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Abstract

In this paper, the cumulative effect of ecological conditions in the habitat on the spread of TB in human population
is modeled and analyzed. The total human population is divided into two classes, susceptibles and infectives where
the infective class is further subdivided into latent and actively infected subclasses. It is assumed that TB is spread by
direct contact between members of the population as well as indirectly by bacteria which are emitted by infectives in
the environment, survive and get accumulated due to favorable ecological conditions in the habitat. The cumulative
density of ecological factors determining conditions in the habitat is assumed to follow a population density dependent
logistic model. The analysis of the model shows that as parameters governing the ecological factors in the habitat
increase, the spread of TB increases. The same result is also found with the increase in the parameter defining the
accumulation of bacteria in the habitat. It is further found that due to immigration of the population TB becomes
more endemic. A numerical study of the model is also carried out to see the role of key parameters on the spread of
tuberculosis and to support the analytical results.
2010 Mathematics Subject Classifications: 37C75, 92B05.
Keywords and phrases: Mycobacterium tuberculosis; Ecological status in the habitat; latently-infected; actively-
infected.

1 Introduction
Tuberculosis (TB) is an infectious disease which has world-wide prevalence been declining due to vaccination and
other preventive strategies [5, 19, 22], but its recent reappearance in developing countries with high burden of infection
in regions of Southeast Asia have sparked renewed research in TB. Mycobacterium tuberculosis is the bacterium that
causes most cases of tuberculosis. It is an obligate aerobe mycobacterium that divides every 16-20 hrs, extremely slow
as compared to other bacteria which tend to have division times measured in minutes (for example, E. Coli can divide
roughly every 20 min.) [13]. It is small rod like bacillus which can withstand weak disinfectants and can survive in a
dry state for weeks but can only grow within a host organism [13].

Recent quantitative monitoring estimates are that over 30% of the population in developing countries is infected
with TB, which results in approximately 2-3 million deaths each year [1, 2, 6]. Every year, 8 to 10 million new cases
of tuberculosis occur and this figure is growing with the advent of HIV infection [21]. Socio-economic status, family
size, crowding, malnutrition and limited access to health care or effective treatment also play important roles in the
transmission [3, 14]. The reason for the increase in such cases in developed countries is principally immigration,
poverty, living conditions, food security, etc. [12]. It is reported that eight million people develop active TB every
year, each of which can infect between 10 and 15 people in one year just by breathing [2, 4, 20]. Overall, the mortality
from tuberculosis is approximately 8%, being over 30% in the elderly cases but less than 1% in the young’s [20, 23].

Humans are the natural reservoir of TB, which spreads from person to person by direct contact via airborne droplets
[18] and indirectly from environment, by inhalation of small (1-10µm) droplets containing only tubercle bacilli, which
are expelled during coughing, sneezing, talking or singing by a TB infected person [10]. TB also spreads indirectly by
the use of contaminated utensils, contaminated dust, flowers, etc.

Mathematical models for the spread of infectious diseases have played a major role in providing deeper insight
into the understanding of the transmission as well as control strategies [7, 8, 9, 11,12, 16, 17], including HIV-TB
co-infection [15]. For example, Feng et al. [7] formulated a two strain TB model with an arbitrary distributed delay in
the latent stage of individual infected with the drug-sensitive strain and investigated the effects of variable periods of
latency on the disease dynamics. Naresh and Tripathi [15] have also modeled and studied the co-infection of HIV and
TB in a variable size population.

It is noted here that in recent years the spread of infectious diseases have been modeled and analyzed by considering
environmental and ecological conditions in the habitat [8, 9, 16, 17]. In particular, Singh et al. [16] have studied the
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spread of carrier dependent infectious diseases by considering the effect of environmental factors which are conducive
to the growth of carrier population. They have shown that the spread of the disease increases due to conducive
environmental factors. They [17] have also studied the spread of malaria by taking into account environmental and
ecological factors which are conducive to the growth of mosquito population. Ghosh et al. [8, 9] have studied the
spread of bacteria infected diseases such as TB by considering environmental effect as well as by considering the
effect of migration. As pointed out earlier, that in the case of TB the bacteria emitted from the infected persons get
accumulated in the habitat as these settle down on fomites or remain suspended in the air. These bacteria then affect
the suceptibles indirectly and the rate of infection depends upon the ecological conditions in the habitat. Our aim in
this paper is to model and analyze the effect of accumulation of bacteria which survive due to conducive ecological
factors in the habitat acting as a reservoir, on the spread of TB.

