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Abstract

In this paper, we study graph labeling, namely, k- triangular prime cordial labeling for k = 1, 2, 3, 4, 5, 6. This is a
simple extension of prime cordial labeling where the vertex labels are defined as the higher order triangular numbers.
Also we show that the maximal outerplanar graphs are k- triangular prime cordial under certain conditions.
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1. Introduction
A labeling of a graph G is a mapping that carries a set of graph elements, usually the vertices and edges into a set
of numbers, usually real numbers or subsets of a set. For detailed study on different types of labelings we refer to
[2,5,16,18].

Rosa [15] introduced a labeling of G called β-valuation, later on Golomb [4] called as ”graceful labeling” which
is an injection f from the set of vertices V(G) to the set {0, 1, 2, ..., q} such that when each edge e = uv is assigned the
label | f (u) − f (v)|, the resulting edge labels are distinct. A graph which admits a graceful labeling is called a graceful
graph.

In this paper, for a graph G = (V, E) we introduce the k-triangular prime cordial labeling for k = 1, 2, 3, 4, 5, 6 and
study on maximal outerplanar graph structure. We consider only finite simple undirected graphs. The set of vertices
and edges of a graph G will be denoted by V(G) and E(G) respectively, where |V(G)| = p and |E(G)| = q. For graph
theoretic notations, we follow Bondy and Murthy [1].

2. Triangular labelings of graphs
In this section first we discuss the triangular numbers and related labelings of graphs.

For any integer k, the k-th order triangular number is a number obtained by adding all the k-th powers of positive
integers less than or equal to a given positive integer n. That is, the n-th term of k-th order triangular number is
1k + 2k + ... + nk, and is denoted by T k

n .
A triangular graceful labeling of a graph G with q edges is an injection map t from the set of vertices V(G) to the

set {0, 1, 2, ...,T 1
q } such that when each edge e = uv is assigned the label |t(u) − t(v)| , the resulting edge labels are a

sequence of distinct consecutive triangular numbers say {T 1
1 ,T

1
2 , ...,T

1
q }. Here T 1

q is the q-th triangular number of the
triangular series T 1

1 = 1,T 1
2 = 3,T 1

3 = 6, ...,T 1
n = 1

2 n(n + 1). A graph which admits a triangular graceful labeling is
called a triangular graceful graph.

Hegde and Shankaran [6] introduced a labeling of G called triangular sum labeling. This labeling is an injection f
from the set of vertices V(G) to the set of non-negative integers such that when each edge e = uv is assigned the label
f (u) + f (v), the resulting edge labels are a sequence of distinct consecutive triangular numbers say {T 1

1 ,T
1
2 , ...,T

1
q }. A

graph which admits a triangular sum labeling is called a triangular sum graph.
Murugesan et al. [10] introduced centered triangular sum labeling of graphs. This labeling is an injection f

from the set of vertices V(G) to the set of non-negative integers such that when each edge e = uv is assigned the
label f (u) + f (v), the resulting edge labels are a sequence of distinct consecutive centered triangular numbers say
{C2

1,C
2
2, ...,C

2
q}. Here C2

i is the i-th centered triangular number of the centered triangular series C2
1 = 1,C2

2 = 4,C2
3 =
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10, ...,C2
n = 1

2 (3n2 − 3n + 2). A graph which admits a centered triangular sum labeling is called a centered triangular
sum graph.

Murugesan et al. [11] introduced second order triangular sum labeling of graphs. This labeling is an injection
f from the set of vertices V(G) to the set of non-negative integers such that when each edge e = uv is assigned the
label f (u) + f (v), the resulting edge labels are a sequence of distinct consecutive second order triangular numbers say
{T 2

1 ,T
2
2 , ...,T

2
q }. Here T 2

i is the i-th second order triangular number of the second order triangular series T 2
1 = 1,T 2

2 =

5,T 2
3 = 14, ...,T 2

n = 1
6 n(n + 1)(2n + 1). A graph which admits a second order triangular sum labeling is called a second

order triangular sum graph. They also introduced third order triangular sum labeling which is an injection f from the
set of vertices V(G) to the set of non-negative integers such that when each edge e = uv is assigned the label f (u)+ f (v),
the resulting edge labels are a sequence of distinct consecutive third order triangular numbers say {T 3

1 ,T
3
2 , ...,T

3
q }.

