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Abstract
In this article, we have developed a new technique for solving stochastic integral equations. A new Haar wavelets

stochastic operational matrix of integration (HWSOMI) is developed in order to obtain efficient and accurate solution
for stochastic integral equations. In the beginning we study the properties of stochastic integrals and Haar wavelets.
Convergence and error analysis of Haar wavelet method is presented. Accuracy of the method investigated is justified
through some examples.
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1 Introduction
Wavelet is a newly emerging area of mathematics. Wavelets have a number of applications in signal processing [11].
Integral equations are the most important tools describing knowledge models. Since many a times, the exact solution
of integral equations does not exist, the numerical approximation of these equations become necessary. Different
methods are used for approximating these equations and different basis functions are used.

Modeling various phenomena in science, engineering and physics requires stochastic integrals [4]. Numerical
computations of stochastic integral equations have been studied by various authors. Some of which are Claeden and
Platen [6], Oksendal [8], Maleknejad et al. [7], Cortes et al. [3], Douglas et al. [4], and Zhang [12].

Due to the large number of applications of Haar wavelets in solving differential, integral and integro differential
equations, many authors have studied the computational methods for the solution of these equations using Haar
wavelets. Some of which are found in [9], [10], [1] and [2]. In the present investigation with the help of Haar
wavelets we are developing a novel stochastic operational matrix of Haar wavelets through which we can obtain an
accurate solution for the stochastic integral equations. Here, we consider the following stochastic integral equation,

(1.1) U(t) = g(t) +
∫ t

0 k1 (s, t) U(s)ds +
∫ t

0 k2 (s, t) U(s)dB(s), t ∈ [0,T ),
where U (t) , g (t) , k1 (s, t) and k2 (s, t) for s, t ∈ [0, T ) are the stochastic processes on the same probability space
(Ω, F, P) and U(t) is unknown. Also B(t) is a Brownian motion process and

∫ t
0 k2 (s, t) U(s) dB(s) is the Itô integral

[8].
The article is organized in the following way. Some definitions of stochastic calculus, properties of Haar wavelets

and operational matrix of integration of Haar wavelets are studied. Also, HWSOMI is derived in Section 2. Method
of solution is given in Section 3. In Section 4, convergence and error analysis of the proposed method is studied.
Section 5 presents some examples which shows the efficiency of the presented method. Lastly, Section 6 gives the
conclusion.

2 Stochastic Calculus and Wavelets
Here we examine some definitions existing in stochastic calculus. And we study the properties of Haar wavelets and
operational matrix of integration of Haar wavelets (HWOMI). Stochastic operational matrix of integration of Haar
wavelet is derived. Lastly, some results which will are used in further sections are mentioned.
2.1 Stochastic calculus
Definition 2.1 A standard Brownian motion defined on the interval [0, T ) is a random variable B (t) which depends
on t ∈ [0 , T ) and satisfies the following conditions:

1. B (0) = 0 with probability 1.
2. For 0 ≤ s < t ≤ T, the random variable given by increment B (t) − B (s) is distributed normally with mean zero

and variance t − s, equivalently, B (t) − B (0) ∼
√

t − sN (0, 1), where N (0, 1) is a random variable distributed
normally with mean zero and variance 1.
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3. The increments B (t) − B (s) and B (v) − B (u) are independent for 0 ≤ s < t < u < v ≤ T.

Definition 2.2 [5] The sequence Un converge to U in L2 if for each n, E
(
|Un|

2
)
< ∞. Let us assume that 0 ≤ s ≤ T, let

v = v(s,T ) be the class of functions that g(t,w) : [0,∞] ×Ω→ Rn, satisfy,

1. the function (t,w)→ g(t,w) is β ×G measurable, where β is Borel algebra.
2. g is adapted to Gt.
3. E

[∫ T
s g (t,w)2 dt

]
< ∞.

Definition 2.3 (The Itô-integral [8]) Let g ∈ v(s,T ), then the Itô-integral of g is defined by∫ T
s g(t,w)dB(t)(w) = lim

n→∞

∫ T
s ϕt,wdB(t)(w),

where, {ϕ} is the sequence of elementary functions such that

E
[∫ T

s
(g − ϕn)2 dt

]
→ 0 a.s, n→ ∞.

