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Abstract

In the present paper, we introduce fuzzy preopen (closed) sets and fuzzy pre-continuity in Sostak fuzzy topological
space. Also we investigate their significant characteristic properties.
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1 Introduction
The concept of fuzzy sets was introduced by Zadeh [9] and later Chang [2] defined fuzzy topological spaces. Sostak
[8] introduced a new fuzzy topological space exploiting the idea of partial openness of fuzzy sets. This generalized
fuzzy topological space was later rephrased by Chattopadhyay et.al. [3]. Several mathematicians have worked on this
space (see [4], [5]).

The concepts of fuzzy preopen sets, fuzzy strong preopen sets and strong pre continuity (see [6], [7]) have been
introduced in case of classical fuzzy topological spaces introduced by Chang [2]. In the present paper, we introduce
fuzzy preopen (closed) sets and fuzzy pre continuity in the Sostak fuzzy topological space redefined by Chattopdhyay
[3]. Further we establish their significant properties.

2 Preliminaries
Let X be a non-empty set and I ≡ [0, 1] be the unit closed interval of real line. Let IX denote the set of all fuzzy sets
on X. A fuzzy set A on X is a mapping A : X → I, where for any x ∈ X, A(x) denotes the degree of membership of
element x in fuzzy set A. The null fuzzy set 0 and whole fuzzy set 1 are the constant mappings from X to {0} and {1}
respectively.

A family τ of fuzzy sets on X is called a fuzzy topology (see [2]) on X if (i) 0 and 1 belong to τ, (ii) Any union of
members of τ is in τ, (iii) a finite intersection of members of τ is in τ. The system consisting of X equipped with fuzzy
topology τ defined on it, is called a fuzzy topological space and is denoted as (X, τ). Now we define the So-fuzzy
topological space (see [3], [8]).

A So-fuzzy topology on a non-empty set X is a family τ of fuzzy sets on X satisfying the following axioms with
respect to a mapping τ : IX → I such that

1. τ(0) = τ(1) = 1;
2. τ(A ∩ B) ≥ τ(A) ∧ τ(B); for any A, B ∈ IX;
3. τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai), for any arbitrary family {Ai : i ∈ J} ⊆ IX .
The system (X, τ) is called So-fuzzy topological space and the real number τ(A) is called the degree (or grade) of

openness of fuzzy set A. We note that

Proposition 2.1 Let X be a non-empty set. Then the map τ : IX → I given by τ(0) = 1 and τ(A) = inf{A(x) : x ∈
suppA}, if A , 0, satisfies the axioms of gradation of openness.

If (X, τ) is a So-fuzzy topological space, then we observe that (see [2]) for any ρ ∈ [0, 1], the family τρ ≡ { A ∈ IX :
τ(A) ≥ ρ} is actually a fuzzy topology in sense of Chang [2] and it is called ρ-level fuzzy topology on X with respect
to the gradation of openness τ. All fuzzy sets belonging to τρ are called fuzzy-ρ-open sets and their complements are
called fuzzy-ρ-closed sets.

For any fuzzy set A, the interior and closure of A with respect to τρ are defined as follows:

Intρ(A) = ∪{G ∈ IX : G ⊆ A and G ∈ τρ}

Clρ(A) = ∩{K ∈ IX : A ⊆ K and Kc ∈ τρ}
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3 Fuzzy-ρ-Pre Open (Closed) Sets
In this section, we define fuzzy-ρ-pre open sets and fuzzy-ρ-pre closed sets in So-fuzzy topological space and
investigate their properties.

Definition 3.1 Let (X, τ) be a So-fuzzy topological space and A ∈ IX be a fuzzy set. Then for any ρ ∈ I, a fuzzy set A
is said to be a

(i) Fuzzy-ρ-pre open set in X iff A ⊆ Intρ(Clρ(A)),
(ii) Fuzzy-ρ-pre closed set in X iff A ⊇ Clρ(Intρ(A)).
Clearly fuzzy sets 0 and 1 are both trivially fuzzy ρ-pre open as well as fuzzy ρ-pre closed sets in X.

Remark 3.1 It is clear that every fuzzy-ρ-open (closed) set is a fuzzy-ρ-pre open (closed) set, but converse of these may
not be true in general.

Example 3.1 Let X = {a, b} and A, B, C ∈ IX be fuzzy sets defined as follows:

A = {(a, 0.6), (b, 0.3)}; B = {(a, 0.4), (b, 0.2)}; C = {(a, 0.8), (b, 0.5)}.