Here T 3
i is the i-th third order triangular number of the third order triangular series T 3

1 = 1,T 3
2 = 9,T 3

3 = 36, ...,
T 3

n = 1
4 n2(n + 1)2. A graph which admits a third order triangular sum labeling is called a third order triangular sum

graph.
Again, Murugesan et al. [12] introduced fourth order triangular sum labeling of graphs. This labeling is an

injection f from the set of vertices V(G) to the set of nonnegative integers such that when each edge e = uv is assigned
the label f (u) + f (v), the resulting edge labels are a sequence of distinct consecutive fourth order triangular numbers
say {T 4

1 ,T
4
2 , ...,T

4
q }. Here T 4

i is the i-th second order triangular number of the second order triangular series T 4
1 = 1,

T 4
2 = 17,T 4

3 = 98, ...,T 4
n = 1

30 n(n + 1)(2n + 1)(3n2 + 3n − 1). A graph which admits a fourth order triangular
sum labeling is called a fourth order triangular sum graph. They also introduced fifth order triangular sum labeling
which is an injection f from the set of vertices V(G) to the set of non-negative integers such that when each edge
e = uv is assigned the label f (u) + f (v), the resulting edge labels are a sequence of distinct consecutive fifth order
triangular numbers say {T 5

1 ,T
5
2 , ...,T

5
q }. Here T 5

i is the i-th fifth order triangular number of the fifth order triangular
series T 5

1 = 1,T 5
2 = 33,T 5

3 = 276, ...,T 5
n = 1

12 n2(n + 1)2(2n2 + 2n − 1). A graph which admits a fifth order triangular
sum labeling is called a fifth order triangular sum graph. Similarly, they defined a sixth order triangular sum labeling.
This labeling is an injection f from the set of vertices V(G) to the set of non-negative integers such that when each
edge e = uv is assigned the label f (u)+ f (v), the resulting edge labels are a sequence of distinct consecutive sixth order
triangular numbers say {T 6

1 ,T
6
2 , ...,T

6
q }. Here T 6

i is the i-th sixth order triangular number of the sixth order triangular
series T 6

1 = 1,T 6
2 = 65,T 6

3 = 794, ...,T 6
n = 1

42 n(n + 1)(2n + 1)(3n4 + 6n3 − 3n + 1). A graph which admits a sixth order
triangular sum labeling is called a sixth order triangular sum graph.

3. Cordial Labelings of Graphs
A cordial labeling is a map f from the set of vertices V(G) to the set {0, 1} such that when each edge e = uv is assigned
the label | f (u)− f (v)| and satisfies the condition that the number of vertices labeled 0 and the number of vertices labeled
1 differ by at most 1, and the number of edges labeled 0 and the number of edges labeled 1 differ at most by 1. A graph
which admits a cordial labeling is called a cordial graph. For various types of cordial labelings we refer to [13,14,17].
3.1. Prime cordial labelings of graphs
A prime cordial labeling is a map f from the set of vertices V(G) to the set {1, 2, ..., p} such that each edge e = uv is
assigned the label 1 if gcd ( f (u), f (v)) = 1 and 0 if gcd ( f (u), f (v)) > 1 and satisfies the condition that the number of
edges labeled 0 and the number of edges labeled 1 differ at most by 1. A graph which admits a prime cordial labeling
is called a prime cordial graph.

4. Maximal outerplanar graph
A planar graph G is outer-planar if and only if there is an embedding of G on the plane in which every vertex lies
on the exterior face. If we consider a planar graph with no loops or faces bounded by two edges (digons), it may be
possible to add a new edge to the presentation of G such that these properties are preserved. When no such adjunction
can be made, the graph is called a maximal outerplanar graph since any additional edge will destroy its outerplanar
property. A maximal outerplanar graph can be viewed as a triangulation of a convex polygon.

