
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

The effect of global warming on the proliferation of carrier dependent infectious diseases is exigent. In this paper,
we have proposed and analysed a non-linear mathematical model to study the deleterious effect of rise in global
temperature on the spread of carrier dependent infectious diseases due to increased carrier immigration. The model
comprises five dependent variables, namely, the density of susceptible population, the density of infected population,
the density of carrier population, the concentration of carbon dioxide and the global average temperature. Driven by
existing literature and data, the global average temperature is assumed to be proportional to the increased level of CO2.
The natural as well as anthropogenic emissions that result in the upward climb of CO2 concentration in the atmosphere
are considered in the model. The carrier population is assumed to grow logistically. The long-term behaviour of the
model is estimated through the stability theory of differential equations. A basic differential sensitivity analysis is
also conducted to assess the sensitivity of model solutions with respect to key parameters of the dynamical system.
Numerical simulations are carried out to illustrate the analytical results.
2020 Mathematical Sciences Classification: 34D20, 34D23.
Keywords and Phrases: Carriers, Carbon Dioxide, Simulation, Stability, Sensitivity - analysis.

1. Introduction
Global warming is one of the most crippling issues affecting humankind. This unequivocal phenomenon has kept most
of the scientific community engaged for more than 100 years. The driving force behind global warming is the emission
of greenhouse gases. The most prominent heat trapping gas is CO2 [18], whose concentration in the atmosphere is
rapidly increasing which is evident from the existing data [12]. From the mid18 th century to 2018, the concentration
of CO2 has increased from 280 ppm to 406 ppm approximately. If this emission rate continues, the concentration of
CO2 is estimated to reach a dangerous level of 550 ppm by 2050 [17].

In accordance with the increase in the emission of CO2 in the atmosphere, the global average temperature has
shown an elevation of 0.74◦C during the 20th century. The rate of increase of global average temperature has been
alarmingly high since 1970 ’s, at around 0.20C growth each decade [16]. There is almost a linearly increasing
trend of the planet’s average temperature with respect to CO2 concentration in the atmosphere [12, 15]. There is a
broad scientific consensus that anthropogenic activities are leading to the warming of the world’s atmosphere at an
unprecedented rate. Unless controlled, the global average temperature is predicted to show a rise of 30C to 40C by the
end of 2100 as compared to the 1986 − 2005 average temperature [17].

The CO2 concentration increases in the atmosphere due to natural as well as anthropogenic sources. The natural
sources consist of volcanic eruptions, decay of plant and animal matter, the aerobic respiration, etc. The concentration
of CO2 emitted by these sources is reduced from the atmosphere through plantation of trees and by a number of
oceanic processes such as the biological pumps etc. Further, since the beginning of the industrial age, human activities
such as, burning of fossil fuels for power, burning of forests, industrialization, etc., have also produced an undesirable
increase in the global average temperature [20].

Spread of carrier dependent infectious diseases is one of the direst impacts of global warming. The fourth report
of IPCC gives strong evidence of this detrimental impact of global warming on human health [9]. The increase in
the global temperature and conducive climate change causes an increase in the population of carriers such as flies,
cockroaches, mites, ticks, etc. For instance, house flies breed prolifically in warmer temperatures but they become
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indolent as the mercury drops. The temperature also affects the rate at which the flies mature. These carriers transport
infective agents excreted by infectives to the food and water of susceptible and thus play an important role in the
increased spread of infectious diseases indirectly [1, 10, 13]. There is a general perception that these diseases mostly
affect the underdeveloped areas located in equatorial zones, especially those regions which lack in sanitation. But
even in developed countries of Europe, a variety of vector-borne diseases have surfaced, including West Nile fever,
Leishmaniasis, Lyme disease and tick-borne encephalitis [4]. As the temperature rises, the invasive species responsible
for the spread of these diseases such as ticks, sand flies and mosquitoes find favourable environment in UK [4]. It is
rather intimidating that during 2030 to 2050, global warming is expected to cause around 250,000 more cases of
casualties per year from carrier dependent infectious diseases [7,8].

