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Abstract

In this paper, we introduce the notions of commutative, weakly commutative, and compatible mappings in
multiplicative cone metric space and prove common fixed point theorems for these mappings with multiplicative
normal cone setting. Also, we give an example to show the validity of our results.
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1. Introduction
There exist numerous generalizations of metric space in fixed point theory. One of them is cone metric space, which
is introduced by Huang and Zhang [7] in 2007. They analysed convergence and substituted real numbers by ordered
Banach space and proved fixed point theorems in this space with normal cone conditions. After that, various authors he
proved and extend many fixed point and CFP (common fixed point) results to this space with normal and non-normal
cone conditions (see, eg., [3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 18]).

Recently in 2017, Ampadu [1] introduced the notion of multiplicative cone metric in which he replaced triangle
inequality property in cone metric space by multiplicative triangle inequality property and established a coupled
version of higher-order Banach contraction principle with multiplicative normal cone condition, further also in [2],
he proved a Hardy-Rogers fixed point theorem in this space uses the c- class multiplicative cone functions.

On the other hand, in 1976 it was the turning point in the theory of the existence of CFP for mappings when
Jungck [8] introduced the concept of commutative mappings by generalizing the Banach contraction theorem and
proved some CFP theorems by using these mappings. This opens a new interesting area of research for researchers.
Then in the sequel, in 1982, a less restrictive concept was introduced by Sessa [16] called weakly commutativity
in order to generalize the commutativity concept. Thereafter, many authors prove and extend a variety of common
fixed point theorems by substituting commutativity to weakly commutativity. Further, in 1986, Jungck [9] define
a new notion of compatible mappings. These mappings are more general in nature than commutative and weakly
commutative mappings that commutative mappings are weakly commutative and weakly commutative mappings are
compatible but the converse may not be true. Also, we can notice that commutativity and weakly commutativity are
point-based properties of mappings while compatibility is an iteration of sequences-based properties.

In this paper, we first introduce the notions of commutative, weakly commutative, and compatible mappings to
multiplicative cone metric space, and then next we prove CFP theorems for these mappings. Also, in the last, we show
the validity of our proven results by an example.

2. Preliminaries
In 2017, Ampadu [1] gave the perception of multiplicative cone metric space as follows:

Definition 2.1 ([1]). Let K be a real Banach space. A subset L of K is called a multiplicative cone iff:
(L1) L is closed, nonempty and L , {1},
(L2) um vn ∈ L, for all u, v ∈ L and m, n ≥ 0,
(L3) u ∈ L and 1

u ∈ L imply u = 1 i.e., L ∩ 1
L = 1.

Definition 2.2 ([1]). Let L ⊆ K be a multiplicative cone, then partial ordering ≤ is defined on L by u ≤ v iff u
v ∈ L.

Here u < v indicates u ≤ v but u , v and u� v will stand for u
v ∈ int (L) (interior of L).
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Definition 2.3 ([1]). Let L ⊆ K is a multiplicative cone then it is called multiplicative normal if,
∃ Ψ > 0 s.t.,∀ u, v ∈ K, 1 ≤ u ≤ v implies that, ‖u‖ ≤ ‖v‖Ψ .

The least positive number which satisfies the above condition is called the multiplicative constant of L. Here ||.||
denotes a multiplicative norm.

Definition 2.4 ([1]). Let K be a real Banach space and L ⊆ K be a multiplicative cone. Let M be any non-empty set,
then if the mapping Υ: M × M → K satisfies the following:
(Υ1) 1< Υ(u, v), ∀ u, v ∈ M and Υ(u, v) = 1 iff u , v,
(Υ2) Υ(u, v) = Υ(v, u), ∀ u, v ∈ M,
(Υ3) Υ(u, v) ≤ Υ(u, w) Υ(w, v) ∀ u, w, v ∈ M (multiplicative triangle inequality).
Then we say that Υ is a multiplicative cone metric on M and (M, Υ) is a multiplicative cone metric space.

Example 2.1. Let K = R2, L = {(u, v) ∈ K: u, v ≥ 1} ⊆ R2, M = R and mapping Υ: M ×M→ K be such that, Υ(u, v) =

(ω|u−v|, ωσ|u−v|), where ω > 1 and σ ≥ 0 is a constant. Then pair (M, Υ) is a multiplicative cone metric space.

Definition 2.5 ([1]). Let (M, Υ) is multiplicative cone metric space, and {un} ⊂ M be a sequence, then we say that
sequence {un} is;

(i) Multiplicative convergent and multiplicative converges to a point u ∈M, if for every µ ∈ K with 1 << µ, there is
N s. t., ∀ n > N, Υ(un, u) << µ, i.e. limn→ ∞ un = u.

(ii) Cauchy sequence, if for any µ ∈ K with 1 <<µ , ∃ N s.t., ∀ n, m > N, Υ(un, um) <<µ .

Definition 2.6 ([1]). A multiplicative cone metric space is said to be complete if for every multiplicative Cauchy
sequence is multiplicative convergent in M.

Definition 2.7. Let (M, Υ) be a multiplicative cone metric space, and E, F: M→ M are two self-mappings of (M, Υ).
Then E and F are said to be:

(i) Commutative mappings if EFu = FEu, for all u ∈ M,
(ii) Weakly commutative mappings if Υ(EFu, FEu) ≤ Υ(Eu, Fu), for all u ∈ M,
(iii) Compatible mappings if limn→ ∞ Υ(EFun, FEun) = 1, whenever, sequence {un} ⊂M be such that limn→ ∞ Eun

= limn→ ∞ Fun = λ, for some λ ∈ M.

