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ABSTRACT 

The instability of the plane interface between two viscoelastic 

superposed conducting -fluids through porous medium is studied when 

the whole system is immersed in a uniform horizontal magnetic 'field. 

The medium permeability is considered to be large and the fluids, are 

considered to be highly viscous and of equal kinematic viscosities, for 

mathematical simplicity. It is found that the stability criterion is 

independent of the effects of medium permeability, viscosity and 

viscoelasticity and is dependent on the orientation and magnitude of 

the magnetic field. The magnetic field is found to stabilize a certain 

wave number range of the unstable configuration. The growth rates 

both increase or decrease with the increase in. medium permeability'.. 

I. I:ntroduction 

A detail.ed account of the instability of the plane interface 

between two fluids, under varying assumptions of hydrodynamics and 

hydromagnetics, has been given by Chandrasekhar [2]. Bhatia ( 1 J has 

studied the Rayleigh-Taylor instability of two viscous superposed 

conducting fluids in the presence of a uniform horizontal magnetic field. 

Sharma [5] has studied the instability of the plane interface between 



[ 64 

two viscoelastic (fluids obeying Oldroyd's constitutive equation) super­

posed eorldu<Hi:rig fiL-i:bids · iii th€} ;'.ptks~nee: 0fa u111iforin .magiiefil.c'dii~MT 

The medium has been: CQ·msid©~ c~0>be. nO.fi..:.p©ro:iiS inan.;·.itl1'e\above 

studies. Lapwood [3] has s;tiJ.tlti:d -the ~~i<ihiMty· ~Of convective flow in 

hydrodynamics in a porous medium using Rayleigh's procedure. The 

Rayleigh instability of a thermal boundary layer in flow through .a 

porous medium has beeJilcc.~ni.~idered l:w Wooding [7];. When the fluid 

slowly percolates throttgh the poxes of the rock, the grQss -effect is 

represented by Darcy's law whieh -states that the usual viscous term 

in the equations of fluid motion is replaced by the resistance term 

(µ/k1) v, whe~e µ, is th~ ~isc~sity of the fluid, k1 is the permeability 

of the medium and v is the velQ:c'!!!t)f QH •the :flu id. 

, ,· fo ~he presel.l);, pa.p.er we st.udy the ins,t.aqqity:: of the plane 

iq,t,eg(;;ice 1;>.~.t,w.eeo.: two vis codas tic superposed c0~d_uc ti~g · fl.uj_ds throl.lgp 
- . • • . • • . . . . ; - . •. , . • .·' • - i . • ' · •• ' -~ ;" . 

pqr0us meqium, wheJ;J._the w.hol.e. sys:tem is immersed in a uniform h0r~: 
. . ·. . . . . . . . . . . . - . ' -· . ' ,. -. . . ~ .. 

zo,nta.l . magµetic :l;ield.. 1 he visc_o.elastic tOldroyd) flu.ids expjain t.he 

r];ie~log~i:;al. J.:>,el;ia";iour of some p,olymer solutions at small rates of shear. 

The instflhiljty of s;ud1 viscoelastic. superposed conduc,ting fluids through 
: > • : I;., - < ; ·, •• 

pprq.us medillm may,:6nd applications in geophysi".s. This aspcc,t fo1·ms 

th.e subject matt.er of .the present study wherein . we ,have carried out the 

st<!lbility analysis, for larg,e medium, ,permeability a.nd for two highl~' , 

viscous fluids of eaua! kio.e,rnatic viscosities. 
. ,: .l . ,·· .• ;. . .' 

2. Perturbation Eq~ations 

Assume that the viscoelastic fluid is described hr t!lite c0nsti1u1live · 

relations 

( 1) 

. [ . I . 
1, 

{ 

I 
L 
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·: r. 

resp~~t~v~ly th~. s~ear str~~~ tepsor, th~ s;~r~ss ~ensor, the re,te-of-s~~:~.in, L 

ten;~r, th~ .visc~sitv, the stre~s ·~~laxadon time, the strain retardation 

time, the isotropic pressure, the Kronecker delt:a,_th~ :IBOlD-fk:;ppe:r.ater,·,, 

the velocity vector and the position vector. Relations of the type ( 1) 

were fi:vst proposed by Jeffreys for . earth' . arid studied by· Okl:t:oycL f 4l 
Oldroy(i' [4] also;· Showed that':h'iany' rh~ologicaJ equations of Sta.tel' of 

general validity, reduce to (1) when linearized. 
· ... , . •. '. ,. " ...... J ' ,! ;:· . . .. 