2.2 Haar Wavelets
Haar wavelets hn(t) are defined as,

(2.1) hn (t) = ψ(2 jt − k), j ≥ 0, 0 ≤ k < 2 j, n = 2 j + k, n, j, k ∈ Z,

where

(2.2) h0 (t) = 1, 0 ≤ t < 1, ψ (t) =

 1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1.

Every Haar wavelet hn (t) has the support
[

k
2 j ,

k+1
2 j

)
and is elsewhere zero in the interval [0, 1).

Function Approximation: Any square integrable function g(t) can be expressed with respect to Haar wavelets as

g(t) = g0h0(t) +
∑∞

i=1 gihi(t), i = 2 j + k, j ≥ 0, 0 ≤ k < 2 j, j, k ∈ N,

where gi is given by

gi =
∫ 1

0 g(t)hi(t)dt, i = 0, 2 j + k, j ≥ 0, 0 ≤ k < 2 j, j, k ∈ N.

The above infinite series can be truncated after 2J terms(J is the level of resolution) as

g(t) =
∑2J−1

i=1 g(t)hi(t), i = 2 j + k, 0 ≤ j ≤ J − 1, 0 ≤ k < 2 j, j, k ∈ N.

Rewriting this equation in the vector form as

g(t) ' GT H(t) = GHT (t),

where G and H(t) are Haar wavelet coefficients given as

G =
[
g0, g1, ..., g2J−1

]
, H (t) = [h0(t), h1(t), ..., h2J−1(t)] .

Similarly, any two dimensional function k(s, t) ∈ L2 ([0, 1) × ([0, 1)) can be written in terms of Haar wavelets as

ki j =
∫ 1

0

∫ 1
0 k(s, t)hi(t)h j(s)dtds, i, j = 1, 2, ...N (N = 2J).

For example, from equations (2.1) and (2.2), we can write

h1(t) =

 1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1,

h2(t) =

 1, 0 ≤ t < 1
4 ,

−1, 1
4 ≤ t < 1

2 ,

h3(t) =

 1, 1
2 ≤ t < 3

4 ,

−1, 3
4 ≤ t < 1,

and so on.
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2.3 Haar wavelets operational matrix of integration
HWOMI is computed as follows. Integrating equation (2.1), we get

(2.3)
∫ t

0 H(s)ds'PH(t),

where P is a matrix of order N × N and is called operational matrix of Haar wavelets.For example, for N = 4, we have

H(t) = [h0(t), h1(t), h2(t), h3(t)] ,∫ t
0 h0(s)ds = t, 0 ≤ t < 1,(2.4) ∫ t
0 h1(s)ds =

 t, 0 ≤ t < 1
2 ,

1 − t, 1
2 ≤ t < 1,

(2.5)

∫ t
0 h2(s)ds =

 t, 0 ≤ t < 1
4 ,

(1/2) − t, 1
4 ≤ t < 1

2 ,
(2.6)

∫ t
0 h3(s)ds =

 t − 1
2 ,

1
2 ≤ t < 3

4 ,

1 − t, 3
4 < t < 1.

(2.7)

Thus, seeing equations (2.4), (2.5), (2.6) and (2.7), we can write P in general as,

(2.8) P =


t − k

m , t ∈
[

k
2 j ,

k+0.5
2 j

)
,

k+1
m − t, t ∈

[
k+0.5

2 j , k+1
2 j

)
,

0, elsewhere.

2.4 Haar wavelets stochastic operational matrix of integration
HWSOMI is written as follows,

(2.9)
∫ t

0 H(s)dB(s)'PsH(t),

where Ps is a matrix of order N × N and is called stochastic operational matrix of Haar wavelets. For example, we
obtain

(2.10)
∫ t

0 h0(s)dB(s) = B(t), 0 ≤ t < 1,

(2.11)
∫ t

0 h1(s)dB(s) =

 B(t), 0 ≤ t < 1
2 ,

2B( 1
2 ) − B(t), 1

2 ≤ t < 1,

(2.12)
∫ t

0 h2(s)dB(s) =

 B(t), 0 ≤ t < 1
4 ,

2B( 1
4 ) − B(t), 1

4 ≤ t < 1
2 ,

(2.13)
∫ t

0 h3(s)dB(s) =

 B(t) − B
(

1
2

)
, 1

2 ≤ t < 3
4 ,

2B
(

3
4

)
− B

(
1
2

)
− B(t), 3

4 ≤ t < 1.

