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Abstract

In this paper, we prove a uniqueness theorem for derivatives of algebroid functions which improve and generalize
the Navenlinna’s five-value theorem for algebroid functions.
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1 Introduction
The value distribution theory of meromorphic functions was extended to the corresponding theory of algebroid
functions by Ullarich [27] and Valiron [28] around 1930, and important results on uniqueness for algebroid functions
have been obtained. It is well known that Valiron obtained a famous 4v + 1-valued theorem. The uniqueness theory
of algebroid functions is an interesting problem in the value distribution theory. Many researchers like Valiron [28],
Baganas [1], He et al.[11, 12] and others have done a lot of work in this area (see [1], [4]-[6], [9]-[26], [30], [31]).
In this paper, we discuss a result of Indrajit Lahiri and Rupa Pal [13] on the Nevanlinna’s value distribution theory of
meromorphic functions for Nevanlinna’s five values theorem to algebroid functions

Let A,(2),A)-1(2), ..., Ap(z) be analytic functions with no common zeros in the complex plane, then the following
equation

(1.1) AW +A,_1@QW™" + ...+ AW + Ay(z) = 0.

Then equation (1.1) defines a v-valued algebroid function W(z) [29].
It is well known from [12] that on the complex plane with a cutting the projection of the critical points of the
function W, the Nevanlinna characteristic 7'(r, W) is defined as

T(r,W)=m(r,W)+ N(, W),

where

1 v 21 .
m(r, W) = Ty P fo log* [w;(re")|de,

1 -
N(r,W) = " for MeWnQW) gy 4 20 jog ,

where w;(z)(j = 1,2, 3, ...,v) is one valued branch W(z) and n(z, W) is the counting function of poles of the function of
W(z) in the whole of the complex plane. Let w;(z) and m(z) be one valued branches of two algebroid (u-valued and v-
valued)functions. It follows from Prokopovich [16] that we consider their quotient in the domain of the complex plane
with cutting through the projection of the critical points of both functions. The one-valued branches of the function
W/M (W.M) will be defined by w;/m; (w;.m;), where 1 <i < m, 1 < j < n. The Nevanlinna characteristic T'(r, W/M)
or T'(r, W.M) is defined as follows

m(r, W.M) = > Disicui<jer NI Wi2).mj(2))
1
= 1 Zisisu<jsy % log” [wi(z).m;(2)ldo

1

=5 (v X, 2 log" wi(2)ld6 + pu 3, 5= log" Im;(2)\d6)

160



Z, | 25 log" Wi2ld6 + § Xy 5; log" Im(2)ld6

= m(r, W) + m(r, M),

and

o

( fr n(t, WM)dt+ for n(t,vtV.M)dt)

1 7 n(t,W.M) 1 (7 n(,W.M)

:;fo U

=N(r, W)+ N(r, M).
Therefore T(r, WM) < T(r, W) + T(r, M).
Similarly T(r, W/IM) < T(r, W) + T(r, M). _ _

Let W(z) be a v-valued algebroid function and a € C be any complex number. Ey (W = a) denotes the set of zeros

of W(z) — a, whose multiplicities are not greater than k. 7;)(W = a) denotes the number of distinct zeros of W(z) — a
in [z] < r, whose multiplicities are not greater than k and are counted only once. Similarly, we define the functions
n(k+1(r W= a) Nk)(l’ W= (l) and N(k+1(r W= a)

Lemma 1.1 [9] Let W(2) be a v-valued algebroid function and {a J} c C be q distinct complex numbers and let

{k,-};f.=l C N be q positive integers. Then

Jj=1

(@-20T (W) <32 1k+1Nk)(r W=aj)+ 3L, 2N W = a) + S0 W),
(a=2v= 5L, £ )T 0. W) < S, 25N (W = @) + NG W = @) + S W,

In 2006 Zu-Xing Xuan and Zong-Sheng Gao [29] improved the Nevanlinna Five Value Theorem for algebroid
functions in the following manner.

Theorem 1.1 Let W(z) and M(z) be two v-valued, non-constant algebroid functions, leta;(j = 1,2, ...,4v+1) be 4v+1
distinct complex numbers in C. If

Esyiny(@), W) = Exseny(ap M) (j=1,2,.,2v +1)
and
Ezp(a;, W) = Eap(a;, M) (j=1,2,..,4v+1),
then W(z) = M(z).
Definition 1.1 For B C A and a € C, we denote by Ng(r, j%a) the reduced counting function of those zeros of f —a on

A, which belong to the set B.
In 2018 Rathod [20] proved the following theorem for algebroid functions

Theorem 1.2 Let W (z) and W,(2) be two v-valued, non-constant algebroid functions, leta; (j = 1,2,...,q) be g > 4v+1
distinct complex numbers or co. Suppose that ky > ky > ... > kg, m are positive integers or c0; 1 < m < q and
0;(=0)(j=1,2,..,q) are such that

1
(1+E) 7m]+k +3v+ X0 5j<(q—m—1)(l+t)+m.