2 Mathematical Model
In the model presented here, the total human population, N(t), is divided into three sub-populations: susceptibles,
latently infected individuals and actively infected individuals with densities S (t), L(t), and T (t) respectively. It is
assumed that all susceptibles are infected by both the direct and indirect contacts with bacteria. The following system
of nonlinear, ordinary differential equations is assumed to model the dynamics of the spread of TB,

(2.1)
dS
dt

= A − βS T − λS B − dS + α1T + α2L,

dL
dt

= (1 − p)βS T + (1 − q)λS B − (σ + d + α2)L,

dT
dt

= pβS T + qλS B + σL − (d + α + α1)T,

dN
dt

= A − dN − αT,

dB
dt

= sT − s0B + s1BE,

dE
dt

= γE − γ0E2 + γ1NE.

Here A is the immigration rate of susceptible β and λ are the transmission coefficients for susceptibles due to
person to person contact with infectives and by inhalation of bacteria from environment respectively; p > 0 and q > 0
are the fraction of infected individuals who develop active TB soon after initial infection; σ is the rate of progression
of latently infected individuals to active TB; d is the natural death rate and is the death rate due to TB infection. The
parameters and are the therapeutic treatment rate of actively infected and latently infected individuals respectively.
The second last differential equation represents change in bacterial population B(t) in the environment. Since bacteria
of TB grows only in the host (human) body and it only survives in the environment, therefore, no growth term is taken
into consideration. In the environment, growth in the density of bacterial population is all due to number of bacteria
released from actively infected TB patients and also because of accumulation due to conducive ecological conditions
in the habitat. The parameter s is the rate of release of bacteria from the actively infected individuals, s0 is their decay
coefficient due to natural factors or control measures and s1 is the rate of accumulation of bacteria population due to
conducive ecological factors in the habitat; E(t) is the cumulative density of ecological factors governing the condition
in the habitat which is conducive to the accumulation of bacteria population; γ is the growth rate of cumulative density
of ecological factors in the habitat, γ

γ0
is the carrying capacity of the habitat, γ1 is the interaction coefficient with

respect to total human population.
In the following lines, we analyze the model (2.1) using stability theory of differential equations. We need the

bounds of dependent variables involved in the model. For this, we give the region of attraction in the form of following
lemma, stated without proof.

Lemma 2.1 The region of attraction for the system (2.1) is given by,

(2.2) Ω = {(L,T,N, B, E) : 0 ≤ A/d, 0 ≤ T ≤ N ≤ A/d, 0 ≤ B ≤ Bm, 0 ≤ E ≤ Em}

which attracts all solutions initiating in the positive octant,

(2.3) where, Bm =

[
sγ0A/d

s0γ0 − s1(γ + γ1A/d)

]
and Em =

γ + γ1A/d
γ0

.
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3 Equilibrium Analysis
It is sufficient to consider the reduced system of model system (2.1) (since S + L + T = N), as follows,

(3.1)
dL
dt

= (1 − p)β(N − L − T )T + (1 − q)λ(N − L − T )B − (σ + d + α2)L,

dT
dt

= pβ(N − L − T )T + qλ(N − L − T )B − σL − (d + α + α1)T,

dN
dt

= A − dN − αT,

dB
dt

= sT − s0B + s1BE,

dE
dt

= γE − γ0E2 + γ1NE.

The equilibrium analysis of the model system (3.1) has been carried out and the results are given as follows:
There exist following four nonnegative equilibria of the model system (3.1),

(I) Disease free equilibrium W0

(
0, 0,

A
d
, 0, 0

)
.

