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Abstract

/

8 DE the space of
for which O]

Let (H(;ﬁ be the Zemanian type space of Hankel transformable generalised functions and let O

Hankel convolution operators for ‘H(; - This 7{;  1s the dual of a subspace H, 5 of O is also the

@B Bk
space of Hankel convolution. In this paper the elements of 0; .- are characterised as those in £ (‘]-{(,ﬁ) andin £ (‘H; ﬁ)
that commute with Hankel translations. Moreover, necessary and sufficient condition on the generalised Hankel type
transform h; ﬁS of § € O; 5. ATC established in order that every T € O, such that § = T € H,, g lie in H, 4.
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1. Introduction
Following Zemanian [6], we denote by H, s the space of Hankel transformable functions, (@ — 8) € R. H, g consists
of all those infinitely differentiable functions ¢ = ¢(x) defined on I = (0, co) such that

p:ﬁ = sup |(1 + 25" (x7 Dyf X! ¢(x)| <, m, k € N.
’ xel

a3

‘H., s being a Frechet Space when endowed with the topology generated by the family of seminorms {pm k}(m persar

The Hankel type transformation

(Page) (1) = fo $(x) ()™ Jo_p(xt) dx

is an automorphism of H, g; provided (o — ) > ~1 where Jo-p denotes the Bessel type function of first kind and of
order (@ — ). If (@ —B) > —%, the generalized Hankel type transformation h;’ﬁ is defined on 'Ha,g the dual space of
Hep as the adjoint of /5. Then ki, is an automorphism of H,, ;.

Following [1],[2] and [4], for (@ —f3) > —%, we introduce the subspace O

q

a.f,*
such that 6(x) = x*-! (h:y’ﬁ T) (x) is a smooth function on I with the property that for every k € N there exists n; € N
satisfying

of 7'((;# as the space of all those T € 7—{(/%

sup |(1+xH)™ (7' DY ¢(x)] < oo
X€E.

Clearly, H, g is a subspace of O;ﬁ,*.The space O of all those smooth functions 8 = 6(x) on I possessing the above
property turns out to be the space of multiplication operators on H, g and on 7{;’[3 ((@ = B) € R), whereas O;ﬁ’* is the
space of convolution operators on H, g and on H, ;ﬁ ((a—=p) = -1/2).

Throughout this paper we shall always assume that (o — ) is a real number > —1/2 and, unless otherwise stated, that
(}{(;,,6’ is endowed with its weak* topology.

2. Characterization of O, ,  in £ (‘Ha,ﬁ) and in £ (‘H(;ﬁ)

Let £ (?{Qﬁ) ( respectively, £ ('H(Y 5

itself. The characterization of elements in £ (ﬂa,ﬁ) and in £ (7{;#) that commute with Hankel type translation is our
first objective.

) ) denote the space of all linear continuous operator from H,, g ( resp. Wr;,ﬁ ) into
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We recall that the Hankel type translation 7,¢ of ¢ € H, g by x € I is defined as

() () = fo #(2) Dop(x,y,2)dz, yE€I,
where,

Dapl.3,2) = f I o) JuopOT) JapGOt,  xy.z € I,
0

and j,p(z) = 720+ Jo-p(2), (z€I). The map ¢ — 7.¢ is a continuous endomorphism of H,, g.
Further
(hap 72 8) (0 = 7 joup(at) (hag @) (1), €1 .1

whenever ¢ € H, 3 and x € 1.
Ifue “H(;ﬁ and x € I, we define T,u € (H[;ﬁ by traposition:

(Tt @) = (U, 75¢), ¢ € Hyp. 2.2)
The following analogue of (2.1) holds for the generalized translation (2.2).

Lemma 2.1. Letu € H, , and x € I. Then
(Pp Tett) () = 227" jop(at) (B gu) (), 1€
Proof. Letu € 7-{(;#, x €I and ¢ € H,p. Then a combination of (2.1) and (2.2) gives
(B Tty ha @) = (Tatt, @) = (U, 7) = (g1, hop 7 )
= (g u) @) 257 jurp(axt) (hap 6) ()
= (P27 jap(axt) (R pu) @), (R, 5 0) (D))
This completes the proof. The classical Hankel convolution ¢ * ¢ of ¢, € H, g is the function
prut= [ o o xel

The map (¢, ) = ¢ = is continuous from H, g X H, g into H, 3. The generalized Hankel type convolution u * ¢
ofue ?{;’ﬁ and ¢ € H, p is the distribution given by

(ux¢, ) =Cu, ¢4y, ¥ eHp.
The map (u, ¢) — u* ¢ is separately continuous from 7-{;”8 x H, p into 7'[&/; when ﬂ;’ﬁ is endowed either with its
weak* or its strong topology.

