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Abstract

LetH ′
α,β be the Zemanian type space of Hankel transformable generalised functions and let O

′
α,β,∗ be the space of

Hankel convolution operators for H ′
α,β. This H ′

α,β is the dual of a subspace Hα,β of O
′
α,β,∗ for which O

′
α,β,∗ is also the

space of Hankel convolution. In this paper the elements of O
′
α,β,∗ are characterised as those inL

(
Hα,β

)
and inL

(
H ′

α,β

)
that commute with Hankel translations. Moreover, necessary and sufficient condition on the generalised Hankel type
transform h

′
α,βS of S ∈ O

′
α,β,∗ are established in order that every T ∈ O

′
α,β,∗ such that S ∗ T ∈ Hα,β lie inHα,β.
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1. Introduction
Following Zemanian [6], we denote by Hα,β the space of Hankel transformable functions, (α − β) ∈ R. Hα,β consists
of all those infinitely differentiable functions φ = φ(x) defined on I = (0,∞) such that

ρ
α,β
m,k = sup

x∈I

∣∣∣(1 + x2)m (x−1 D)k x2β−1 φ(x)
∣∣∣ < ∞, m, k ∈ N.

Hα,β being a Frechet Space when endowed with the topology generated by the family of seminorms
{
ρ
α,β
m,k

}
(m,k)∈N×N.

The Hankel type transformation (
hα,βφ

)
(t) =

∫ ∞

0
φ(x) (xt)α+β Jα−β(xt) dx

is an automorphism of Hα,β; provided (α − β) ≥ − 1
2 , where Jα−β denotes the Bessel type function of first kind and of

order (α − β). If (α − β) ≥ − 1
2 , the generalized Hankel type transformation h

′
α,β is defined on H ′

α,β, the dual space of
Hα,β as the adjoint of hα,β. Then h

′
α,β is an automorphism ofH ′

α,β.
Following [1],[2] and [4], for (α−β) ≥ − 1

2 , we introduce the subspace O
′
α,β,∗ ofH ′

α,β as the space of all those T ∈ H ′
α,β

such that θ(x) = x2β−1
(
h
′
α,β T

)
(x) is a smooth function on I with the property that for every k ∈ N there exists nk ∈ N

satisfying
sup
x∈I

∣∣∣(1 + x2)−nk (x−1 D)k φ(x)
∣∣∣ < ∞.

Clearly,Hα,β is a subspace of O
′
α,β,∗.The space O of all those smooth functions θ = θ(x) on I possessing the above

property turns out to be the space of multiplication operators onHα,β and onH ′
α,β ((α − β) ∈ R), whereas O

′
α,β,∗ is the

space of convolution operators onHα,β and onH ′
α,β ((α − β) ≥ −1/2).

Throughout this paper we shall always assume that (α − β) is a real number ≥ −1/2 and, unless otherwise stated, that
H ′

α,β is endowed with its weak* topology.

2. Characterization of O
′
α,β,∗ in L

(
Hα,β

)
and in L

(
H ′

α,β

)
Let L

(
Hα,β

)
( respectively, L

(
H ′

α,β

)
) denote the space of all linear continuous operator fromHα,β ( resp. H ′

α,β ) into

itself. The characterization of elements in L
(
Hα,β

)
and in L

(
H ′

α,β

)
that commute with Hankel type translation is our

first objective.
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We recall that the Hankel type translation τxφ of φ ∈ Hα,β by x ∈ I is defined as

(τxφ)(y) =

∫ ∞

0
φ(z) Dα,β(x, y, z) dz, y ∈ I,

where,

Dα,β(x, y, z) =

∫ ∞

0
t2β−1 jα−β(xt) jα−β(yt) jα−β(zt)dt, x, y, z ∈ I,

and jα−β(z) = zα+β Jα−β(z), (z ∈ I). The map φ 7→ τxφ is a continuous endomorphism ofHα,β.
Further (

hα,β τx φ
)

(t) = t2β−1 jα−β(xt)
(
hα,β φ

)
(t), t ∈ I (2.1)

whenever φ ∈ Hα,β and x ∈ I.
If u ∈ H ′

α,β and x ∈ I, we define τxu ∈ H ′
α,β by traposition:
〈τxu, φ〉 = 〈u, τxφ〉 , φ ∈ Hα,β. (2.2)

The following analogue of (2.1) holds for the generalized translation (2.2).