This equilibrium exists without any condition. It explains that if the bacterial population is absent, due to non-
conducive ecological conditions in the habitat and the T B infected individuals are not present, the disease would not
persist and population remains at its equilibrium A/d.

(II) The equilibrium W1

(
0, 0,

A
d
, 0, Em

)
.

This equilibrium also exists without any condition in the absence of disease and bacterial population. However,
in that case the population remains at its equilibrium A/d and the ecological status of the habitat is maintained at the
level Em.
(III) The equilibrium W2(L̄, T̄ , N̄, B̄, 0)

In this case the disease would still persist due to release of bacteria from the infected individuals even if the bacteria
population is not accumulated further as it does not depend on the ecological conditions in the habitat. The explicit
equilibrium values of different variables are given as follows,

(3.2) T̄ =
{βs0[σ + p(d + α2)] + sλ[σ + q(d + α2)]}A − (d + α + α1)(σ + d + α2)s0d

(α + d){βs0[σ + p(d + α2)] + sλ[σ + q(d + α2)]} + d(d + α + α1)[βs0(1 − p) + λs(1 − q)]
,

(3.3) L̄ =
[(1 − p)s0β + (1 − q)λs][A − (α + d)T ]T

d[(1 − p)s0βT̄ + (1 − q)λsT̄ + s0(σ + d + α2)]
,

(3.4) N̄ =
A − αT̄

d
, B̄ =

sT̄
s0
, as T̄ <

A
α
,

provided that pβ A
d > (d + α + α1).

(IV) The endemic equilibrium, W3(L∗,T ∗,N∗, B∗, E∗, )
The endemic equilibrium W3 is given by the solution of following algebraic equations and a quadratic equation,

obtained from (3.1),

(3.5) N =
A − αT

d
,

(3.6) E =
γd + γ1(A − αT )

dγ0
,

(3.7) B =
dsγ0T

ds0γ0 − s1[γd + γ1(A − αT )]
,

(3.8) L =
[(1 − p)βT + (1 − q)λB][A − (α + d)T ]

d[(1 − p)βT + (1 − q)λB + (σ + d + α2)]
,

(3.9) aT 2 + bT − c = 0,
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where
a = βs1γ1α{(1 − p)[d2(d + α + α1) + σ(α + d)] + (α + d)(σ + d + α2)},
b = α2(α + d)pβ[ds0γ0 − s1(γd + γ1A)] + (α + d)(α2 + d){dsqλγ0 − βs1γ1αA[σ + p(α2 + d)]}

+σ(α + d){β[ds0γ0 − s1(γd + γ1A)] + dsλγ0} + α1d(1 − p)β[ds0γ0 − s1(γd + γ1A)]
+d(d + α + α1)[(1 − q)sλγ0 + s1γ1α(σ + d + α2)],

c = [ds0γ0 − s1(γd + γ1A)]{βA[σ + p(α2 + d)] − d(d + α + α1)(σ + d + α2)} + dsλγ0A[σ + q(α2 + d)].

There exists unique positive root of eq.(3.9) is given as T ∗ = −b+
√

b2+4ac
2a if pβ A

d > (d + α + α1)and s0 > s1Em .
Substituting the value of T ∗ in eqs. (3.5-3.8), we can compute the value of L∗, N∗, B∗ and E∗.

4 Stability Analysis
Now, we analyze the stability of each of the equilibrium W0, W1, W2 and W3.

Theorem 4.1 The equilibrium W0, W1 and W2 are unstable and the endemic equilibrium W3 is locally asymptotically
stable provided the following conditions are satisfied,

(4.1) αγ2
1E∗ <

2
3

d(pβT ∗ + qλB∗),

(4.2) q2λ2(N∗ − L∗ − T ∗)2 <
1
5

(s0 − s1E∗)2ξ1 min .

 γ2
0E∗

2s2
1B∗2

,
ξ1

5s2

 ,
(4.3) (pβT ∗ + qλB∗ − σ)2 < ξ1ξ

2
2 min .