Thus, seeing equations (2.10), (2.11), (2.12), and (2.13), we write the stochastic operational matrix of integration
of Haar wavelets Ps in general as

(2.14) Ps =


B(t) − B( k

2 j ), t ∈
[

k
2 j ,

k+0.5
2 j

)
,

B( k+0.5
2 j ) − B( k

2 j ) − B(t), t ∈
[

k+0.5
2 j , k+1

2 j

)
,

0, elsewhere.

Remark 2.1 Using equation (2.1) for a N-vector G, we have

(2.15) H(t)HT (t)G = G̃H(t),

where, H(t) is the Haar wavelet coefficient matrix and G̃ is an N × N matrix given by

(2.16) G̃ = HḠH−1,

where Ḡ = diag(H−1G). Also, for a N × N matrix X, we have

(2.17) HtXH(t) = X̃T H(t),

where, X̃T = VH−1 and V = diag(HT XH) is a N-vector.
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3 Method of solution
Consider the stochastic integral equation given in (1.1). Approximating the functions U(t), g(t), k1(x, t), and k2(x, t)
using Haar wavelets, we get
(3.1) U(t) ' UT H(t) = UHT (t),
(3.2) g(t) ' GT H(t) = GHT (t),

(3.3) k1(s, t) ' HT (s)K1H(t) = HT (t)KT
1 H(s),

(3.4) k2(s, t) ' HT (s)K2H(t) = HT (t)KT
2 H(s),

where U and G are Haar wavelet coefficient vectors and K1 and K2 are Haar wavelet matrices. Substituting
(3.1),(3.2),(3.3) and (3.4) in (1.1), we get

(3.5) UT H(t) ' GT H(t) + HT (t)K1(
∫ t

0 H(s)HT (s)Uds) + HT (t)K2(
∫ t

0 H(s)HT (s)UdB(s)).
By the use of HWOMI, HWSOMI and Remark 2.1, we have

(3.6) UT H(t) ' GT H(t) + HT (t)K1ŨPH(t) + HT (t)K2ŨPsH(t).
Using Ũ1 = K1ŨP and U2 = K2ŨPs and using Remark 2.1, we get

(3.7) UT H(t) ' GT H(t) + Ũ1H(t) + Ũ2H(t).
This gives,

(3.8) UT − Ũ1 − Ũ2 ' GT ,

where Ũ1 and Ũ2 are functions of U and (3.8) is a system of linear equations. Solving this system of linear equations
and substituting the obtained unknown vector U (3.1), we get the solution of (1.1).

4 Convergence and error analysis
The convergence and error analysis of the method presented for solving stochastic integral equations is studied.

Theorem 4.1 Let g(t) ∈ L2[0, 1) be any arbitrary function such that |g′(t)| < ε, and eN(t) = g(t) −
∑N−1

i=0 gihi(t), then

(4.1) ||eN(t)||2 ≤
ε
√

3N
.

Proof. By the definition,

(4.2) ||eN(t)||22 =
∫ 1

0

(∑∞
i=N gihi(t)dt

)2 dt =
∑∞

i=N g2
i .

In equation (4.2), i = 2 j + k and

gi =
∫ 1

0 hi(t)g(t)dt = 2
j
2

(∫ (k+ 1
2 )2− j

k2− j g(t)dt −
∫ (k+1)2− j

(k+ 1
2 )2− j g(t)dt

)
.

Using the mean value theorem for integrals, there exist
η1 j ∈

(
k2− j,

(
k+1

2

)
2− j

)
and η2 j ∈

((
k+1

2

)
2− j, (k + 1) 2− j

)
such that

gi =
∫ 1

0 hi(t)g(t)dt = 2
j
2

(
g(η1 j)

∫ (k+ 1
2 )2− j

k2− j dt − g(η2 j)
∫ (k+1)2− j

(k+ 1
2 )2− j dt

)
(4.3)

= 2
j
2

(
g(η1 j)

[(
k +

1
2

)
2− j − k2− j

]
− g(η2 j)

[
(k + 1) 2− j −

(
k +

1
2

)
2− j

])
= 2−

− j
2 −1

(
g(η1 j) − g(η2 j)

)
= 2−

− j
2 −1

(
η1 j − η2 j

)
g′(η j), η1 j < η j < η2 j.