Remark 2.1. Commutative mappings are always weakly commutative and weakly commutative mappings are
compatible but the converse is not always true, which is clear by the following examples:

Example 2.2. Let M = [0, 1], K = R and L = {u ∈ K: u ≥ 1} be a multiplicative cone in K. Let Υ: M × M → K be
a multiplicative metric defined as, Υ(u, v) = ω|u−v|, for all u, v ∈ M and ω > 1, then (M, Υ) is clearly a multiplicative
cone metric space. Suppose E, F: M→ M are two self-mappings of (M, Υ) defined by,

E(u) = u
3−u , and F(u) = u

3 ; ∀ u ∈ M.

Then, we can see that, for any non-zero u ∈ M, we have;

EFu = u
9−u <

u
9−3u = FEu.

That is E and F are not commutative mappings but;

Υ(EFu, FEu) = ω

∣∣∣∣ 2u2
(9−u)(9−3u)

∣∣∣∣ ≤ ω∣∣∣∣ u2
(9−3u)

∣∣∣∣ = Υ(Eu, Fu) for any u ∈ M.

Hence E and F are weakly commutative mappings.

Example 2.3. Let M = R, K = R, and L = {u ∈ K: u ≥ 1} be a multiplicative cone in K. Let Υ: M × M → K be a
multiplicative metric defined as, Υ(u, v) = ω|u−v|, for all u, v ∈ M and ω > 1, then (M, Υ) is clearly a multiplicative
cone metric space. Suppose E, F: M→ M are two self-mappings of (M, Υ) defined by,

E(u) = u3, and F(u) = 2-u ∀ u ∈ M.

Then, we can see that, for any non-zero u ∈ M, we have;
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EFu = (2-u) 3 , (2-u3) = FEu.

That is E and F are not commutative mappings and again we have,

Υ(EFu, FEu) = ω6u9
> ωu3

= Υ(Eu, Fu) for any u ∈ M.

So, these mappings are also not weakly commutative but

limn→ ∞ Υ(Eun, Fun) = ω|un−1||u2
n+ un+2| → 1 iff un → 1 and

limn→ ∞ Υ(EFun, FEun) = limn→ ∞ ω6|un−1|2 = 1 if un → 1.

Hence E and F are compatible mappings.

Preposition 2.1. Let E and F be two compatible self-mappings of a multiplicative cone metric space (M, Υ). If Eλ =

Fλ for some λ ∈ M. Then EFλ = EEλ = FFλ = FEλ.

Proof. Let {un} be a sequence in M defined by un = λ, where λ ∈ M and n = 1, 2, 3. . . and Eλ = Fλ. Then we have,
limn→ ∞ Eun = limn→ ∞ Fun = Eλ.

Since E and F are compatible mappings, so we get;
Υ(EFλ, FEλ) = limn→ ∞ Υ(EFun, FEun) = 1, therefore, we get EFλ = FFλ. Since Eλ = Fλ, then finally we get,

EFλ = EEλ = FFλ = FEλ. �

Preposition 2.2. Let E and F be two compatible self-mappings of a multiplicative cone metric space (M, Υ) and
limn→ ∞ Eun = limn→ ∞ Fun = λ, for some λ ∈ M. Then,

(i) limn→ ∞ FEun = Eλ if E is continuous at λ,
(ii) limn→ ∞ EFun = Fλ if F is continuous at λ,
(iii) EFλ = FEλ and Eλ = Fλ if E and F are continuous at λ.

Proof. (i) Let E is continuous at λ. Since limn→ ∞ Eun = limn→ ∞ Fun = λ, for some λ ∈ M, so we have
limn→ ∞ EFun = Eλ. Also, E and F are compatible mappings therefore, we get;
limn→ ∞ Υ(FEun, Eλ) = limn→ ∞ Υ(FEun, EFun) limn→ ∞ Υ(EFun, Eλ) = 1.
Hence limn→ ∞ FEun = Eλ.

(ii) This can be proven by a similar argument to (i).

(iii) Let E and F be continuous at λ. Since limn→ ∞ Fun = λ and E is continuous at λ, then by (i) we have
limn→ ∞ FEun = Eλ, also F is continuous at λ. So, limn→ ∞ FEun = Fλ. Thus we get Eλ = Fλ and by the
uniqueness of the limit and preposition 2.12, we get EFλ = FEλ. �

3. Main Results
We now prove the following CFP theorems for commutative, weakly commutative, and compatible mappings which
satisfy a contractive condition in the context of multiplicative cone metric space.
Theorem 3.1. Let (M, Υ) be a complete multiplicative cone metric space and L be a multiplicative normal cone
with multiplicative constant Ψ . Let E, F, H, I: M→ M be four self-mappings of (M, Υ), which satisfy the following
conditions:

(1) E(M) ⊂ I(M) and F(M) ⊂ H(M),
(2) Υ(Eu, Fv) ≤ {max{Υ(Hu, Iv), Υ(Hu, Eu), Υ(Iv, Fv), Υ(Eu, Iv), Υ(Hu, Fv)}}η, ∀ u, v ∈ M and η ∈ (0, 1

2 ),
(3) One of the mappings E, F, H, and I is continuous,
(4) The pairs (H, E) and (I, F) are commutative.

Then mappings E, F, H and I have a unique CFP.

Proof. Since E(M) ⊂ I(M), consider a point u0 ∈ M, there exists u1 ∈ M such that Eu0 = Iu1 = v0. Now for this point
u1, there exist u2 ∈ M such that Fu1 = Hu2 = v1. This continues to form sequences such that

v2n = Eu2n = Iu2n+1, and v2n+1 = Fu2n+1 = Hu2n+1. (3.1)

Now, taking u = u2n and v = u2n+1 in (2) , we obtain
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Υ(v2n, v2n+1) = Υ(Eu2n, Fu2n+1)
≤ {max{ Υ(Hu2n, Iu2n+1), Υ(Hu2n, Eu2n), Υ(Iu2n+1, Fu2n+1), Υ(Eu2n, Iu2n+1),

Υ(Hu2n, Fu2n+1)}}η
≤ {max{ Υ(v2n−1, v2n), Υ(v2n−1, v2n), Υ(v2n, v2n+1), Υ(v2n, v2n), Υ(v2n−1, v2n+1)}}η
≤ {max{ Υ(v2n−1, v2n) Υ(v2n, v2n+1), Υ(v2n−1, v2n) Υ(v2n, v2n+1), Υ(v2n−1, v2n)

Υ(v2n, v2n+1), 1, Υ(v2n−1, v2n)Υ (v2n, v2n+1)}}η
= {Υ (v2n−1, v2n)}η {Υ (v2n, v2n+1)}η.

