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Abstract
This paper presents a computing method and models for optimizing the combination defined in combinatorics.

The optimized combination has been derived from the iterative computation of multiple geometric series and
summability by specialized approach. The optimized combinatorial technique has applications in science, engineering
and management. In this paper, several properties and consequences on the innovative optimized combination has
been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s
challenges.
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1 Introduction
Combinatorics is a collection of various counting techniques or methods and models and has many applications in
science, technology, and management. In the research paper, optimized combination of combinatorics is introduced
that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.

2 Optimized Combination
The growing complexity of mathematical modelling and its application demands the simplicity of numerical equations
and combinatorial techniques for solving the scientific problems facing today. In view of this idea, the optimized
combination of combinatorics is introduced that is

Vn
r =

(r + 1)(r + 2)(r + 3) · · · (r + n − 1)(r + n)
n!

, (n, r ∈ N, n ≥ 1, r ≥ 0)

where N = {0, 1, 2, 3, 4, 5, ...} is the set of natural numbers including the element 0.
This optimized combination is derived from the iterative computations [1 - 4] of multi-geometric series and

summability as follows
(A)

∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2 · · ·

∑n−1
in=in−1

xin =
∑n−1

i=0 V p
i xi,(p ∈ N, 1 ≤ p ≤ n − 1),

where V p
i is a binomial coefficient and its mathematical expressions are given below:

V p
i =

(i + 1)(i + 2)(i + 3) . . . (i + p)
p!

(1 ≤ p ≤ n − 1).

V p
i−k =

(i − k + 1)(i − k + 2)(i − k + 3) . . . (i − k + p)
p!

.

Let us prove the equation (A) using the multiple geometric series.∑n−1
i1=0

∑n−1
i2=i1 xi2 =

∑n−1
i2=0 xi2 +

∑n−1
i2=1 xi2 +

∑n−1
i2=2 xi2 + · · · +

∑n
i2=n−1 xi2 =

∑n−1
i=0

(i+1)
1! xi =

∑n−1
i=0 V1

i xi,

where∑n−1
i2=0 xi2 +

∑n−1
i2=1 xi2 +

∑n−1
i2=2 xi2 + · · · +

∑n
i2=n−1 xi2 = 1 + 2x + 3x2 + · · · + n

1! xn−1.∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2 xi3 =

∑n−1
i2=0

∑n−1
i3=i2 xi3 +

∑n−1
i2=1

∑n−1
i3=i2 xi3 +

∑n−1
i2=2

∑n−1
i3=i2 xi3 + · · · +

∑n−1
i2=n−1

∑n−1
i3=i2 xi3

= (1 + 2x + 3x2 + · · · + nxn−1) + (x + 2x2 + 3x3 · · · + (n − 1)xn−1) + · · · xn−1

= 1 + 3x + 6x2 + 10x3 + · · · +
n(n + 1)

2!
xn−1 =

∑n−1
i=0

(i+1)(i+2)
2! xi =

∑n−1
i=0 V2

i xi,

where∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2 xi3 = 1 + 3x + 6x2 + 10x3 + 15x4 + 21x5 + · · · +

n(n+1)
2! xn−1.∑n−1

i1=0
∑n−1

i2=i1

∑n−1
i3=i2

∑n−1
i4=i3 xi4 =

∑n−1
i=0

(i+1)(i+2)(x+3)
3! xi =

∑n−1
i=0 V3

i xi

where∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2

∑n−1
i4=i3 xi4 = 1 + 4x + 10x2 + 20x3 + 35x4 + · · · +

n(n+1)(n+2)
3! xn−1.

If we continue like this, the binomial coefficient of the multisereis is V p
i (1 ≤ p ≤ n − 1).
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3 To convert combinations
3.1 To convert the combination nCr into the optimized combination

nCr =
n!

r!(n − r)!
= (Vr

0)(Vn−1
r ) = Vn−r

r where Vr
0 = 1.

Let us consider n − r = k for easily understood.
Then,

Vn−r
r = Vk

r =
(r + 1)(r + 2)(r + 3) · · · (r + k)

k!
.

3.2 To convert the combination nCn into the optimized combination
nCn =

n!
n!

= Vn
0 = 1.

3.3 To convert the combination (n+r)Cr into the optimized combination
(n+r)Cr =

n!
r!(n + r − r)!

=
n!

r!n!
=

1.2.3 · · · r(r + 1)(r + 2) · · · (r + n)
r!n!

= (Vr
0)(Vn

r ).

(Vr
0)(Vn

r ) = Vn
r , where Vr

0 = 1.
Now Vn

r (n, r ∈ N, n ≥ 1, r ≥ 0) is considered as optimized combination.

