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Abstract

The present investigation is concerned with the estimation of the upper bound to the H4(p) Hankel determinant
for a subclass of p-valent functions in the open unit disc E = {z :| z |< 1}. This work will motivate the researchers
to work in the direction of investigation of fourth Hankel determinant for several other subclasses of univalent and
multivalent functions.
2010 Mathematics Subject Classifications: 30C45, 30C50.
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Coefficient bounds.

1 Introduction
Let P denote the class of analytic functions p(z) of the form

p(z) = 1 +
∑∞

n=1 cnzn,

whose real parts are positive in E.
By Ap, we denote the class of functions of the form

(1.1) f (z) = zp +
∑∞

k=p+1 akzk, (p ∈ N = {1, 2, 3, ...}),

which are analytic in the unit disc E = {z :| z |< 1} and normalized by f (0) = f ′(0) − 1 = 0.
Let S be the class A1 ≡ A consisting of functions of the form (1.1) and which are univalent in E.
Let R represent the class of functions f ∈ A, which satisfy the condition

Re( f ′(z)) > 0.

The class R was introduced by MacGregor [12] and functions in this class are called bounded turning functions.
By R1, we denote the class of functions f ∈ A, with the condition that

Re
(

f (z)
z

)
> 0.

R1 is a subclass of close-to-star functions and was studied by MacGregor [13].
Further, Murugusundramurthi and Magesh [15] introduced the following class:

R(α) =

{
f : f ∈ A,Re

{
(1 − α)

f (z)
z

+ α f ′(z)
}
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

In particular, R(1) ≡ R and R(0) ≡ R1.
Later on, Vamshee Krishna et al. [8] introduced a subclass of p-valent functions as follows:

RTp =

{
f : f ∈ Ap,Re

(
f ′(z)
pzp−1

)
> 0, z ∈ E

}
.

For p = 1, RT1 ≡ R.
Motivated by the above defined classes, Amourah et al. [2] defined the following subclass of p-valent functions:

Rp(α) =

{
f : f ∈ Ap,Re

{
(1 − α)

f (z)
zp + α

f ′(z)
pzp−1

}
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

The following observations are obvious:
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(i) R1(α) ≡ R(α),
(ii) Rp(1) ≡ RTp,
(iii) R1(1) ≡ R,
(iv) R1(0) ≡ R1.
In 1976, Noonan and Thomas [16] stated the qth Hankel determinant for q ≥ 1 and n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣
an an+1 ... an+q+1

an+1 ... ... ...
... ... ... ...

an+q+1 ... ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣ .
In the particular cases, q = 2, n = p, a1 = 1 and q = 2, n = p + 1, the Hankel determinant simplifies respectively to

H2(p) = |ap+2 − a2
p+1| and H2(p + 1) = |ap+1ap+3 − a2

p+2|.
This paper is concerned with the Hankel determinant in the case q = 3 and n = p as

H3(p) =

∣∣∣∣∣∣∣∣
ap ap+1 ap+2

ap+1 ap+2 ap+3
ap+2 ap+3 ap+4

∣∣∣∣∣∣∣∣ ,
which is known as Hankel determinant of order 3.

For f ∈ Ap and ap = 1, we have

H3(p) = ap+2(ap+1ap+3 − a2
p+2) − ap+3(ap+3 − ap+1ap+2) + ap+4(ap+2 − a2

p+1),

and using the triangle inequality, it yields

(1.2) |H3(p)| ≤ |ap+2||ap+1ap+3 − a2
p+2| + |ap+3||ap+3 − ap+1ap+2| + |ap+4||ap+2 − a2

p+1|.