This implies that
Υ (v2n, v2n+1) ≤ {Υ(v2n−1, v2n)} η

1− η ,

Υ (v2n, v2n+1) ≤ {Υ (v2n−1, v2n)} h, (3.2)

Here, h =
η

1−η ∈ (0, 1
2 ). Similarly, by using (2) we obtain,

Υ(v2n, v2n+1) = Υ(Eu2n, Fu2n+1)
≤ {max{Υ(Hu2n, Iu2n+1), Υ(Hu2n, Eu2n), Υ(Iu2n+1, Fu2n+1), Υ(Eu2n, Iu2n+1),

Υ(Hu2n, Fu2n+1)}}η
≤ {max{Υ(v2n−1, v2n), Υ(v2n−1, v2n), Υ(v2n, v2n+1), Υ(v2n, v2n), Υ(v2n−1, v2n+1)}}η
≤ {max{Υ(v2n−1, v2n) Υ(v2n, v2n+1), Υ(v2n−1, v2n) Υ(v2n, v2n+1), Υ(v2n−1, v2n)

Υ(v2n, v2n+1), 1, Υ (v2n−1, v2n) Υ (v2n, v2n+1)} }η
= {Υ (v2n, v2n+1)}η {Υ (v2n+1, v2n+2)}η.

This implies that
Υ (v2n+1, v2n+2) ≤ {Υ(v2n, v2n+1)} η

1− η ,

Υ (v2n+1, v2n+2) ≤ {Υ (v2n, v2n+1)}h, h =
η

1−η∈ (0, 1
2 ). (3.3)

So, from (3.2) and (3.3), ∀ n ∈ N, we get
Υ(vn, vn+1) ≤ Υ(vn−1, vn)h ≤ Υ(vn−2, vn−1)h2≤. . . ≤ Υ(v0, v1)hn

.
Therefore, by using multiplicative triangle inequality, we obtain ∀ n, m ∈ N such that n < m,

Υ (vn, vm) ≤ Υ(vn, vn+1) Υ(vn+1, vn+2) ... Υ(vm−1, vm)
≤ Υ(v0, v1)hn

Υ(v0, v1)hn−1
... Υ(v0, v1)hm−1

≤ Υ(v0, v1)
hn

1−h .

Now, by using the condition of multiplicative normality of cone, we get∥∥∥Υ(vn, vm)
∥∥∥ ≤ ∥∥∥Υ(v0 v1)

∥∥∥ Ψ hn
1−h .

Since h < 1 it follows that limn,m →∞ Υ(vn, vm) = 1.
Hence {vn} is a multiplicative Cauchy sequence in M. Now since M is multiplicative complete so, there is a point s

∈ M s.t. limn→∞ vn = s. Consequently, we have
limn→∞ Eu2n = limn→∞ Iu2n+1 =limn→∞ Fu2n+1 =limn→∞ Hu2n+2 = s, (3.4)

because, {v2n} = {Eu2n} = {Iu2n+1}, {v2n+1} = {Fu2n+1} = {Hu2n+1} are sub sequences of {vn}.
Case (i). Suppose that H is continuous then

limn→∞ HEu2n = limn→∞ H2u2n = Hs.
Since, (H, E) is a pair of commutative mappings then, we have

limn→∞ EHu2n = limn→∞ HEu2n

i.e., limn→∞ EHu2n = Hs. (3.5)

On putting u = u2n and v = u2n+1 in (2) and using (3.1) and (3.5), we get
Υ (EHu2n, Fu2n+1) ≤ {max{Υ

(
H2u2n, Iu2n+1

)
, Υ

(
H2u2n, EHu2n

)
, Υ (Iu2n+1, Fu2n+1),
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Υ (EHu2n, Iu2n+1), Υ
(
H2u2n, Fu2n+1

)
}}η.

Letting n→∞, we obtain
Υ(Hs, s) ≤{max{Υ(Hs, s), Υ(Hs, Hs), Υ(s, s), Υ(Hs, s), Υ(Hs, s)}}η

= {max{Υ(Hs, s), 1, 1, Υ(Hs, s), Υ(Hs, s)}}η
= {Υ(Hs, s)}η,

Υ(Hs, s) ≤ {Υ(Hs, s)}η.
This implies that, Υ(Hs, s) = 1, i.e., Hs = s. (3.6)

On putting u = s and v = u2n+1 in (2) and using (3.6), we get
Υ(Es, Fu2n+1) ≤{max{Υ(Hs, Iu2n+1), Υ(Hs, Es), Υ(Iu2n+1, Fu2n+1), Υ(Es, Iu2n+1), Υ(Hs,Fu2n+1)}}η

Letting n→∞, we obtain
Υ(Es, s) ≤{max{Υ(s, s), Υ(s, Es), Υ(s, s), Υ(Es, s), Υ(s, s)}}η

={max{1, Υ(s, Es), 1, Υ(Es, s), 1}}η
= {Υ(Es, s)}η,

Υ(Es, s) ≤{Υ(Es, s)}η.
This implies that, Υ(Es, s) =1, i.e., Es = s . (3.7)

From (3.6) and (3.7), we have
Hs =Es =s. (3.8)