Various investigators [2, 3, 6, 11, 19, 23, 24] have used mathematical modelling to study the spread of infectious
diseases. It may be noted that very little attention has been paid to analyse the influence of globally rising temperature
on the transmission of infectious diseases. Singh [25] had shed light on the effect of global warming on the proliferation
of carrier dependent infectious diseases. Here, we bring to notice that, the role of immigration of carriers caused by
temperature rise on the spread of infectious diseases in human habitat is very important but has not been studied so far
in any of these literatures. To address this issue appropriately, it is crucial to comprehend the role of anthropogenic CO2
and the corresponding temperature rise behind the increase of carrier population leading to the spread of infectious
diseases. In this paper, therefore, we suggest and analyse a nonlinear SIS model using stability and basic differential
sensitivity analysis to study the effect of global warming on the spread of carrier dependent infectious diseases caused
by the immigration of carriers to the human habitat.

2. Mathematical Model
Let us consider a human habitat where the carrier population immigrates due to conducive temperature rise which is
suitable for their growth and survival. The disease is assumed to spread directly by the infectives as well as indirectly
by the carriers, transporting infective agents to the food and water of susceptible. The total population density N(t)
at any time t is divided into two classes, susceptible class X(t) and infective class Y(t). It is assumed that the carrier
population density Cr(t) grows logistically with given intrinsic growth rate s0 and carrying capacity L. Its growth rate
also increases due to increase of global average temperature T (t) at the rate s1. It is assumed that C(t), the concentration
of CO2 increases at constant emission rate Q0 from natural sources and with a constant rate δ1 from anthropogenic
sources, which increase with the increase in the human population [21]. Natural sinks uptake CO2 at a rate δ0C
proportional to the atmospheric concentration of CO2 [22]. It is observed that there is almost a linear correlation of
the increase in global average temperature with the increased CO2 concentration in the atmosphere (see Figure 2.1)
[12, 15]. The variable T (t) represents the global average temperature at time t which is assumed to be proportional
to the increased concentration of carbon dioxide C(t) in the atmosphere [12, 15]. In the model, the constant T0 is the
preindustrial global average temperature i.e. average temperature in the absence of anthropogenic CO2 emissions [26]
and C0 =

Q0
δ0

is the concentration of carbon dioxide in the absence of anthropogenic emissions [25].
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Figure 2.1: Temperature anomaly
(

OC
)

with CO2 annual mean (ppm).

With these considerations, the following nonlinear mathematical model is proposed to study the effect of global
warming on the growth of carrier population and its impact on the spread of infectious diseases.

dX
dt

= A − βXY − λXCr − dX + vY, (2.1)

dY
dt

= βXY + λXCr − (d + α + v)Y,

dCr

dt
= s0Cr − s0C2

r

L
− d1Cr + s1 (T − T0) ,

dC
dt

= Q0 − δ0C + δ1(A − dN),

dT
dt

= θ (C −C0) − θ0 (T − T0) ,

X(0) > 0,Y(0) ≥ 0,N(0) > 0,Cr(0) ≥ 0,C(0) > C0,T (0) > T0.
The different parameters present in this model are described as follows-
• A - the rate of immigration of human population
• d-natural death rate of human population
• β-transmission rate due to infectives
• λ-transmission rate due to carrier population
• α-death rate of infected population due to diseases
• v-the rate of recovery of infective human population - s0-intrinsic growth rate of carrier population
• s1-the rate of growth of carrier population due to global warming
• d1-the rate of depletion of carrier population by using control mechanism
• Q0-the rate of emission of carbon dioxide from natural sources
• δ0-the rate of depletion of carbon dioxide due to natural sinks
• δ1-the rate of emission of carbon dioxide due to anthropogenic sources
• θ-the rate of growth of temperature due to rise in carbon dioxide concentration
• θ0-the rate of natural depletion of coefficient of temperature

It should be noted that all these parameters are positive constants, except λ, which is non-negative constant. In the
third equation of model (2.1), we assume s0 − d1 = s > 0.