Define a map τ : IX → I as follows:

τ(F) = {

1, i f F = 0, 1
0.3, i f F = A
0.2, i f F = B
0, otherwise.

.

Suppose ρ = 0.1. We see that fuzzy set C is a fuzzy-ρ-pre open set because Intρ(Clρ(C)) = 1 ⊇ C. But it is not a
fuzzy-ρ-open set (because τ(C) = 0 ≯ 0.1).

Theorem 3.1 Let (X, τ) be a So-fuzzy topological space. Then for any ρ ∈ I,
(a) Any union of fuzzy-ρ-pre open sets is a fuzzy-ρ-pre open set;
(b) Any intersection of fuzzy-ρ-pre closed sets is a fuzzy-ρ-pre closed set.

Proof. (a) Let {Ai : i ∈ J} be an arbitrary collection of fuzzy-ρ-pre open sets in So-fuzzy topological space (X, τ).
Then for each i ∈ J, we have Ai ⊆ Intρ(Clρ(Ai)). Hence

∪i∈J Ai ⊆ ∪i∈J Intρ(Clρ(Ai)) ⊆ Intρ(∪i∈J Clρ(Ai)) ⊆ Intρ(Clρ(∪i∈J Ai)).

Thus ∪i∈J Ai is a fuzzy-ρ-pre open set. We can prove (b) similarly.

Definition 3.2 Let (X, τ) be a So-fuzzy topological space and A ∈ IX be a fuzzy set. Then for each ρ ∈ I, fuzzy-ρ-pre
interior and fuzzy-ρ-pre closure of fuzzy set A denoted as P-intρ(A) and P-clρ(A) are defined as follows:

P − intρ(A) = ∪{G ∈ IX : G ⊆ A and G is a f uzzy − ρ − pre open set in X},

P − clρ(A) = ∩{K ∈ IX : K ⊇ A and K is a f uzzy − ρ − pre closed set in X}.

Theorem 3.2 Let (X, τ) be a So-fuzzy topological space and A ∈ IX be a fuzzy set. Then for any ρ ∈ I,
(i) P-clρ(1 − A) = 1 − P-intρ(A),
(ii) P-intρ(1 − A) = 1 − P-clρ(A).

Proof. (i) Suppose {Gi}i∈J is the family of all fuzzy-ρ-preopen sets in X contained in A. Then

P − intρ(A) = ∪i∈JGi = 1 − ∩i∈J Gc
i .

Since Gi ⊆ A, we have Gc
i ⊇ Ac, ∀ i ∈ J. Thus {Gc

i }i∈J is the collection of all fuzzy-ρ-preclosed sets containing Ac.
Hence ∩i∈JGc

i = P-clρ(Ac) = P-clρ(1 − A). Thus P-intρ(A) = 1 − P-clρ(1 − A). Hence P-clρ(1 − A) = 1 − P-intρ(A).
Proof. (ii) It can be proved in a similar manner.

Theorem 3.3 Let (X, τ) be a So-fuzzy topological space. Then for any ρ ∈ I, a fuzzy set A ∈ IX is a
(a) Fuzzy-ρ-pre open set iff P-intρ(A) = A;
(b) Fuzzy-ρ-pre closed set iff P-clρ(A) = A.
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Proof. (a) Let A be fuzzy-ρ-pre open set in X. Let {Gi}i∈J be the family of all fuzzy ρ-pre open sets contained in A.
Since each Gi ⊆ A, i ∈ J, we have ∪i∈JGi ⊆ A. Therefore

(3.1) P − intρ = ∪i∈J{Gi ∈ IX : Gi ⊆ A and Gi is a fuzzy − ρ − preopen set} ⊆ A.

Since A ⊆ A and A is a fuzzy-ρ-preopen set in X, hence A ∈ {Gi}i∈J . Therefore

(3.2) A ⊆ ∪i∈JGi ≡ P − intρ(A).

From equations (3.3.1) and (3.3.2), A = P-intρ(A).
Conversely; suppose A is a fuzzy set in So-fuzzy topological space (X, τ) such that A = P-intρ(A). Then

(3.3) A = P − intρ(A) = ∪{Gi ∈ IX : Gi ⊆ A and Giis a fuzzy − ρ − pre open set}.

Since any union of fuzzy-ρ-preopen sets is a fuzzy-ρ-preopen set, in view of (3.3.3), set A is a fuzzy-ρ-pre open
set in X.
Proof. (b) This can be proved in a similar manner.