Chartrand and Harary [3] showed that a graph is outerplanar if and only if it does not contain K4 or K2,3 minor.
Kumar and Madhavan [7] gave a characterization of maximal outerplanar graphs, in the context of planar chordal
graphs. In this paper we give some facts about maximal outerplanar graphs in the following Lemma:

Lemma 4.1 ([8]). Let G be a maximal outerplanar graph with n ≥ 3 vertices. Then G has
(a) 2n − 3 edges, of which there are n − 3 chords;
(b) n − 2 inner faces. Each inner face is a triangle;
(c) at least two vertices with degree 2.
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5. k- triangular prime cordial labeling of maximal outerplanar graphs of small order
In our study, we extend the prime cordial labeling into a new kind of labeling known as k- triangular prime cordial
labeling for k = 1, 2, 3, 4, 5, 6. We introduce a k- triangular prime cordial graphs which are the graphs labeled with
triangular number in which every vertex and its incident edges labeled with numbers 0 and 1 satisfy the prime cordial
labeling. That is, a prime cordial labeling is k-triangular if f (V(G))→ {T k

1 ,T
k
2 , ...,T

k
p}, k = 1, 2, 3, 4, 5, 6.

Let G = (V, E) be a graph with p vertices and q edges. For any integer k = 1, 2, 3, 4, 5, 6, we define a one-to-one
map f from the set of vertices V(G) to {T k

1 ,T
k
2 , ...T

k
p} where T k

i is the i-th term of k-th order triangular number. For
each edge e = uv we assign the label 1 if gcd ( f (u), f (v)) = 1 and 0 if gcd ( f (u), f (v)) > 1 . If |e f (0)− e f (1)| ≤ 1 where
e f (0) and e f (1) respectively denote the number of edges labeled with 0 and the number of edges labeled with 1. Then
G is said to be k- triangular prime cordial (k-TPC) and such a labeling f is called k- triangular prime cordial labeling
of G.

Here, we note that 1- triangular prime cordial labeling is simply a triangular prime cordial labeling.

Definition 5.1. Let G = (V, E) be a (p, q)-graph. For each k = 1, 2, 3, 4, 5, 6, let f : V(G) → {T k
1 ,T

k
2 , ...,T

k
p} be an

injective map where T k
i is the i-th term of k-th order triangular number. For each edge uv assign the label 1 or 0

according as gcd ( f (u), f (v)) = 1 or gcd ( f (u), f (v)) > 1 . Then f is called a k-triangular prime cordial labeling of
G if |e f (0) − e f (1)| ≤ 1 where e f (0) and e f (1) respectively denote the number of edges labeled with 0 and number of
edges labeled with 1. A graph with k-triangular prime cordial labeling is called a k-triangular prime cordial.

Example 5.1. A Peterson graph is k-TPC for k = 1, 2, 3, 4, 5, 6.

Theorem 5.1. The maximal outerplanar graph of order 4 is k-TPC for k = 1, 2, 3, 5, 6.

Figure 5.1: The maximal outerplanar graph of order 4 is k-TPC for k = 1, 2, 3, 5, 6.

Proof. Let G be a maximal outerplanar graph of order 4. By Lemma 4.1, we know that G has 5 edges, two vertices of
degree 2 and two vertices of degree 3. Suppose k = 1, then assign the labels T 1

1 and T 1
3 to any vertices of degree 2 of

G and then assign the labels T 1
2 and T 1

4 to any vertices of degree 3 of G. Figure 1 shows that G is 1-TPC. Thus, the
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theorem holds for k = 1. Suppose k = 2, 3, 5 or 6. By similar arguments the graphs of order 4 as shown in Figure 1
with their respective k-TPC labeling for k = 2, 3, 5 or 6. Thus the theorem holds.

Lemma 5.1. A maximal outerplanar (MOP) graph of order 4 is not 4-TPC.

Proof. Suppose that MOP graph G of order 4 is 4-TPC. Then |e f (0) − e f (1)| ≤ 1. Therefore, e f (0) = 2 and e f (1) = 3
(or) e f (0) = 3 and e f (1) = 2 because G has 5 edges. Without loss of generality, we may assume that e f (0) = 2. That
means, number of edges labeled with 0 is 2. Since T 4

1 = 1, T 4
2 = 17, T 4

3 = 98 and T 4
4 = 354 are first four 4th order

triangular numbers, only one pair of gcd of T 4
3 and T 4

4 is not equal to one, otherwise, is equal one. Therefore, at most
one edge label is 0. That is, e f (0) < 2, which is a contradiction. Hence G is not 4-TPC.

Theorem 5.2. The MOP graph of order 5 is k-TPC for k = 1, 2, 3, 5, 6.

