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Abstract

In this paper, by changing the independent and dependent variables in the suitable ordinary differential equations
of first and second order, and comparing the resulting ordinary differential equations with standard ordinary
differential equations of Leibnitz and Gauss, we obtain the hypergeometric forms of following functions:

−
4
x
`n

1 +
√

1 − x
2

 , tan−1(x), `n(1 + x), sin(b sin−1 x), cos(b sin−1 x).

2010 Mathematics Subject Classifications: 33C20, 34-xx.
Keywords and phrases: Hypergeometric functions, Ordinary differential equation, Pochhammer symbol.

1 Introduction and Preliminaries
In our investigations, we shall use the following standard notations:

N := {1, 2, 3, · · · } ;N0 := N ∪ {0} ;Z−0 := Z− ∪ {0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real numbers, natural numbers, integers,
positive and negative real numbers respectively.
Pochhammer symbol
The Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C)[16, p.22 Eqn.(1), p.32 Q.N.(8) and Q.N.(9)], see also
[18, p.23, Eqn.(22) and Eqn.(23)], is defined by

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=



1 (ν = 0; λ ∈ C\{0}),∏n−1
j=0 (λ + j) (ν = n ∈ N; λ ∈ C),

(−1)kn!
(n−k)! (λ = −n; ν = k; n, k ∈ N0; 0 5 k 5 n),

0 (λ = −n; ν = k; n, k ∈ N0; k > n),
(−1)k

(1−λ)k
(ν = −k; k ∈ N; λ ∈ C\Z),

it being assumed tacitly that the Gamma quotient exists.
Generalized hypergeometric function of one variable
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z], is accomplished by introducing any
arbitrary number of numerator and denominator parameters. Thus, the resulting series

(1.1) pFq

[
(αp);
(βq); z

]
= pFq

[
α1, α2, . . . , αp;
β1, β2, . . . , βq; z

]
=

∑∞
n=0

(α1)n(α2)n...(αp)n

(β1)n(β2)n...(βq)n

zn

n! ,

is known as the generalized hypergeometric series, or simply, the generalized hypergeometric function. Here p and
q are positive integers or zero and we assume that the variable z, the numerator parameters α1, α2, . . . , αp and the
denominator parameters β1, β2, . . . , βq take on complex values, provided that

β j , 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Here, none of the denominator parameters is zero or a negative integer, we note that the pFq series defined by
Eqn.(1.1):

(i) converges for |z| < ∞, if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,
(iii) diverges for all z, z , 0, if p > q + 1,
(iv) converges absolutely for |z| = 1, if p = q + 1 and<(ω) > 0,
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(v) converges conditionally for |z| = 1(z , 1), if p = q + 1 and −1 < <(ω) 5 0,
(vi) diverges for |z| = 1, if p = q + 1 and<(ω) 5 −1,

where by convention, a product over an empty set is interpreted as 1 and

(1.2) ω :=
∑q

j=1 β j −
∑p

j=1 α j,

<(ω) being the real part of complex number ω.
(I) When x2 = −t or x = i

√
t where i =

√
−1, then

(1.3)
dx
dt

=
i

2
√

t
or

dt
dx

= −2i
√

t,

(1.4)
dy
dx

=
dy
dt
×

dt
dx

= − 2i
√

t
dy
dt
,

d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dt

(
−2i
√

t
dy
dt

)
dt
dx

after simplification, we get

(1.5)
d2y
dx2 = −4t

d2y
dt2 − 2

dy
dt
.

(II) When y = i
√

tz, where z is the function of t then

(1.6)
dy
dt

=
iz

2
√

t
+ i
√

t
dz
dt
,

d2y
dt2 =

d
dt

(
dy
dt

)
=

d
dt

(
iz

2
√

t
+ i
√

t
dz
dt

)
after simplification, we get

(1.7)
d2y
dt2 = i

[
√

t
d2z
dt2 +

1
√

t

dz
dt
−

z

4t
3
2

]
.