Consider the motion of an incompressible, infinitely conducting, 

viscoelasticjfluicl,1through pbrou's~fnedfo.m: in the presence of a; unitorm 
. 1··-g . 

magnetic field H (H", H'V, o). Let v (u, l', w), h (h,,, hv, h,), ~P and ap 

denote, the_,.):>e~t¥rbati911s .in veloc;ity, magnetic~ field, density and 

pressure: ~~~pectively. Then the linearized hydromignetic perturbation 

equations of visc~elastic fluid throqgh porous m~dium are 
' (! 

·,'. 

(2) ( I +A1-) "Pav=( I+A1- )I_:_ \7 ap+g a~ + ,/ ('V x h) x 
. _at ?t at L _ Tlt 

,'!;: ~· . . 

" ( 1 o )[ ' ·2 __ pvv -+-( ()w_ +-°v ·)d_"l, + +Ao - p v \7 v , _ _ r 
at . ki . . . ex oz dz J 

. ~ ~ .. ,. . 
.. ' ; ~ . . t: . 

(3) \J.V = 0 

(4) 'V·:~·= p ' ,,;, 

(5) 
()h \7 x (vxH), 

(6) ap + (v.\J)p = 0' 

; ; 

where v (=µ./p), g (0, 0, -t) and x (x,y, z) denote the kinematic 

viscosity of the fluid, the acceleration due to gravity and the- ··p0sition" 

vector respectively. Equation (6) ensures that the .. ;g~npity ,>ore:v,ery 
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pltrticle rem"ains un<;h<tngeq as we follow iLwith its motion., 
; . ~ • • • 1 . : ~ .; ~ ' f. . ., ; ·.,. . • .: ' ; ·• :~ •. ; ' ,. 

Analyzing the disturbances into normal modes, we assu".le .that 

the perturbed qua~tli:ibs have th~ 1r,y, z ,and t d~pend~nce of th~ 'ror~ 

wher~ J(;;.) is som~ function of;t0 n. is the growt!.l rate oftlte hannonic 

disturbance and k,., lc11 are the hori&,<mtal :wave numbers (k2:=k.,:i:+.ku2). · 

For perturbations of the form (7), Eqs. (2)-(6) become 

(13) nh=(i te H1,+i k11 H'll)v, 

~ 5) Where D;_:_'tl/d, . 
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Multiplying Eqs. (8) and (9) by - ik. and -ikv respectively
1

and adding, 

using[ll) -(13) in it and finally eliminating (;p between the resulting 

equatfon ~n.~\_Eq. {IQ) f'!-fter substitutiµg for Bp from (14)), we ,obtaiµ 

(16) 

_ (~~AW',} [ ~{i)y(D2-k2)DwF-k2pv(D2r~t)w]+( 1 tk~~ )[P(pvl),w)· · 
', 

3. Two Uniform_ Superposed Viscoel•i4? f'.ht.ids Sepa.J'~ 
by a Horizonial Boundary 

we :next ·consjder .the case wh.ei;i two $upei'.posecl vi£coeiastie fluids , ' 

of uniform densities Pl and ?2 and uniform viscosities µ 1 and µ2 aTe 

separated by a horizontal boundary at z=O. The subscripts I and 2 

di'Stinguish the lower and the upper fluids respeetively. Then, in each 

region of constant fl- and constant p., Fq. (14) becomes 

where 

~ 

(k. H.+k, H,)'} j 
Since w must vanish both when g ~ - oo (in the lower fluid) and 

z __,,. + oo (in the upper fluid) we can write the solutions, appropriate 

to the two ,region!>' as 

(19) Wt - A1 e+l'' i- Bi e"~1• (z<O) 
' 

(20) W2 - A2 e"'"l:z + B2 e-Q2• (;:>0) J 
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l \\\, ·' } 
and 

.·:' 1 .. 
4n:n2p2 

•

1

It may be,l)ltlded :that_'in :writing -the .shldi:i~ns \ (:19)' and · (20) it 
is assu~ed that q1 and q2 are so defined that their real parts are positive. 

·· The solutions ( i 9) and (20) must satisfy certain boundary conditions, 

These: conditions ·(· Ghan:drasekher [2], p•: 432) require· that at an 

interface .. . ·._ ·/. 

•i I 

(23) w, 
.·'··' ,! 

(24) Du:, 
'; .'·'. 

and 

must belc~ntin,.µous'. .. 
• 1) - . .. 