Lemma 2.1. Let u ∈ H ′
α,β and x ∈ I. Then(

h
′
α,β τx u

)
(t) = t2β−1 jα−β(xt)

(
h
′
α,β u

)
(t), t ∈ I.

Proof. Let u ∈ H ′
α,β, x ∈ I and φ ∈ Hα,β. Then a combination of (2.1) and (2.2) gives〈

h
′
α,β τx u, hα,β φ

〉
= 〈τxu, φ〉 = 〈u, τxφ〉 =

〈
h
′
α,β u, hα,β τx φ

〉
=

〈(
h
′
α,β u

)
(t), t2β−1 jα−β(xt)

(
hα,β φ

)
(t)

〉
=

〈
t2β−1 jα−β(xt)

(
h
′
α,β u

)
(t),

(
h
′
α,β φ

)
(t)

〉
.

This completes the proof. The classical Hankel convolution φ ∗ ψ of φ, ψ ∈ Hα,β is the function

φ ∗ ψ(x) =

∫ ∞

0
φ(y) (τx ψ)(y)dy, x ∈ I.

The map (φ, ψ) 7→ φ ∗ ψ is continuous fromHα,β ×Hα,β intoHα,β. The generalized Hankel type convolution u ∗ φ
of u ∈ H ′

α,β and φ ∈ Hα,β is the distribution given by
〈u ∗ φ, ψ〉 = 〈u, φ ∗ ψ〉 , ψ ∈ Hα,β.

The map (u, φ) 7→ u ∗ φ is separately continuous fromH ′
α,β ×Hα,β intoH ′

α,β, whenH ′
α,β is endowed either with its

weak* or its strong topology.
Finally, for u ∈ H ′

α,β and T ∈ O
′
α,β,∗, the generalized function u ∗ T ∈ H ′

α,β defined as
〈u ∗ T, φ〉 = 〈u,T ∗ φ〉 , φ ∈ Hα,β. (2.3)

Note that each of these definitions, extends the previous one. Moreover,(
h
′
α,β u ∗ T

)
(t) = t2β−1

(
h
′
α,β T

)
(t)

(
h
′
α,β u

)
(t), t ∈ I (2.4)

whenever u ∈ H ′
α,β and T ∈ O

′
α,β,∗.

If Cα,β = 2α−β Γ(3α + β) then the element δα−β of O
′
α,β,∗ given by〈

δα−β, φ
〉

= Cα,β lim
x→0+

x2β−1 φ(x), φ ∈ Hα,β

is an identity for (2.3).
The generalized *-convolution commutes with Hankel type translations:

Lemma 2.2. Let u ∈ H ′
α,β and x ∈ I. If T ∈ O

′
α,β,∗, then

τx (u ∗ T ) = (τx u) ∗ T = u ∗ (τx T ) .

Proof. Since h
′
α,β is an automorphism of H ′

α,β, we prove the lemma by fixing t ∈ I and using Lemma 2.1, along with
(2.4) to write,(

h
′
α,β τx (u ∗ T )

)
(t) = t2β−1 jα−β(xt)

(
h
′
α,β u ∗ T

)
(t) = t4β−2 jα−β(xt)

(
h
′
α,β T

)
(t)

(
h
′
α,β u

)
(t),(

h
′
α,β (τxu) ∗ T

)
(t) = t2β−1

(
h
′
α,β T

)
(t)

(
h
′
α,β τxu

)
(t) = t4β−2 jα−β(xt)

(
h
′
α,β T

)
(t)

(
h
′
α,β u

)
(t),(

h
′
α,β u ∗ (τxT )

)
(t) = t2β−1

(
h
′
α,β τxT

)
(t)

(
h
′
α,β u

)
(t) = t4β−2 jα−β(xt)

(
h
′
α,β T

)
(t)

(
h
′
α,β u

)
(t).

Thus proof is completed. Now we are ready to prove the following theorem.
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Theorem 2.1. If T ∈ O
′
α,β,∗ and L is the element of L

(
Hα,β

)
defined by

Lφ = T ∗ φ, φ ∈ Hα,β, (2.5)

then
τx L = L τx, x ∈ I. (2.6)

conversely, if L ∈ L
(
Hα,β

)
satisfies (2.6) then there exists a unique T ∈ O

′
α,β,∗ for which (2.5) holds.