Proof. Let G be a MOP graph of order 5. Then G has outer cycle v1v2v3v4v5v1 with two chords v1v4 and v2v4. Suppose
k = 1. We assign the labels T 1

1 ,T
1
2 ,T

1
3 ,T

1
4 ,T

1
5 to the consecutive vertices v1, v2, v3, v4, v5 respectively. Figure 2 shows

that G is 1-TPC. Thus, the theorem holds for k = 1. Suppose k = 2, 3, 5 or 6. By similar arguments the graphs of
order 5 as shown in Figure 2 with their respective k-TPC labeling for k = 2, 3, 5 or 6. Thus the theorem holds.

Figure 5.2: The MOP graph of order 5 is k-TPC for k = 1, 2, 3, 5, 6.

Lemma 5.2. A MOP graph of order 5 is not 4-TPC.

Theorem 5.3. For k = 1, 2, 3, 5, 6, all MOP graphs of order 6 are k-TPC.

Proof. Up to isomorphism there are three maximal outerplanar graphs of order 6 (See Figure 3). By definition 5.1 and
Tables 1-3, it is easy to see that they are k-TPC for k = 1, 2, 3, 5, 6.
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Figure 5.3: Three non-isomorphic MOP graphs of order 6

Table 5.1: Table for Theorem 5.3, M1 is k-TPC, k = 1, 2, 3, 5, 6

G = M1 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 6 e f (0) = e f (1) + 1
f (vi) = T 2

i , 1 ≤ i ≤ 4
k = 2 f (v5) = T 2

6 e f (1) = e f (0) + 1
f (v6) = T 2

5
k = 3 f (vi) = T 3

i , 1 ≤ i ≤ 6 e f (0) = e f (1) + 1
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 6 e f (0) = e f (1) + 1
k = 6 f (vi) = T 6

i , 1 ≤ i ≤ 6 e f (1) = e f (0) + 1

We know that T 1
1 ,T

1
2 ,T

1
3 ,T

1
4 ,T

1
5 ,T

1
6 : 1, 3, 6, 10, 15, 21,

T 2
1 ,T

2
2 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 : 1, 5, 14, 30, 55, 91,

T 3
1 ,T

3
2 ,T

3
3 ,T

3
4 ,T

3
5 ,T

3
6 : 1, 9, 36, 100, 225, 441,

T 4
1 ,T

4
2 ,T

4
3 ,T

4
4 ,T

4
5 ,T

4
6 : 1, 17, 98, 354, 979, 2275,

T 5
1 ,T

5
2 ,T

5
3 ,T

5
4 ,T

5
5 ,T

5
6 : 1, 33, 276, 1300, 4425, 12201,

T 6
1 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 : 1, 65, 794, 4890, 20515, 67171.

Table 5.2: Table for Theorem 5.3, M2 is k-TPC, k = 1, 2, 3, 5, 6

G = M2 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
k = 2 f (vi) = T 2

i+1, 1 ≤ i ≤ 5 e f (1) = e f (0) + 1
f (v6) = T 2

1
k = 3 f (vi) = T 3

i , 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
f (vi) = T 6

i+1, 1 ≤ i ≤ 4
k = 6 f (v5) = T 6

1 e f (0) = e f (1) + 1
f (v6) = T 6

6

We know that T 1
1 ,T

1
2 ,T

1
3 ,T

1
4 ,T

1
5 ,T

1
6 : 1, 3, 6, 10, 15, 21,

T 2
1 ,T

2
2 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 : 1, 5, 14, 30, 55, 91,

T 3
1 ,T

3
2 ,T

3
3 ,T

3
4 ,T

3
5 ,T

3
6 : 1, 9, 36, 100, 225, 441,

T 4
1 ,T

4
2 ,T

4
3 ,T

4
4 ,T

4
5 ,T

4
6 : 1, 17, 98, 354, 979, 2275,

T 5
1 ,T

5
2 ,T

5
3 ,T

5
4 ,T

5
5 ,T

5
6 : 1, 33, 276, 1300, 4425, 12201,

T 6
1 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 : 1, 65, 794, 4890, 20515, 67171.
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Table 5.3: Table for Theorem 5.3, M3 is k-TPC, k = 1, 2, 3, 5, 6

