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ABSTRACT

The instability of the plane interface between two 'viscoelastic
superposed cdnduéting fluids through ‘porous medium is studied when
the wholéAsystcm is immersed in a uniform “horizontal magﬁetic field.
The medium permeability is- considered to be large and the fluids are
considered to be highly viscous and of equal kinemiatic viscositics,'for
mathematical simplicity. It is found that the stability criterion is
independent of the effects - of medium vper"meability, viscosity “and
viscoelasticity and is dependent on the orientation and magnitude of
the magriétic field. The magnetic field is found to stabilize a certain
wave number range of the unstable configuration. The growth rates

both increase or decrease with the increase in medium permeability. .
1. Introduction

A detailed account of the instability of the plane interféce
between two fluids, under varying assumptions of hydrodyynamics and
hydromagnetics, has been given by Chandrasekhar [2]. Bhatia [1] has
studied the Rayleigh-Taylor instability of two viscous superposed
conducting fluids in the presence of a uniform horizontal mégnetic field.

Sharma [5] has studied the instability of the plane interface between



two viscoelastic (fluids obeying Oldroyd’s constitutive equation) super-
poséd conducting fliaids” in the /presence’ of a- uniform magnetic « field
The medium has been -considered to-be - non-perous in- allithe-labove
studies. Lapwood [3] has' studied ‘the istability:6f convective flow in .
hydrodynamics in a porous medium using Rayleigh’s procedure. The
Rayleigh instability of a thermal boundary layer in flow through a
porous medium has been;considered by Wooding [7}. When the fluid
slowly percelates through the -pores .of the rock, the gress.-effect is
represented by Darcy’s law whieh:- states that the usual viscous term
in the equatlons of ﬁuld motlon is replaced by the resistance term
(pfk1) v, where y.ls the v1sc051ty of the fluid, ky is the permeability

of the medium and v is the veloerty sef the Aluid.

inteefa,ce between two, v1scoe1asll,c superposed comducunc ﬂulds through
porous medlum, when, the whole system is 1mmersed ina umform hor1-_ .
zontal -pagnetic ﬁeld 1 he. v1scoelastlc (,Oldroyd) ﬂuxds explam the -

rheologmal behavmur of some polymer solutions at small rates of shear

The instability of such viscoelastic superposed conductmg ﬂu1ds through .
porous medium may find appheauons in geophysics. ThlS aspect fozms ,
the subject matter of the present study wherein we have carried out the:’
stablhty analy s1s, for larcre rnedlurn pelmeablhtx and for two hlg]'ll\’:_' :

VlSCOLlS ﬂulds 0[' eouﬂ‘ kmematlc v1scos1t1es )
9. Pevturbation Eguations

Assume that the viscoelastic fluid is described by the constitutive ©

relations
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rcspcctlvely the shcar strcss tensor, thc strcss tcnsor thc 1etc—of—-st1a1n
tensor thc v1scos1tv, the strcss relaxatlon tlmc thc stram rctardatlon
time, the isotropic pressure, ‘the Kronecker delta, the - mobile; operator,:
the velocity vector and the position vector. Relations of the type (1)
were first proposed-by Jeffreys for 'earth' .and studied’ by: Oldroyd. []: -
Oldroyd [4] also $héwed thatinany: rhéological equationis of state; of
general validity, rcducc to (1) whcn lincarizcd.

ConS1dcr the motion of an 1ncomprc331ble, infinitely conducting,
v1scoe1ast1c ﬂuLd tlirough porous medmm in- thc presence ofa: umf’orm :
magnetic field H (Hs, Hy, ). Let v (1, o, w), h (hay fiyy h2). o and $p
denote s the perturbatlons in. velocity, magnetic: field, density and
pressure; respectlvely Then thc linearized hydromaonetxc perturbation

equations of viscoelastic fluid throygh porous medium are

/ ) o (1l = v artg e L7

(2) <1+/\ )p?t <1+,\at )[ v ‘/’—Ig ijﬁ\VX -
ot JL A - o

G vw -0, .