Since, the total population density N = X + Y , the model (2.1) can be reduced to the following equivalent form.
dY
dt

= β(N − Y)Y + λ(N − Y)Cr − (d + α + v)Y, (2.2)

dN
dt

= A − dN − αY,
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dCr

dt
= sCr − s0C2

r

L
+ s1 (T − T0) ,

dC
dt

= Q0 − δ0C + δ1(A − dN),

dT
dt

= θ (C −C0) − θ0 (T − T0) ,

X(0) > 0,Y(0) ≥ 0,N(0) > 0,Cr(0) ≥ 0,C(0) > C0,T (0) > T0.

3. Equilibrium Analysis
For equilibrium analysis of the model (2.2) we need the following lemma to establish the bounds of variables [14].

Lemma 3.1. The set Ω =
{
(Y,N,Cr,C,T ) ∈ R5

+ : 0 ≤ Y ≤ N ≤ A
d , 0 ≤ Cr ≤ Crm,C0 ≤ C ≤ Cm,T0 ≤ T ≤ Tm} is the

region of attraction, where

Cm = C0 +
δ1

δ0
A; Tm = T0 +

δ1θ

δ0θ0
A; Crm =

sL
2s0

1 +

√
1 +

4s0s1δ1θA
s2Lδ0θ0

 . (3.1)

Theorem 3.1. There are following two equilibria of the model (2.2) -
(i) E0 =

(
0, A

d , 0,C0,T0

)
the trivial infective free, carrier free equilibrium.

(ii) E∗ =
(
Y∗,N∗,C∗r ,C

∗,T ∗
)

the unique non trivial equilibrium, which exists in a subset of Ω given by
Ωs =

{
(Y,N,Cr,C,T ) ∈ R5

+ : 0 ≤ Y ≤ A
(α+d) , 0 < N ≤ A

d , 0 ≤ Cr ≤ Crm,C0 ≤ C ≤ Cm,T0 ≤ T ≤ Tm}, provided the

basic reproduction number R0 =
βA

d(α+d+v) > 1.

Proof. The existence of E0 is obvious. Now the existence of E∗ =
(
Y∗,N∗,C∗r ,C

∗,T ∗
)

is established by solving the
following equilibrium equations-

β(N − Y)Y + λ(N − Y)Cr − (d + α + v)Y = 0 (3.2)
A − dN − αY = 0 (3.3)

sCr − s0C2
r

L
+ s1 (T − T0) = 0 (3.4)

Q0 − δ0C + δ1(A − dN) = 0 (3.5)
θ (C −C0) − θ0 (T − T0) = 0 (3.6)

Now we consider the following two cases
Case 1. λ > 0

Using equations (3.3) - (3.6) in equation (3.2) the following expression in Y is obtained

F(Y) ≡ (A − (α + d)Y)
d

βY + λ
(A − (α + d)Y)

d
sL
2s0

1 +

√
1 +

4s0s1δ1θαY
Lθ0δ0s2

 = 0. (3.7)

Since
F(0) =

λsAL
2ds0

> 0 and F
( A
α + d

)
= −(α + d + v)

( A
α + d

)
< 0. (3.8)

Therefore, ensures that there exists at least one root of F(Y) in
(
0, A

α+d

)
.

For uniqueness of root, we find F′(Y) from equation (3.7) as follows

F′(Y) = − (α + d)
β

d
Y − λsL

2dYS 0
(A − (α + d)Y)

− λ(α + d)
d

sL
2s0

1 +

√
1 +

4s0s1δ1θαY
Lθ0δ0s2

 − λ

dY
(A − (α + d)Y)

 s2 + 2s0s1δ1θαY

2θ0δ0s0s
√

1 +
4s0 s1δ1θαY

Lθ0δ0 s2

 . (3.9)

This shows that F′(Y) < 0. It proves that there is a unique root Y∗ of F(Y) in
(
0, A

α+d

)
. This value Y∗ substituted

back in equations (3.3) - (3.6) gives us the unique non trivial equilibrium E∗ =
(
Y∗,N∗,C∗r ,C

