Next, assume that $l_{0} \neq 0$ and l_{0} is the smallest positive integer for which $n_{0} \in \mathbb{N}$ and a sequence $\left\{t_{j}\right\}_{j \in \mathbb{N}}$ in I may be found so that (3.3) (and hence (3.5), with large enough j) is satisfied.

This means that

$$
\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)=O\left(\left(1+t_{j}^{2}\right)^{-n}\right), l<l_{0}, t \rightarrow \infty
$$

Arguing as in the proof of (3.6) we are led to

$$
\begin{equation*}
\sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right), l<l_{0}, j \rightarrow \infty \tag{3.8}
\end{equation*}
$$

By virtue of Leibnitz's rule,

$$
\begin{aligned}
t^{2 \beta-1} & \left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(t^{-1} D\right)^{l_{0}} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t) \\
& =\sum_{l=0}^{l_{0}}(-1)^{l}\binom{l_{0}}{l}\left(t^{-1} D\right)^{l_{0}-l}\left(t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)\right)(t), \quad t \in I
\end{aligned}
$$

Then, from (3.1), (3.6) and (3.8) it follows that

$$
\begin{equation*}
\sup _{t \in B_{j, k}}\left|t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(t^{-1} D\right)^{l_{0}} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)(t)\right|=O\left(\left(1+t_{j}^{2}\right)^{-n}\right), j \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Finally, using (3.5), (3.6) and (3.9) we obtain (3.7) by an argument similar to that employed in the case $l_{0}=0$. This completes the proof that (i) implies (ii).
Conversely, suppose that (i) does not hold. Then there exist $k \in \mathbb{N}$ and a sequence $\left\{t_{j}\right\}_{j \in \mathbb{N}}$ in I, with $t_{j} \rightarrow \infty$ as $j \rightarrow \infty$ such that

$$
\begin{equation*}
\max _{0 \leq l \leq j} \sup _{t \in B_{j, k}}\left|\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right|<\left(1+t_{j}^{2}\right)^{-j}, j \in \mathbb{N} \tag{3.10}
\end{equation*}
$$

where the sets $B_{j, k}$ are given by (3.4). There is no loss of generality in assuming that $t_{0}>1$ and $t_{j+1}>t_{j}+1$. Let $a \in \mathcal{D}(I)$ be such that $0 \leq a \leq 1, \operatorname{supp} a=[1 / 2,3 / 2]$ and $a(1)=1$, and set

$$
\theta_{j}(t)=a\left(1+\frac{1}{2}\left(t-t_{j}\right)\left(1+t_{j}^{2}\right)^{k}\right), \theta(t)=\sum_{j=0}^{\infty} \theta_{j}(t), \quad t \in I .
$$

The sum defining θ is finite, because $\operatorname{supp} \theta_{j}=B_{j, k}(j \in \mathbb{N})$ and $B_{i, k} \cap B_{j, k}=\phi(i, j \in \mathbb{N}, i \neq j)$. If $l, j \in \mathbb{N}$ and $t \in B_{j, k}$ then for some $a_{m} \in \mathbb{R}(0 \leq m \leq l)$, we have

$$
\begin{aligned}
\left|\left(t^{-1} D\right)^{l} \theta(t)\right| & =\left|\left(t^{-1} D\right)^{l} \theta_{j}(t)\right| \\
& =\sum_{m=0}^{l}\left|a_{m} t^{-l-m} D^{m} \theta_{j}(t)\right| \\
& \leq 2^{l+m} \sum_{m=0}^{l}\left|a_{m} D^{m} \theta_{j}(t)\right| \\
& \left.\leq C_{l} 2^{-k l}\left(1+t_{j}^{2}\right)^{k l} \sum_{m=0}^{l}\left|D^{m} \theta_{j}(y)\right|_{y=1+\frac{1}{2}\left(t-t_{j}\right)\left(1+t_{j}^{2}\right)^{k}} \right\rvert\, \\
& \leq C_{l}\left(1+t_{j}^{2}\right)^{k l} \leq C_{l}\left(1+t^{2}\right)^{k l}
\end{aligned}
$$