Now, s = Es ∈ E(M) ⊂ I(M), so there exists α ∈ M, such that
s = Iα. (3.9)

On putting u = s and v = α in (2) and using (3.8)and (3.9), we have
Υ(s, Fα) = Υ(Es, Fα)

≤ {max{Υ(Hs, Iα), Υ(Hs, Es), Υ(Iα, Fα), Υ(Es, Iα), Υ(Hs, Fα)}}η
= {max{Υ(s, s), Υ(s, s), Υ(s, Fα), Υ(s, Iα), Υ(s, Fα)}}η
= {Υ(s, Fα)}η,

Υ(s, Fα) ≤ {Υ(s, Fα)}η.
This implies that, Υ(s, Fα) = 1, i.e., Fα = s. (3.10)

Since (I, F) is a pair of commutative mapping and using (3.10), we get
Is = IFα = FIα = Fs. (3.11)

On putting u = s and v = s in (2) and using (3.8) and (3.11), we have
Υ(s, Fs) = Υ(Es, Fs)

≤ {max{Υ(Hs, Is), Υ(Hs, Es), Υ(Is, Fs), Υ(Es, Is), Υ(Hs, Fs)}}η
={max{Υ(s, s), Υ(s, s), Υ(s, Fs), Υ(s, s), Υ(s, Fs)}}η
= {Υ(s, Fs)}η,

Υ(s, Fs) ≤ {Υ(s, Fs)}η.
This implies that, Υ(s, Fs) = 1, i.e., Fs = s. (3.12)

Now, from (3.8), (3.9) and (3.12), we have
Hs = Es = Is = Fs = s.

Hence, s is the CFP of mappings H, I, E, and F.
Case (ii). Suppose that I is continuous, then this can be proved similar to case (i).
Case (iii).Suppose that E is continuous then

limn→∞ EHu2n = limn→∞ E2u2n = Es.
Since, (H, E) is a pair of commutative mappings then, we have

limn→∞ HEu2n = Es. (3.13)
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On putting u = Eu2n and v = u2n+1 in (2) and using (3.1) and (3.13), we get
Υ

(
E2u2n, Fu2n+1

)
≤ {max{Υ

(
E2u2n, Iu2n+1

)
, Υ

(
E2u2n, E2u2n

)
, Υ (Iu2n+1, Fu2n+1),

Υ
(
E2u2n, Iu2n+1

)
,Υ

(
E2u2n, Fu2n+1

)
}} η.

Letting n→∞, we obtain
Υ(Es, s) ≤ {max{Υ(Es, s), Υ(Es, Es), Υ(s, s), Υ(Es, s), Υ(Es, s)}}η

= {max{Υ(Es, s), 1, 1, Υ(Es, s), Υ(Es, s)}}η
= {Υ(Es, s)}η.

Υ(Es, s) ≤ {Υ(Es, s)}η.
This implies that, Υ(Es, s) = 1, i.e., Es = s. (3.14)

Now, s = Es ∈ E(M) ⊂ I(M), so there exists α1 ∈ M such that
s = Iα1. (3.15)

On putting u = Eu2n and v = α1 in (2), we have
Υ

(
E2u2n, Fα1

)
≤{max{Υ (HEu2n, Iα1), Υ

(
HEu2n, E2u2n

)
, Υ (Iα1, Fα1), Υ

(
E2u2n, Iα1

)
, Υ (HEu2n, Fα1)}} η.

Letting n→∞ and using (3.14) and (3.15), we get
Υ (Es, Fα1) ≤{max{ Υ(Es, s), Υ(Es, Es), Υ(s, Fα1), Υ(Es, s), Υ(Es, Fα1)}}η

Υ(s, Fα1) ≤{ Υ(s, Fα1)}η.
This implies that, Υ(s, Fα1) = 1 i.e., Fα1 = s.
Since, (I, F) is a pair of commutative mappings and by using (3.15), we get

Fs=FIα1=IFα1=Is. (3.16)

On putting u = u2n and v = s in (2), and using (3.16), we get
Υ(Eu2n, Fs) ≤ {max{Υ(Hu2n, Is), Υ(Hu2n, Eu2n), Υ(Is, Fs), Υ(Eu2n, Is), Υ(Hu2n, Fs)}}η

Letting n→∞, we get
Υ(s, Fs) ≤ {max{ Υ(s, Fs), Υ(s, s), Υ(Fs, Fs), Υ(s, Fs), Υ(s, Fs)}}η

={ Υ(s, Fs)}η,
Υ(s, Fs) ≤{ Υ(s, Fs)}η.

This implies that, Υ(s, Fs) = 1 i.e., Fs = s. (3.17)

Now, s = Fs ∈ F(M) ⊂ H(M), so there exists a point α2 ∈ M such that
s = Hα2. (3.18)

On putting u = α2 and v = s in (2), and using (3.17) and (3.18), we get
Υ(Eα2, s) = Υ(Eα2, Fs)

≤{max{ Υ(Hα2, Is), Υ(Hα2, Eα2), Υ(Is, Fs), Υ(Eα2, Is), Υ(Hα2, Fs)}}η
= { Υ(Eα2, s)}η,

Υ(Eα2, s) ≤ { Υ(Eα2, s)}η.
This implies that, Υ(Eα2,s) = 1 i.e., Eα2 = s. (3.19)

Since, (H, E) is a pair of commutative mappings, therefore from (3.18) and (3.19), we have
Hs = HEα2 = EHα2 = Es.