(III) When x = −t, then

(1.8)
dt
dx

= −1,

(1.9)
dy
dx

=
dy
dt
×

dt
dx

= −
dy
dt
,

(1.10)
d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dt

(
−

dy
dt

)
dt
dx

=
d2y
dt2 .

(IV) When y = −tz, where z is the function of t then

(1.11)
dy
dt

= − z − t
dz
dt
,

(1.12)
d2y
dt2 = −2

dz
dt
− t

d2z
dt2 .

(V) When x2 = t or x =
√

t, then

(1.13)
dx
dt

=
1

2
√

t
or

dt
dx

= 2
√

t,

(1.14)
dy
dx

= 2
√

t
dy
dt
,

(1.15)
d2y
dx2 = 2

dy
dt

+ 4t
d2y
dt2 .

(VI) Gauss’ ordinary differential equation [15, Ch.(6), pp.144-148 and pp.157-158]
When γ , 0,±1,±2,±3, · · · and |t| < 1, then two linearly independent power series solutions of following

Gauss’ordinary homogeneous linear differential equation of second order with variable coefficients

(1.16) t(1 − t)
d2z
dt2 + [γ − (1 + α + β)t]

dz
dt
− αβz = 0,
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are given by

(1.17) z1 = 2F1

[
α, β;

γ; t
]
,

and

(1.18) z2 = t1−γ
2F1

[
α + 1 − γ, β + 1 − γ;

2 − γ; t
]
,

when γ is an integer then one solution may or may not, depending on the values of α and β, become logarithmic.
If any one solution of given differential equation is y(x) then Ay(x) will be the solution of same differential equation,

where A is any suitable constant.
The present article is organized as follows:
In Sections 2, we have derived the hypergeometric forms of some mathematical functions by using differential

equation approach. For hypergeometric forms of other mathematical functions and functions of mathematical physics,
we refer the literature [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],
[11],[12],[13],[14], [15], [17] and [19], where the proof of hypergeometric forms of related functions are not given.
So we are interested to give the proof of hypergeometric forms of the functions mentioned in Section 2.

2 Hypergeometric forms of mathematical functions
Using the theory of ordinary differential equation and changing of independent and dependent variables in suitable
differential equation, we can derive the following hypergeometric forms.

Theorem 2.1 If |x| < 1, then following hypergeometric forms hold true:

(2.1) −
4
x
`n

1 +
√

1 − x
2

 = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
,

(2.2) tan−1(x) = x 2F1

[
1, 1

2 ;
3
2 ;
− x2

]
,

(2.3) `n(1 + x) = x 2F1

[
1, 1;

2; − x
]
,

(2.4) sin(b sin−1 x) = bx 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

(2.5) cos(b sin−1 x) = 2F1

[ b
2 , −

b
2 ;
1
2 ;

x2
]
.

Proof of hypergeometric form of (2.1)
Consider,

(2.1,I) y ≡ y(x) = −
4
x
`n

1 +
√

1 − x
2

 .
For (0/0) indeterminate form, applying L’Hospital’s rule in right hand side of the (2.1,I), the value of y at x = 0,

will be 1. That is

(2.1,II) y(0) = 1,

(2.1,III) xy = −4 `n
1 +

√
1 − x

2

 .
On differentiating result (2.1,III) w.r.t. x and applying product rule, after simplification we get

dy
dx

+
y
x

=
2

x{1 +
√

1 − x}
√

1 − x

=
2{1 −

√
1 − x}

x{1 +
√

1 − x}{1 −
√

1 − x}
√

1 − x
.

Therefore

(2.1,IV)
dy
dx

+
y
x

=
2
x2 {(1 − x)−

1
2 − 1}.
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The differential equation (2.1,IV) is written in the standard form of Leibnitz linear differential equation ( dy
dx + Py =

Q), therefore integrating factor for differential equation (2.1,IV) will be
(2.1,V) I.F. = exp

{∫
1
x dx

}
= exp{`n(x)} = x .