∗,T ∗
)

of model (2.2).
Case 2. λ = 0

Using equation (3.3) in equation (3.2), we get the following function of Y ,
G(Y) = β A−(α+d)Y

d Y − (α + d + v)Y = 0. This gives us two values of Y,Y = 0 (trivial equilibrium E0) and
Y∗ =

(
βA
d − (α + d + v)

)
d

β(α+d) > 0 provided the basic reproduction number R0 =
βA

d(α+d+v) > 1.
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Theorem 3.2. Now we shall show that dY
dC

∣∣∣
E∗ ,

dY
dT

∣∣∣
E∗ ,

dCr
dT

∣∣∣
E∗ all are positive.

Proof. Using equations (3.3) in (3.5), and noting that C0 =
Q0
δ0

we get C −C0 = δ1αY
δ0

. Hence dY
dC =

δ0
δ1α

> 0
Differentiating equation (3.4) with respect to T and simplifying, we get dCr

dT = s1
s1(T−T0)

Cr
+

s0
L Cr

> 0.

Then using equations (3.3), (3.5) and (3.6) in (3.4), we get a relation between Cr and Y , differentiating which we
get dY

dCr
=

( s1(T−T0)
Cr

+
s0
L Cr

)
θ0δ0

s1δ1θα
> 0 thus dY

dT > 0.
This shows that the spread of disease increases due to global average temperature as the number of infectives

increases.

4. Stability Analysis
We study the stability criteria of equilibria E0 and E∗. The local stability of equilibrium E0 is investigated by obtaining
the sign of eigen values of Jacobian matrix of linearized model system at E0. The Jacobian matrix at E0 is

M =


β A

d − (d + α + v) 0 λA
d 0 0

−α −d 0 0 0
0 0 s 0 s1
0 −δ1d 0 −δ0 0
0 0 0 θ −θ0


The characteristic polynomial of M is

C(x) = −
{
β

A
d
− (d + α + v) − x

}
(d + x)(s − x) (δ0 + x) (θ0 + x) + αλθδ1s1A, (4.1)

where s = s0 − d1 > 0.
Since C(s) = αλθδ1s1A > 0 and limx→∞C(x) = −∞. Hence, there exists a positive eigen value of M. Thus, E0 is

unstable.
Using Lyapunov’s direct method to study the stability phenomena of E∗, we get the following results.

Theorem 4.1. The equilibrium E∗ is locally asymptotically stable if the following inequalities are satisfied-

αλ2C∗
2

r < β2Y∗
2
d, (4.2)

αλ2 (N∗ − Y∗)2 L2δ2
1θ

2s2
1d < δ2

0θ
2
0 s2

0C∗
2

r β
2Y∗

2
. (4.3)

For proof, see Appendix A.

Theorem 4.2. The global asymptotic stability of the equilibrium E∗ is established in Ωs if the following two
inequalities hold-

αλ2C2
rm < β2Y∗

2
d, (4.4)

αλ2 (N∗ − Y∗)2 L2δ2
1θ

2s2
1d < δ2

0θ
2
0 s2

0C∗
2

r β
2Y∗

2
. (4.5)

For proof, see Appendix B.

5. Numerical Simulation
Now, we verify the analytical results numerically and plot solutions of model system (2.2) alongwith sensitivity
functions of state variables through numerical simulation by assigning suitable values to parameters. Furthermore,
while choosing the values of parameters, we try to be as rational as possible. From Singh [25], we choose the following
values:

β = 5.1 ∗ 10−7, λ = 6.1 ∗ 10−8, v = 0.012, α = 0.0005, d = 0.0004, s0 = 0.9, s = 0.3,
L = 100000,T0 = 13.5,Q0 = 5, δ0 = 0.016, θ = 0.001, θ0 = 0.25,C0 = 312.50.