Hence, Hs = Es = Is = Fs = s, (3.20)

i.e., s is a CFP of mappings H, I, E, and F.
Case (iv).Suppose that F is continuous, then this can be proved similar to case (iii).
Uniqueness: Let s1 is another CFP of mappings H, I, E, and F, then on putting u = s1 and v = s in (2) and using
(3.20), we get

Υ(s1, s) = Υ(Es1, Fs)
≤{max{Υ(Hs1, Is), Υ(Hs1, Es1), Υ(Is, Fs), Υ(Es1, Is), Υ(Hs1, Fs)}}η
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={max{Υ(s1, s), Υ(s1, s1), Υ(s, s), Υ(s1, s), Υ(s1, s)}}η
={max{Υ(s1, s), 1, 1, Υ(s1, s), Υ (s1, s)}}η
={Υ(s1, s)}η,

Υ(s1, s) ≤{Υ(s1, s)}η.
This implies that, Υ(s1, s) = 1 i.e., s1 = s.
Hence, mappings H, I, E, and F have a unique CFP. �

Theorem 3.2. Let (M, Υ) be a complete multiplicative cone metric space and L be a multiplicative normal cone with
multiplicative constant Ψ . Let E, F, H, I : M→ M be four self-mappings of (M, Υ), which satisfy conditions (1) - (3)
and the following condition:

(5) The pairs (H, E) and (I, F) are weakly commutative.

Then mappings E, F, H and I have a unique CFP.

Proof. Since E(M) ⊂ I(M), consider a point u0 ∈ M, there exists u1 ∈ M such that Eu0 = Iu1 = v0. Now for this point
u1, there exist u2 ∈ M such that Fu1 = Hu2 = v1. This continues to form sequences such that;

v2n = Eu2n = Iu2n+1, and v2n+1 = Fu2n+1 = Hu2n+1.
Then it is clear from the proof of Theorem 3.1, that sequence {vn} is a multiplicative Cauchy sequence in M. Now
since M is multiplicative complete so, there is a point s ∈ M s.t. limn→∞ vn = s. Consequently, we have

limn→∞ Eu2n = limn→∞ Iu2n+1 = limn→∞ Fu2n+1 = limn→∞ Hu2n+2 = s.
Because, {v2n} = {Eu2n} = {Iu2n+1}, {v2n+1} = {Fu2n+1} = {Hu2n+1} are sub sequences of {vn}.
Case (i). First, suppose that H is continuous then, we have

limn→∞ HEu2n =limn→∞ H2u2n = Hs. (3.21)

Since, (H, E) is a pair of weakly commutative mappings, so, we have
Υ (HEu2n, EHu2n) ≤ Υ (Eu2n, Hu2n).

Letting n→∞ and using (3.21), we get
limn→∞ Υ(EHu2n, Hs) ≤ Υ(s, s) = 1,
limn→∞ EHu2n = Hs. (3.22)

Now, on putting u = Hu2n and v = u2n+1 in (2) and using (3.22), we get
Υ (EHu2n, Fu2n+1) ≤{max{Υ

(
H2u2n, Iu2n+1

)
, Υ

(
H2u2n, EHu2n

)
, Υ (Iu2n+1, Fu2n+1),

Υ (EHu2n, Iu2n+1), Υ (EHu2n, Iu2n+1), Υ
(
H2u2n, Fu2n+1

)
}}η.

Letting n→∞, we get
Υ(Hs, s) ≤{max{Υ(Hs, s), Υ(Hs, Hs), Υ(s, s), Υ(Hs, s), Υ(Hs, s)}}η

={max{Υ(Hs, s), 1, 1, Υ(Hs, s), Υ(Hs, s)}}η,
Υ(Hs, s) ≤{Υ(Hs, s)}η .

This implies that, Υ(Hs, s) = 1, i.e., Hs = s. (3.23)

On putting u = s and v = u2n+1 in (2) and using (3.23), we get
Υ(Es, Fu2n+1) ≤{max{Υ(Hs, Iu2n+1), Υ(Hs, Es), Υ(Iu2n+1, Fu2n+1), Υ(Es, Iu2n+1), Υ(Hs, Fu2n+1)}}η.

Letting n→∞, we obtain
Υ (Es, s) ≤{max{ Υ(s, s), Υ(s, Es), Υ(s, s), Υ(Es, s), Υ(s, s)}}η

={max{1, Υ(s, Es), 1, Υ(Es, s), 1}}η
= {Υ(Es, s)}η,

Υ(Es, s) ≤{Υ(Es, s)}η.
This implies that, Υ(Es, s) = 1, i.e., Es = s. (3.24)

From (3.23) and (3.24), we have
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Hs = Es =s. (3.25)

Now, s = Es ∈ E(M) ⊂ I(M), so there exists β ∈ M, such that
s = Es = Iβ. (3.26)

On putting u = s and v = β in (2) and using (3.25) and (3.26), we have
Υ(s, Fβ) = Υ(Es, Fβ),

≤{max{ Υ(Hs, Iβ), Υ(Hs, Es), Υ(Iβ, Fβ), Υ(Es, Iβ), Υ(Hs, Fβ)}}η
={max{ Υ(s, s), Υ(s, s), Υ(s, Fβ), Υ(s, Iβ), Υ(s, Fβ)}}η
={ Υ(s, Fβ)}η,

Υ(s, Fβ) ≤ { Υ(s, Fβ)}η.
This implies that, Υ(s, Fβ) = 1, i.e., Fβ = s. (3.27)

Since (I, F) is a pair of weakly commutative mapping and using (3.26) and (3.27), we get
Υ(Is, Fs) = Υ(IFβ, FIβ) ≤ Υ(Iβ, Fβ) = Υ(s, s) = 1.

This implies that, Υ(Is, Fs) = 1, i.e., Is = Fs. (3.28)

On putting u = s and v = s in (2) and using (3.25) and (3.28), we have
Υ(s, Fs) = Υ(Es, Fs)

≤{max{ Υ(Hs, Is), Υ(Hs, Es), Υ(Is, Fs), Υ(Es, Is), Υ(Hs, Fs)}}η
={max{ Υ(s, s), Υ(s, s), Υ(s, Fs), Υ(s, s), Υ(s, Fs)}}η
={Υ(s, Fs)}η,

Υ(s, Fs) ≤ {Υ(s, Fs)}η.
This implies that, Υ(s, Fs) = 1, i.e., Fs = s. (3.29)

Now, from (3.25), (3.28), and (3.29), we have
Hs = Es = Is = Fs = s.