G = M3 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
k = 2 f (vi) = T 2

i+1, 1 ≤ i ≤ 5 e f (1) = e f (0) + 1
f (v6) = T 2

1
f (vi) = T 3

i , 1 ≤ i ≤ 4
k = 3 f (v5) = T 3

6 e f (1) = e f (0) + 1
f (v6) = T 3

5
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
k = 6 f (vi) = T 6

i+1, 1 ≤ i ≤ 5 e f (1) = e f (0) + 1
f (v6) = T 6

1

We know that T 1
1 ,T

1
2 ,T

1
3 ,T

1
4 ,T

1
5 ,T

1
6 : 1, 3, 6, 10, 15, 21,

T 2
1 ,T

2
2 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 : 1, 5, 14, 30, 55, 91,

T 3
1 ,T

3
2 ,T

3
3 ,T

3
4 ,T

3
5 ,T

3
6 : 1, 9, 36, 100, 225, 441,

T 4
1 ,T

4
2 ,T

4
3 ,T

4
4 ,T

4
5 ,T

4
6 : 1, 17, 98, 354, 979, 2275,

T 5
1 ,T

5
2 ,T

5
3 ,T

5
4 ,T

5
5 ,T

5
6 : 1, 33, 276, 1300, 4425, 12201,

T 6
1 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 : 1, 65, 794, 4890, 20515, 67171.

Theorem 5.4. All MOP graphs of order 6 are not 4-TPC.

Proof. Suppose that MOP graph G of order 6 is 4-TPC. Then |e f (0) − e f (1)| ≤ 1. Therefore, e f (0) = 4 and e f (1) = 5
(or) e f (0) = 5 and e f (1) = 4 because G has 9 edges. Without loss of generality, we may assume that e f (0) = 4. That
means, number of edges labeled with 0 is 4. Since T 4

1 = 1, T 4
2 = 17, T 4

3 = 98, T 4
4 = 354, T 4

5 = 979 and T 4
6 = 2275 are

first six 4th order triangular numbers, only two pairs gcd
(
T 4

3 ,T
4
4

)
= 0 and gcd

(
T 4

3 ,T
4
6

)
= 0, otherwise, is equal one.

Therefore, at most two edge label is 0. That is, e f (0) < 3, which is a contradiction. Hence G is not 4-TPC.

Theorem 5.5. All MOP graphs of order 7 are k-TPC for k = 1, 2, 3, 4, 5, 6.

Proof. Up to isomorphism there are four maximal outerplanar graphs of order 7 (See Figure 4). By definition 5.1 and
Tables 4-7, it is easy to see that they are k -TPC for k = 1, 2, 3, 4, 5, 6.
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Figure 5.4: Four non-isomorphic MOP graphs of order 7

Table 5.4: Table for Theorem 5.5, M1 is k-TPC, k = 1, 2, 3, 4, 5, 6

G = M1 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 2 f (vi) = T 2

i+1, 1 ≤ i ≤ 6 e f (0) = e f (1) + 1
f (v7) = T 2

1
k = 3 f (vi) = T 3

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
f (vi) = T 4

i+2, i = 1, 2, 4
k = 4 f (v3) = T 4

7 e f (1) = e f (0) + 1
f (v5) = T 4

5
f (v j) = T 4

j−5, j = 6, 7
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 6 f (vi) = T 6

i+1, 1 ≤ i ≤ 6 e f (0) = e f (1) + 1
f (v7) = T 6

1
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Table 5.5: Table for Theorem 5.5, M2 is k-TPC, k = 1, 2, 3, 4, 5, 6

G = M2 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 2 f (v1) = T 2

7 e f (0) = e f (1) + 1
f (vi) = T 2

i−1, 2 ≤ i ≤ 7
k = 3 f (vi) = T 3

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
f (vi) = T 4

i+2, i = 1, 2, 4
k = 4 f (v3) = T 4

7 e f (1) = e f (0) + 1
f (v5) = T 4

5
f (v j) = T 4

j−5, j = 6, 7
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 6 f (vi) = T 6