Let B; = Ey,(a;, f)\Ex,(a;,8) for j=1,2,...q.If

— 1
Np.(r,
B,(r Wi

) <6,T(r,Wh)
aj

and

9 Ny, W]+a) Vi,
lim inf >
r—o0 Z Nk (r, Wo—a —) 1+ km) Z] 1 k +1 2V(1 + k) + (m- 2v — Z 16 ).

then Wi(2) = Wa(2).
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2 Main Results
In the paper we wish to further investigate the problem on the Nevanlinna’s five value theorem for algebroid functions.
To state our main Theorem, we wish to introduce the following Lemma 2.1.

Lemma 2.1 Let W(z) be a v-valued algebroid function and ay, as, ..., ag be (> 2v + 1) distinct complex numbers. If for
a non-negative integer n, E(0; W) C E(0, W), then

(g =2v+o(INT(LW) < T4, N|r, ﬁ )
Proof. By Nevanlinna’s first fundamental theorem for algebroid functions, we have

2.1 T, W) =T (r, %) +0(1)

(n)
<N r,l +m r,—W +m ! + O(1)
w w W()

1 1
<N(r,=|+TEW") =N|r,— |+ S, W).
w w
By the Nevanlinna’s second fundamental theorem for algebroid functions, we get
(g DT W) < N, W) + 37! N( o ) F N (r, ) + S W).

Without loss of generality, we may assume that a, = 0. Otherwise a suitable linear transformation is done. Then
the above inequality reduces to

(22) (¢- DTEW™) < N, W™) + 31 _( P )+ S, W).
Using (2.2) in (2.1), we obtain

G=DT(W)<(g- DT (r, ui/) FNG W)+ 3 N(r, W(+)

—(q—l)N( )+S(rW)

w
Thus

1\ — _
2.3) (g- DT, W) <(g-1) T(r, W) + NG W)+ 32, N(r, W(+)

1
~(q- l)N( o )) + S W).
Since E(0, W) C E(0, W™), we have from (2 3)
(g = DT W) < N, W) + 39 N7, = )+ S(r,W).

Hence
(q=2v+o(INT(LW) < T4, N(r, W,+)
J
This completes the proof of the Lemma 2.1.
In this paper we wish to obtain a generalization of Theorem 1.2. Now we state and prove our main result in the
following way.

Theorem 2.1 Let W\ (z) and W»(z2) be two v-valued, non-constant algebroid functions, leta;j(j = 1,2,...,q) be g > 4v+1

distinct complex numbers or co. Suppose that ki > ky > ... > k, are positive integers or oo and 6 (= 0)(j = 1,2, ...,q)
are such that

1 1 2
k_1+ 1+E) fszk +1+6< L= (1+ )

for a non-negative integer n. Let B; = Ek].(aj, Wl)\Ekj(aj, W) for j = 1,2v,...,q and E(0, W;) C E(O, Wi(n))fori =1,2.
If

N 1 )
N, (r, W) <6;T(r,W;™)

1 Y
and
q
X | N, (r, WO av) (n+ Dk,
lim inf
F—co Z Nk,)(" T a') (p 2v)(1 + k) —(m+ D)1 +k1)2] . l+k —(n+ D{1 + &k + 1}

then W (z) = W" (2).
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Proof. By Lemma 2.1, we have
24) (q-2v+o()T(r W) < T2, N(r, lfa,)

w
and
(25) (g—2v+o(T(r, W) < Z7, N(V’ W;”’—a,-)'
From (2.4), we have
(g=2v+o(1)T(r,W)) < 2351 {Nkj) ( W}”’ ) + N(k *1 ( W}”}—a/)}
< 23:1 {_kj) (r, Wi"}—aj) * Tij(k"Jr1 (r, Wlng—az’)}
kj T 1 1
<X {m, b (r’ W) eV N( T )}
b~ )
SZ;]:] TI(]NI(,>( (n) )+Z] 1 WT(r W )
<54 )+ DL EET ().
=1 l+k W<”> =114k
Therefore
(g-2v-(n+ 1)2} 1 l+k +o(1)T(r, W)) < Z] 1 1+jk N" ( " Wi”}—a‘,’)'

Similarly from (2.5), we get

(q- 2v—(n+1)zjll+k+o(1))T(rW2)<zj“+kak(, 1 )

(n)
W2 —aj

Let B; = Ey,(a;, W")\A; for j = 1,2v,....q.

Now
~ 1 _ ~ 1
B, (1 ) =20 P () 20 W ()
) 1
SéT(r,W] )+ N|r, @ )
W" W"

<A +6mn+ DTE W)+ (n+ DHT(r, Ws).