 ξ1

5ξ2
3

,
d(pβT ∗ + qλB∗)

3α[(1 − p)βT ∗ + (1 − q)λB∗]2 ,
k3(s0 − s1E∗)

4(1 − q)2λ2(N∗ − L∗ − T ∗)2


where,

ξ1 =
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
, ξ2 =

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
,

ξ3 =
[
(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT ∗ − (1 − q)λB∗

]
.

Proof. See Appendix-I

Theorem 4.2 The endemic equilibrium W3 is nonlinearly asymptotically stable in the region Ω provided the following
inequalities are satisfied:

(4.4) α q2λ2B2
m <

1
3

d p2β2T ∗2,

(4.5) s qλ(N∗ − L∗)2 <
1
3

pβ(s0 − s1E∗)T ∗2,

(4.6) α qλ γ2
1 s2

1B2
m <

4
9
γ2

0 s pβ d(s0 − s1E∗),

(4.7) (pβT ∗ + qλBmax − σ)2 <
1
4

pβ(σ + d + α2)2T ∗2,

min .

 pβ
4ξ2

4

,
pβ d

3α
[
(1 − p)βA/d + (1 − q)λBmax

]2 ,
qλ(s0 − s1E∗)

3s(1 − q)2λ2(N∗ − L∗ − T ∗)2

 ,
where ξ4 =

[
(1 − p)β A

d + (1 − q)λBmax − (1 − p)β(N∗ − L∗ − T ∗)
]
.

Proof. See Appendix-II.

Remark 4.1 As the growth rate of cumulative density of ecological factors conducive to the accumulation of bacterial
population due to human population activities tends to zero i.e., γ1 → 0, inequalities (4.1) and (4.4) are automatically
satisfied. This implies that the ecological factors conducive to the accumulation of bacterial population have a
destabilizing effect on the system. If the rate of accumulation of bacteria due to conducive ecological conditions
is very small i.e., s→ 0 then inequalities (4.2) and (4.5) are satisfied.

The above theorems imply that under appropriate conditions, if the density of bacteria due to conducive ecological
conditions increases, then the number of latently-infected and actively-infected individuals increases leading to fast
spread of TB. However, the effect of immigration is to make TB more endemic.
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5 Numerical Simulation
In this section, we conduct simulation analysis of the model (3.1) to study its dynamical behavior and to prove the
feasibility of local and nonlinear stability conditions of the model system. The numerical simulation of the system
(3.1) is done by MAPLE 7.0 using the parameters values [8, 9, 11, 15] given below:

Table 5.1: Parameter values

Parameters Symbol Parameter value
recruitment rate of susceptible A 500
transmission coefficient (by infectives) β 0.0005
transmission coefficient (through bacteria) λ 0.0003
recovery rate of latently-infected TB patient α1 0.012
recovery rate of actively-infected TB class α2 0.01
natural death rate d 0.15
disease-induced death rate α 0.2
rate with which latently-infected goes to actively-infected TB class σ 0.02
rate of release of bacteria from TB patients s 1
accumulation of bacteria due to ecology s1 0.0001
decay rate of bacteria in the environment s0 0.3
growth rate of ecological status in the habitat γ 25
growth rate of ecological status due to human activities γ1 0.002
depletion rate of ecological status γ0 0.1
fraction of infected individuals (by infectives) who develop active TB
soon after initial infection

p 0.45

fraction of infected individuals (by bacteria population) who develop
active TB soon after initial infection

q 0.6

The equilibrium values for the model system (3.1) are computed as follows:
N* =2300.799543, L* = 1153.414779, T* = 774.4003430, B* =2863.923531, E* = 296.0159909.
The eigen values of variational matrix corresponding to the endemic equilibrium for the model system (3.1) are

−1.353015784,−0.1854221833,−0.3408624139,−0.2455538488,−29.601599.

Since all the eigen values are negative which implies that the endemic equilibrium W3 is locally asymptotically
stable.