where $C_{l}>0$ denotes an appropriate constant (not necessarily the same in each occurrence). Then

$$
\begin{equation*}
\left|\left(t^{-1} D\right)^{l} \theta(t)\right| \leq C_{l}\left(1+t^{2}\right)^{k l}, \quad t \in I \tag{3.11}
\end{equation*}
$$

thus proving that $\theta \in O$. Thus, there exist $T \in O_{\alpha, \beta, *}^{\prime}$ such that $\left(h_{\alpha, \beta}^{\prime}\right)(t)=t^{2 \alpha} \theta(t), t \in I$.
Let $n, l \in \mathbb{N}$. Thus function

$$
\left(1+t^{2}\right)^{n}\left(t^{-1} D\right)^{l} t^{4 \beta-2}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t), \quad t \in I
$$

is bounded on the interval $0<t<t_{n+k l}-\left(1+t_{n+k l}^{2}\right)^{-k}$. Letting $j=n+k l+r(r \in \mathbb{N})$ and $t \in B_{j, k}$, Leibnitz rule, along with (3.10) and (3.11), implies

$$
\begin{aligned}
\mid(1+ & \left.t^{2}\right)^{n}\left(t^{-1} D\right)^{l} t^{4 \beta-2}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t) \mid \\
& =\left|\left(1+t^{2}\right)^{n}\left(t^{-1} D\right)^{l} t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t) \theta(t)\right| \\
& \leq C\left(1+t^{2}\right)^{n+k l}\left(1+t_{j}^{2}\right)^{-n-k l} \leq C,
\end{aligned}
$$

where $C>0$ is a suitable constant (concerning the value of C, we make the same convolution as before). This shows that

$$
t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\left(h_{\alpha, \beta}^{\prime} T\right)(t) \in \mathcal{H}_{\alpha, \beta} . \quad \text { But } h_{\alpha, \beta}^{\prime} T \in \mathcal{H}_{\alpha, \beta}
$$

Since

$$
t_{j}^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} T\right)\left(t_{j}\right)=a(1)=1 ; \quad \text { as } t_{j} \rightarrow \infty(j \rightarrow \infty)
$$

We conclude that $T \in O_{\alpha, \beta, *}^{\prime}$ and that $S * T \in \mathcal{H}_{\alpha, \beta}$ although $T \notin \mathcal{H}_{\alpha, \beta}$ which contradict (ii) and completes the proof.

4. Conclusion

In the present research article, we have accomplished two major objectives regarding Hankel type convolution operator. Firstly, $O_{\alpha, \beta, *}^{\prime}$ elements are defined as those in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}\right)$ and in $\mathcal{L}\left(\mathcal{H}_{\alpha, \beta}^{\prime}\right)$ that commute with Hankel translations. Furthermore, we obtain certain results that aid in proving the objective.
Secondly, To ensure that every $T \in O_{\alpha, \beta, *}^{\prime}$ such that $S * T \in \mathcal{H}_{\alpha, \beta}$ lie in $\mathcal{H}_{\alpha, \beta}$, necessary and sufficient conditions on the generalised Hankel type transform $h_{\alpha, \beta}^{\prime} S$ of $S \in O_{\alpha, \beta, *}^{\prime}$ are established.
The findings of this research may be significant for areas in engineering, physics and mathematics.

References

[1] M. Belhadj and J. J. Betancor, Hankel convolution operators on entire functions and distributions, J. Math. Anal. Appl., 276(1) (2002), 40-63.
[2] J. J. Betancor and I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon., 38(6) (1993), 1141-1155.
[3] J. L. Kelley, General Topology, D.van Nostrand, Princeton, New Jersey, 1968.
[4] I. Marrero and J. J. Betancor, Hankel Convolution of generalized functions, Rendiconti di Matematica e delle sue Applicazioni. Serie VII, 15(3-4) (1995), 351.
[5] S. Sznajder and Z. Zielezny, On some properties of convolution operators in \mathcal{K}_{1}^{\prime} and S^{\prime}, J. Math. Anal. Appl., 65 (1978), 543-554.
[6] A. H. Zemanian, Generalized Integral Transformations, Interscience,New York, 1968.