Theorem 3.4 Let (X, τ) be a So-fuzzy topological space. Then for any ρ ∈ I, the following properties hold for fuzzy-ρ-
pre closure:

(i) P-clρ(0) = 0;
(ii) P-clρ(A) is a fuzzy-ρ-pre closed set in X;
(iii) P-clρ(A) ⊆ P-clρ(B), i f A ⊆ B;
(iv) P-clρ(P-clρ(A)) = P-clρ(A);
(v) P-clρ(A ∪ B) ⊇ P-clρ(A) ∪ P-clρ(B);
(vi) P-clρ(A ∩ B) ⊆ P-clρ(A) ∩ P-clρ(B).

Proof. It is easy to prove.

Theorem 3.5 Let (X, τ) be a So-fuzzy topological space and A, B ∈ IX be fuzzy sets. Then for any ρ ∈ I,
(i) P-intρ(1) = 1;
(ii) P-intρ(A) is a fuzzy-ρ-pre open set in X;
(iii) P-intρ(A) ⊆ P-intρ(B), if A ⊆ B;
(iv) P-intρ(P-intρ(A)) = P-intρ(A);
(v) P-intρ(A ∪ B) ⊇ P-intρ(A) ∪ P-intρ(B);
(vi) P-intρ(A ∩ B) ⊆ P-intρ(A) ∩ P-intρ(B).

4 Fuzzy-ρ-Pre Continuous Map
In this section, we define a fuzzy-ρ-pre continuous map from one So-fuzzy topological space to another and investigate
its characteristic properties. We know fuzzy-ρ-continuous map is defined (see [3]) as follows:

Definition 4.1 Let (X, τ) and (Y, σ) be two So-fuzzy topological spaces. A map f : X → Y is said to be a fuzzy-ρ-
continuous map if τ( f −1(B)) ≥ σ(B), for each fuzzy set B ∈ IY such that σ(B) ≥ ρ.

Now we define fuzzy-ρ-pre continuous map as follow:

Definition 4.2 Let (X, τ) and (Y, σ) be two So-fuzzy topological spaces. A map f from X to Y is called a fuzzy-ρ-pre
continuous map iff f −1(B) is a fuzzy-ρ-pre open set for any fuzzy set B ∈ IY such that σ(B) ≥ ρ.

Remark 4.1 It is obvious that every fuzzy-ρ-continuous map is a fuzzy-ρ-pre continuous map, but converse may not be
true.

Example 4.1 Let X = {a, b}, Y = {u, v} and A, B ∈ IX , C ∈ IY be fuzzy sets defined as follows:
A = {(a, 0.7), (b, 0.2)}; B = {(a, 0.5), (b, 0.6)}; C = {(a, 0.7), (b, 0.6)};
D = {(a, 0.5), (b, 0.2)}; E = {(u, 0.8), (v, 0.7)}.
We define fuzzy topologies τ : IX → I and σ : IY → I as follows:

τ(F) =



1, if F = 0, 1
0.2, if F = A, D
0.5, if F = B
0.6 if F = C
0, otherwise,
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σ(F) =


1, if F = 0, 1
0.7, if F = E
0, otherwise.

Consider a map f : (X, τ) → (Y, σ) defined as f (A) = u, f (b) = v. Suppose ρ = 0.1. We see that f −1(E) ⊆
Intρ(Clρ( f −1(E))). Hence f −1(E) is a fuzzy-ρ-pre open set. Similarly f −1(0) ≡ 0 and f −1(1) ≡ 1 are also fuzzy-ρ-pre
open sets. Thus f is a fuzzy-ρ-pre continuous map. But f is not a fuzzy-ρ-continuous map because f −1(E) is not a
fuzzy-ρ-open set.

Theorem 4.1 Let f : (X. τ)→ (Y, σ) be a map from one So-fuzzy topological space to another such that τ∗( f −1(B)) ≥ ρ,
for each B ∈ IY with σ∗(B) ≥ ρ, then f is a fuzzy-ρ-pre continuous map.