Lte,srating Eq. 

condition ... 
~- ""'•' ,: );., ~i~~ ·~ .. ;-:!: . 

t' ' •I ':. 

( 16) across the interface z = 0 we obtain lnother 

i . 

• . t • ' -~ 

. .• ~ ~ ,i . • - •. , ~: . ' ' . ,\ : 1 

(26) CJ~ ;\n)[ p~Dw2- r1Dw1 Jz=0-(1 +Acn) [µ: (D2'-ok2~Dw2 . 

~; · ..... 



where w0 and (Dw)o are the common values of WJ_, w2 , and Ow1 , 

Dw2 , respectively at z=O 

5, Dispel"sion Relation and Discussion 

Applying the conditions (23)-(26) to the solutions (19) and 

(201, we obtain 

(29) µi[2k2A 1+ (qi +k2)B 1 ]=µ2 [ 2k2A2+ (q~ +k2)B2 J 
' ' 

Elirp.inating the constants A1 , 11Ji , A2 , B2 from (127) - (30), 

we obtain 



iO J 

I 

k 

(31) I 
{ 
l 

-1 

k 

-2k21'-2 

where we hflve written 

(32) Ott> 2 

' '" 

_J!.1-µ.~ 

P1+P2 

[ R ' 2 (l,,\n) 

-c-l 

[
-R .. ,.__(J _L,\~\/ 
2 ' I 

I I . . 

Here k i<; the wave vector and v A is 'Alfuen velocity ve~to,·. , ' 
Evaluating the determi:1ant (31 ), we ·obtain the fo!lm.ving 

chanctccistic equation : 
' ',: ' '.\ 
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(33) (91 -k) (2k'( am - .,,,) [ (1 +A•) f •2+ (k. :,A)' } 

+ (t+i\on>{ '~ ,lq2-k)+ a~;: } J+ [ i;2 

+ '\,v,)2 }+(IHo•) {-~ (11-k) + ";,;!.: }]) 

·+ (I +,\011) {. al'ii_ -_!!_(q1-k) }]1\=o .. 
nk1 k ) . 

Since the values of q1 and q2 involve square roots, the dispersion 

relation (33) is quite complex. We, therefore; cacry o~t the stability 
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analysis for large medium permeability and hig·hly viscous fluids. For, 

then we can write 

(k4) ) .. { I+ (k.,H,,+k:"H11)2fli 
4r;on2 - . 

.. k [1+ 
so that 

(36) q1~k =2k~1 
and 

(36) 1 
q2-k =2kk~ 

..L n 
'Zkv.1 

( 

+ ~_r:__( 
2kv2 • 

I ... h 

1 +-.\n J,ft+ (k.VA.)i!} 
1 +-.\on oi: 1n2 

1 +.\n ){ J+ 
I -1- .\on 

(kVA )2 } 

·oc2n2 .· 

Substituting the values of q1-k and q2-k from Eqs. (35) and (36) m 

Eq. (33) and.putting vi=v2='1 (the dase·ofequal kinematic viscosities, 

for mathematical simplicity, as in Chandrasekhar [2] , as any of the 

essential features of the problem wotild not be ohscured by this 

simplifying assumption)' 

we obtain the following dispe1·sion relation 

where 

As = 2·1a1oi:~12>.o.\2(2+k2k1) +a1a2k12A2(v/d-3k1), 

A7 a 1(1.2kiv2.\,\o2( J +4k2k1) + 2 oi:1ix2<ik1/1(2i\:\o + ,\2) (2 t k~J.1) 



(3~)A6 =:=«1ix2v2k1(1 + lk2k1) · ( 2,\.\o+.\o2) + «1«2v3.\o2(.\ +2k2k1.\o) 

-2va1a:2k12.\o.\2M+2ri1012vk12(2+k2k1) (2,\+.\s) 

+2oc1a:~kiv2(2,\,\0 +,\2) + vk12,\0,\2(k. V A)2G -3a:1a:2k13,\2L 

+a1a:2k12(k1 +3v.\} + 3,\2k13(k.VA)2 + vk12,\3 (k.VA)2, 

A5 = 6a1a:2k1k2v3.\o2+.\,\o2N +ix1 (}.2v3( 2A::\o+.\o2)-2ix1a:2vk1
2( 2,\Ao+.\2}M 

+2ix1ix2vk1
2(2 + k2k1) +2ix1ix2v2k1(2,\ +.\o) 