Proof. Let T ∈ O
′
α,β,∗. The fact that L ∈ L

(
Hα,β

)
defined by (2.5) satisfies (2.6) is contained in Lemma 2.2.On the

other hand, assume that L ∈ L
(
Hα,β

)
is such that (2.6) holds, and define T ∈ H ′

α,β by

〈T, φ〉 =
〈
δα−β, Lφ

〉
, φ ∈ Hα,β.

Then

(T ∗ φ)(x) = 〈T, τx φ〉 =
〈
δα−β, L τxφ

〉
=

〈
δα−β, τx L φ

〉
=

(
δα−β ∗ Lφ

)
(x) = (Lφ)(x), x ∈ I,

whenever φ ∈ Hα,β, which proves (2.5). As O
′
α,β,∗ is the space of convolution operators of Hα,β, it follows from (2.5)

that T ∈ O
′
α,β,∗. As to the uniqueness assertion, note that if S ∈ O

′
α,β,∗ is such that S ∗ φ = 0 for every φ ∈ Hα,β, then

S = 0. In fact, S ∗ φ = 0 (φ ∈ Hα,β) and (2.4) imply t2β−1
(
h
′
α,β S

)
ψ(t) = 0, (ψ ∈ Hα,β, t ∈ I). By particularizing

ψ(t) = t2α e−t2
(t ∈ I) we find that t2β−1

(
h
′
α,β S

)
(t) = 0, whence

(
h
′
α,β S

)
= 0 and S = 0. This completes the proof. The

following result will help in characterising the elements of O
′
α,β,∗ as those in L

(
Hα,β

)
that commute with Hankel type

translations.

Lemma 2.3. The linear hull of the set of generalized functions of the form τx δα−β (x ∈ I) is weakly* dense inH ′
α,β.

Proof. As
(
h
′
α,β δα−β

)
(t) = t2α (t ∈ I) by Lemma 2.1, we have(

h
′
α,β τx δα−β

)
(t) = jα−β(xt), x, t ∈ I.

If φ ∈ Hα,β does not vanish identically then there exists x ∈ I such that φ(x) , 0 and hence〈
τx δα−β, φ

〉
=

〈
h
′
α,β τx δα−β, hα,β φ

〉
=

∫ ∞

0
(hα,β φ)(t) jα−β(xt)dt = φ(x) , 0.

This shows that the subset {τx δα−β}x∈I ofH ′
α,β separates points inHα,β. By [3], problem W(b), this family is total

inH ′
α,β with respect to the weak* topology.

Thus proof is completed.

Theorem 2.2. If T ∈ O
′
α,β,∗ and L ∈ L

(
H ′

α,β

)
is defined by

L u = u ∗ T, u ∈ H ′
α,β, (2.7)

then
τx L = L τx, x ∈ I, (2.8)

and also
L δα−β ∈ O

′
α,β,∗. (2.9)

Conversely, given L ∈ L
(
H ′

α,β

)
satisfying (2.8) and (2.9), a unique T ∈ O

′
α,β,∗ may be found so that (2.7) holds.

Proof. Note that L given by (2.7) satisfies (2.8) is a consequence of Lemma2.2. Clearly it also satisfies (2.9).
Conversely, Let L ∈ L

(
Hα,β

)
be such that both (2.8) and (2.9) hold. Then

L
(
u ∗ δα−β

)
= u ∗

(
L δα−β

)
, u ∈ H ′

α,β. (2.10)

To demonstrate (2.10), define fromH ′
α,β intoH ′

α,β the linear map

Λu = L
(
u ∗ δα−β

)
− u ∗

(
Lδα−β

)
, u ∈ H ′

α,β.
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The definition of Λ is consistent by virtue of (2.9). Since Λ ∈ L
(
H ′

α,β

)
, its kernel is a closed subspace of H ′

α,β.
In view of (2.8) this kernel contains τx δα−β (x ∈ I), and hence (Lemma 2.3) it is also dense inH ′

α,β. Therefore (2.10)
holds.

Now, letting T = L δα−β we have

u ∗ T = u ∗ (L δα−β) = L(u ∗ δα−β) = Lu,

which proves (2.7).
As to the uniqueness assertion, assume that S ∈ O

′
α,β,∗ is not the zero distribution, so that φ ∈ Hα,β exists for which

S ∗ φ , 0. SinceH ′
α,β separates points inHα,β we may find u ∈ H ′

α,β such that

〈u ∗ S , φ〉 = 〈u, S ∗ φ〉 , 0.

