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Abstract

In this paper, we investigate the linear codes from generalized Fibonacci matrices in the context of coding theory.
We show that Fibonacci matrices form a generator matrix for the first order ReedMuller codes R(1, 1). Further, we
see that Multinacci matrices form a basis for [n, n, 1] MDS-code.
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1. Introduction and Preliminaries
A linear code C over a finite field Fq is a k-dimensional subspace of Fn

q and it is denoted as [n, k]-linear code. If
minimum Hamming distance of linear code C is d then it is called a [n, k, d]-linear code.

Fibonacci matrix F2 is a square matrix of size 2×2 of the form F2 =

[
t2 t1
t1 t0

]
=

[
1 1
1 0

]
and its kth power is defined

as Fk
2 =

[
tk+1 tk
tk tk−1

]
, where tk is the kth term of Fibonacci sequence. Fibonacci matrices are enriched with many

interesting properties like direct formula for its kth power, determinant, inverse, etc. irrespective of size k. Due to
special properties, Fibonacci matrices are of great interest among researchers and used in coding theory, cryptography,
secret sharing problem etc. Some recent works on coding theory and cryptographic schemes with special matrices can
be seen in [1,2,7-12].

In this paper, we show application of multinacci matrices in coding theory. We consider Multinacci matrices as
base generator matrix for different type of linear codes. Further, using multinacci matrices as generator only a number
can be used for encryption and decryption instead of a matrix which increase the efficiency of encryption scheme.

Some useful definitions and terminology[4] used in our work are as follows.

Definition 1.1. For [n, k]-linear code C, we have

1. A generator matrix G in the form (Ik |X) is said to be in standard form.
2. A parity-check matrix H in the form (Y |In−k) is said to be in standard form.

Definition 1.2. (ReedMuller codes) The first order ReedMuller codes R(1,m) are binary codes defined for all m ∈ N
recursively as:

1. R(1, 1) = F2
2 = {00, 01, 10, 11},

2. For m ≥ 1, R(1,m + 1) = {(v, v) : v ∈ R(1; m)} ∪ {(v, v + 1) : v ∈ R(1; m)}.
By the virtue of [5], we have the following useful lemma.

Lemma 1.1. Let Gk×n be a generator matrix of [n, k]-linear code C. Then the [n, k]-linear code C is an LCD code if
and only if Det(GGT ) , 0.
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1.1. Generalized Fibonacci Matrices
Definition 1.3. The generalized Fibonacci sequence of order n ≥ 2 is defined by the recurrence relation,

tk+n = tk + tk+1 + tk+2 + ... + tk+n−1, k ≥ 0 (1.1)

with t0 = t1 = ... = tn−2 = 0 and tn−1 = 1.

The generalized Fibonacci sequence is also known as n−nacci sequence. The sequence {tk}k∈N can be also extended
to negative direction, which is given by rearranging the relation (1.1) as,

t−k = t−k+n − (t−k+1 + ... + t−k+n−1), f or k ≥ 1. (1.2)

In particular, for n = 2 it gives the Fibonacci sequence [A000045] and for n = 3, the tribonacci sequence [A000073][3].
The matrix sequence associated with the generalized Fibonacci sequence as proposed in [6] of order n is given by

Fk
n =



tk+n−1 tk+n−2 + tk+n−3 + ... + tk · · · tk+n−2
tk+n−2 tk+n−3 + tk+n−4 + ... + tk−1 · · · tk+n−3
...

...
. . .

...
tk+1 tk + tk−1 + ... + tk−n+2 · · · tk
tk tk−1 + tk−2 + ... + tk−n+1 · · · tk−1


n×n

, for k = 0,±1,±2, ... (1.3)

where F0
n = In, In is the identity matrix of order n and tk is the kth term of generalized Fibonacci sequence of same

order as of given matrix. Matrix Fk
n refers to the Multinacci matrix of order n.

The initial (generator) matrix for Fibonacci matrix is given by

F1
n =



1 1 1 ... 1 1
1 0 0 ... 0 0
...

...
...

. . .
...

...
0 0 0 ... 0 0
0 0 0 ... 1 0


n×n

= Fn. (1.4)

By the virtue of [6], Multinacci matrices Fk
n have following properties, given in the next lemma.

Lemma 1.2. For n ≥ 2 and k ∈ Z, we have

1. (F1
n)k = Fk

n,
2. (Fk

n)−1 = F−k
n ,

3. Fk
nF l

n = Fk+l
n for k, l ∈ Z,

4. det(Fk
n) = (−1)(n−1)k.

Inverse of Multinacci matrix. Inverse of Multinacci matrices are obtained by replacing k with −k in the definition
of matrix Fk

n in eqn. (1.3).

2. Codes with Fibonacci Matrices
Theorem 2.1. Let S = {Fk

2 over Zp, p is a prime and k ∈ Z }, then S forms an abelian group with respect to usual
matrix multiplication.