i+1, 1 ≤ i ≤ 6 e f (0) = e f (1) + 1
f (v7) = T 6

1

Table 5.6: Table for Theorem 5.5, M3 is k-TPC, k = 1, 2, 3, 4, 5, 6

G = M3 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 2 f (vi) = T 2

i+1, 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
f (v7) = T 2

1
k = 3 f (vi) = T 3

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
f (vi) = T 4

i+2, i = 1, 5
f (vk) = T 4

k−1, k = 2, 3
k = 4 f (v j) = T 4

j , j = 4, 6 e f (1) = e f (0) + 1
f (v7) = T 4

5
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 6 f (vi) = T 6

i+1, 1 ≤ i ≤ 6 e f (1) = e f (0) + 1
f (v7) = T 6

1

Table 5.7: Table for Theorem 5.5, M4 is k-TPC, k = 1, 2, 3, 4, 5, 6

G = M4 Vertex labeling Edge condition
k = 1 f (vi) = T 1

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 2 f (vi) = T 2

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
k = 3 f (vi) = T 3

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
f (vi) = T 4

i+2, i = 1, 2, 3
f (v j) = T 4

j−5, j = 6, 7
k = 4 f (v4) = T 4

7 e f (1) = e f (0) + 1
f (v5) = T 4

6
k = 5 f (vi) = T 5

i , 1 ≤ i ≤ 7 e f (1) = e f (0) + 1
f (vi) = T 6

i+1, 1 ≤ i ≤ 5
k = 6 f (v6) = T 6

1 e f (1) = e f (0) + 1
f (v7) = T 6

7

Theorem 5.6. All MOP graphs of order 8 are k-TPC for k = 1, 2, 3, 4, 5, 6.

Proof. According to Lee et al. [9], up to isomorphism there are 12 maximal outerplanar graphs of order 8. It is easy to
verify that those graphs are k − TPC for k = 1, 2, 3, 4, 5, 6.

Lee et al. [9] studied edge-graceful and edge-magic maximal outerplanar graphs. Here, we prove that number
of maximal outerplanar graphs of order 8 is 12 (up to isomorphism). Also, we show that the above said graphs are
k-Triangular prime cordial graphs. For this, we use the following theorems.
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Theorem 5.7. Let M1 be a MOP graph of order 8 having outer cycle v1v2v3v4v5v6v7v8v1 with 5 chords v1vi, 3 ≤ i ≤ 7.
Then the graph M1 admits a k-TPC labeling for 1 ≤ k ≤ 6.

Proof. Let M1 be a MOP graph of order 8 having outer cycle v1v2v3v4v5v6v7v8v1 with 5 chords v1vi, 3 ≤ i ≤ 7. We
claim that the graph M1 is a k-TPC graph for 1 ≤ k ≤ 6.
Case (1). If k = 1 , we assign the first 8 triangular numbers T 1

1 ,T
1
2 , ...,T

1
8 to consecutive vertices v1, v2, v3, v4, v5, v6, v7, v8.

It is easy to verify e f (1) = e f (0) + 1. Hence the graph M1 is 1-TPC.
Case (2). If k = 2 , we assign the labels T 2

2 ,T
2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
8 ,T

2
1 to consecutive respectively, the vertices

v1, v2, v3, v4, v5, v6, v7, v8. It is easy to verify e f (0) = e f (1) + 1. Hence the graph M1 is 2-TPC.
Case (3). If k = 3, then the first 8 triangular numbers of order 3 are T 3

1 ,T
3
2 , ...,T

3
8 to consecutive verticesv1, v2, v3, v4, v5, v6, v7, v8.

It is easy to verify e f (1) = e f (0) + 1. Thus, the graph M1 admits 3-TPC labeling.
Case (4). If k = 4, then the vertex labels T 4

3 ,T
4
4 ,T

4
5 ,T

4
6 ,T

4
7 ,T

4
8 ,T

4
2 ,T

4
1 to consecutive vertices vi, 1 ≤ i ≤ 8. It is easy

to verify e f (0) = e f (1) + 1. Therefore, the given graph M1 is admitting a 4-TPC labeling.
Case (5). If k = 5, then we assign the first 8 triangular numbers of order T 5

1 ,T
5
2 , ...,T

5
8 to consecutive vertices vi,

1 ≤ i ≤ 8. It is easy to verify e f (1) = e f (0) + 1. Hence the graph M1 is 5-TPC.
Case (6). If k = 6, then the triangular labels T 6

2 ,T
6
3 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
7 ,T

6
8 ,T

6
1 to consecutive vertices vi, 1 ≤ i ≤ 8. It is

easy to verify e f (0) = e f (1) + 1. Thus the graph M1 is 6-TPC.
Hence, in all the cases, given maximal outerplanar graph M1 of order 8 is a k-TPC graph for k = 1, 2, 3, 4, 5, 6.