This completes the proof.

3. A property of convolution operators
Motivated by Theorem 2 in [5], our aim in this section is to prove the following theorem.

Theorem 3.1. Let (α − β) ≥ −1/2. For S ∈ O
′
α,β,∗, the following are euivalent:

(i) To every k ∈ N there correspond m, n ∈ N and a positive constant M, such that

max
0≤l≤m

sup
{∣∣∣∣(t−1 D)l t2β−1

(
h
′
α,β S

)
(t)

∣∣∣∣ : t ∈ I, |x − t| ≤ (1 + x2)−k
}
≥ (1 + x2)−n,

whenever x ∈ I, x ≥ M.
(ii) If T ∈ O

′
α,β,∗ and S ∗ T ∈ Hα,β, then T ∈ Hα,β.

Proof. Suppose that (ii) is not satisfied. Then there exist T ∈ O
′
α,β,∗ such that S ∗ T ∈ Hα,β, but T < Hα,β. This shows

that t2β−1
(
h
′
α,β S

)
(t) ∈ O, t2β−1

(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t) ∈ Hα,β, and h

′
α,β T < Hα,β.

As both t2β−1
(
h
′
α,β S

)
(t) and t2β−1

(
h
′
α,β T

)
(t) lie in O, to every t ∈ N there correspond rl ∈ N, Ml > 0 satisfying∣∣∣∣(t−1 D)l t2β−1

(
h
′
α,β S

)
(t)

∣∣∣∣ ≤ Ml (1 + t2)rl , t ∈ I, (3.1)

and sl ∈ N, Nl > 0 satisfying ∣∣∣∣(t−1 D)l t2β−1
(
h
′
α,β T

)
(t)

∣∣∣∣ ≤ Nl (1 + t2)sl , t ∈ I. (3.2)

Moreover, as h
′
α,β T < Hα,β, there are l0, n0 ∈ N and a sequence

{
t j

}
j∈N in I, such that t j → ∞ as j→ ∞ and∣∣∣∣(t−1 D)l0 t2β−1

(
h
′
α,β T

)
(t)|t=t j

∣∣∣∣ ≥ (1 + t2
j )
−n0 , j ∈ N. (3.3)

Set k = sl0+1 + n0 + 2, and define

B j,k =
{
t ∈ I :

∣∣∣t − t j

∣∣∣ ≤ (1 + t2
j )
−k

}
, j ∈ N. (3.4)

From (3.2) and (3.3) we can infer that, for sufficiently large j,

inf
t∈B j,k

∣∣∣∣(t−1 D)l0 t2β−1
(
h
′
α,β T

)
(t)

∣∣∣∣ ≥ 1
2

(1 + t2
j )
−n0 > 0. (3.5)

Indeed, if j is large enough and if t ∈ B j,k, then∣∣∣∣(t−1 D)l0 t2β−1
(
h
′
α,β T

)
(t)

∣∣∣∣
≥

∣∣∣∣(y−1 D)l0 y2β−1
(
h
′
α,β T

)
(y)|y=t j

∣∣∣∣ − (
t j + (1 + t2

j )
−k

)
(1 + t2

j )
−k sup

y∈B j,k

∣∣∣∣(y−1 D)l0+1 y2β−1
(
h
′
α,β T

)
(y)

∣∣∣∣
≥ (1 + t2

j )
−n0 −C (1 + t2

j )
sl0+1−k+1

= (1 + t2
j )
−n0 −C (1 + t2

j )
−n0−1,

where C > 0 is a constant independent from j.This proves (3.5).
Now t2β−1

(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t) ∈ Hα,β, and therefore

sup
t∈B j,k

∣∣∣∣(t−1 D)l t4β−2
(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t)

∣∣∣∣ = O
(
(1 + t2

j )
−n

)
, l, n ∈ N, j→ ∞. (3.6)
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Clearly, For fixed l, n ∈ N we may write

sup
t∈B j,k

∣∣∣∣(t−1 D)l t4β−2
(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t)

∣∣∣∣
= sup
|t|≤(1+t2

j )
−k

∣∣∣∣(y−1 D)l y4β−2
(
h
′
α,β S

)
(y)

(
h
′
α,β T

)
(y)|y=t+t j

∣∣∣∣
≤ Cn,l sup

|t|≤(1+t2
j )
−k

∣∣∣(1 + (t + t j)2
)−n ≤ Cn,l

∣∣∣(1 + t2
j − (1 + t2

j )
−k

)−n
,

where Cn,l > 0 is a constant, and the right hand side of this inequality is clearly O
(
(1 + t2

j )
−n

)
as j→ ∞.