(4) '(v"h=‘0 5", e B

) ah vV x (vxH),

(-t
©) 2 %+ (v-V)e = 0, S AT I

Y ylll Av'uib A A R ER
where v (=pfp), 8 (0,0, —&) and x (¥, 2) denote the kinematic
viscosity of the fluid, the acceleration due to gravity and the Position *

vector respectively. Equation (6) ensures that the density of every .
D R MR by
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particle remains unchanged as we follow it with its motion. . -

Analyzing the disturbanccs into normal modes, we assume that

thc pcrturbcd quantmcs havc thc x )' z and ¢ dcpcndcnce of thc form'

3) £ exp like x+zku+m)

wherl; - f{z) is some fum:tmn of g, # is the: growth rate of the harmenic -
disturbance and key &y ave the horigontal wave numbers (ki.’:lm?,-i—li,,"‘). g

For pcrturbatlons of thc form (7), Eqs (2)—(6) bccome

(3) (A = (H—Jm) {} ik sp+..z( by o by ;]
,Tm)[ o { D?—k?-)a— - " 4t (zkzw-r-Du)D,,‘:]
i 4

o, Ha o, . -

(9) (I-+-an)pmv = (I—l—/\n)[—zk, 8p + (ke hy—iky ) |
+ >(1+)\0n)[ ev(D2—k2)p— %’-v-&—(ik,, w+Du)D,,‘]
. 1 »

(10) (I-+Anjpno = (1+r\")[—-08/1—~ ¥ 2L (ikoh,— Dh)

(,k k. _Dh,)]+(1+)mn> [pv(m—“) 7 @+ 2(Dw)(Dy) ]

(1) i ke uti ky 9+ Dw=0,
(12) z’>k, haki by by+-Dhi=0,
(13) nh_.(ikgHzJ-lkyHy)v,
(14)_ nSpn-pr ,

( 5) where D=d[d..
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' Multiplying Eqs. (8) and (9) by - ike and ik respectively and adding,
using (11) —~ (13) in it and finally eliminating 38 between the resulting
equatfop 'g.n_:ci\;_Eq. (10) [after substituting for 3p from’ (14) ], we obtain .. -

a5 (H»ﬂ[ {D(pDuw)— kegw}-+ 25 (D, >w+‘k”H”+ il <D2-k2>“’]..
— (I_J_EW ) {D{pv(D2 lc2)Dw}-k2m(D2-k2)w :i+( Lt"&ﬁ )[D(pvnw) -

s kRpyie ]-4 (%"9—‘1 ){D{('D;;‘B(D?—il—kﬁ)w}—-’QM(D,z)(Dw)] =0.
3. Two Uniform Superposed Viscoelastic Fluids Separated
by a Horizonial Boundary

. we next consider-the case when two  superposed. viscoelastic Buids
of uniform densities p; and pp and uniform viscosities py and py are
separated by a horizontal boundary at z=0. The subscripts 1 and 2
distinguish the lower and the upper fluids respeetively. Then, in each

region of constant p and constant x, Fq. (14) becomes
(17) (D2—k2) (D2—g2)w=0,

where
_ I, n It ] o “ :
0| k24 — 4 — 14 . ¢ Ha 2% 1
(18) ?“"[k +k1+‘v l—l—)\on{ + drn% (ke Hatky H,,F}J

Sincé w must vanish both when g - = oo (in the lower fluid) and

z — 4 oo (in the upper fluid) we can write the solutions, appropriate

to the two regions, as
(19) wy = Al el _A. Bl.g»);__kqlz‘ | (€<0) .

(20) wy = Ag ¢ -+ By e g? (>0; ,
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where. Ay, By, da, By, are constanfs,
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It may be;added that'in Swriting the solutlons (19) and.-(20). 1
is assumcd that ¢ and g are so defined that their real parts are posmve

4. ‘Boundary -Conditiens "1 !