The remaining parameters are assumed to have values A = 12, s1 = 400, δ1 = 0.7. With the above set of values of
parameters, we get the non-trivial equilibrium as

C∗ = 453.501,C∗r = 34069.097,N∗ = 21942.809,T ∗ = 14.064,Y∗ = 6445.753.
The eigenvalues of the Jacobian matrix for the model (2.2) at E0 and E∗ are obtained as

{−0.2499999227, 0.002373223587,−0.0003684173444,−0.01600487427, 0.300000090}
and
{−0.00067229346,−0.01009814023,−0.01599158955,−0.250000037,−0.3132438038}
respectively. Since two eigenvalues are positive at E0 and all eigenvalues are negative at E∗, hence, the trivial infective
free, carrier free equilibrium E0 is unstable while the nontrivial equilibrium E∗ is locally asymptotically stable. The
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global stability conditions obtained in Theorems 4.1 and 4.2 are also satisfied by the above-mentioned set of parameter
values.

In Figure 5.1, the solution trajectories are plotted in Y − N − Cr space for four different initial conditions to
show the convergence of different trajectories towards the equilibrium E∗

(
Y∗,N∗,C∗r

)
. This clearly demonstrates the

system’s global stability at E∗. Figures 5.2 and 5.3 are plotted to demonstrate the effects of the transmission rate due to
infectives (β) and transmission rate due to carrier population (λ) on infected population and total population densities.
Both β and λ, when increased, cause increase in the infective population and decrease in total population densities.
In Figure 5.4, it is shown that as the rate of growth of carrier population due to global warming (s1) increases, the
infected population and carrier population density increase. Figures 5.5, 5.6 and 5.7 demonstrate the effects of the rate
of emission of carbon dioxide from natural sources (Q0), the rate of emission of carbon dioxide due to anthropogenic
sources (δ1) and the rate of growth of temperature due to rise in carbon dioxide concentration (θ) on the dependent
variables. Y,Cr,C,T . It is evident that all these variables increase with increase in Q0, δ1 and θ.

Figure 5.1: The global stability of E∗ in Y − N −Cr space.

Figure 5.2: Variation of infected population density and total population density with respect to time for different values of rate of
transmission of disease due to infectives β.
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Figure 5.3: Variation of infected population density and total population density with respect to time for different values of rate of
transmission of disease due to carriers λ.

Figure 5.4: Variation of infected population density and carrier population density with respect to time for different values of the
rate of growth of carrier population due to global warming s1.
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Figure 5.5: Variation of infected population density, carrier population density, concentration of CO2 and average surface
temperature with respect to time for different values of the rate of emission of CO2 due to natural sources Q0.

Figure 5.6: Variation of infected population density, carrier population density, concentration of CO2 and average surface
temperature with respect to time for different values of the rate of emission of CO2 due to anthropogenic sources δ1.

145



Figure 5.7: Variation of infected population density, total population density, carrier population density and average surface
temperature with respect to time for different values of the rate of growth of temperature due to rise in carbon dioxide concentration
θ.

6. Sensitivity Analysis
For the parameters λ, β, s1, θ, δ1 and δ0, the basic differential sensitivity analysis of model system (2.2) is conducted
following Bortz and Nelson [5], to better understand the impact of changes in these parameters on the model system
behaviour. The sensitivity systems with respect to the parameters λ, β, s1, θ, δ1 and δ0 are given by the following sets
of equations (6.1) - (6.6) respectively.

Ẏλ(t, λ) = β (Nλ(t, λ) − Yλ(t, λ)) Y(t, λ) + β(N(t, λ) − Y(t, λ))Yλ(t, λ)
+ λ (Nλ(t, λ) − Yλ(t, λ)) Cr(t, λ) + λ(N(t, λ) − Y(t, λ))Crλ (t, λ)
+ (N(t, λ) − Y(t, λ))Cr(t, λ) − (d + α + v)Yλ(t, λ)

Ṅλ(t, λ) = −dNλ(t, λ) − αYλ(t, λ),

Ċrλ (t, λ) = sCrλ (t, λ) − 2s0Cr(t, λ)
L

Crλ (t, λ) + s1Tλ(t, λ)