Next we prove that

max
0≤l≤m

sup
t∈B j,k

∣∣∣∣(t−1 D)l t2β−1
(
h
′
α,β S

)
(t)

∣∣∣∣ = O
(
(1 + t2

j )
−n

)
, m, n ∈ N, j→ ∞, (3.7)

a contradiction to (i). In the sequal, n will denote an arbitrary positive integer.
We first assume that l0 = 0 and proceed by induction on m.In view of (3.5) and (3.6), we have

sup
t∈B j,k

∣∣∣∣t2β−1
(
h
′
α,β S

)
(t)

∣∣∣∣ ≤ 2(1 + t2
j )
−n0 sup

t∈B j,k

∣∣∣∣t4β−2
(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t)

∣∣∣∣
= O

(
(1 + t2

j )
−n

)
, j→ ∞.

Thus, condition (3.7) is satisfied for m = 0.
Now suppose that (3.7) holds for some m. We must prove that it also holds for m + 1.
By Leibnitz’s rule,

t2β−1
(
h
′
α,β T

)
(t) (t−1 D)m+1 t2β−1

(
h
′
α,β S

)
(t)

=

m+1∑
i=0

(−1)i
(
m + 1

i

)
(t−1 D)m+1−i t2β−1

(
h
′
α,β S

)
(t) (t−1 D)i t2β−1

(
h
′
α,β T

)
(t), t ∈ I.

Bearing in mind (3.2), (3.6) and the induction hypothesis, we find that

sup
t∈B j,k

∣∣∣∣(t−1 D)m+1−i t2β−1
(
h
′
α,β S

)
(t) (t−1 D)i t2β−1

(
h
′
α,β T

)
(t)

∣∣∣∣ = O
(
(1 + t2

j )
−n

)
,

as j→ ∞, whenever 0 ≤ i ≤ m + 1. Consequently

t2β−1
(
h
′
α,β T

)
(t) (t−1 D)m+1 t2β−1

(
h
′
α,β S

)
(t)

satisfies this very estimate, and from (3.5) we conclude

sup
t∈B j,k

∣∣∣∣(t−1 D)m+1 t2β−1
(
h
′
α,β S

)
(t)

∣∣∣∣
≤ 2 (1 + t2

j )
−n0 sup

t∈B j,k

∣∣∣∣t2β−1
(
h
′
α,β T

)
(t) (t−1 D)m−1 t2β−1

(
h
′
α,β S

)
(t)

∣∣∣∣
= O

(
(1 + t2

j )
−n

)
, j→ ∞.

This shows that (3.7) holds when l0 = 0 Next, assume that l0 , 0 and l0 is the smallest positive integer for which
n0 ∈ N and a sequence

{
t j

}
j∈N in I may be found so that (3.3) (and hence (3.5), with large enough j) is satisfied.

This means that
(t−1 D)l t2β−1

(
h
′
α,β T

)
(t) = O

(
(1 + t2

j )
−n

)
, l < l0, t → ∞.

Arguing as in the proof of (3.6) we are led to

sup
t∈B j,k

∣∣∣∣(t−1 D)l t2β−1
(
h
′
α,β T

)
(t)

∣∣∣∣ = O
(
(1 + t2

j )
−n

)
, l < l0, j→ ∞. (3.8)

By virtue of Leibnitz’s rule,

t2β−1
(
h
′
α,β S

)
(t) (t−1 D)l0 t2β−1

(
h
′
α,β T

)
(t)

=

l0∑
l=0

(−1)l
(
l0
l

)
(t−1 D)l0−l

(
t2β−1

(
h
′
α,β T

)
(t−1 D)l t2β−1

(
h
′
α,β S

))
(t), t ∈ I.
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Then, from (3.1), (3.6) and (3.8) it follows that

sup
t∈B j,k

∣∣∣∣t2β−1
(
h
′
α,β S

)
(t) (t−1 D)l0 t2β−1

(
h
′
α,β T

)
(t)