Theorem 5.8. If M2 is a MOP graph of order 8 has outer cycle v1v2v3v4v5v6v7v8v1 with 5 chords v1vi, i = 3, 4, 7 and
v7v j, j = 4, 5, then M2 admits a k-TPC labeling for 1 ≤ k ≤ 6.

Proof. Let us define a function fk, 1 ≤ k ≤ 6, from the vertex set of the given graph to the triangular number of order
k as follows:

fk(vi) = T k
i , ∀ 1 ≤ i ≤ 8 and ∀ k = 1, 2, 3, 5,

f4(vi) =


T 4

8 if i = 1
T 4

i if 2 ≤ i ≤ 7
T 4

1 if i = 8,

f6(vi) =


T 6

2 if i = 1
T 6

1 if i = 2
T 6

i if 3 ≤ i ≤ 8.

It is easy to verify that all fk’s are bijective and e fk (0) = e fk (1) + 1 for k = 1, 3, 4, 5, 6, and e fk (1) = e fk (0) + 1 for k = 2.
Hence, M2 is k-TPC for every non-negative k ≤ 6.

Remark 5.1.
(i) Consider another MOP graph of order 8 and denoted as M3, having a cycle v1v2v3v4v5v6v7v8v1 and five chords

v2vi, i = 7, 8, v3v j, j = 6, 7 and v4v6. For every non-negative k ≤ 6, we obtained that M3 is k-TPC. The labelings
of the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
7 ,T

k
4 ,T

k
2 ,T

k
6 ,T

k
8 ,T

k
1 ,T

k
3 ,T

k
5

k = 2 and 4: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 6: T 6
1 ,T

6
3 ,T

6
2 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
7 ,T

6
8 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 2, 3, 5, 6
e fk (1) = e fk (0) + 1 for k = 4.

(ii) Consider another MOP graph of order 8 and denoted as M4, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 3, 4, 6, 7 and v4v6. For every non-negative k ≤ 6, we obtained that M4 is k-TPC. The labelings of the
vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
8 ,T

2
1 ,T

2
2

k = 4: T 4
8 ,T

4
2 ,T

4
3 ,T

4
4 ,T

4
5 ,T

4
6 ,T

4
7 ,T

4
1

k = 6: T 6
7 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
1 ,T

6
8 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 3
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e fk (1) = e fk (0) + 1 for k = 1, 2, 4, 5, 6.
(iii) Consider another MOP graph of order 8 and denoted as M5, having a cycle v1v2v3v4v5v6v7v8v1 and five chords

v1vi, i = 3, 5, 7 and v5v j, j = 3, 7. For every non-negative k ≤ 6, we obtained that M5 is k-TPC. The labelings of
the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
2 ,T

2
1 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
8

k = 4: T 4
1 ,T

4
2 ,T

4
8 ,T

4
3 ,T

4
4 ,T

4
7 ,T

4
6 ,T

4
5

k = 6: T 6
1 ,T

6
2 ,T

6
4 ,T

6
3 ,T

6
7 ,T

6
5 ,T

6
8 ,T

6
6 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 2, 3, 5
e fk (1) = e fk (0) + 1 for k = 4, 6.

(iv) Consider another MOP graph of order 8 and denoted as M6, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 3, 4, 5, 7 and v5v7. For every non-negative k ≤ 6, we obtained that M6 is k-TPC. The labelings of the
vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
6 ,T

2
2 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
1 ,T

2
7 ,T

2
8

k = 4 and 6: T k
8 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
1 .

Edge condition:
e fk (1) = e fk (0) + 1 for 1 ≤ k ≤ 6.

(v) Consider another MOP graph of order 8 and denoted as M7, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 4, 6, 7 and v4v j, j = 2, 6. For every non-negative k ≤ 6, we obtained that M7 is k-TPC. The labelings of
the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
8 ,T

2
2 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
1

k = 4: T 4
8 ,T

4
2 ,T

4
1 ,T

4
4 ,T

4
5 ,T

4
6 ,T

4
7 ,T

4
3

k = 6: T 6
2 ,T

6
1 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
7 ,T

6
8 .

Edge condition:
e fk (1) = e fk (0) + 1 for 1 ≤ k ≤ 6.

(vi) Consider another MOP graph of order 8 and denoted as M8, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 3, 4, 5 and v8v j, j = 5, 6. For every non-negative k ≤ 6, we obtained that M8 is k-TPC. The labelings of
the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
8 ,T

k
7

k = 2 and 6: T k
7 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
1 ,T

k
8

k = 4: T 4
8 ,T

4
2 ,T

4
3 ,T

4
4 ,T

4
5 ,T

4
6 ,T

4
1 ,T

4
7 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 2, 3, 5, 6
e fk (1) = e fk (0) + 1 for k = 4.