The results of numerical simulation are displayed graphically in Figs. 5.1-5.11. Fig. 5.1 shows that the system
(3.1) is nonlinearly asymptotically stable in T-N plane. All the trajectories starting from different initial starts reaches
to equilibrium point.

(i) L(0) = 1500, T(0) = 600, N(0) = 3000, B(0) = 2863, E(0) = 296.
(ii) L(0) = 1000, T(0) = 1000, N(0) = 3000, B(0) = 2863, E(0) = 296.
(iii) L(0) = 400, T(0) = 400, N(0) = 1000, B(0) = 2863, E(0) = 296.
(iv) L(0) = 200, T(0) = 1000, N(0) = 1400, B(0) = 2863, E(0) = 296.
In Figs. 5.2 - 5.3, the variation of density of bacteria population and the actively-infected TB population with

time is shown respectively for different values of accumulation rates (s1) of bacteria due to conducive ecological
status of the habitat. It is found that as the accumulation rate of bacteria increases, bacteria population also increases
which results in increasing the spread of tuberculosis. Thus ecological conditions conducive to the accumulation
of bacterial population help in spreading the tuberculosis infection. In Figs. 5.4 - 5.5, we show the variation of
bacterial population density and actively-infected TB population with time for different values of rate of release of
bacteria from actively-infected population. From these figures, we infer that as the rate of emission of bacteria,
(s) from actively-infected TB population increases, the accumulation of the bacterial population in the habitat also
increases due to conducive ecological conditions. These bacteria when comes in contact with susceptibles through
contaminated clothes, utensils, etc., further increases the spread of tuberculosis which ultimately results in rise in
the actively infected TB population. Figs. 5.6 and 5.7 depict the role of decay coefficients (s0) of bacteria on
the variation of bacteria population density and actively-infected TB population. When there is a rise in the decay
coefficient due to natural factors or control measures, the density of bacteria population decreases significantly and
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consequently the actively infected TB population declines. This decline in actively-infected population does not seem
to be much significant. It seems, it is due to the fact that disease spreads not only through bacteria but also through
direct interaction of susceptibles with actively-infected TB individuals. It is, therefore, speculated that not only the
accumulation of bacteria be curbed using effective control mechanism but the direct interaction of susceptibles with
actively-infected TB population be also restricted.

Figs. 5.8 - 5.9, show that as the growth rate of cumulative density of ecological factors in the habitat (γ) conducive
to the accumulation of bacteria increases, there is a significant increase in the density of bacteria population. This, in
turn, increases the number of actively-infected TB individuals. Thus, if the density of ecological factors is higher, the
spread of tuberculosis is faster due to significant increase in bacterial population in a conducive environment. Also,
as the growth of ecological status making the environment conducive to bacteria population due to human population
activities (γ1) increases, the density of bacteria population increases resulting in the spread of tuberculosis, see Figs.
5.10 - 5.11. Thus, the human population related factors responsible for making the ecological conditions favourable
for the accumulation of bacterial population further increases the load of tuberculosis.

Finally, from the above discussion, we infer that the spread of tuberculosis not only depends upon the
interaction of susceptibles with actively-infected population but also depends upon the interaction of susceptibles
with bacteria population. Moreover, the ecological status of the surroundings plays a vital role in the accumulation
of Mycobacterium Tuberculosis. It may be possible to curb the spread of tuberculosis if the bacterial population is
diminished by way of providing hyegenic environment in the habitat and restricting the interaction of TB patients with
the susceptible population.