Finally, for u € H, ;and T € O, , , the generalized function u x T € H,, ; defined as

a,f*°
w=T, o) =u,Tx+¢), ¢€Hyp. (2.3)
Note that each of these definitions, extends the previous one. Moreover,
(hogusT) @0y =227 (h, s T) (@) (hypu) (@, €1 (2.4)

whenever u € ?{;ﬁ and T € O;ﬁ*.

If Cop = 2P T (3a + P) then the element §,—g of 0,5.
(a-p. #) = Cap lim 27" 9(x), ¢ € Hag
x—0*

given by

is an identity for (2.3).
The generalized *-convolution commutes with Hankel type translations:

’

Lemma 2.2. Letu < ?{;ﬁ and x € 1. If T € O, 5, then
T (uxT)=(tu)*«T =ux(1,T).

Proof. Since I, 5 is an automorphism of , ,, we prove the lemma by fixing 7 € I and using Lemma 2.1, along with
(2.4) to write,

(Pop e s 1)) (1) = 2570 o p(xt) (B gux T) (2) = %72 joop(xt) (ly s T) (@) (5 ) (2),
(g Ty = T) (1) = 2271 (I, y T) (1) (B 5 7tt) (1) = %72 joop(xt) (Hyy T) (@) (I pu) (2),
(h;ﬁu = (0.D) (1) = 27 (b, 57.T) (1) (h;ﬁ u) (1) = %2 jo_p(xt) (W, 5 T) (1) (h;ﬁ u) (1).

Thus proof is completed. Now we are ready to prove the following theorem.
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Theorem 2.1. IfT € O;ﬁ!* and L is the element of L (‘H(,ﬁ) defined by

Lp=Tx¢, ¢€Hyg, 2.5)
then
.L=Lt,, x€l. (2.6)
conversely, if Le L (?{aﬁ) satisfies (2.6) then there exists a unique T € O;”B’* for which (2.5) holds.

’

Proof. LetT € Omﬁ,*. The fact that L € -5(7‘{0,,3) defined by (2.5) satisfies (2.6) is contained in Lemma 2.2.0n the
other hand, assume that L € £ (ﬂaﬁ) is such that (2.6) holds, and define T € ‘H( v by

(T. ) = (0-p. L&), ¢ € Hap.
Then
(T # §)(x) = (T. 7 ) = (Sap LTx0) = (S0-p. Tx L&)
= (0a-p ¥ L) (¥) = (Lp)(x), x €,
whenever ¢ € H, g, which proves (2.5). As 0; B
that T € O:nb’,*' As to the uniqueness assertion, note that if § € O;ﬁ’* is such that § * ¢ = 0 for every ¢ € H, g, then
S = 0. Infact, S # ¢ = 0 (¢ € Hyp) and (2.4) imply 571 (i, ,S)y(t) = 0, () € Hagp, t € I). By particularizing
w(t) = 29 ¢ (¢ € I) we find that 15~ (ha 55 ) (t) = 0, whence (h; 55 ) =0and S = 0. This completes the proof. The

following result will help in characterising the elements of O;ﬁ’* as those in L (7—(0,5) that commute with Hankel type
translations.

is the space of convolution operators of H, g, it follows from (2.5)

Lemma 2.3. The linear hull of the set of generalized functions of the form 7 6,_p (x € I) is weakly* dense in ‘Haﬁ
Proof. As (K, ;6ag) (1) = £2% (t € I) by Lemma 2.1, we have

(P T amp) (1) = jap(xt), x.t€L
If ¢ € H, p does not vanish identically then there exists x € / such that ¢(x) # 0 and hence

<Tx 60—,37 ¢> = <h;,,ﬁ Tx 6(t—,[37 ha,/ﬁ ¢>
= j(; (ha g $)O) Ja-p(xt)dt = $(x) # 0.

This shows that the subset {7, 64—g}rer Of 7-{;,[; separates points in H, g. By [3], problem W(b), this family is total

in T{;ﬁ with respect to the weak™ topology.
Thus proof is completed.

Theorem 2.2. If T € 0, and L € L(H, ) is defined by

Lu=uxT, ue‘]—((;ﬁ, 2.7
then
.L=Lt,, x€l, (2.8)
and also
L64p €0,4.. (2.9)

/

. MAY be found so that (2.7) holds.

Conversely, given L € L(?{Iﬁ) satisfying (2.8) and (2.9), a unique T € O

Proof. Note that L given by (2.7) satisfies (2.8) is a consequence of Lemma2.2. Clearly it also satisfies (2.9).
Conversely, Let L € £ (%,ﬂ) be such that both (2.8) and (2.9) hold. Then
L(u * (5a_ﬂ) =ux* (L 6(,_,;) , UE€ ﬂaﬂ (2.10)

To demonstrate (2.10), define from 7-(0 5 into 7-((;,[3 the linear map

’

Au = L(u * 65,,[;) —u* (Léa,ﬁ), ue Wa’ﬁ.
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The definition of A is consistent by virtue of (2.9). Since A € L(‘}-l(;ﬁ), its kernel is a closed subspace of 7-{;’[3,.
In view of (2.8) this kernel contains 7, d,—g (x € I), and hence (Lemma 2.3) it is also dense in 7—(@. Therefore (2.10)
holds.