Ċλ(t, λ) = −δ0Cλ(t, λ) + δ1 (−dNλ(t, λ))

Ṫλ(t, λ) = θCλ(t, λ) − θ0Tλ(t, λ)

Ẏβ(t, β) = β
(
Nβ(t, β) − Yβ(t, β)

)
Y(t, β) + β(N(t, β) − Y(t, β))Yβ(t, β)

+ (N(t, β) − Y(t, β))Y(t, β) + λ
(
Nβ(t, β) − Yβ(t, β)

)
Cr(t, β)

+ λ(N(t, β) − Y(t, β))Crβ (t, β) − (d + α + v)Yβ(t, β)
Ṅβ(t, β) = −dNβ(t, β) − αYβ(t, β). (6.1)

Ċrβ (t, β) = sCrβ (t, β) − 2s0Cr(t, β)
L

Crβ (t, β) + s1Tβ(t, β)

Ċβ(t, β) = −δ0Cβ(t, β) + δ1

(
−dNβ(t, β)

)
Ṫβ(t, β) = θCβ(t, β) − θ0Tβ(t, β) (6.2)

Ẏs1 (t, s1) = β
(
Ns1 (t, s1) − Ys1 (t, s1)

)
Y (t, s1) + β (N (t, s1) − Y (t, s1)) Ys1 (t, s1)

+ λ
(
Ns1 (t, s1) − Ys1 (t, s1)

)
Cr (t, s1) + λ (N (t, s1) − Y (t, s1)) Crs1

(t, s1)
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− (d + α + v)Ys1 (t, s1)

Ṅs1 (t, s1) = −dNs1 (t, s1) − αYs1 (t, s1) .

Ċrs1
(t, s1) = sCrs1

(t, s1) − 2s0Cr (t, s1)
L

Crs1
(t, s1) + s1Ts1 (t, s1) + T (t, s1) − T0

Ċs1 (t, s1) = −δ0Cs1 (t, s1) + δ1
(−dNs1 (t, s1)

)
Ṫs1 (t, s1) = θCs1 (t, s1) − θ0Ts1 (t, s1) . (6.3)

Ẏθ(t, θ) = β (Nθ(t, θ) − Yθ(t, θ)) Y(t, θ) + β(N(t, θ) − Y(t, θ))Yθ(t, θ)
+ λ (Nθ(t, θ) − Yθ(t, θ)) Cr(t, θ) + λ(N(t, θ) − Y(t, θ))Crθ (t, θ)
− (d + α + v)Yθ(t, θ)

Ṅθ(t, θ) = −dNθ(t, θ) − αYθ(t, θ).

Ċrθ (t, θ) = sCrθ (t, θ) −
2s0Cr(t, θ)

L
Crθ (t, θ) + s1Tθ(t, θ)

Ċθ(t, θ) = −δ0Cθ(t, θ) + δ1 (−dNθ(t, θ))

Ṫθ(t, θ) = θCθ(t, θ) + C(t, θ) −C0 − θ0Tθ(t, θ) (6.4)

Ẏδ1 (t, δ1) = β
(
Nδ1 (t, δ1) − Yδ1 (t, δ1)

)
Y (t, δ1) + β (N (t, δ1) − Y (t, δ1)) Yδ1 (t, δ1)

+ λ
(
Nδ1 (t, δ1) − Yδ1 (t, δ1)

)
Cr (t, δ1) + λ (N (t, δ1) − Y (t, δ1)) Crδ1

(t, δ1)

− (d + α + v)Yδ1 (t, δ1)

Ṅδ1 (t, δ1) = −dNδ1 (t, δ1) − αYδ1 (t, δ1) .

Ċrδ1
(t, δ1) = sCrδ1

(t, δ1) − 2s0Cr (t, δ1)
L

Crδ1
(t, δ1) + s1Tδ1 (t, δ1) .