For any f ∈ Ap of the form (1.1), we can represent the fourth Hankel determinant as

(1.3) H4,p( f ) = ap+6H3(p) − ap+5D1 + ap+4D2 − ap+3D3,

where D1,D2 and D3 are determinants of order 3 given by

(1.4) D1 = (ap+2ap+5 − ap+3ap+4) − ap+1(ap+1ap+5 − ap+2ap+4) + ap+3(ap+1ap+3 − a2
p+2),

(1.5) D2 = (ap+3ap+5 − a2
p+4) − ap+1(ap+2ap+5 − ap+3ap+4) + ap+2(ap+2ap+4 − a2

p+3),

(1.6) D3 = ap+1(ap+3ap+5 − a2
p+4) − ap+2(ap+2ap+5 − ap+3ap+4) + ap+3(ap+2ap+4 − a2

p+3).

Hankel determinant has been considered by several authors. For example, Noor [17] determined the rate of growth
of Hq(n) as n → ∞ for the functions given by Eq.(1.1) with bounded boundary. Ehrenborg [5] studied the Hankel
determinant of exponential polynomials and in [10], the Hankel transform of an integer sequence is defined and some
of its properties have been discussed by Layman.

Second Hankel determinant for various classes has been extensively studied by various authors including Mehrok
and Singh [14], Janteng et al.[7] and many others. Third Hankel determinants for various classes were studied by some
of the researchers including Babalola [3], Shanmugam et al.[18], Altinkaya and Yalcin [1] and Singh and Singh [19].
Also the Hankel determinant for various subclasses of p-valent functions were studied by various authors including
Krishna and Ramreddy [8] and Hayami and Owa [6].

In this paper, we seek upper bound for the functional H4,p( f ) for the functions belonging to the class Rp(α). This
paper will motivate the future researchers to investigate the fourth Hankel determinant for some other subclasses of
univalent and multivalent functions.

2 Preliminary results
Lemma 2.1[4,11] If p(z) = 1 +

∑∞
n=1 cnzn ∈ P, then for n, k ∈ N = {1, 2, 3, ...}, we have the following inequalities:

|cn+k − λcnck | ≤ 2, 0 ≤ λ ≤ 1,

and

|cn| ≤ 2.

Lemma 2.2 If p(z) = 1 +
∑∞

n=1 cnzn ∈ P, then for n, k ∈ N = {1, 2, 3, ...}, we have:

|cn+k − λcnck | ≤ 4λ − 2, λ ≥ 1.

Proof. For λ ≥ 1, we have

|cn+k − λcnck | ≤ |cnck − cn+k | + (λ − 1)|cnck |.
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Using Lemma 2.1, the above inequality yields

|cn+k − λcnck | ≤ 4λ − 2.

Lemma 2.3[2] If f ∈ Rp(α), then

|ap+ j| ≤
2p

p + jα
.

Lemma 2.4[2] If f ∈ Rp(α), then

|ap+2 − a2
p+1| ≤

2p
p + 2α

.

Lemma 2.5[9] If f ∈ Rp(α), then

|ap+1ap+3 − a2
p+2| ≤

4p2

(p + 2α)2 .

Lemma 2.6[2] If f ∈ Rp(α), then

|ap+1ap+2 − ap+3| ≤


2 if α = 0,

2p(6α2 + 3pα + p2)
3
2

3
√

6α(p + α)(p + 2α)(p + 3α)
if 0 < α ≤ 1.

Lemma 2.7 If f ∈ Rp(α), then

|H3(p)| ≤


16 for α = 0,

4p2

p + 2α


2p

(p + 2α)2 +
1

p + 4α
+

(6α2 + 3pα + p2)
3
2

3
√

6α(p + α)(p + 3α)2

 for 0 < α ≤ 1.

Proof. From Lemma 2.3, we have

(2.1) |ap+2| ≤
2p

p + 2α
,

(2.2) |ap+3| ≤
2p

p + 3α
,

and

(2.3) |ap+4| ≤
2p

p + 4α
.

Using equations (2.1),(2.2) and (2.3), Lemma 2.4, Lemma 2.5 and Lemma 2.6 in (1.2), the result is obvious.
For p = 1, Lemma 2.7 yields the following result:
Corollary 2.1 If f ∈ R(α), then

|H3(1)| ≤


16 for α = 0,

4
1 + 2α

[
2

(1 + 2α)2 +
1

1 + 4α
+

(6α2 + 3α + 1)3/2

3
√

6α(1 + α)(1 + 3α)2

]
for 0 < α ≤ 1.