Hence

(q—2v—(n+l)qul+k+o(l))z (ﬁ)

<(l+6)(n+1)2}11+kﬁk( - a_)+(n+1)2jll+k (w;+_a)

k k k 1
! I > a i 1= k i I > 3 we get from the above inequality

(a-2v-@+ 03L& +o(1))2 (rw<+_)

4 AT q A7 1
j=1 Nkj ( » W “/‘) +((n+ 1)1 j=1 Nkﬂ (r, W;”Laj)'

Since 1 >

<(1+6)(n+

Since that implies

(‘1_2"_ (n+ DX, 1+k —(L+ )+ D +0(1))Z (“W)

ki =
= Ny (1
. e .
1+ ky ! "”(’W;”)—a,»)

Therefore
Z‘jl'—l Nk-(r’ #)
liminf ————
15 B Ny (s i)

(n+ l)kl
(q (1 +k) = 1+ D +k) XL, w7 =+ DI+ 0k
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< (n + Dk,
(g—2v)(1 +k)—(m+ D +k1)21 2 1+k —(m+ D{(1 + )k + 1
which is a contradiction.
Thus, we have W}") (2) W;”)(z).
Therefore we complete the proof of Theorem 2.1.
From Theorem 2.1, we can get the following consequences.

Corollary 2.1 Let k; = OOforj =1,2v,..,q and
Nk)(}"

W('” j +1
y = liminf " .
roe N I g-—-(n+2v+1)
kj) W(n) —a;

) < 6,T(r, W\") where 6(= 0) satisfy 0 < §; < ©=2*D

N 1
IfNA/(r W(/x) >y Tl ye

If we assume E)(a;, W; )) C Eo(aj, W2 ), then Aj = ¢ for j=1,2v,...,q and so we can choose 6 = 0.
Therefore Theorem 2.1 is an improvement of following theorem.

Theorem 2.2 Let W1 (z) and W»(z) be two v-valued, non-constant algebroid functions, leta; (j = 1,2, ...,q) be g > 4v+1
distinct complex numbers or co. and for a non-negative integer n, Ew)(a;, W}”)) C Eo(aj, Wé")) for1 < j <gq
E(0, W) € Ewy(0, W), Em)(O W2) € Eo(0, W) and
Z Nkj)(r W(n) av) (I’l+ 1)
lim inf > ,
r—oco Z} lNk,)(r ——) g—-n+2v+1)

then W\ (z) = W3" (2).
Corollary 2.2 Letn = 0, kj = oo for j = 1,2v,...,q and
Nkj) (V,

W(") —a;

_1
Wl—ab,- 1
= ETEE
Nk (n Wzl_aj) 4

Ifﬁg (r, ﬁ) 0;T(r, W1) where 6(= 0) satisfy 0 < Zq 0 <k-Q2v+1) - % then Wi(2) = Wy(2). If we
take g = 4v + 1 and E(a],f) E(aj,f) then A; = ¢ for j = 1 2,..,4v + 1. Therefore, if we choose 6; = 0 for
j=12,..,4v + 1 and take any constant 7y, such that 0<2v— ; in Corollary 2.2; we can get that W1(z) = W,(2).
Especially, ifg=4v+1and E(aj, W) = E(aj, W>), theny = 1 and 6; = O for j = 1,2,...,4v + 1. We can obtain
Wi(z) = Wa(2). Then Corollary 2.2 is an improvement of Theorem 1.1.

vy = liminf

r—o00

Corollary 2.3 Let W (z) and W»(2) be two v-valued, non-constant algebroid functions, let a; (j = 1,2,...,q) be g > 5
distinct complex numbers or co. Suppose that ki, ky, ...,k, are positive integers or oo; with ki > ky > ... > k; if
Eyy(aj, W) C Ey,)(aj, Wa) and :
ki k
;] 2 T+ S& 2V >0,
where y is stated as in Corollary 2.2; then Wi(z) = W, (2).
Corollary 2.4 Under the assumptions of Corollary 2.2, Ekj)(a W) = ij)(a i» Wa) and :

q ki
=2 K+l (k1+1) -2v>0,

Corollary 2.5 Let W\ (z) and W»(2) be two v-valued, non-constant algebroid functions, let a; (j = 1
distinct complex numbers or co. Suppose that ki, k,, ...,k, are positive integers or oo; with ki >
Ey)(aj, f) € Ex,(a;, g) and :
q k; (m=2v—2Yem
,»:M/.ﬁ—2v+w ~2v>0,
where vy is stated as in Corollary 2.2; then W\ (z) = W,(2).
In Corollary 2.1 if n = 0 and q = 4v + 1 then we get the following theorem.

,2,.q)be g >5
ky > ... 2 kg if

Theorem 2.3 Let Wi(z) and W»(z) be two v-valued, non-constant algebroid functions such that E.y(aj, W) C
Eo(aj, Ws) for ay, ay, .. a5 of CUco. If
Z4v+l 1 ) 1
lim inf 4V+ 5y Wll_uj > 5
r—00 Z ,W_a!)
then Wy(z) = Wz(Z)
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3 Conclusion

In this paper, we discussed on the Nevanlinna’s value distribution theory of meromorphic functions to Nevanlinna’s
five values theorem for algebroid functions and we further investigated the problems on the Nevanlinna’s five value
theorem for algebroid functions.

Acknowledgement. Authors are thankful to Editors and Reviewers for their suggestions to improve the paper in its
present form.
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