Figure 5.1: Variation of total human population with actively-infected population

Figure 5.2: Variation of bacterial population density with time for different
values of s1

Figure 5.3: Variation of actively-infected population with time for different
values of s1
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Figure 5.4: Variation of bacterial population density with time for different
values of s

Figure 5.5: Variation of actively-infected population with time for different
values of s

Figure 5.6: Variation of bacterial population density with time for different
values of s0

Figure 5.7: Variation of actively-infected population with time for different
values of s0

Figure 5.8: Variation of ecological density with time for different values of γ Figure 5.9: Variation of bacterial population density with time for different
values of γ

Figure 5.10: Variation of bacterial population density with time for different
values of γ1

Figure 5.11: Variation of actively-infected population with time for different
values of γ1

6 Conclusion
In this paper, a two stage SIS model for Tuberculosis, caused by Mycobacterium Tuberculosis is proposed and analyzed
with constant migration of human population. The cumulative density of ecological factors in the habitat is assumed
to be governed by a logistic model which is population density dependent. The endemic equilibrium is shown to be
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locally and nonlinearly stable under certain conditions. Our analysis shows that the spread of tuberculosis not only
depends upon the interaction of susceptibles with actively-infected population but also depends upon the interaction of
susceptibles with bacteria population accumulated in the habitat. The ecological status of the habitat plays a vital role
in the accumulation of Mycobacterium Tuberculosis. It is shown that the cumulative effect of ecological factors is to
increase the spread of the disease. Thus, an effective control mechanism must be undertaken to curb the accumulation
of bacteria in the environment and the direct interaction of susceptibles with actively-infected population be restricted.
Acknowledgements. We are very much grateful to Editor and Reviewers for their fruitful suggestion to bring the
paper in its present form.
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Appendix – I

Proof of Theorem 4.1.
The variational matrix M0 of model (3.1) corresponding to equilibrium W0 is given by,

M0 =



−(σ + d + α2) (1−p)βA
d 0 (1−q)λA

d 0
σ pβA

d − (d + α + α1) 0 qλA
d 0

0 −α −d 0 0
0 s 0 −

(
s0 −

s1(γ+γ1A/d)
γ0

)
s1

0 0 0 0
(
γ +

γ1A
d

)


.

The fifth eigenvalue of M0 is positive, as all the model parameters are nonnegative. Therefore, disease free equilibrium
W0 is unstable.
The variational matrix M1 of model (3.1) corresponding to equilibrium W1 is given by,

M1 =



−(σ + d + α2) (1−p)βA
d 0 (1−q)λA

d 0
σ pβA

d 0 qλA
d 0

0 −α −d 0 0
0 s 0 −

(
s0 −

s1(γ+γ1A/d)
γ0

)
s1

0 0 γ1(γ+γ1A/d)
γ0

0 −
(
γ +

γ1A
d

)


.

The characteristic polynomial corresponding to above matrix is given by,

(d + ψ)(σ + d + α2 + ψ)(γ + γ1A/d + ψ)(ψ2 + h1ψ + h2) = 0,

where h1 =
(
s0 −

s1(γ+γ1A/d)
γ0

−
pβA

d

)
,

h2 = − spqβλ
A2

d2 < 0..

Using Routh-Hurwitz criteria as h2 < 0, therefore, disease free equilibrium W1 is unstable.
The variational matrix M2 of model (3.1) corresponding to equilibrium W2 is given by,

M2 =


m11 m12 (1 − p)βT̄ + (1 − q)λB̄ (1 − q)λ(N̄ − L̄ − T̄ ) 0

σ − pβT̄ − qλB̄ m22 pβT̄ + qλB̄ qλ(N̄ − L̄ − T̄ ) 0
0 −α −d 0 0
0 s 0 −s0 s1
0 0 0 0 (γ + γ1N̄)

 .
where, m11 = −(1 − p)β(N̄ − T̄ ) T̄

L̄ − (1 − q)λ(N̄ − T̄ ) B̄
L̄ ,

m12 = (1 − p)β(N̄ − L̄ − T̄ ) − (1 − p)βT̄ − (1 − q)λB̄ and m22 = −pβT̄ − qλ(N̄ − L̄) B̄
T̄ − σ

L̄
T̄ .