(vii) Consider another MOP graph of order 8 and denoted as M9, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 3, 4, 5, 6 and v6v8. For every non-negative k ≤ 6, we obtained that M9 is k-TPC. The labelings of the
vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
2 ,T

2
1 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
8

k = 4: T 4
8 ,T

4
2 ,T

4
3 ,T

4
4 ,T

4
5 ,T

4
6 ,T

4
1 ,T

4
7

k = 6: T 6
7 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
1 ,T

6
8 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 3, 5, 6
e fk (1) = e fk (0) + 1 for k = 2, 4.

(viii) Consider another MOP graph of order 8 and denoted as M10, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 3, 4, 5 and v5v j, j = 7, 8. For every non-negative k ≤ 6, we obtained that M10 is k-TPC. The labelings
of the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
2 ,T

2
1 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
8

k = 4: T 4
1 ,T

4
2 ,T

4
5 ,T

4
4 ,T

4
3 ,T

4
6 ,T

4
7 ,T

4
8

k = 6: T 6
7 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
1 ,T

6
8 .
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Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 2, 3, 5, 6
e fk (1) = e fk (0) + 1 for k = 4.

(ix) Consider another MOP graph of order 8 and denoted as M11, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 3, 5, 6 and v3v5 and v6v8. For every non-negative k ≤ 6, we obtained that M11 is k-TPC. The labelings
of the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
7 ,T

k
6 ,T

k
8

k = 2: T 2
7 ,T

2
2 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
1 ,T

2
8

k = 4: T 4
8 ,T

4
2 ,T

4
3 ,T

4
1 ,T

4
4 ,T

4
6 ,T

4
5 ,T

4
7

k = 6: T 6
8 ,T

6
1 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
5 ,T

6
6 ,T

6
7 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 2, 3, 5
e fk (1) = e fk (0) + 1 for k = 4, 6.

(x) Consider another MOP graph of order 8 and denoted as M12, having a cycle v1v2v3v4v5v6v7v8v1 and five chords
v1vi, i = 4, 5, 6 and v2v4 and v6v8. For every non-negative k ≤ 6, we obtained that M12 is k-TPC. The labelings
of the vertices in the order of v1, v2, v3, v4, v5, v6, v7, v8 are given below:

k is odd: T k
1 ,T

k
2 ,T

k
3 ,T

k
4 ,T

k
5 ,T

k
6 ,T

k
7 ,T

k
8

k = 2: T 2
2 ,T

2
1 ,T

2
3 ,T

2
4 ,T

2
5 ,T

2
6 ,T

2
7 ,T

2
8

k = 4: T 4
8 ,T

4
1 ,T

4
5 ,T

4
3 ,T

4
4 ,T

4
2 ,T

4
6 ,T

4
7

k = 6: T 6
5 ,T

6
2 ,T

6
3 ,T

6
4 ,T

6
1 ,T

6
6 ,T

6
8 ,T

6
7 .

Edge condition:
e fk (0) = e fk (1) + 1 for k = 1, 3, 5
e fk (1) = e fk (0) + 1 for k = 2, 4, 6.

6. Conclusion
Study of higher order triangular numbers is very interesting in the theory of numbers. According to existing literature,
much works have been done in triangular related labelings and cordial related labelings. In our study, a new labeling
called k- triangular prime cordial labeling was introduced. This will add new dimension to the research work in the
area connecting two branches, namely, graph labeling and number theory. It is challenging to investigate k- triangular
prime cordial labeling of MOP graphs of small order. We shown that all MOP graphs of order 4,5 and 6 admit k-TPC
labeling for k = 1, 2, 3, 5, 6. But these graphs are not 4-TPC graphs. We also proved that all MOP graphs of order 7
admit k-TPC labeling for k = 1, 2, 3, 4, 5, 6. Moreover, it is verified that the MOP graphs of order 8 are k-TPC graphs
for k = 1, 2, 3, 4, 5, 6. In future, this work may be extended for higher order MOP graphs.
Acknowledgement. The authors greatly appreciate the Reviewer and the Editor for their valuable and constructive
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