∣∣∣∣ = O
(
(1 + t2

j )
−n

)
, j→ ∞. (3.9)

Finally, using (3.5), (3.6) and (3.9) we obtain (3.7) by an argument similar to that employed in the case l0 = 0.
This completes the proof that (i) implies (ii).
Conversely, suppose that (i) does not hold. Then there exist k ∈ N and a sequence

{
t j

}
j∈N in I, with t j → ∞ as j → ∞

such that
max
0≤l≤ j

sup
t∈B j,k

∣∣∣∣(t−1 D)l t2β−1
(
h
′
α,β S

)
(t)

∣∣∣∣ < (1 + t2
j )
− j, j ∈ N; (3.10)

where the sets B j,k are given by (3.4). There is no loss of generality in assuming that t0 > 1 and t j+1 > t j + 1. Let
a ∈ D(I) be such that 0 ≤ a ≤ 1, supp a = [1/2, 3/2] and a(1) = 1, and set

θ j(t) = a
(
1 +

1
2

(t − t j) (1 + t2
j )

k
)
, θ(t) =

∞∑
j=0

θ j(t), t ∈ I.

The sum defining θ is finite, because supp θ j = B j,k( j ∈ N) and Bi,k ∩ B j,k = φ (i, j ∈ N, i , j). If l, j ∈ N and
t ∈ B j,k then for some am ∈ R (0 ≤ m ≤ l), we have∣∣∣(t−1 D)l θ(t)

∣∣∣ =
∣∣∣(t−1 D)l θ j(t)

∣∣∣
=

l∑
m=0

∣∣∣am t−l−m Dm θ j(t)
∣∣∣

≤ 2l+m
l∑

m=0

∣∣∣am Dm θ j(t)
∣∣∣

≤ Cl 2−kl (1 + t2
j )

kl
l∑

m=0

∣∣∣∣Dm θ j(y)|y=1+ 1
2 (t−t j) (1+t2

j )
k

∣∣∣∣
≤ Cl (1 + t2

j )
kl ≤ Cl (1 + t2)kl,

where Cl > 0 denotes an appropriate constant (not necessarily the same in each occurrence). Then∣∣∣(t−1 D)l θ(t)
∣∣∣ ≤ Cl (1 + t2)kl, t ∈ I, (3.11)

thus proving that θ ∈ O. Thus, there exist T ∈ O
′
α,β,∗ such that

(
h
′
α,β

)
(t) = t2α θ(t), t ∈ I.

Let n, l ∈ N. Thus function

(1 + t2)n (t−1 D)l t4β−2
(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t), t ∈ I

is bounded on the interval 0 < t < tn+kl − (1 + t2
n+kl)

−k. Letting j = n + kl + r (r ∈ N) and t ∈ B j,k, Leibnitz rule, along
with (3.10) and (3.11), implies ∣∣∣∣(1 + t2)n (t−1 D)l t4β−2

(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t)

∣∣∣∣
=

∣∣∣∣(1 + t2)n (t−1 D)l t2β−1
(
h
′
α,β S

)
(t) θ(t)

∣∣∣∣
≤ C (1 + t2)n+kl (1 + t2

j )
−n−kl ≤ C,

where C > 0 is a suitable constant (concerning the value of C, we make the same convolution as before). This shows
that

t2β−1
(
h
′
α,β S

)
(t)

(
h
′
α,β T

)
(t) ∈ Hα,β. But h

′
α,β T ∈ Hα,β,

Since
t2β−1

j

(
h
′
α,β T

)
(t j) = a(1) = 1; as t j → ∞ ( j→ ∞).

We conclude that T ∈ O
′
α,β,∗ and that S ∗ T ∈ Hα,β although T < Hα,β which contradict (ii) and completes the

proof.
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4. Conclusion
In the present research article, we have accomplished two major objectives regarding Hankel type convolution operator.
Firstly, O

′
α,β,∗ elements are defined as those in L

(
Hα,β

)
and in L

(
H ′

α,β

)
that commute with Hankel translations.

Furthermore, we obtain certain results that aid in proving the objective.
Secondly, To ensure that every T ∈ O

′
α,β,∗ such that S ∗ T ∈ Hα,β lie inHα,β, necessary and sufficient conditions on the

generalised Hankel type transform h
′
α,βS of S ∈ O

′
α,β,∗ are established.

The findings of this research may be significant for areas in engineering, physics and mathematics.
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