The general solution of differential equation (2.1,IV) will be

(2.1,VI) y =
1
x

∫
x
[

2
x2

{
(1 − x)−

1
2 − 1

}]
dx + C,

where C is the constant of integration.
Therefore

y =
1
x

∫
2
x

{
1F0

[ 1
2 ;
−; x

]
− 1

}
dx + C =

∑∞
r=0

( 3
2 )r (1)r (1)r xr

(2)r (2)r r! + C

(2.1,VII) y(x) = 1 +
∑∞

r=1
( 3

2 )r (1)r (1)r xr

(2)r (2)r r! + C,

(2.1,VIII) y(x) = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
+ C.

When x = 0 in the equation(2.1,VII), we get C = 0.
Therefore particular solution of the differential equation (2.1,IV) will be

(2.1,IX) y = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
,

therefore

(2.1,X) −
4
x
`n

1 +
√

1 − x
2

 = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
,

which is satisfied by x = 0.

Proof of Hypergeometric Form of (2.2)
Consider,
(2.2,I) y ≡ y(x) = tan−1(x),
(2.2,II) y(0) = 0.

Differentiate the equation (2.2,I) w.r.t. x, we get

(2.2,III) (1 + x2)
dy
dx

= 1.
Again differentiate the equation (2.2,III) w.r.t. x and use product rule, after simplification we have

(2.2,IV) (1 + x2)
d2y
dx2 + 2x

dy
dx

= 0 .

Put x2 = −t or x = i
√

t, then use values of equations (1.4) and (1.5) in above differential equation (2.2,IV), after
simplification we get

(2.2,V) t(1 − t)
d2y
dt2 +

{
1
2
−

3t
2

}
dy
dt

= 0 .

Now substitute y = i
√

tz, where z is the function of t and put the values of equations (1.6) and (1.7) in above
differential equation (2.2,V), after simplification we obtain

(2.2,VI) t(1 − t)
d2z
dt2 +

{
3
2
−

5t
2

}
dz
dt
−

1
2

z = 0 .

Now compare the coefficients of above differential equation (2.2,VI) with Gauss’ standard differential equation
(1.16), we get

γ =
3
2
, α + β + 1 =

5
2
, αβ =

1
2
.

Now solve the above algebraic equations simultaneously, we get

α = 1, β =
1
2
.

Therefore one of the series solution of above differential equation (2.2,VI) will be

z = 2F1

[
1, 1

2 ;
3
2 ;

t
]
,

y = i
√

t 2F1

[
1, 1

2 ;
3
2 ;

t
]
,

tan−1(x) = x 2F1

[
1, 1

2 ;
3
2 ;
− x2

]
,

which is satisfied by x = 0.
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Proof of Hypergeometric Form of (2.3)
Consider,

(2.3,I) y ≡ y(x) = `n(1 + x),

(2.3,II) y(0) = 0.

Differentiate the equation (2.3,I) w.r.t. x, we get

(2.3,III) (1 + x)
dy
dx

= 1.

Again differentiate the equation (2.3,III) w.r.t. x and use product rule, after simplification we have

(2.3,IV) (1 + x)
d2y
dx2 +

dy
dx

= 0 .

Put x = −t, then use values of equations (1.9) and (1.10) in above differential equation (2.3,IV), after simplification
we get

(2.3,V) (1 − t)
d2y
dt2 −

dy
dt

= 0 .

Now substitute y = −tz, where z is the function of t and put the values of equations (1.11) and (1.12) in above
differential equation (2.3,V), after simplification we obtain

(2.3,VI) t(1 − t)
d2z
dt2 + {2 − 3t}

dz
dt
− z = 0 .

Now compare the coefficients of above differential equation (2.3,VI) with Gauss’ standard differential equation
(1.16), we get

γ = 2, α + β + 1 = 3, αβ = 1.

Now solve the above algebraic equations simultaneously, we get

α = 1, β = 1 .