SRS SOt R S G

" The solutions (19) and (20) must satiéfy certain boundary conditions,
Thesei conditions (- Ghandrasekher [2} -pi 432 ) require ' that- at an

mterface L NS 1Y U S R S AP

(24) De,
and

23 WP
must be cdntmuous o .
Lo L L

- Integrating Eq (16) across the mtcrf’ace 2= 0 we obtam anothex‘
condltlon‘ R
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= ——;%{2:(“1 +An) (pa— Pl)wo—%zv(l-l-/\o")(#z* #1) (Dw)g

_"(‘_I_—f;@z )(@Dwz_ F_IDW.)
Y kl . n n

2=0
where wo‘and {Dw)g are the common values of wy, Wy , and ]f;wl .
Dwy:, respectively at z=0
5, Dispersion Relation and Discussion
Applying the conditions (23)—(26) to the solutions (19) and
(20}, we obtain
(27) Ay +B1=4s+ By ,
‘(28) kdi+anBh = — kAy— g By,

(20) m[2R2+ (@ +I0B) | =] 224t (g +I2)R, |

7 ; L \2 gk
e ( kam-{—kyH,,) +55

(30) (14 )] (~peda—erdr)—(dy + 4o)

(pr—p1) (d1+BrtAotBy) | = (I+am) [

2|

(m1—po) (kd4y

., , ,
+ 71B1—kds—g2Bs)+ W-('HzA-ﬁ—/ﬂAﬂ]
2 y

Eliminating the' constants Ay ,'By, Ay, By from (27) = (30),

we obtain
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k ‘ i1
2k2mq o } 1 (93+ k?)
(31) ‘ | |
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where we have written : o i

mH-E“"\qu)
32 %1, 9 == _Pvl__>‘2~_’ (k VA)2 — (k yiy
(32) s10 = e

3

k, R 2
R = —5—2-(0.2“—0‘1)3 C:‘ﬁ‘ ‘fil:l-‘.p;—;g = e (a1V1—¢12‘)2)-

Here k is the wave vector and v, is Alfuén velocity vector.

Evaluating the .determinant (31), we .obtain the following

characteristic equation
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Since the values of ¢ and g2 involve square roots, thc dispersion

relation (33) is quite complex. We, therefore, carry out the stability
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analysis for large medlum permeability and highly viscous fluids. For,

then we can wrltc

1
k) g=3 Py 1 o n_
e [ By R\ T
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and
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Substituting the values of ¢;—k and ga—k from Lgs. (35) and (36) in

Eq. (33) and putting ‘)1:2\19:*) (the ¢ase:of equal kinematic. viscosities,

for mathematical simplicity, as in Chandrasekhar [2], ‘as any of the

essential features of the problem would not be ohscured by this

simplifying assamption),

we obtain the following dispersion relation

(37)

Agnd ~ Agn8 + A7 - Agn® 4+ AznS 4+ Aynd

 Agmd 4+ Ay + Ay 4 Ay=0,

where

Ag

Ag=raq09 K313,

2vagughy AN2(2 4 K2hy) +agasky DO+ k),
ayashivEAN2 ] 44k )+ 2ayagiki (200 - A2) (2 + Kohy)
4 2uq09kviAoA2 — ayaski3A3 L +3<1102/f13/\+30;112vk2/\2

b B3k Va2,

[ o

2
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(38)dg=ayxav2ky(Z4-#k2k1) (2Mo+-A0%) +axsvBAo?(A+-2k2k120) -
—2yayaahy PANEM - 2oyt 2 24-E%Ry) (2A-+2o)
+ Zagaski (2o +A2) + vk 2AoA2(k.V 4)2G —Sayagk,B)2L
Fagugk2(ky E300) 4+ DkB(EVA2 - V23 (k.V 42,
As = 6ay09kik2y3N02+AAEN +a 0ov3( 200+ A02) — 20 x0vEy 2( 20N +-A2) M
1 20yt 2(2+ K2k, ) + 2ot tan2hy (2A+A0)
vk 2(200+22) (K.V4)2G+v2rga2ky(k. V.4)2—Sagagk,3AL
Fayagk 2— k330, V2L — (K. V4)2}-F 3ky22 (K.V.0)2{k; A},
Ay = ay00kv2(]+2k2k, Y+ 6oy00k k3o + (2AgFA2)V
a2+ 0)~Zaga kA Ao M 2yl
— vk zgz\g)\z(az—-al) (k. VA)2+vk 2(k. VA)2(2/\+/\0) G
R (k. VA)ZfZAA0+,\2) —a1a2k13L 2k 20A2 (k. VA)4(1—|—k2k1)
~ 3k SN2k VAL~ (k-V.0)2} -+ 2k Voa)2{ky 30 -HuA3(k Va3,
Ay = . 2“1“2"3#1’(241‘(?A0+A)A’+M1M2V3—2alazvkiéM | |
— ghky2(k.V.) 20 —l—/\2)(a2—u1)—|—vk12(k Va)26-+2hy (k. VA)2(2,\+A0)
- 2vk12(k. V 1)1+ k2ky) (2220 A2) — BAk; 3 kVA)Z{L (k. Va)g} "
+2k:2(k. V.A)2{7+3)2(k V.a)2} —k3A3(kV )AL,
= N—gkvk2(k.Va)2(ag—u1)(22-+20) 4-v2kq (k. V.4)2
202 (k. V)2 (2A Ao (1 -+ B2y ) — ky3(K. V.4)2{L — (k. V )2}