Hence, s is the CFP of mappings H, I, E, and F.
Case (ii). Suppose that I is continuous, then this can be proven similar to case (i).
Case (iii). Suppose that E is continuous then,

limn→∞ HEu2n =limn→∞ E2u2n =Es. (3.30)

Since, (H, E) is a pair of weakly commutative mappings then, we have
Υ (HEu2n, EHu2n) ≤ Υ (Eu2n, Hu2n).

Letting n→∞ and using (3.30), we get
limn→∞ Υ(HEu2n , Es) ≤ Υ(s,s) = 1.

i.e., limn→∞ HEu2n = Es. (3.31)

Now, on putting u = Eu2n and v = u2n+1 in (2) and using (3.30) and (3.31), we get
Υ

(
E2u2n, Fu2n+1

)
≤{max{Υ

(
E2u2n, Iu2n+1

)
, Υ

(
E2u2n, E2u2n

)
, Υ (Iu2n+1, Fu2n+1),

Υ
(
E2u2n, Iu2n+1

)
, Υ

(
E2u2n, Fu2n+1

)
}} η.

Letting n→∞, we get
Υ(Es, s) ≤{max{Υ(Es, s), Υ(Es, Es), Υ(s, s), Υ(Es, s), Υ(Es, s)}}η

= {max{ Υ(Es, s), 1, 1, Υ(Es, s), Υ(Es, s)}}η
= {Υ(Es, s)}η ,

Υ(Es, s) ≤{Υ(Es, s)}η.
This implies that, Υ(Es, s) = 1, i.e., Es = s. (3.32)

Now, s = Es ∈ E(M) ⊂ I(M), so there exists β1∈ M such that
s = Iβ1. (3.33)

On putting u = Eu2n and v = β1 in (2) and using (3.30), (3.31), (3.32) and (3.33), we get
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Υ
(
E2u2n, Fβ1

)
≤ {max{Υ (

HEu2n, Iβ1
)
, Υ

(
HEu2n, E2u2n

)
, Υ

(
Iβ1, Fβ1

)
, Υ

(
E2u2n, Iβ1

)
, Υ

(
HEu2n, Fβ1

)}} η
Letting n→∞, we get

Υ(Es, Fβ1) ≤ {max{Υ(Es, s), Υ(Es, Es), Υ(s, Fβ1), Υ(Es, s), Υ(Es, Fβ1)}}η,
Υ(s, Fβ1) ≤ {Υ(s, Fβ1)}η.

This implies that, Υ(s, Fβ1) = 1 i.e., Fβ1 = s. (3.34)

Since, (I, F) is a pair of weakly commutative mappings and by using (3.33) and (3.34), we get
Υ(Fs, Is) = Υ(FIβ1, IFβ1) ≤ Υ(Fβ1, Iβ1) = Υ(s, s) = 1.

This implies that, Υ(Fs, Is) = 1 i.e., Fs = Is. (3.35)

On putting u = u2n and v = s in (2) and using (3.35), we get
Υ(Eu2n, Fs) ≤{max{Υ(Hu2n, Is), Υ(Hu2n, Eu2n), Υ(Is, Fs), Υ(Eu2n, Is), Υ(Hu2n, Fs)}}η.

Letting n→∞, we get
Υ(s, Fs) ≤ {max{Υ(s, Fs), Υ(s, s), Υ(Fs, Fs), Υ(s, Fs), Υ(s, Fs)}}η

={Υ(s, Fs)}η,
Υ(s, Fs) ≤{Υ(s, Fs)}η.

This implies that, Υ(s, Fs) = 1 i.e., Fs = s. (3.36)

Now, s = Fs ∈ F(M) ⊂ H(M), so there exists a point β2 ∈ M such that
s = Hβ2. (3.37)

On putting u = β2and v = s in (2) and using (3.36) and (3.37), we get
Υ(Eβ2, s) = Υ(Eβ2, Fs)

≤ {max{Υ(Hβ2, Is), Υ(Hβ2, Eβ2), Υ(Is, Fs), Υ(Eβ2, Is), Υ(Hβ2, Fs)}}η
= {Υ(Eβ2, s)}η,

Υ(Eβ2, s) ≤ {Υ(Eβ2, s)}η.
This implies that, Υ(Eβ2, s) = 1 i.e., Eβ2 = s. (3.38)

Since, (H, E) is a pair of weakly commutative mappings, therefore from (3.37) and (3.38), we get
Υ(Hs, Es) = Υ(HEβ2, EHβ2) ≤ Υ(Hβ2, Eβ2) = Υ(s, s) = 1.

This implies that, Υ(Hs, Es) = 1 i.e., Hs = Es. (3.39)

Hence, Hs = Es = Is = Fs = s.
i.e., s is a CFP of mappings H, I, E, and F.
Case (iv). Suppose that F is continuous, then this can be proven similar to case (iii).
Uniqueness: It can be easily seen from inequality (2).
Hence mappings H, I, E, and F have a CFP. �

Theorem 3.3. Let (M, Υ) be a complete multiplicative cone metric space and L be a multiplicative normal cone with
multiplicative constant Ψ . Let E, F, H, I: M→ M be four self-mappings of (M, Υ), which satisfy conditions (1) - (3)
and the following condition:

(6) The pairs (H, E) and (I, F) are compatible.

Then mappings E, F, H and I have a unique CFP.