For p = 1, α = 1, Lemma 2.7 gives the following result proved by Babalola [3]:
Corollary 2.2 If f ∈ R, then

|H3(1)| ≤ 0.7423.

3 Fourth Hankel determinant for the class Rp(α)
Theorem 3.1 If f ∈ Rp(α), then

(3.1) |H4(p)| ≤


152.0866 for α = 0,

8p3

(p + 2α)(p + 6α)

 2p
(p + 2α)2 +

1
p + 4α

+
(6α2 + 3pα + p2)3/2

3
√

6α(p + α)(p + 3α)2


+

2p
(p + 5α)

u(p, α) +
2p

(p + 4α)
v(p, α) +

2p
(p + 3α)

w(p, α) for 0 < α ≤ 1,

where
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(3.2) u(p, α) = 2p2(4p − 2)
[

1
(p + α)2(p + 5α)

+
1

(p + 3α)(p + 2α)2 +
1

(p + α)(p + 3α)2

]
+

174p2(4p − 2) + 4p2

48(p + α)(p + 2α)(p + 4α)
,

(3.3) v(p, α) =

[
63p2(4p − 2)

25(p + α)(p + 2α)(p + 5α)
+

18p2(4p − 2)
5(p + 4α)(p + 2α)2 +

150p2(4p − 2) + 4p2

75(p + 2α)(p + 3α)2

]
and

(3.4) w(p, α) = 2p2(4p − 2)

×

[
1

(p + 2α)2(p + 5α)
+

1
(p + α)(p + 3α)(p + 5α)

+
2

(p + 3α)3 +
1

(p + α)(p + 4α)2

]
+

34p2(4p − 2)
16(p + 2α)(p + 3α)(p + 4α)

+
p2

(p + α)(p + 2α)2(p + 3α)(p + 4α)2(p + 5α)
.

Proof. Using Lemma 2.3 in (1.4), (1.5) and (1.6), it gives

(3.5) D1 =
p2c2c5

(p + 2α)(p + 5α)
−

p2c3c4

(p + 3α)(p + 4α)
−

p3c2
1c5

(p + α)2(p + 5α)

+
p3c1c2c4

(p + α)(p + 2α)(p + 4α)
+

p3c1c2
3

(p + α)(p + 3α)2 −
p3c3c2

2

(p + 3α)(p + 2α)2 ,

(3.6) D2 =
p2c3c5

(p + 3α)(p + 5α)
−

p2c2
4

(p + 4α)2 −
p3c1c2c5

(p + α)(p + 2α)(p + 5α)

+
p3c1c3c4

(p + α)(p + 3α)(p + 4α)
+

p3c4c2
2

(p + 2α)2(p + 4α)
−

p3c2c2
3

(p + 2α)(p + 3α)2

and

(3.7) D3 =
p3c1c3c5

(p + α)(p + 3α)(p + 5α)
−

p3c1c2
4

(p + α)(p + 4α)2 −
p3c2

2c5

(p + 2α)2(p + 5α)

+
2p3c2c3c4

(p + 2α)(p + 3α)(p + 4α)
−

p3c3
3

(p + 3α)3 .

