ON SUMMATION OF LAGUERRE SERIES BY RIESZ LOGARITHMIC MEANS

By

R. K. BEOHAR & B. L. JADIYA

Department of Mathematics, Madhava Vigyan Mahavidyalaya,
Ujjain - 456010, M. P., India

(Received: October 28, 1977)

In the present paper we prove the strong logarithmic summability of Laguerre series at the point \(x=0 \).

1. Introduction

A series \(\sum_{n=0}^{\infty} a_n \) with its partial sum \(S_\nu \) is said to be summable by Riesz logarithmic means or strongly summable by logarithmic means with index one denoted as \((R, \log n, 1) \) summable to \(S \) if

\[
\frac{1}{\log n} \sum_{\nu=0}^{n} \frac{|S_\nu - S|}{\nu + 1} = o(1), \quad \text{as } n \to \infty.
\]

The Laguerre series associated with a Lebesgue measurable function \(f(x) \) in the interval \([0, \infty) \) is given by

\[
f(x) = \sum_{n=0}^{\infty} a_n L_n^{(\alpha)}(x), \quad \alpha > -1
\]

where

\[
a_n = \frac{\Gamma(\alpha + 1)}{\Gamma(n + \alpha)} \left(\frac{n + \alpha}{n} \right)^{-1} \int_{0}^{\infty} e^{-y} y^\alpha f(y) L_n^{(\alpha)}(y) \, dy
\]

and \(L_n^{(\alpha)}(x) \) are Laguerre polynomials of order \(\alpha > -1 \), defined by the generating function

\[
(1) (1-w)^{\alpha} \exp \left(\frac{-xw}{1-w} \right) = \sum_{n=0}^{\infty} w^n L_n^{(\alpha)}(x); \quad |w| < 1.
\]
existence of the integral (1.2) is being assumed.

We write throughout the paper

\begin{equation}
\phi(y) = \{\Gamma(a+1)\}^{-1} e^{-y} y^a [f(y)-A], A \text{ is constant.}
\end{equation}

Cesaro summability of (1.1) has been studied by Szego [2, p. 245] and Pandey [1]. The following theorem is due to Pandey [1]:

THEOREM A. If \(a > -1, \beta > 0 \),

\begin{equation}
\Phi(t) \equiv \int_0^t |\phi(y)| \, dy = o \left(t^{a+1} \right), \text{ as } t \to 0,
\end{equation}

\begin{equation}
\int_{3n}^{3n+1} e^{-y/2} y^{-a-\beta/2-1} |\phi(y)| \, dy = o \left(n^{\beta/2} \right)
\end{equation}

and

\begin{equation}
\int_{3n}^{3n+1} e^{-y/2} y^{-a-\beta-5/6} \, dy = o \left(\log n \right), \text{ as } n \to \infty.
\end{equation}

then the series (1.1) is summable \((C, a+\beta+\frac{1}{2})\) at \(x=0 \), to the sum \(S \).

2. The object of the present paper is to study the series (1.1) at \(x=0 \) with respect to the Riesz logarithmic summability of order one. We establish the following

Theorem. If for \(-1 < a < -\frac{1}{2}\)

\begin{equation}
\Phi(t) \equiv \int_t^w \frac{|\phi(y)|}{y^{a/2+3/4}} \, dy = o \left(\log \frac{1}{t} \right), \text{ as } t \to 0
\end{equation}

\begin{equation}
\int_n^{n+1} e^{y/2} y^{-a/2-3/4} \, dy = o \left(\log n \right)
\end{equation}

and

\begin{equation}
\int_n^{n+1} e^{y/2} y^{-1/3} \, dy = o \left(\log n \right), \text{ as } n \to \infty
\end{equation}
then the series (1.1) is summable \((R, \log n, 1)\) to the sum \(S\), at \(x = 0\).

3. To prove our theorem we need the following lemmas.

Lemma 1. [2, p. 175]. If \(a\) be arbitrary and real, \(c\) and \(w\) are fixed positive constants, \(n \to \infty\), then

\[
L_n^{(a)}(x) = \begin{cases}
2^{a/2-1/4} O\left(n^{a/2-1/4}\right); c/n \leq x \leq w, \\
O\left(n^a\right); 0 \leq x \leq c/n.
\end{cases}
\]