Proof. Since E(M) ⊂ I(M), consider a point u0 ∈ M, there exists u1 ∈ M such that Eu0 = Iu1 = v0. Now for this point
u1, there exist u2 ∈ M such that Fu1 = Hu2 = v1. This continues to form sequences such that;

v2n = Eu2n = Iu2n+1, and v2n+1 = Fu2n+1 = Hu2n+1.
Then it is clear from the proof of Theorem 3.1, sequence {vn} is a multiplicative Cauchy sequence in M. Now since M

is multiplicative complete so, there is a point s ∈ M s.t., limn→∞ vn = s. Consequently, we have
limn→∞ Eu2n = limn→∞ Iu2n+1 = limn→∞ Fu2n+1 = limn→∞ Hu2n+2 = s.
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Because, {v2n} = {Eu2n} = {Iu2n+1}, {v2n+1} = {Fu2n+1} = {Hu2n+1} are sub sequences of {vn}.
Case (i). First, suppose that H is continuous then, we have

limn→∞ HEu2n =limn→∞ H2u2n = Hs. (3.40)

Since, (H, E) is a pair of compatible mappings, so it follows from the preposition (2.13), we have
limn→∞ EHu2n = Hs. (3.41)

Now, on putting u = Hu2n and v = u2n+1 in (2) and using (3.41), we get
Υ (EHu2n, Fu2n+1) ≤ {max{Υ

(
H2u2n, Iu2n+1

)
, Υ

(
H2u2n, EHu2n

)
, Υ (Iu2n+1, Fu2n+1),
Υ (EHu2n, Iu2n+1), Υ

(
H2u2n, Fu2n+1

)
}}η

Letting n→∞, we get
Υ(Hs, s) ≤{max{Υ(Hs, s), Υ(Hs, Hs), Υ(s, s), Υ(Hs, s), Υ(Hs, s)}}η

= {max{Υ(Hs, s), 1, 1, Υ(Hs, s), Υ(Hs, s)}}η
= {Υ(Hs, s)}η,

Υ(Hs, s) ≤{Υ(Hs, s)}η .
This implies that, Υ(Hs, s) = 1, i.e., Hs = s. (3.42)

On putting u = s and v = u2n+1 in (2) and using (3.42), we get
Υ(Es, Fu2n+1) ≤{max{Υ(Hs, Iu2n+1), Υ(Hs, Es), Υ(Iu2n+1, Fu2n+1), Υ(Es, Iu2n+1), Υ(Hs,Fu2n+1)}}η.

Letting n→∞, we obtain
Υ(Es, s) ≤{max{Υ(s, s), Υ(s, Es), Υ(s, s), Υ(Es, s), Υ(s, s)}}η

={max{1, Υ(s, Es), 1, Υ(Es, s), 1}}η
= {Υ(Es, s)}η,

Υ(Es, s) ≤{Υ(Es, s)}η.
This implies that, Υ(Es, s) = 1, i.e., Es = s. (3.43)

From (3.42) and (3.43), we have
Hs = Es = s. (3.44)

Now, s = Es ∈ E(M) ⊂ I(M), so there exists δ ∈ M, such that
s = Es = Iδ. (3.45)

On putting u = s and v = δ in (2) and using (3.44) and (3.45), we have
Υ(s, Fδ) = Υ(Es, Fδ)

≤{max{Υ(Hs, Iδ), Υ(Hs, Es), Υ(Iδ, Fδ), Υ(Es, Iδ), Υ(Hs, Fδ)}}η
= {max{Υ(s, s), Υ(s, s), Υ(s, Fδ), Υ(s, Iδ), Υ(s, Fδ)}}η
= {Υ(s, Fδ)}η,

Υ(s, Fδ) ≤ {Υ(s, Fδ)}η.
This implies that, Υ(s, Fδ) = 1, i.e., Fδ = s. (3.46)

Since (I, F) is a pair of compatible mappings and using (3.45) and (3.46), we get
s = Iδ = Fδ. (3.47)

Now, by the preposition (2.12) we get, IFδ = FIδ, and hence,
Is = IFδ = FIδ = Fs. (3.48)

On putting u = s and v = s in (2) and using (3.44) and (3.48) we have,
Υ(s, Is) = Υ(Es, Fs)

≤{max{Υ(Hs, Is), Υ(Hs, Es), Υ(Is, Fs), Υ(Es, Is), Υ(Hs, Fs)}}η
={max{Υ(s, Is), Υ(s, s), Υ(Is, Fs), Υ(s, Is), Υ(s, Is)}}η
= {Υ(s, Is)}η,

Υ(s, Is) ≤ {Υ(s, Is)}η.
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This implies that, Υ(s, Is) = 1, i.e., Is = s. (3.49)

Now, from (3.44), (3.48) and (3.49), we have
Hs = Es = Is = Fs = s.

Hence, s is the CFP of mappings H, I, E, and F.
Case (ii). Suppose that I is continuous, then this can be proven similar to case (i).
Case (iii). Suppose that E is continuous then,

limn→∞ EHu2n = limn→∞ E2u2n = Es. (3.50)

Since, (H, E) is a pair of compatible mappings, therefore, from preposition (2.13) it follows
limn→∞ HEu2n = Hs. (3.51)

On putting u = Eu2n and v = u2n+1 in (2) and using (3.50) and (3.51), we get
Υ

(
E2u2n, Fu2n+1

)
≤{max{Υ

(
E2u2n, Iu2n+1

)
, Υ

(
E2u2n, E2u2n

)
, Υ (Iu2n+1, Fu2n+1),

Υ
(
E2u2n, Iu2n+1

)
, Υ (HEu2n, Fu2n+1)}} η.