Equation (4.3) gives
||eN(t)||22 =

∑∞
i=N g2

i =
∑∞

j=J 2− j−2(η1 j − η2 j)2(4.4)

≤
∑∞

j=J 2− j−22−2 jε2

=
ε2

4
∑∞

j=J 2−3 j

=
ε2

3
2−2J .

Therefore,

(4.5) ||eN(t)||2 ≤
ε
√

3N
.
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Theorem 4.2 Let g(s, t) ∈ L2 ([0, 1) × [0, 1)) be any arbitrary function such that | ∂
2g

∂s∂t | < ε, and eN(s, t) = g(s, t) −∑N−1
i=0

∑N−1
j=0 gi jhi(s)h j(t), then

(4.6) ||eN(s, t)||2 ≤
ε

3N2 .

Proof. By the definition,

(4.7) ||eN(s, t)||22 =
∫ 1

0

(∑∞
i=N

∑∞
j=N gi jhi(s)h j(t)

)2
dt =

∑∞
i=N

∑∞
j=N g2

i j.

In equation (4.7), i = 2 j + k, j = 2 j′ + k, and

gi j =
∫ 1

0

∫ 1
0 hi(s)h j(t)g(s, t)dsdt.

Using the mean value theorem for integrals, there exist η j, η1 j, η2 j, η j′ , η1 j′ , and η2 j′ such that

gi j =
∫ 1

0 hi(s)(
∫ 1

0 hi(t)g(s, t)dt)ds(4.8)

=
∫ 1

0 hi(s)
[
2
− j′

1 −1(η1 j′ − η2 j′ )
∂g(s,η j′ )

∂t

]
ds

= 2
− j′

1 −1(η1 j′ − η2 j′ )
∫ 1

0
∂g(s,η j′ )

∂t hi(s)ds

= 2
− j
2 −

j′

2 −2(η1 j′ − η2 j′ )(η1 j − η2 j)
∂2g(η j, η j′ )

∂t∂s
.

Equation (4.8) gives

||eN(s, t)||22 =
∑∞

i=N
∑∞

j=N g2
i j =

∑∞
j=J

∑∞
j′=J 2− j− j′−4(η1 j′ − η2 j′ )2(η1 j − η2 j)2|

∂2g(η j,η j′ )
∂t∂s |2(4.9)

≤
∑∞

j=J
∑∞

j′=J ε
22−3 j−3 j′−4.

From equation (4.4), we get

(4.10) ||eN(s, t)||22 ≤ N2 ∑∞
j=J 2−3 j−2 ∑∞

j′=J 2−3 j′−2 = ε2

(3N2)2 .

Therefore

||eN(s, t)||2 ≤
ε

3N2 .

Theorem 4.3 Let U(t) and UN(t) be the exact and approximate solution of (1.1). Let us assume that

1. ||U(t)|| ≤ δ, t ∈ [0, 1),
2. ||ki(s, t)|| ≤ Di, i = 1, 2,
3. (D1 + ξ1) + ||B(t)||∞(D2 + ξ2),

then,

||U(t) − UN(t)||2 ≤
µN + ξ1N + ||B(t)||∞ξ2N

1 − (D1 + ξ1) − ||B(t)||∞(D2 + ξ2N)
,

where

µN = sup
t∈[0,1)

g′(t)
√

3N
,

ξi =
1

3N2 sup
s,t∈[0,1)

|
∂2ki(s, t)
∂s∂t

|, i = 1, 2.

Proof. From equation (1.1), we have

U(t) − UN(t) = g(t) − gN(t) +
∫ t

0 (k1(s, t)U(s) − k1N(s, t)UN(s)ds)

+
∫ t

0 (k2(s, t)U(s) − k2N(s, t)UN(s)) dB(s).

By using mean value theorem we have,

||U(t) − UN(t)|| ≤ ||g(t) − gN(t)|| + t||k1(s, t)U(s) − k1N(s, t)UN(s)||
(4.11)

+ B(t)||k2(s, t)U(s) − k2N(s, t)UN(s)||.
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Using Theorem 4.1 and Theorem 4.2, we have

||ki(s, t)U(s) − kiN(s, t)UN(s)|| ≤ ||ki(s, t)|| ‖|U(t) − UN(t)||
(4.12)

+ ||ki(s, t) − kiN(s, t)|| ‖|U(t)||
+ ||ki(s, t) − kiN(s, t)|| ‖|U(t) − UN(t)||.