On rearranging the terms in (3.5), (3.6) and (3.7), it yields

(3.8) D1 =
p2c5(c2 − pc2

1)
(p + α)2(p + 5α)

+
p2c3(c4 − pc2

2)
(p + 3α)(p + 2α)2 −

p2c3(c4 − pc1c3)
(p + α)(p + 3α)2

−
67p2c4(c3 − pc1c2)

48(p + α)(p + 2α)(p + 4α)
+

19p2c2(c5 − pc1c4)
48(p + α)(p + 2α)(p + 4α)

+
p2c2c5

48(p + α)(p + 2α)(p + 4α)
,

(3.9) D2 =
p2c5(c3 − pc1c2)

(p + α)(p + 2α)(p + 5α)
−

p2c4(c4 − pc2
2)

(p + 4α)(p + 2α)2 −
p2c3(c5 − pc2c3)

(p + 2α)(p + 3α)2

−
4p2c4(c4 − pc1c3)

5(p + 4α)(p + 2α)2 −
13p2c3(c5 − pc1c4)

50(p + α)(p + 2α)(p + 5α)
+

p2c3c5

75(p + 2α)(p + 3α)2

and

(3.10) D3 =
p2c5(c4 − pc2

2)
(p + 2α)2(p + 5α)

−
p2c5(c4 − pc1c3)

(p + α)(p + 3α)(p + 5α)
+

p2c3(c6 − pc2
3)

(p + 3α)3 −
p2c3(c6 − pc2c4)

(p + 3α)3

+
p2c4(c5 − pc1c4)
(p + α)(p + 4α)2 −

17p2c4(c5 − pc2c3)
16(p + 2α)(p + 3α)(p + 4α)

+
p2c4c5

4(p + α)(p + 2α)2(p + 3α)(p + 4α)2(p + 5α)
.

Using Lemma 2.2 and applying triangle inequality in (3.8), (3.9) and (3.10), we obtain

(3.11) |D1| ≤ u(p, α),

(3.12) |D2| ≤ v(p, α)
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and
(3.13) |D3| ≤ w(p, α),
where u(p, α), v(p, α) and w(p, α) are defined in (3.2), (3.3) and (3.4) respectively.
Hence using Lemma 2.3, Lemma 2.7 and equations (3.11), (3.12), (3.13) in equation (1.3) and applying triangle
inequality, the result (3.1) is obvious.
On putting p = 1 in Theorem 3.1, we obtain the following result:
Corollary 3.1 If f ∈ R(α), then

|H4(1)| ≤



152.0866 for α = 0,

8
(1 + 2α)(1 + 6α)


2

(1 + 2α)2 +
1

1 + 4α
+

(6α2 + 3α + 1)
3
2

3
√

6α(1 + α)(1 + 3α)2


+

2
(1 + 5α)

p(α) +
2

(1 + 4α)
q(α) +

2
(1 + 3α)

r(α) for 0 < α ≤ 1,

where

p(α) = 4
[

1
(1 + α)2(1 + 5α)

+
1

(1 + 3α)(1 + 2α)2 +
1

(1 + α)(1 + 3α)2

]
+

29
4(1 + α)(1 + 2α)(1 + 4α)

,

q(α) = 4
[

63
50(1 + α)(1 + 2α)(1 + 5α)

+
9

5(1 + 4α)(1 + 2α)2 +
76

75(1 + 2α)(1 + 3α)2

]
and

r(α) = 4
[

1
(1 + 2α)2(1 + 5α)

+
1

(1 + α)(1 + 3α)(1 + 5α)
+

2
(1 + 3α)3 +

1
(1 + α)(1 + 4α)2

]
+

68
16(1 + 2α)(1 + 3α)(1 + 4α)

+
1

(1 + α)(1 + 2α)2(1 + 3α)(1 + 4α)2(1 + 5α)
.

On putting p = 1, α = 1 in Theorem 3.1, the following result is obvious:
Corollary 3.2 If f ∈ R, then

|H4,1( f )| ≤ 0.7973.

4 Conclusion.
In the present work, we estimated the bounds for the fourth Hankel determinant for a subclass of multivalent bounded
turning functions. The estimation of fourth Hankel determinant for the various subclasses of analytic functions is a
new concept in the field of geometric function theory. Till now much work has been done on the study of second and
third Hankel determinants for various subclasses of univalent functions, so this paper will work as a milestone to the
future researchers in this field.
Acknowledgement. The authors are very greatful to the editor and referees for their valuable suggestions to revise the
paper.
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