Proof. Here we show that the collection S satisfies the condition of commutative group.
Closure: For all k1, k2 ∈ Z,

Fk1
2 ∗ Fk2

2 = Fk1+k2
2 =

[
tk1+k2+1 tk1+k2

tk1+k2 tk1+k2−1

]
∈ S . (2.1)

Associativity: Trivially satisfied.
Identity: ∃ F0

2 ∈ S such that for all Fk
2 ∈ S , Fk

2 ∗ F0
2 = Fk

2 = F0
2 ∗ Fk

2.
Inverse: For any Fk

2 ∈ S ∃ F−k
2 ∈ S such that Fk

2 ∗ F−k
2 = F0

2 = F−k
2 ∗ Fk

2.
Commutativity: For all Fk1

2 , F
k2
2 ∈ S , Fk1

2 ∗ Fk2
2 = Fk1+k2

2 = Fk2
2 ∗ Fk1

2 .
So, S ={Fk

2 = [ti j]|ti j ∈ Fp, p is a prime and k ∈ Z } forms an abelian group w.r.t. multiplication operation*.

Theorem 2.2. The set S = {Fk
n over Zp, p is a prime and k ∈ Z } forms an abelian group with respect to usual matrix

multiplication.

Proof. Clearly, set S satisfies all the hypothesis of commutative group, so we omit the proof.
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Theorem 2.3. Order of initial Fibonacci matrix Fn over Z2 is n + 1.

Proof. From (1.1), initial values of generalized Fibonacci sequence are t0 = t1 = ... = tn−2 = 0 and tn−1 = 1. Over Z2,
the proceeding terms are tn = 1, tn+1 = ... = tn+(n−1) = 0, t2n = t2n+1 = 1 and so on. Using (1.3) over Z2, we have

Fn+1
n =



t2n t2n−1 + t2n−2 + ... + tn+1 · · · t2n−1
t2n−1 t2n−2 + t2n−3 + ... + tn · · · t2n−2
...

...
. . .

...
tn+2 tn+1 + tn + ... + t3 · · · tn+1
tn+1 tn + tn−1 + ... + t2 · · · tn


=



1 0 0 ... 0 0
0 0 0 ... 0 0
...

...
...

. . .
...

...
0 0 0 ... 1 0
0 0 0 ... 0 1


i.e. Fn+1

n = In . Hence, over Z2 we have |Fn| = n + 1.

Theorem 2.4. Rows of the Fibonacci matrix F2 forms a basis for R(1, 1).

Proof. From Definition 1.2, we have R(1, 1) = {00, 01, 10, 11} which is a binary [2, 2, 1]-linear code. Now, the
Fibonacci matrix is rearranged as,

F2 =

[
1 1
1 0

]
∼

[
1 0
1 1

]
(R2 ↔ R1)

∼
[
1 0
0 1

]
(R2 ↔ R2 − R1)

Thus, {11, 10} forms a basis for R(1, 1) as R(1, 1) = {00, 01, 10, 11} = < {11, 10} >. Here, we consider rows of
Fibonacci matrices as code (C).

Theorem 2.5. Rows of the Fibonacci matrix Fk
2 forms a basis for R(1, 1) over the field F2.

Proof. Let S be the collection of Fk
2 matrices over field F2, i.e

S = {Fk
2 (mod 2)} =

{[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]}
.

Since for all k, det(Fk
2) , 0 over F2, so rows of Fk

2 are linearly independent over F2. Thus, rows of any matrix from
the set S forms a basis for R(1, 1). As,

R(1, 1) = {00, 01, 10, 11} =< {10, 01} >=< {11, 10} >=< {01, 11} > .
Observe that the Hamming distance d(C) = 1 for each linear code C made from rows of elements of S .

Theorem 2.6. Rows of multinacci matrix Fn forms a basis for [n, n, 2]-linear code.

Proof. Consider a code C =< {111...1, 10...0, 010...0, ..., 0 . . . 10} > whose matrix representation is Fn i.e. initial
multinacci matrix. On performing row reduced echelon form (RREF) on matrix Fn, we obtain

Fn ∼


1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 0 1


n×n

= In.

Here rows of Fn are linearly independent after RREF, so they form a basis for a [n, n]−linear code, so C is [n, n]-code.
Now, we have
d{11...1, 10...0} = d{11...1, 01...0} = · · · = d{11...1, 00 . . . 10} = n − 1,
d{10...0, 01...0} = d{10...0, , 001...0} = · · · = d{10...0, 00 . . . 10} = 2,
...
d{00...01, 10...0} = d{00...01, 01...0} = · · · = d{00...01, , 00 . . . 100} = 2
and, d(C) = min{n − 1, 2, 2 . . . , 2} = 2.
So this is a [n, n, 2]−linear code. Thus, rows of Fn form a basis for [n, n, 2]−linear code. We should note that Fn refers
to the generator matrix of the above [n, n, 2]−linear code.
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Theorem 2.7. A [n, n, 2]-linear code formed with the rows of multinacci matrix Fn is a LCD code.

