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Abstract

In this paper, we establish sufficient Karush-Kuhn-Tucker (KKT) conditions for a parametric set-valued
optimization problem under contingent epiderivative and generalized cone convexity assumptions. We also study
duality results of Mond-Weir, Wolfe, and mixed types for weak solutions of a pair of set-valued optimization
problems.
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1 Introduction
Parametric optimization problem is a special class of optimization problems. It is mainly studied in various fields
of mathematics, operational research, and economics. Optimization problems with parameters for single-valued case
were studied by various authors like Ioffe [16], Khanh [18, 19, 20], Khanh and Nuong [23, 24], and Nuong [25]. This
class of optimization problems has applications in deriving the Pontryagin maximum principle for control problems
with state constraints. Khanh and Luu [21, 22] studied this type of problems in set-valued case. They established
the necessary optimality conditions of Fritz John and Kuhn-Tucker types under relaxed differentiability assumptions
on the state variable and convexlikeness assumptions on the parameter. Parametric set-valued optimization problem
arises in many situations where optimization problems involve set-valued maps and the equality constraint represents
equations, like differential equations, and initial conditions. The case where the differential inclusions replace the
differential equations to describe the system under consideration can also be considered as parametric set-valued
optimization problem.

In this paper, a parametric set-valued optimization problem (PP) is considered, where the objective function and
functions attached to constraints are set-valued maps. The sufficient KKT conditions are established for the problem
(PP) via contingent epiderivative and generalized cone convexity assumptions. Finally, different types of duality are
formulated and the relationships between the primal problem (PP) and the corresponding dual problems are studied.

This paper is organized as follows. Section 2 deals with some definitions and preliminary concepts of set-valued
maps. In Section 3, a parametric set-valued optimization problem (PP) is considered and the sufficient KKT conditions
are established for the problem (PP). Various types of duality theorems are studied under contingent epiderivative and
generalized cone convexity assumptions.

2 Definition and preliminaries
Let Y be a real normed space and K be a nonempty subset of Y . Then K is said to be a cone if λy ∈ K, for all y ∈ K
and λ ≥ 0. Further, K is called pointed if K ∩ (−K) = {θY }, solid if int(K) , ∅, closed if K = K and convex if
λK + (1 − λ)K ⊆ K, for all λ ∈ [0, 1], where int(K) and K denote the interior and closure of K, respectively and θY is
the zero element of Y .

Let us define the non-negative orthant Rm
+ of the m-dimensional Euclidean space Rm by

Rm
+ = {y = (y1, ..., ym) ∈ Rm : yi ≥ 0,∀i = 1, 2, ...,m}.

Then Rm
+ is a solid pointed closed convex cone and int(Rm

+ )∪{0Rm } is a solid pointed convex cone in Rm, where 0Rm

is the zero element of Rm.
Let Y∗ be the space of all continuous linear functionals on Y and K be a solid pointed convex cone in Y . Then the

dual cone K+ to K and quasi-interior K+i of K+ are defined as

K+ = {y∗ ∈ Y∗ : 〈y∗, y〉 ≥ 0,∀y ∈ K}

and

K+i = {y∗ ∈ Y∗ : 〈y∗, y〉 > 0,∀y ∈ K \ {θY }},
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where 〈., .〉 is the canonical bilinear form with respect to the duality between Y∗ and Y .
Let B be a nonempty subset of a real normed space Y and y∗ ∈ Y∗. Define a subset 〈y∗, B〉 of R by
〈y∗, B〉 = ∪y∈B{〈y∗, y〉}.

For any two nonempty subsets B, B′ of Y and y∗ ∈ Y∗, we also use the following notations
〈y∗, B〉 ≥ 0(or, 0 ≤ 〈y∗, B〉)⇔ 〈y∗, b〉 ≥ 0, ∀b ∈ B

and
〈y∗, B〉 ≥ 〈y∗, B′〉(or, 〈y∗, B′〉 ≤ 〈y∗, B〉)⇔ 〈y∗, b〉 ≥ 〈y∗, b′〉,∀b ∈ B and ∀b′ ∈ B′.

Let K be a solid pointed convex cone in Y . There are two types of cone-orderings in Y with respect to K. For any
two elements y1, y2 ∈ Y , we have

y1 ≤ y2 ⇔ y2 − y1 ∈ K
and

y1 < y2 ⇔ y2 − y1 ∈ int(K).
We say y2 ≥ y1, if y1 ≤ y2 and y2 > y1, if y1 < y2. For any two nonempty subsets B, B′ of Y , we use the following

notations:
B ≤ θY ⇔ y ≤ θY ,∀y ∈ B,
B < θY ⇔ y < θY ,∀y ∈ B,

B ≤ B′ ⇔ y ≤ y′,∀y ∈ B and ∀y′ ∈ B′,

and
B < B′ ⇔ y < y′,∀y ∈ B and ∀y′ ∈ B′.