Ċδ1 (t, δ1) = −δ0Cδ1 (t, δ1) + δ1
(−dNδ1 (t, δ1)

)
+ A − dN (t, δ1)

Ṫδ1 (t, δ1) = θCδ1 (t, δ1) − θ0Tδ1 (t, δ1) . (6.5)

Ẏδ0 (t, δ0) = β
(
Nδ0 (t, δ0) − Yδ0 (t, δ0)

)
Y (t, δ0) + β (N (t, δ0) − Y (t, δ0)) Yδ0 (t, δ0)

+ λ
(
Nδ0 (t, δ0) − Yδ0 (t, δ0)

)
Cr (t, δ0)

+ λ (N (t, δ0) − Y (t, δ0)) Crδ0

(
t, δ0 − (d + α + v)Yδ0 (t, δ0)

Ṅδ0 (t, δ0) = −dNδ0 (t, δ0) − αYδ0 (t, δ0) .

Ċr0 (t, δ0) = sCrδ0
(t, δ0) − 2s0Cr (t, δ0)

L
Crδ0

(t, δ0) + s1Tδ0 (t, δ0)

Ċδ0 (t, δ0) = −δ0Cδ0 (t, δ0) −C (t, δ0) + δ1
(−dNδ0 (t, δ0)

)
Ṫδ0 (t, δ0) = θCδ0 (t, δ0) − θ0Tδ0 (t, δ0) . (6.6)

Here, Zw(t,w) represents the sensitivity function of Z with respect to the corresponding parameter w. In Figures 9
and 10, we have plotted semi-relative sensitivity solutions to show the impact of doubling of parameters λ, β, s1, θ, δ1
and δ0 on variables of the model system (2.2) [5]. From Figure 6.1, it is evident that between the two parameters λ and
β, the parameter β has significant influence over the infected population and total population densities. In fifty years,
the doubling of transmission rate due to infectives (β) causes more cases than the other parameter. On the other hand,
in Figure 6.2, we see that among the parameters s1, θ, δ1 and δ0, the rate of growth of carrier population due to global
warming (s1) causes the maximum increase in the infected population and carrier population density, while the rate of
depletion of carbon dioxide (δ0) can play a significant role in controlling the spread of disease.
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Figure 6.1: Semi-relative sensitivity solutions for the state variables corresponding to infected population and total population
density with respect to parameters λ, β.

Figure 6.2: Semi-relative sensitivity solutions for the state variables corresponding to infected population, carrier population
density, concentration of CO2 and average surface temperature with respect to parameters s1, δ1, θ and δ0.

7. Conclusions
Many infectious diseases including cholera, diarrhoea, dysentery, measles, gastroenteritis are spread by carriers such
as flies, mites, ticks, cockroaches, etc. We have proposed and studied a nonlinear mathematical model for the spread of
carrier dependent infectious diseases. In the proposed model, the carrier dependent infectious diseases are considered

148



to spread by the direct contact of susceptible and infective as well as by the indirect effect of increased carrier
population, transporting infective agents.

A qualitative study of the proposed model is performed. The model is found to have two non-negative equilibria, a
boundary equilibrium and an interior equilibrium. It is found that the boundary equilibrium is always unstable. Local
and global stability conditions for the interior equilibrium have been obtained using Lyapunov’s direct method. The
stability analysis of the non-trivial equilibrium shows that the growth rate of carrier population due to rise in average
temperature has a destabilizing effect on the system. These results are confirmed by using numerical simulation and
plotting various graphs.

Sensitivity analysis is conducted to show the comparative effect of doubling the key parameters on the dynamics
of the model-system. The rate of transmission of diseases due to direct contacts of infectives and susceptible,
immigration rate of carrier population due to global warming, the rate at which levels of atmospheric CO2 increase
due to anthropogenic activities and the rate of depletion of carbon dioxide are found to be critical. It is observed
that besides reducing CO2 emissions caused by anthropogenic activities, taking measures such as carbon capture,
plantation, etc., to enhance CO2 sinks may also be helpful in controlling the spread of carrier dependent infectious
diseases.