4 Some results with proofs on the optimized combination [5,6]
Result 4.1 V1

0 = Vn
0 = 1.

Proof.

(4.1) V1
0 =

(0 + 1)
1!

= 1.

(4.2) Vn
0 =

(0 + 1)(0 + 2)(0 + 3) · · · (0 + n)
n!

=
n!
n!

= 1.

From (4.1) and (4.2), the Result 4.1 is true.

Result 4.2 Vn+1
r − Vn

r = Vn
r−1.

Proof. Vn
r =

(r+1)(r+2)(r+3)···(r+n)
n! ,

Vn+1
r =

(r + 1)(r + 2)(r + 3) · · · (r + n)(r + n + 1)
(n + 1)!

,

Vn+1
r − Vn

r =
(r + 1)(r + 2)(r + 3) · · · (r + n)

n!
[
r + n + 1

n + 1
− 1],

(4.3) Vn+1
r − Vn

r =
r(r + 1)(r + 2(r + 3) + · · · + (r + n)

n!
= Vn

r−1.

It is understood from (4.3) that the Result 4.2 is true.

Result 4.3 1 + V1
1 + V2

1 + V3
1 + · · · + Vn

1 = Vn
2 .

Proof.

(4.4) Vn
2 =

(2 + 1)(2 + 2)(2 + 3) · · · (2 + n − 1)(2 + n)
n!

=
(n + 1)(n + 2)

2!
,

(4.5) 1 + V1
1 + V2

1 + V3
1 + · · · + Vn

1 = 1 + 2 + 3 + · · · + n + 1 =
(n + 1)(n + 2)

2!
.

From (4.4) and (4.5), the Result 4.3 is true.

Result 4.4 Vn
r = Vr

n(n, r ≥ 1n, r ∈ N).
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Proof.

Vn
r = Vr

n implies
(r + 1)(r + 2) · · · (r + n)

n!
=

(n + 1)(n + 2) · · · (n + r)
r!

.

Assume that r = n + m(m ∈ Nm ≥ 1). Let us show that Vn
n+m = Vn+m

n .

(4.6) Vn
n+m =

(n + m + 1)(n + m + 2) · · · (n + m + n)
n!

=
(n + 1)(n + 2) · · · (n + m + n)

(n + m)!

(4.7) Vn+m
n =

(n + 1)(n + 2) · · · (n + n)(n + n + 1)(n + n + 2) · · · (n + n + m)
(n + m)!

From (4.6) and (4.7), Vn
n+m = Vn+m

n is true.
Assume that r = n − m(n > m). Let us show that Vn

n−m = Vn−m
n .

(4.8) Vn
n−m =

(n − m + 1)(n − m + 2) · · · (n − m + n)
n!

=
(n + 1)(n + 2) · · · (n + n − m)

(n − m)!
.

(4.9) Vn−m
n =

(n + 1)(n + 2) · · · (n + n − m)
(n − m)!

,

From (4.8) and (4.9), Vn
n−m = Vn−m

n is true.
If r = n, Vn

r = Vr
n is obivously true for r = n.

Hence, the Result 4.4 is true.

Result 4.5 Vn
n = 2Vn

n−1.

Proof.

Vn
n =

(n + 1)(n + 2) · · · (n + n − 1)2n
(n − 1)!n

=
2(n + 1)(n + 2) · · · (n + n − 1)

(n − 1)!
= 2Vn

n−1.

Hence, the Result 4.5 is true.

Result 4.6 Vn
0 + Vn

1 + Vn
2 + Vn

3 + · · · + Vn
r−1 + Vn

r = Vn+1
r .

Proof. This result is proved by mathematical induction. Basis. Let r = 1.Vn
0 + Vn

1 = Vn+1
1 implies n + 2 = n + 2.

Inductive hypothesis.
Let us assume that Vn

0 + Vn
1 + Vn

2 + · · · + Vn
k−1 = Vn+1

k−1 is true for r = k − 1.
Inductive step. We must show that the inductive hypothesis is true for r = k.

Vn
0 + Vn

1 + · · · + Vn
k−1 + Vn

k = Vn+1
k implies Vn

0 + Vn
1 + · · · + Vn

k−1 = Vn+1
k − Vn

k = Vn+1
k−1 .

Hence, it is proved.
To convert the combination (n+r)Cr into the optimized combination:

(n+r)Cr =
n!

r!(n + r − r)!
=

n!
r!n!

=
1.2.3 · · · r(r + 1)(r + 2) · · · (r + n)

r!n!
= (Vr

0)(Vn
r ).

(Vr
0)(Vn

r ) = Vn
r where Vr

0 = 1.

5 Conclusion
In the research paper, a computing method and models for optimizing the combination defined in combinatorics has
been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s
challenges.
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