This equilibrium is also unstable as fifth eigen value is always positive.
To establish the local stability of endemic equilibrium W3, we consider the following positive definite function,
U1 = 1

2 (k0l2 + k1t2 + k2n2 + k3b2 + k4e2),
where ki(i = 0, 1, 2, 3, 4) are positive constants to be chosen appropriately and l, t, n, b and e are small perturbations
about W3, defined as follows
L = L*+ l, T= T*+ t, N = N*+ n, B = B*+ b and E = E*+ e.
Differentiating above equation, with respect to ‘t’ and using the linearized system of model equations (3.1)
corresponding to W3, we get,
dU1
dt = −k0

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
l2 − k1

[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
t2 − k2dn2 − k3(s0 −

s1E∗)b2 − k4γ0E∗e2 + k0[(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT ∗ − (1 − q)λB∗] lt
+k0[(1 − p)βT ∗ + (1 − q)λB∗] ln +k0(1 − q)λ(N∗ − L∗ − T ∗) lb + k1(σ − pβT ∗ − qλB∗) lt
+[k1(pβT ∗ + qλB∗) − k2α ]nt + k1qλ(N∗ − L∗ − T ∗)bt + k3s tb + k3s1B∗be + k4γE∗ne
For dU1

dt to be negative definite, the following conditions must be satisfied,

(i)
k0[(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT ∗ − (1 − q)λB∗]2 <

1
5 k1

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

] [
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(ii) k1(σ − pβT ∗qλB∗)2 < 1

5 k0

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

] [
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(iii) k0[(1 − p)βT ∗ + (1 − q)λB∗]2 < 1

3 k2d
[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
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(iv) k0(1 − q)2λ2(N∗ − L∗ − T ∗)2 < 1
4 k3(s0 − s1E∗)

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
(v) [k1(pβT ∗ + qλB∗) − k2α]2 < 4

15 k1k2d
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(vi) k1q2λ2(N∗ − L∗ − T ∗)2 < 1

5 k3(s0 − s1E∗)
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(vii) k3s2 < 1

5 k1(s0 − s1E∗)
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(viii) k3s2

1B∗2 < 1
2 k4γ0E∗(s0 − s1E∗)

(ix) k4γ
2
1E∗2 < 2

3 k2dγ0E∗

After choosing k1 = 1, k2 =
pβT ∗+qλB∗

α
and k4 = γ0, we can choose k0 and k3 such that

q2λ2(N∗ − L∗ − T ∗)2

(s0 − s1E∗)ξ1
< k3 <

1
5

(s0 − s1E∗) min .

 γ2
0E∗

2s2
1B∗2

,
ξ1

5s2


(pβT ∗+qλB∗−σ)2

ξ1ξ2
< k0 < ξ2 min .

{
ξ1

5ξ2
3
, d(pβT ∗+qλB∗)

3α[(1−p)βT ∗+(1−q)λB∗]2 ,
k3(s0−s1E∗)

4(1−q)2λ2(N∗−L∗−T ∗)2

}
αγ2

1E∗ < 2
3 d(pβT ∗ + qλB∗)

Hence, we obtain the conditions as stated in the Theorem 4.1.
Thus, dU1/dt is a negative definite under the conditions (4.1), (4.2) and (4.3) as stated in the Theorem 4.1, showing
that W3 is locally asymptotically stable.

Appendix – II

Proof of Theorem 4.2
Consider the following positive definite function, corresponding to the model system (3.1) about W3,

U2 =
k0

2
(L − L∗)2 +

k1

2

(
T − T ∗ − T ∗ ln

T
T ∗

)
+

k2

2
(N − N∗)2 +

k3

2
(B − B∗)2 +

k4

2

(
E − E∗ − E∗ ln

E
E∗

)
,

where the coefficients k0, k1, k2, k3 and k4 can be chosen appropriately.
Differentiating the above equation with respect to ‘t’ and using (3.1), we get,
dU2
dt = −k0[(1 − p) βT + (1 − q)λ B] (L − L∗)2 − k1

[
q λ B (N−L)+σL

TT ∗

]
(T − T ∗)2

−k0(σ+ d +α2)(L− L∗)2 − k1 pβ(T − T ∗)2 − k2d(N −N∗)2 − k3(s0 − s1E∗)(B− B∗)2 − k4γ0(E − E∗)2 + k0{(1− p)β(N∗ −
L∗−T ∗)− (1− p)βT − (1−q)λB}(L−L∗)(T −T ∗) + k1