Substituting (4.12) in (4.11), we get

||U(t) − UN(t)|| ≤ µN + t
[
(D1 + ξ1N)||U(t) − UN(t)|| + δξ1N

](4.13)

+ B(t)
[
(D2 + ξ2N)||U(t) − UN(t)|| + δξ2N

]
.

Using the assumption (3), we get

||U(t) − UN(t)||2 ≤
µN + ξ1N + ||B(t)||∞ξ2N

1 − (D1 + ξ1) − ||B(t)||∞(D2 + ξ2N)
.

5 Numerical Experiments
Here some examples are presented in order to show the efficiency of the method presented.

Test Problem 5.1 Consider the stochastic integral equation,

(5.1) U (t) = 1 +
∫ t

0 sin(s)U(s)dB(s),

where U(t) is the unknown stochastic process defined on the probability space (Ω, F, P), and B(t) is the Brownian
motion process. Exact solution of equation (5.1) is

(5.2) U (t) = exp
[
−1
4

(t − cos(t)sin(t)) +
∫ t

0 sin(s)dB(s)
]
.

Method of Implementation
For N = 4.

Comparing (5.1)with equation (1.1), we get

(5.3) g(t) = 1,

(5.4) k1(s, t) = 0,

and

(5.5) k2(s, t) = sin(s).

Approximating equations (5.3), (5.4), and (5.5) using Haar wavelets, we obtain

G = [ 1 0 0 0 ],

K1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and K2 =


0.4609 0 0 0
−0.2154 0 0 0
−0.1208 0 0 0
−0.0912 0 0 0

 .
Let our assumed solution be U and approximating this using Haar wavelets, we get

U(t) ' UT H(t) = UHT (t).

Substituting the obtained vector G, matrices K1 and K2 and the approximated unknown solution U in equation
(5.1)and by the use of operational matrix of integration of Haar wavelets and the stochastic operational matrix of
integration Haar wavelets, we obtain the unknown vector U as

U = [ 0.90697 0.043482 0.024383 0.018413 ].

Substituting this in U(t) ' UT H(t) = UHT (t),we obtain the solution as

U(t) = [ 0.9748 0.9261 0.8819 0.8451 ].

The exact and approximate solutions of Test Problem 5.1 for N = 4 and N = 8 are shown in Table 5.1, maximum
absolute error (Emax) for different values of N are shown in Table 5.2 and the graphs of absolute errors for different
values of N are shown in Figure 5.1.
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Table 5.1: Exact solution, approximate solution and absolute errors for Test Problem 5.1.

N = 4 N = 8
t Exact Solution Approximate Solution Absolute error Exact Solution Approximate Solution Absolute error
0 1.0000 0.9256 0.0744 1.0000 1.0440 0.0440

0.1 0.9996 0.9799 0.0197 1.0024 1.0107 0.0083
0.2 0.9965 0.9602 0.0363 1.0070 1.0213 0.0143
0.3 0.9925 0.9407 0.0518 1.0142 1.0318 0.0176
0.4 0.9864 0.9217 0.0647 1.0225 1.0418 0.0193
0.5 0.9737 0.9040 0.0697 1.0310 1.0515 0.0204
0.6 0.9610 0.8863 0.0747 1.0390 1.0606 0.0216
0.7 0.9403 0.8709 0.0695 1.0459 1.0692 0.0233
0.8 0.9169 0.8561 0.0608 1.0510 1.0771 0.0261
0.9 1.4098 1.3190 0.0907 1.0536 1.0841 0.0306

Table 5.2: Absolute errors for different values of N of Test Problem 5.1.

N Emax

4 0.0907
8 0.0440
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Figure 5.1: Absolute errors for different values of N of Test Problem 5.1.