Now, letting T = L 6,3 we have

usT =ux(Loyp) = L(u*04-p) = Lu,

which proves (2.7).

As to the uniqueness assertion, assume that S € O;ﬁ* is not the zero distribution, so that ¢ € H, g exists for which
S * ¢ # 0. Since 7-{;’13 separates points in H, 3 we may find u € 7-{;’/3 such that

(u*S, ¢y =Cu, S =¢) #0.
This completes the proof.

3. A property of convolution operators
Motivated by Theorem 2 in [5], our aim in this section is to prove the following theorem.

’

Theorem 3.1. Let (@« —B8) > —1/2. For S € O

o the following are euivalent:

(i) To every k € N there correspond m,n € N and a positive constant M, such that

max sup{|(f1 DY 4 (1S ) (r)| el x—1<(1+ xz)_k} > (1+ )™,
0<il<m k

whenever x € I, x > M.
(ii) IfT € o;ﬁ’* and S « T € Hyp, then T € Hyp.
Proof. Suppose that (ii) is not satisfied. Then there exist T € O'%B’* suchthat S T € H,p, but T ¢ H, . This shows
that 71 (i), ;S ) (1) € O, P57 (1, ;) (1) (I, ; T) (1) € Hap, and ), ; T ¢ Hag.
As both /%! (h;,/s S ) (#) and 2! (h; 5 T) (¢) lie in O, to every ¢ € N there correspond r; € N, M; > 0 satisfying

’(fl D) ! (h'aﬁS)(t)| <M (1+2), tel, G.1)
and s; € N, N; > 0 satisfying
'(f] Dy 7 (K, ,T) (t)‘ <N(+2)", tel (3.2)
Moreover, as h;ﬁ T ¢ H,p, there are ly, nyp € N and a sequence {t j}jeN in I, such that #; — oo as j — co and
'(t" DY 257 (R, y T) D=y, | 2 (1 + )™, jEN. (3.3)
Set k = 55,41 + np + 2, and define
By={rel:|i-r|<a+d™*, jen (3.4)
From (3.2) and (3.3) we can infer that, for sufficiently large j,
) 1
3 -1 l() Zﬁ*l _ 2 —ny
inf o D 27 (1 7) 0] = 31+ > 0. (3.5)

Indeed, if j is large enough and if ¢ € B, then
-1 ryylo 28-1 (7
| Do 25 (K, T) (o)

> 07 DY y# (K T) W=

(1 + A+ ) A+ sup |07 DY P (1, T) )

yEB,-'k
2 (1+£)7 = C(1+17)% 7!
=+ -CA+)™,
where C > 0 is a constant independent from j.This proves (3.5).
Now 725-1 (h;ﬁ S ) ) (h;l P T) (t) € Hap, and therefore
sup |(f1 D) 2 (1,5 S) (1) (W, T) (t)' =0(1+)7"), LneN, j- oo, (3.6)

[EB,‘_k
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Clearly, For fixed /,n € N we may write

sup ‘(t‘l DY 472 (W, ;S) () (s T) (z)|

t€B

= sup |(y7' D) y¥? (haﬁ S) ) (haﬁ T) ODly=r+4;
\l|§(1+t3)’k
-n

<G osup |A+@+1)?) < Cu [ +2 -+,
ll<(1+15)*

where C,,; > 0 is a constant, and the right hand side of this inequality is clearly O ((1 + t?)‘") as j — oo.

Next we prove that

max sup ("' DY P71 (1, S) (0 = O((1+2)"), mneN, j- o,

0<i<m 1€B
a contradiction to (i). In the sequal, n will denote an arbitrary positive integer.
We first assume that [y = 0 and proceed by induction on m.In view of (3.5) and (3.6), we have
sup 'tzﬂ—‘ (1, S) (t)‘ <2(1+2)™ sup ]r“ﬁ—z (7,58 ) ) (s T) (r)]
1€B teBjx
=0(1+2)y™"), j— oo
Thus, condition (3.7) is satisfied for m = 0.