Proof. From Theorem 2.6, we have Fn as a generator matrix for [n, n, 2]-linear code and Det(Fn) = (−1)(n−1) , 0.
So, Det(Fn ∗ FT

n ) = (Det(Fn))2 = 1 , 0.
Hence by Lemma 1.1, the [n, n, 2]-linear code with generator matrix Fn is a LCD code.

Theorem 2.8. Let S = {Fk
n over F2 where k ∈ Z, n ∈ N}. Then rows of any element of S form a basis for [n, n]-

linear code i.e. rows of the kth power of multinacci matrix form a basis for [n, n]-linear code over F2. Moreover, this
[n, n]-linear code is a LCD code.

Proof. From Lemma 1.2, we have Det(Fk
n) = (−1)k(n−1) , 0, so all rows of Fk

n are linearly independent. Hence, Fk
n

forms a generator matrix for [n, n]-linear code.
Further, we have Det(Fk

n ∗ (Fk
n)T ) = (Det(Fk

n))2 = ((−1)k(n−1))2 = 1 , 0.
So by Lemma 1.1, the above [n, n]-linear code is a LCD code.

Now, let us define a rectangular matrix A of order n × n − 1 by deleting the last column of Fn (see, (1.4)) and it is
given by

A =



1 1 1 ... 1
1 0 0 ... 0
0 1 0 ... 0
...

...
...

. . .
...

0 0 0 ... 1


n×n−1

. (2.2)

The columns of the matrix A forms a parity check code leads to the following result.

Theorem 2.9. The transpose of A i.e. AT forms a generator matrix for a [n, n − 1, 2] parity check code.

Proof. We have

AT =



1 1 0 ... 0
1 0 1 ... 0
1 0 0 ... 0
...

...
...

. . .
...

1 0 0 ... 1


n−1×n

.

Now permute the columns of AT as (1, n, n − 1, ..., 3, 2) leads to the following matrix G,

G =



1 0 ... 0 1
0 1 ... 0 1
0 0 ... 0 1
...

...
. . .

...
...

0 0 ... 1 1


n−1×n

= (In−1|X), where X = (1, 1, ..., 1)T .

Thus from Definition 1.1, G be the standard form of generator matrix for [n, n − 1]−linear code.
By a similar argument to Theorem 2.6, we should note that d(C) = 2 where C is a code generated by the rows of
AT . Hence, AT forms a generator matrix for a [n, n − 1, 2] parity check code. Similar to above theorem, we have the
following result on LCD code with matrix generated by deleting the last row of Fn.

Theorem 2.10. Let B refers to the matrix generated by deleting the last row of Fn, then B be a generator matrix for
[n, n − 1, 2] LCD code.

Proof. We have

B =


1 1 ... 1 1 1
1 0 ... 0 0 0
...

...
...

. . .
...

...
0 0 ... 1 0 0


n−1×n

.

After some elementary operations on rows of B, we get

G′ =


1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
0 0 ... 1 1


n−1×n

= (In−1|X),
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where X = (0, 0, ..., 1)T . Thus, by Definition 1.1 G′ is in standard form.
By a similar argument to Theorem 2.6 yields that d(C) = 2 where C is code generated by the rows of B. So, B forms
a generator matrix for a [n, n − 1, 2] LCD code.

3. Conclusion
In our study, we obtained different kinds of linear codes from generalized Fibonacci matrices. We proved that rows
of multinacci matrices form a basis for the first order ReedMuller codes R(1, 1) and different linear codes. Also we
showed their relations with LCD code.

Future work. This study can be extended to generalized Lucas matrices, where for k ≥ 0 the generalized Lucas
sequence {ln}n≥0 of order n are defined by the relation[7]

lk+n = lk + lk+1 + lk+2 + ... + lk+n−1, n ≥ 2, (3.1)

with initial values l0 = k and lr = 2r − 1 for 1 ≤ r < n.
On replacing ti’s by l′i s in the matrix given in (1.3) gives the generalized Lucas matrix L(k)

n [8], where the initial
(generator) matrix for Lucas matrix is given as

L(0)
n =



2n−1 − 1 2n−1 2n−1 − k ... 7.2n−4 3.2n−3 2n−2 − 1
2n−2 − 1 2n−2 2n−2 + 1 ... 7.2n−5 3.2n−4 2n−3 − 1
2n−3 − 1 2n−3 2n−3 + 1 ... 7.2n−6 3.2n−5 2n−4 − 1

...
...

...
. . .

...
1 2 3 ... n − 2 n − 1 n
n 1 − n 2 − n ... −3 −2 −1


n×n

.
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