(
σ
T ∗ −

qλB
T ∗ − pβ

)
(L−L∗)(T −T ∗) + k0[(1− p)βT + (1−q)λB](L−

L∗)(N − N∗) + k0(1 − q)λ(N∗ − L∗ − T ∗)(L − L∗)(B − B∗)
+

[
k1

(
pβ +

qλB
T ∗

)
− k2α

]
(T − T ∗)(N − N∗) + k1

qλ(N∗−L∗−T ∗)
T ∗ (T − T ∗)(B− B∗) + k3s(T − T ∗)(B− B∗) + k3s1B(B− B∗)(E −

E∗) + k4γ1(E − E∗)(N − N∗).
Assuming k1 = 1, k2 =

pβ
α

and k3 =
qλ
s , the above equation reduces to the form,

dU2
dt = −k0[(1 − p) βT + (1 − q)λ B] (L − L∗)2 −

[
q λ B (N−L)+σL

TT ∗

]
(T − T ∗)2

−k0(σ + d + α2)(L − L∗)2 − pβ(T − T ∗)2 −
pβd
α

(N − N∗)2 −
qλ(s0−s1E∗)

s (B − B∗)2 − k4γ0(E − E∗)2

+k0{(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT − (1 − q)λB}(L − L∗)(T − T ∗) +
(
σ
T ∗ −

qλB
T ∗ − pβ

)
(L − L∗)(T − T ∗)

+k0[(1 − p)βT + (1 − q)λB](L − L∗)(N − N∗) + k0(1 − q)λ(N∗ − L∗ − T ∗)(L − L∗)(B − B∗)
+

qλB
T ∗ (T − T ∗)(N − N∗) +

qλ(N∗−L∗)
T ∗ (T − T ∗)(B − B∗) +

qs1λB
s (B − B∗)(E − E∗) + k4γ1(E − E∗)(N − N∗).

For dU2/dt

to be negative definite, the following conditions must be satisfied,
(i) k0[(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT − (1 − q)λB]2 < 1

4 pβ(σ + d + α2),

(ii)
(
σ−pβT ∗−qλB

T ∗

)2
< 1

4 k0 pβ(σ + d + α2),

(iii) k0[(1 − p)βT + (1 − q)λB]2 < 1
3

pβ d
α

(σ + d + α2),
(iv) k0(1 − q)2λ2(N∗ − L∗ − T ∗)2 < qλ (s0−s1E∗)(σ+d+α2)

3 s ,

(v) q2λ2B2

T ∗2 < p2β2d
3α ,

(vi) q2λ2(N∗−L∗)2

T ∗2 < p q β λ(s0−s1E∗)
3 s ,

(vii) q λ s2
1B2

s < 2
3 k4γ0(s0 − s1E∗),

(ix) k4γ
2
1 <

2
3

pβ dγ0
α

.
Now choosing k0 and k4 such that,

4(pβT ∗ + qλBmax − σ)2

pβ(σ + d + α2)T ∗2
< k0 < (σ + d + α2, )
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min .

 pβ
4ξ2

4

,
pβ d

3α
[
(1 − p)βA/d + (1 − q)λBmax

]2 ,
qλ(s0 − s1E∗)

3s(1 − q)2λ2(N∗ − L∗ − T ∗)2


3qλ s2

1B2
m

2 s γ0(s0 − s1E∗)
< k4 <

2γ0 pβ d
3αγ2

1

,

α q2λ2B2
m <

1
3

d p2β2T ∗2,

s qλ(N∗ − L∗)2 <
1
3

pβ(s0 − s1E∗)T ∗2.

Hence, we obtain the conditions as stated in the Theorem 4.2. Thus, dU2
dt is a negative definite under the conditions

(4.4 - 4.7) as given in the statement of the theorem, showing that W3 is nonlinearly asymptotically stable inside the
region Ω.
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