+vk12(2,\.\o+.\2) (k.V A)2G+v2,\0,\2k1(k. V A)2-3ix1ix2k13,\L 

+a1a2vk12-k13,\3(k.VA)2{ L-(k. VA)2}+3k12,\(k.V:A)2[k1 +v.\}, 

A4 = a11X2k1v2(1 +4k2k1 )+6ix1ix2k2k1v3.\o+ (2i\.\o+.\o2)N 

+ ix1ix2v3{ 2,\--J-,\o)-2a1ix2vk1
2(2,\+.\o)M +2a1a2k1v2 

- vkk12g,\0,\2(a2-a1) (k.VA)2+vk12(k. VA)2(2,\+.\o) G 

+ v2k1(k.V A)2(2,\,\0 +,\2)-a1a2k13L t;-2vk12,\0 ,\2(k.VA)4(1 +k2k1) 

3k13,\2(k.VA)2{L-(k.VA)2} +k12(k. VA)2{k1 +3v,\+v,\3(k.V,i)2}, 

As 2a1ix2v3k1k2+ (2.\o+.\)N +ix1a:2v3-2a1a2vk12M 

- gkvk12(k.V A)2( 2.\.\o +.\2)(ix2-ix1) +vk12(k. V A)2G+v2k1(k. VA)2(2,\+.\o) 

+2vk12(k.VA)4(J +k2k1) (2.\.\o+.\2)-3,\k13(k.V A)2{L-(k.VA)2} 

+2k12(k.VA)2{J +3,\2(k VA)2}-k13,\3(k.VA)4L, 

A2 = N-gkvk12(k.VA)!(a2-ix1)(2,\+..\oH·v2k1(k.VA)2 

+2vk12(k.VA)4(2,\ +.\o)(J +k2k1}-k13(k.VA)2{ L-(k.V A)2} 

+3,\vk12(k.VA)4-3k13,\2\k. VA)4L, 



and we· have written 

When a1> a2 (potentially stable arranaement) we find,. by applying 

Hurwitz' criterion to Eq. (37), that (as all the coefficients in (37) are 

then positive) all the' roots n are either real and negative or there are 

complex roots,with. negative real parts. The system is. therefore stable 

in each case. Hence the potentially stable configuration remains stable 

whether the effects df' visc0sity; viscoelasticity; porosity and magnetic 

field are included or not. 
!''' 

For the potentially unstable arrangement a 2 > a 1, the system 

is unstable in the hydrodynamic case for all wave nu~bers k in the . 

pr~senc,e·of.yiscosity- effects and in the absence of porosity.and y~scodast1c 

effects ( Chandrasekhar [2] ). Also the system, tn the present case, is 

unstable if 

In the present hydr~mag~eti~ case we find, b; appylyii1g, Hurvvit~; 
criterion to Eq. (37)! when.a2 :> a1 ' .that .the system is stable for all 

wave numbers which sati~fy the inequality 



i. e. 

where V 1 ·arid V2 are the Alfveh velocitieS'in x and y·directi1".ms and 0 is 

the angle between k and Ha.. 

The stability criterion (4l)is independent of the effec_ts\of'visoosity, 

viscoelasticity and medium porosity. The magnetfo: fie1d stabilizes a 

certain wave number range k > k*, where k*=g (a2-a1)) 2'(V1 Cos0 

+ V2 Sin8)2 ,, ofthe unstable configurati!Jn evel). in the presence of. the 

effects of viscosity, medium porosity and viscoelasticity'. The _critical 

wave number k*, above which the system is stabilized, ,is dependent on 

the magnitudes V1 and V2 of the magnetic field as well as the orientation 

of the ma.gnetic field 8. 

'We now examine the behaviour of growth rates with respect to 

medium permeability analytically. Since for a2 > a1 and g k(a2-a1 i 

> 2 (k.VA)2, Eq. (37) has one positive root, let no denotes the positive 

root. Then Eq. (37) holds true for no, substituted in place ofn . To 

study the behaviour of growth rates with respect to medium permeability, 

we examine the nctture of dnofdk1 fr·Jm this resulting equation in n0• It is 

evident from the form of Eq. (37) that dno/dk1 mav be both positive or 

negative. Thus the growth rates both increase or decrease with the 

increase in medium permeability. A similar argument holds good for 

growth rates with respect to viscosity, stress relaxation and strain 

retardation time parameters i. e the growth rates both increase or 

decrease with the increase in stress relaxation and strain retardation 

time par<.lmetcrs (Sharma [5J ) and with the increase in kinematic 

viscosity (Sharma and Thakur [6] ). 
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