Appendices
Appendix A.
Proof of Theorem 4.1. To prove the theorem, we linearize the model system (2.2) using the transformation-

Y = Y∗ + y1,N = N∗ + n1,Cr = C∗r + cr1,C = C∗ + c1,T = T ∗ + ς, (A.1)

and choose the following positive definite function,

U =
k0

2
y2

1 +
k1

2
n2

1 +
k2

2
c2

r1 +
k3

2
c2

1 +
k4

2
ς2, (A.2)

where k0, k1, k2, k3, k4 are positive constants to be chosen appropriately later. Now differentiating U with respect to t
and using linearised form of model system (2.2) and simplifying we get,

dU
dt

= −
(

k0βY∗

2
y2

1 − k0λC∗r y1n1 +
k1d
2

n2
1

)
−

(
k0βY∗

2
y2

1 − k0λ (N∗ − Y∗) y1cr1 +
k2s0C∗r

2L
c2

r1

)
−

(
k1d
2

n2
1 + (k3δ1d) n1c1 +

k3δ0

2
c2

1

)
−

(
k3δ0

2
c2

1 − k4θρc1 +
k4θ0

2
ς2

)
−

(
k4θ0

2
ς2 − k2s1cr1τ +

k2s0c∗r
2L

c2
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)
+ (k0βY∗ − k1α) y1n1

− k0λ (N∗ − Y∗) C∗r
Y∗

y2
1 − k0λC∗r y2
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k2s1 (T ∗ − T0)

C∗r
cr1

2. (A.3)

Taking k0 = α
βY∗ and k1 = 1, dU

dt is negative definite if the following conditions hold-

αλ2C∗2r < β2Y∗2d, (A.4)

k2 > αL
λ2 (N∗ − Y∗)2

β2Y∗2S 0C∗r
, (A.6)

k3 <
δ0

δ2
1d
, (A.6)

k4 <
k3δ0θ0

θ2 , (A.7)

k2 <
k4θ0S 0C∗r

LS 1
2 . (A.8)

Combining the inequalities (A.5), (A.6), (A.7) and (A.8), we get

αλ2 (N∗ − Y∗)2 L2δ2
1θ

2s2
1d < δ2

0θ
2
0 s2

0C∗
2

r β
2Y∗

2
, (A.9)

(A.4) and (A.9) are the required conditions for stability as stated in the Theorem 4.1 [see inequalities (4.2) and
(4.3)].
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Appendix B.
Proof of Theorem 4.2. To study global stability of E∗ we consider the following positive definite function-

V =m0

(
Y − Y∗ − Y∗ ln

( Y
Y∗

))
+

m1

2
(N − N∗)2
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2
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Differentiating with respect to t and using model system (2) and simplifying we get,

dV
dt

= −
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(
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Taking m0 = α
β

and m1 = 1 the conditions for dV
dt to be negative definite are

αλ2Cr
2 < β2Y∗2d, (B.3)

m2 > αL
λ2 (N∗ − Y∗)2

β2Y∗2s0
, αλ2Cr

2 < β2Y∗2d, (B.4)

m3 <
δ0

δ2
1d
, αλ2Cr

2 < β2Y∗2d, (B.5)

m4 <
m3δ0θ0

θ2 , αλ2Cr
2 < β2Y∗2d, (B.6)

m2 <
m4θ0s0C∗2r

Ls1
2 αλ2Cr

2 < β2Y∗2d, (B.7)

Combining the inequalities (B.4), (B.5), (B.6) and (B.7), we get

αλ2 (N∗ − Y∗)2 L2δ2
1θ

2s2
1d < δ2

0θ
2
0 s2

0C∗
2

r β
2Y∗

2
αλ2Cr

2 < β2Y∗2d. (B.8)

Also, on taking upper bound for Cr in equation (B.3), we get

αλ2C2
rm < β2Y∗2dαλ2Cr

2 < β2Y∗2d, (B.9)

where Crm = sL
2s0

[
1 +

√
1 +

4s0 s1δ1θA
s2Lδ0θ0

]
.

Thus (B.8) and (B.9) are the required inequalities for stability conditions as stated in Theorem 4.2 [see inequalities
(4.4) and (4.5)]
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