Therefore one of the series solution of above differential equation (2.3,VI) will be

z = 2F1

[
1, 1;

2; t
]
,

y = −t 2F1

[
1, 1;

2; t
]
,

`n(1 + x) = x 2F1

[
1, 1;

2; − x
]
,

which is satisfied by x = 0.

Proof of Hypergeometric Form of (2.4)
Consider,

(2.4,I) y ≡ y(x) = sin(b sin−1 x),

(2.4,II) y(0) = 0.

Differentiate the equation (2.4,I) w.r.t. x, we get

(2.4,III)
√

1 − x2 dy
dx

= b cos(b sin−1 x).

Again differentiate the equation (2.4,III) w.r.t. x and use product rule, after simplification we have

(2.4,IV) (1 − x2)
d2y
dx2 − x

dy
dx

+ b2y = 0 .

Put x2 = t or x =
√

t, then use values of equations (1.14) and (1.15) in above differential equation (2.4,IV), after
simplification we get

(2.4,V) t(1 − t)
d2y
dt2 +

{
1
2
− t

}
dy
dt

+
b2

4
y = 0 .
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Now compare the coefficients of above differential equation (2.4,V) with Gauss’ standard differential equation
(1.16), we get

γ =
1
2
, α + β + 1 = 1, αβ = −

b2

4
.

Now solve the above algebraic equations simultaneously, we get

α =
b
2
, β = −

b
2
.

Therefore one of the suitable power series solution of above differential equation (2.4,V) will be

y = t
1
2 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

t
]
,

sin(b sin−1 x) = x 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
.

More general solution will be

sin(b sin−1 x) = Ax 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

or
sin(b sin−1 x)

Ax
= 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

(2.4,VI)
b
A

(
sin−1 x

x

)
−

b3

3!A

(
sin−1 x

x

)
(sin−1 x)2 +

b5

5!A

(
sin−1 x

x

)
(sin−1 x)4 − · · · = 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
.

Now taking limx→0 in the equation (2.4,VI), we get A = b.
Therefore more general solution will be

sin(b sin−1 x) = bx 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

which is satisfied by x = 0 or b = 0 or both b, x = 0.

Proof of Hypergeometric Form of (2.5)
Consider,
(2.5,I) y ≡ y(x) = cos(b sin−1 x),
(2.5,II) y(0) = 1.

Differentiate the equation (2.5,I) w.r.t. x, we get

(2.5,III)
√

1 − x2 dy
dx

= −b sin(b sin−1 x).

Again differentiate the equation (2.5,III) w.r.t. x and use product rule, after simplification we have

(2.5,IV) (1 − x2)
d2y
dx2 − x

dy
dx

+ b2y = 0 .

Put x2 = t or x =
√

t, then use values of equations (1.14) and (1.15) in above differential equation (2.5,IV), after
simplification we obtain

(2.5,V) t(1 − t)
d2y
dt2 +

{
1
2
− t

}
dy
dt

+
b2

4
y = 0 .

Now compare the coefficients of above differential equation (2.5,V) with Gauss’ standard differential equation
(1.16), we get

γ =
1
2
, α + β + 1 = 1, αβ = −

b2

4
.

Now solve the above algebraic equations simultaneously, we get

α =
b
2
, β = −

b
2
.

Therefore one of the series solution of above differential equation (2.5,V) will be

y = 2F1

[ b
2 , −

b
2 ;
1
2 ;

t
]
,

cos(b sin−1 x) = 2F1

[ b
2 , −

b
2 ;
1
2 ;

x2
]
,

which is satisfied by x = 0 or b = 0 or both b, x = 0.
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3 Conclusion
In our present investigation, we derived the hypergeometric forms of some functions by using differential equation
approach. Moreover, the results derived in this paper are expected to have useful applications in wide range of problems
of Mathematics, Statistics and Physical sciences. Similarly, we can derive the hypergeometric forms of other functions
in an analogous manner.
Acknowledgement. The authors are highly thankful to the referee for suitable corrections and shortened version of
the paper.
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