Test Problem 5.2 Consider the stochastic integral equation

(5.6) U (t) =
1

12
+

∫ t
0 cos(s)U(s)ds +

∫ t
0 sin(s)U(s)dB(s),

where U(t) is the unknown stochastic process defined on the probability space (Ω, F, P), and B(t) is the Brownian
motion process. Exact solution of (5.6) is

(5.7) U (t) =
1

12
exp

[
−t
4

+ sin(t) +
sin(2t)

8
+

∫ t
0 sin(s)dB(s)

]
.

Implementation is shown in Test Problem 5.1. The exact as well as approximate solutions of Test Problem 5.2
for N = 4 and N = 8 are shown in Table 5.3, maximum absolute error (Emax) for different values of N are shown in
Table 5.4 and the graphs of absolute errors for different values of N are shown in Figure 5.2.
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Table 5.3: Exact solution, approximate solution and absolute errors for Test Problem 5.2.

N = 4 N = 8
t Exact Solution Approximate Solution Absolute error Exact Solution Approximate Solution Absolute error
0 0.0833 0.0759 0.0075 0.0833 0.0729 0.0105

0.1 0.0921 0.0636 0.0285 0.0918 0.0729 0.0190
0.2 0.1017 0.0655 0.0362 0.1004 0.0782 0.0223
0.3 0.1116 0.0747 0.0368 0.1089 0.0710 0.0379
0.4 0.1214 0.0801 0.0413 0.1167 0.0775 0.0391
0.5 0.1311 0.0739 0.0572 0.1235 0.0710 0.0525
0.6 0.1409 0.0677 0.0732 0.1291 0.0647 0.0644
0.7 0.1487 0.0732 0.0756 0.1331 0.0720 0.0611
0.8 0.1560 0.0826 0.0734 0.1350 0.0649 0.0701
0.9 0.2133 0.1174 0.0959 0.1346 0.0711 0.0635

Table 5.4: Absolute errors for different values of N of test problem Test Problem 5.2.

N Emax

4 0.0959
8 0.0701

16 0.0411
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Figure 5.2: Absolute errors for different values of N of Test Problem 5.2.

Test Problem 5.3 Consider the stochastic integral equation

(5.8) U (t) =
1

10
+

∫ t
0 ln(1 + s)U(s)ds +

∫ t
0 sU(s)dB(s).

where U(t) is the unknown stochastic process defined on the probability space (Ω, F, P), and B(t) is the Brownian
motion process. Exact solution of (5.8) is

(5.9) U (t) =
1
10

exp
[
(1 + t)ln(1 + t) − t −

t3

6
+

∫ t
0 sdB(s)

]
.

Implementation is shown in Test Problem 5.1. The exact as well as approximate solutions of Test Problem 5.3
for N = 4 and N = 8 are shown in Table 5.5, maximum absolute error (Emax) for different values of N are shown in
Table 5.6 and the graphs of absolute errors (Emax) for different values of N are shown in Figure 5.3.
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Table 5.5: Exact solution, approximate solution and absolute errors for Test Problem 5.3.

N = 4 N = 8
t Exact Solution Approximate Solution Absolute error Exact Solution Approximate Solution Absolute error
0 0.0833 0.0750 0.0083 0.1000 0.0806 0.0194

0.1 0.0997 0.0907 0.0090 0.0999 0.0949 0.0051
0.2 0.0985 0.0847 0.0137 0.0997 0.0907 0.0090
0.3 0.0969 0.0798 0.0171 0.0992 0.0845 0.0147
0.4 0.0948 0.0736 0.0211 0.0981 0.0836 0.0145
0.5 0.0909 0.0636 0.0274 0.0963 0.0759 0.0205
0.6 0.0871 0.0535 0.0336 0.0939 0.0694 0.0246
0.7 0.0816 0.0536 0.0281 0.0907 0.0709 0.0198
0.8 0.0756 0.0571 0.0186 0.0867 0.0615 0.0251
0.9 0.1237 0.0932 0.0305 0.0817 0.0670 0.0147

Table 5.6: Absolute errors for different values of N of Test Problem 5.3.

N Emax

4 0.0336
8 0.0251

16 0.0074
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Figure 5.3: Absolute errors for different values of N of Test Problem 5.3.

6 Conclusion
In this article, using Haar wavelets a new HWSOMI is developed to solve stochastic integral equations. From tables
and figures we can see that the solutions obtained by proposed method are in good agreement with that of exact
solutions. Hence, the investigated method is efficient and convenient for solving stochastic integral equations.
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