+ 30k 2(k.V 1) —3k302 k. V 4)4L



Ay = — ghokiogoq) (B V)229k; (ke Vi) (34 2k2k;) — Sk 3k VAL,
Ag = —k3(k.V4)4L
and we' have written

(gk(ag—ai)—2(k.V4)2}=L

gy g) I —kky (k. Vi) 2} =M

[2ayaokv2ky2— gkvZagaoki(apg-ar) + {Iv2ajagky,

+ 2k agP+ ap?)} (V2] =N,

[+ 2k2ki{ag®+ag?)]=G.

When a,>09 (potentially stable arrangement) we find, by applying .
Hurwitz’ criterion to Eq. (37), that (as all the coefficients in (37) aré
then positive) all the‘roots 7 ‘are either real and negative or there are
complex roots-with negative.real.parts. The. system is. therefore stable
in each case. Hence the potenfially stable éonﬁguration rerriains stable
whether the effects of “viscosity; viscoelasticity, porosity'and magnetic

field are included or not.

For the potentially unstable arrangement ag > a,, the system
is unstable in the hydrodynamic case for all wave huinbéré k in the
pcgscnc_gzoflyiscqsityv effects and in the absence of porosity-and viscoelastic
effects ( Chandrasekhar [2] ). Also the system, tn the pfcse.nt éaée, is

unstable if

In the present hydromagnetic case we find, by appylying Hurwits® *
criterion to Eq. (37) when ag > o, that.the system is stable for all

wave numbers which satisfy the inequality

(10) 2(k.Va4)2 > gk (eg—a,),
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(41) 2k (V,Cos8+V,Sing)2 > g (ag—ay), " BT IR

where V;-and V, are the Alfvén velocities in x and y'directions and 0 is

the angle between k and Ha.

The stability criterion (41)'is independenit of the effectsof viscosity,
vis:tbtélé‘sticity' and medium porosity. The magnetic field srabilizes a
certain wave number range k > k*, where k¥ =g (ag—a,)/ 2/(V,; Cosb
+Vg Sin)2 , of the unstable configuration even in the presence of the
effects of viscosity, medium porosity. and VIScoelast1c1ty The cr1t1ca1':vy
wave number k*, above which the system is stabilized, is , dependent on

the magnitudes V; and Vy of the magnetic ﬁeld as well as the orientation

Ty .
Sy f,

of the magneuc ﬁeld 0.

‘We now examine the behaviour of growth rates with respect to
medium permeability analytically. Since for ag > a; and g k(ag—a,)
> 2 (k.V4)2, Eq. (37) has one positive root, let 7y denotes - the positive
root. Then Eq. (37) holds true for 7y, substituted in place of'n. To
study the behaviour of growth rates with respect to medium permeability,
we examine the nature of dng/dk, from this resulting equation in nj. It is
avident from the form of Eq. (37) that dny/dky mav be both positive or
negative. Thus the growth rates both increase or decrease with the
increase in medium permeability. A similar argument holds good for
growth rates with respect to viscosity, stress relaxation and strain
retardation time parameters i. e the growth rates both increase or
decrease with the increase in stress relaxation and strain retardation
time paramcters (Sharma [5] ) and with the increase in kinematic

viscosity (Sharma and Thakur [6] ).
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