Lemma 2. [2, p. 239]. If \(\alpha\) and \(\lambda\) be arbitrary and real, \(\lambda > 0, 0 < \eta < 4\), then for \(n \to \infty\), we have

\[
\max \ e^{-x/2} x^\lambda | L_n^{(a)}(x) | \sim n^Q
\]

where

\[
Q = \begin{cases}
\max \{-(\lambda-1/2), (\alpha/2-1/4); w \leq x \leq (4-\eta)n, \\
\max \{-(\lambda-1/3), (\alpha/2-1/4); x \geq w.\}
\end{cases}
\]

4. **Proof of the Theorem.** we have [2, p. 269],

\[
S_\nu(0) = \sum_{m=0}^{\nu} a_m L_m^{(a)}(0) = \{\Gamma(\alpha+1)\}^{-1} \sum_{m=0}^{\nu} e^{-y} y^\alpha \int_{\mathbb{R}} L_m^{(a)}(y) dy
\]

\[
= \{\Gamma(\alpha+1)\}^{-1} \int_{0}^{\infty} e^{-y} y^\alpha \left[f(y) - S \right] L_v^{(\alpha+1)}(y) dy.
\]

By using orthogonal property of Laguerre polynomials we obtain

\[
S_\nu(0) - S = \{\Gamma(\alpha+1)\}^{-1} \int_{0}^{\infty} e^{-y} y^\alpha \left[f(y) - S \right] L_v^{(\alpha+1)}(y) dy
\]

\[
= \int_{0}^{\infty} \phi(y) L_v^{(\alpha+1)}(y) dy
\]

Therefore
\[
\frac{1}{\log n} \sum_{\nu = 0}^{n} \frac{|S_\nu \rightarrow S_\nu|}{\nu + 1} = \frac{1}{\log n} \int_0^\infty \phi(y) \sum_{\nu = 0}^{m} \frac{L_\nu^{(a+1)}(y)}{\nu + 1} \, dy
\]

\[
= \int_0^{c/n} + \int_{c/n}^w + \int_{n}^w + \int_n^\infty
\]

(4.1) \quad = I_1 + I_2 + I_3 + I_4, \text{ say.}

Using second condition of lemma 1, we have

\[
I_1 = O \left(\frac{1}{\log n} \right) \int_0^{c/n} |\phi(y)| \left\{ \sum_{\nu = 0}^{n} \frac{\nu \alpha + 1}{\nu + 1} \right\} \, dy
\]

\[
= O \left(\frac{n^{\alpha + 1}}{\log n} \right) \phi(y) \left(n^{-a/2 - 3/4} \log n \right) \quad \text{[by (1.2)]}
\]

(4.2) \quad = o(1), \text{ as } n \to \infty.

Next using the first condition of Lemma 1, we have

\[
I_2 = O \left(\frac{1}{\log n} \right) \int_{c/n}^w |\phi(y)| y^{-a/2 - 3/4} \left\{ \sum_{\nu = 0}^{n} \frac{\nu \alpha/2 + 1/4}{\nu + 1} \right\} \, dy
\]

\[
= O \left(\frac{1}{\log n} \right) \left[\int_{c/n}^w \frac{|\phi(y)|}{y^{a/2 + 3/4}} \, dy \right] \quad \text{[by (2.1)]}
\]

(4.3) \quad = o(1), \text{ as } n \to \infty.

Now
Using the first condition of Lemma 2, we have

$$I_3 = \mathcal{O}\left(\frac{1}{\log n} \right) \int^n e^{y/2} y^{-\alpha/2-3/4} |\phi(y)| dy$$

$$= \mathcal{O}\left(\frac{1}{\log n} \right) \mathcal{O}(1) \cdot o\left(\log n \right)$$

(by 2.2)

(4.4) $= o(1)$, as $n \to \infty$.

Finally

$$I_4 = \mathcal{O}\left(\frac{1}{\log n} \right) \int^n e^{y/2} y^{-\alpha/2-5/6} |\phi(y)| dy$$

$$= \mathcal{O}\left(\frac{1}{\log n} \right) \mathcal{O}(1) \cdot o\left(\log n \right)$$

(by 2.3)

(4.5) $= o(1)$, as $n \to \infty$.

Thus collecting the results (4.1) to (4.5), we see that
\[
\frac{1}{\log n} \sum_{v=0}^{n} \frac{|S_v - S|}{v+1} = o(1), \text{ as } n \to \infty.
\]

Hence the Theorem is proved.

ACKNOWLEDGMENT

We are thankful to Dr. G. S. Pandey for the valuable guidance during the preparation of this paper. Our thanks are also due to Professor H. M. Srivastava for his valuable suggestions.

REFERENCES