Letting n→∞, we obtain
Υ(Es, s) ≤{max{Υ(Es, s), Υ(Es, Es), Υ(s, s), Υ(Es, s), Υ(Es, s)}}η

= {max{Υ(Es, s), 1, 1, Υ(Es, s), Υ(Es, s)}}η
= {Υ(Es, s)}η,

Υ(Es, s) ≤ {Υ(Es, s)}η.
This implies that, Υ(Es, s) = 1, i.e., Es = s. (3.52)

Now, s = Es ∈ E(M) ⊂ I(M), so there exists δ1∈ M such that
s = Es = Iδ1. (3.53)

On putting u = Eu2n and v = δ1 in (2) and using (3.50), (3.51), (3.52), and (3.53), we get
Υ

(
E2u2n, Fδ1

)
≤ {max{Υ (HEu2n, Iδ1), Υ

(
HEu2n, E2u2n

)
, Υ (Iδ1, Fδ1), Υ

(
E2u2n, Iδ1

)
, Υ (HEu2n, Iδ1)}}η.

Letting n→∞, we get
Υ(s, Fδ1) ≤{max{Υ(s, s), Υ(s, s), Υ(s, Fδ1), Υ(s, s), Υ(s, Fδ1)}}η,
Υ(s, Fδ1) ≤{Υ(s, Fδ1)}η.

This implies that, Υ(s, Fδ1) = 1 i.e., Fδ1 = s. (3.54)

Since, (I, F) is a pair of compatible mappings and by using (3.53) and (3.54), we get
Fδ1 = Iδ1= s, so by the preposition (2.12), we have, IFδ1 = FIδ1 and hence, we get

Is = IFδ1 = FIδ1 = Fs. (3.55)

On putting u = u2n and v = s in (2) and using (3.55), we get
Υ(Eu2n, Fs) ≤{max{Υ(Hu2n, Is), Υ(Hu2n, Eu2n), Υ(Is, Fs), Υ(Eu2n, Is), Υ(Hu2n, Fs)}}η.

Letting n→∞, we get
Υ(s, Fs) ≤{max{Υ(s, Fs), Υ(s, s), Υ(Fs, Fs), Υ(s, Fs), Υ(s, Fs)}}η

={Υ(s, Fs)}η,
Υ(s, Fs) ≤{Υ(s, Fs)}η.

This implies that, Υ(s, Fs) = 1 i.e., Fs = s. (3.56)

Now, s = Fs ∈ F(M) ⊂ H(M), so there exists a point δ2∈ M such that
s = Fs = Hδ2. (3.57)

On putting u = δ2 and v = s in (2) and using (3.56) and (3.57), we get
Υ(Eδ2, s) = Υ(Eδ2, Fs.)

≤ {max{Υ(Hδ2, Is), Υ(Hδ2, Eδ2), Υ(Is, Fs), Υ(Eδ2, Is), Υ(Hδ2, Fs)}}η
= {max{Υ(s, s), Υ(s, Eδ2), Υ(Fs, Fs), Υ(Eδ2, s), Υ(s, s)}}η
= {Υ( Eδ2, s)}η,
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Υ(Eδ2, s) ≤ {Υ(Eδ2, s)}η.
This implies that, Υ(Eδ2, s) = 1 i.e., Eδ2 = s. (3.58)

Since, (H, E) is a pair of compatible mappings in M, therefore, Eδ2 = Hδ2 = s and by the preposition (2.12), we have
HEδ2 = EHδ2.
Therefore, Hs = HEδ2 = EHδ2 = Es, i.e., Hs = Es = Is = Fs = s.
Hence, s is a CFP of mappings H, I, E, and F.
Case (iv). Suppose that F is continuous, then this can be proven similar to case (iii).
Uniqueness: It can be easily seen from inequality (2).
Hence mappings H, I, E, and F have a CFP. �

Example 3.4. Let K = R and L = {u ∈ K: u ≥ 1} be a multiplicative cone in K. Let Υ: M × M→ K, where M = R is a
multiplicative metric defined as:

Υ(u, v) = 2|u−v|, for all u, v ∈ M.

Then (M, Υ) is clearly a complete multiplicative cone metric space. Also, let the following four self-mappings E, F,

H, I: M→ M of multiplicative cone metric space (M, Υ) such that,
Eu = 2u, Fu = u, Hu = 4u, Iu = 6u, ∀ u ∈ M.

Then, we can easily see that,

(1) Since E(M) = F(M) = I(M) = H(M) = M, so E(M) ⊂ I(M), F(M) ⊂ H(M).
(2) Let η = 1

3 ∈ (0, 1
2 ), then from the inequality (2) of Theorem 3.1, we obtain

2|2u−v| ≤ {max{2|4u−6v|, 2|4u−2v|, 2|6u−v|, 2|2u−6v|, 2|4u−v|}}η,
2|2u−v| ≤{max{2|4u−6v|η, 2|4u−2v|η, 2|6u−v|η, 2|2u−6v|η, 2|4u−v|η}. (3.59)

Since, v = lnu is an increasing mapping, so from (3.59), we get
|2u − v| ≤ {max{|4u − 6v| η, |2u| η, |5v| η, |2u − 6v| η, |4u − v| η}}, ∀ u, v ∈ M.

Hence, mappings H, I, E, and F satisfies the condition (2).

(3) H, I, E, and F all are continuous mappings.
(4) Pair (H, E) and (I, F) are pairs of commutative mappings and according to remark 2.9, they must be weakly

commutative and compatible.

Therefore, all the conditions of Theorem 3.1, Theorem 3.2, and Theorem 3.3 are satisfied and H0 = I0 = E0 = F0 =

0, i.e., 0 is the unique CFP of mappings H, I, E and F.

4. Conclusion
This paper aims to introduce commutative, weakly commutative, and compatible mappings to multiplicative cone
metric space and by using these mappings and their properties, develop and generalize the results of common fixed
points to multiplicative cone metric space.
Acknowledgement. We express our grateful thanks to the Editor and Reviewer for their valuable suggestions to bring
the paper in its present form.
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[10] S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey, Nonlinear Analysis: Theory,

Methods & Applications, 74 (2011), 2591-2601.
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