Now suppose that (3.7) holds for some m. We must prove that it also holds for m + 1.
By Leibnitz’s rule,

7 (hy T) (0 (7 DY™ 257 (5 ) ()

m+1

. 1 , , , ,
= Z(—U' (mf“ )(r‘lD)m“—’ 7 (g S) (0 ¢ DY 7 (h,, T) (1), tel

i=0 ! ’ ’
Bearing in mind (3.2), (3.6) and the induction hypothesis, we find that
sup [t DY 2P (hy 5 S) (1) (7 DY P (5 T) (0] = O((1 + 1)),
zerk| ( 5 ) ( B ) | ( j )
as j — oo, whenever 0 < i < m + 1. Consequently

7 (hy T) (0 (' DY™ 257 (5 S) ()

satisfies this very estimate, and from (3.5) we conclude
sup |(t_1 D)m+1 t2ﬁ—l (h:l,ﬁS>(t)|

teBjy

<2(1+)™ sup 1#/“ (W5 T) (0 (" Dy £ (h;,ﬁS)(t)'
€5k

=0(A+6)™"), j—o oo

3.7)

This shows that (3.7) holds when [y = 0 Next, assume that [y # 0 and [ is the smallest positive integer for which

no € N and a sequence {t j}je
This means that

' DY 27 (h, T) ()= O((1+£)7"), 1< lp, t — oo,
Arguing as in the proof of (3.6) we are led to

sup (™! DY P71 (1, T) (0] = O (1 +2)7™), 1< by, > oo.

1€Bx
By virtue of Leibnitz’s rule,
97 (hyy S) @ (¢ DY 257 (B, 5 T) (1)

lo
= Z(—nl (l;)(fl DY (7 (h,z T) 7' DY 257 (), S)) (), 1€l
=0
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Then, from (3.1), (3.6) and (3.8) it follows that
sup |z2ﬁ*1 (,58) @) (™ DY 71 (K, ,T) (t)| =0(A+A™), j— . (3.9)
t€Bjx

Finally, using (3.5), (3.6) and (3.9) we obtain (3.7) by an argument similar to that employed in the case [y = 0.
This completes the proof that (i) implies (ii).
Conversely, suppose that (i) does not hold. Then there exist k£ € N and a sequence {t j}
such that

__in/, witht; - coas j — oo
JjeEN

max_ sup |(f1D)’ P (h;ﬂS)(t)' <(+2)7, jeN; (3.10)

0<i<j teB
where the sets Bj; are given by (3.4). There is no loss of generality in assuming that #p > 1 and 7;,; > ¢; + 1. Let
ae€ D()besuchthat0 <a <1, suppa =[1/2, 3/2] and a(1) = 1, and set
1 (9]
0(t) = a(l + E(’ -1+ t?)k), 0(r) = Z 0;(t), tel
j=0

The sum defining 6 is finite, because supp6; = Bjz(j € N) and Bijx N Bjx = ¢ (i,j € N, i # j). If [, j € N and
t € Bj then for some a,, € R (0 <m <), we have

| DY 6r)| = | D) 0,0)

1
- Z |a 717 D™ 6,(2)|

m=0

l
<2 " Ja, D" 6;00)|
m=0

I
ki 2\
<C277 (1 +1) Z ‘Dm OiDhy=1+ L= 1+
m=0

<CA+)M<ca+r),
where C; > 0 denotes an appropriate constant (not necessarily the same in each occurrence). Then
' DY o) <A+ A, tel, (3.11)

thus proving that 6 € O. Thus, there exist T € O;ﬁ!* such that (haﬁ) ®) =7220@), tel
Let n,/ € N. Thus function

A+ (7 D) 72 (R, S) (1) (Hyy T) (). 1€l

is bounded on the interval 0 < t < .y — (1 + t5+kl)_k' Letting j = n+ kl +r (r € N) and ¢ € B, Leibnitz rule, along
with (3.10) and (3.11), implies
|(1 + 2 (7 DY 472 (1, S) ) (i T) (z)|
- '(1 + 2 (7' DY P (R, S) (1) 9(t)|
<CA+2yHM A+ <,

where C > 0 is a suitable constant (concerning the value of C, we make the same convolution as before). This shows
that

(K, 5 S)(0) (B T) (1) € Hop.  Buth,, T € Hop,

Since
23-1 4 .
T (s T) ) =a(l) = 1; ast;— oo (j > o).

We conclude that T € O;ﬁ,* and that S * T € H, 4 although T ¢ H, 3 which contradict (ii) and completes the
proof.
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4. Conclusion

In the present research article, we have accomplished two major objectives regarding Hankel type convolution operator.
Firstly, O, o, clements are defined as those in L( ) and in .E( ) that commute with Hankel translations.
Furthermore, we obtain certain results that aid in proving the objective.

Secondly, To ensure that every T € 01 B such that § + T € H, 3 lie in H, g, necessary and sufficient conditions on the
generalised Hankel type transform h 55 of § € 00 5, Are established.

The findings of this research may be 31gn1ﬁcant for areas in engineering, physics and mathematics.
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