Proof. Let f : (X, τ) → (Y, σ) be a map such that τ∗( f −1(B)) ≥ ρ, for each B ∈ IY for which σ∗(B) ≥ ρ.
Since f −1(B) ∈ IX and τ∗( f −1(B)) = τ(( f −1(B))c) = τ( f −1(Bc)) ≥ ρ, we conclude that f −1(Bc) is a fuzzy-ρ-open
set in X. Since every fuzzy ρ-open set is a fuzzy ρ-pre open set, f −1(Bc) is a fuzzy-ρ-pre open set in X. Further
σ(Bc) = σ∗(B) ≥ ρ. Thus f −1(Bc) is a fuzzy-ρ-pre open set in X for each Bc ∈ IY such that σ(Bc) ≥ ρ. Therefore f is
a fuzzy-ρ-pre continuous map.

Theorem 4.2 Let f : (X. τ) → (Y, σ) be a map from one So-fuzzy topological space to another. Then for any ρ ∈ I,
following statements are equivalent:

(a) f is a fuzzy-ρ-pre continuous map;
(b) f −1(B) is a fuzzy-ρ-pre closed set for each fuzzy-ρ-closed set B in Y;
(c) Clρ(Intρ( f −1(B))) ⊆ f −1(Clρ(B)), for each fuzzy set B in Y;
(d) f (Clρ(Intρ(A))) ⊆ Clρ( f (A)), for each fuzzy set A in X.

Proof. Let (X, τ) and (Y, σ) be two So-fuzzy topological spaces. We will prove this theorem in following steps:
(i) (a)arrow(b): Let f : X → Y be a fuzzy-ρ-pre continuous map for any ρ ∈ I. Let B be a fuzzy-ρ-closed set in

Y . Then Bc is a fuzzy-ρ-open set in Y so that σ(Bc) ≥ ρ. Since f is a fuzzy ρ-continuous map, we find that f −1(Bc) is
a fuzzy-ρ-pre open set in X. Therefore ( f −1(Bc))c

= f −1(B) is a fuzzy-ρ-pre closed set in X. Similarly we can prove
(b)arrow(a).

(ii) (b)arrow(c): Let B be a fuzzy set in Y , then Clρ(B) is a fuzzy-ρ-closed set in Y and hence by (b), f −1(Clρ(B))
is a fuzzy-ρ-pre closed set in X. Therefore by definition, f −1(Clρ(B)) ⊇ Clρ(Intρ( f −1(Clρ(B)))) ⊇ Clρ(Intρ( f −1(B))).
Thus Clρ(Intρ( f −1(B))) ⊆ f −1(Clρ(B)).

(iii) (c)arrow(d): Let A ∈ IX be any fuzzy set, then f (A) ∈ IY . Now by (c), Clρ(Intρ( f −1( f (A)))) ⊆ f −1(Clρ( f (A))).
It implies that Clρ(Intρ(A)) ⊆ f −1(Clρ( f (A))). Hence f (Clρ(Intρ(A))) ⊆ f ( f −1(Clρ( f (A)))) ⊆ Clρ( f (A)).

(iv) (d)arrow(b): can be proved easily.

Theorem 4.3 Let (X, τ), (Y, σ) and (Z, δ) be three So-fuzzy topological spaces and let ρ ∈ I be any real number. If
f : X → Y is a fuzzy-ρ-pre continuous map and g : Y → Z is a fuzzy-ρ-continuous map, then g ◦ f : X → Z is a
fuzzy-ρ-pre continuous map.

Proof. Let C be a fuzzy-ρ-open set in Z so that δ(C) ≥ ρ, then σ(g−1(C)) ≥ δ(C) ≥ ρ. Thus by hypothesis g−1(C) is
a fuzzy-ρ-open set in Y . Since f is a fuzzy-ρ-pre continuous map, we get that f −1(g−1(C)) is a fuzzy-ρ-pre open set in
X. Now f −1(g−1(C)) = (g ◦ f )−1(C). Hence (g ◦ f )−1(C) is a fuzzy-ρ-pre open set in X. Now g ◦ f : (X, τ) → (Z, δ)
is a map and we have derived that for any fuzzy-ρ-open set C in Z, fuzzy set (g ◦ f )−1(C) is a fuzzy-ρ-pre open set in
X. Hence (g ◦ f ) is a fuzzy-ρ-pre continuous map.

5 Conclusion
In the present paper, we have defined fuzzy pre open (closed) sets and fuzzy pre-continuity in Sostak fuzzy topological
space. The concept is introduced as an extension of concepts of fuzzy preopen sets introduced in [6]. Several
significant results have been obtained.
Acknowledgement. We are very much thankful to the Editor and Reviewer of the paper for their kind suggestions to
bring the paper in the present form.
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