The following notions of minimality are mainly used in a real normed space Y with respect to a solid pointed
convex cone K of Y .

Definition 2.1 Let B be a nonempty subset of Y. Then minimal and weakly minimal points of B are defined as

(i) y′ ∈ B is a minimal point of B if there is no y ∈ B \ {y′} such that y ≤ y′.
(ii) y′ ∈ B is a weakly minimal point of B if there is no y ∈ B such that y < y′.

The sets of minimal points and weakly minimal points of B are denoted by min(B) and w-min(B), respectively and
characterized as

min(B) = {y′ ∈ B : (y′ − K) ∩ B = {y′}}
and

w-min(B) = {y′ ∈ B : (y′ − int(K) ∩ B = ∅}.

Similarly, the sets of maximal points and weak maximal points of B can be defined.
Let X and Y be real normed spaces, 2Y be the set of all subsets of Y and K be a solid pointed convex cone in Y . Let

F : X → 2Y be a set-valued map from X to Y i.e., F(x) ⊆ Y , for all x ∈ X. The effective domain, graph and epigraph
of F are defined by

dom(F) = {x ∈ X : F(x) , ∅},
F(A) = ∪x∈AF(x), for any A(, ∅) ⊆ X,

gr(F) = {(x, y) ∈ X × Y : y ∈ F(x)},

and
epi(F) = {(x, y) ∈ X × Y : y ∈ F(x) + K}.

We recall the notion of contingent cone in a real normed space.

Definition 2.2 [1, 2] Let Y be a real normed space, ∅ , B ⊆ Y, and y′ ∈ B. The contingent cone to B at y′ is denoted
by T (B, y′) and is defined as follows

An element y ∈ T (B, y′) if there exist sequences {λn} in R, with λn → 0+ and {yn} in Y, with yn → y, such that
y′ + λnyn ∈ B,∀n ∈ N,

or, there exist sequences {tn} in R, with tn > 0 and {y′n} in B, with y′n → y′, such that
tn(y′n − y′)→ y.
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Let F : X → 2Y be a set-valued map, with dom(F) = X, x′ ∈ X, and y′ ∈ F(x′). Jahn and Rauh [17] introduced
the notion of contingent epiderivative of set-valued maps which plays a vital role in various aspects of set-valued
optimization problems.

Definition 2.3 [17] A single-valued map D↑F(x′, y′) : X → Y whose epigraph coincides with the contingent cone to
the epigraph of F at (x′, y′), i.e.

epi(D↑F(x′, y′)) = T (epi(F), (x′, y′)),
is said to be the contingent epiderivative of F at (x′, y′).

Proposition 2.1 When f : X → R is a real-valued map, being continuous at x0 ∈ X and convex,
D↑ f (x0, f (x0))(u) = f ′(x0)(u),∀u ∈ X,

where f ′(x0)(u) is the directional derivative of f at x0 in the direction u.

Borwein [3] introduced the notion of cone convexity of set-valued maps.

Definition 2.4 [3] Let A be a nonempty convex subset of X. A set-valued map F : X → 2Y , with A ⊆ dom(F), is called
K-convex on A if ∀x1, x2 ∈ A and λ ∈ [0, 1],

λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + K.

It is clear that if the set-valued map F : X → 2Y is K-convex on A, then epi(F) is a convex subset of X × Y .
A cone convex set-valued map cab be characterized in terms of contingent epiderivative of set-valued maps.

Lemma 2.1 [17] If F : X → 2Y is K-convex on a nonempty convex subset A of X, then ∀x, x′ ∈ A and y′ ∈ F(x′),
F(x) − y′ ⊆ D↑F(x′, y′)(x − x′) + K.

3 Main results
Das and Nahak [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] introduced the notion of ρ-cone convex set-valued maps.
They establish the sufficient KKT conditions and study the duality results for various types of set-valued optimization
problems under contingent epiderivative and ρ-cone convexity assumptions. For ρ = 0, we have the usual notion of
cone convexity of set-valued maps introduced by Borwein [3].

Definition 3.1 [4, 7] Let X,Y be real normed spaces, A be a nonempty convex subset of X, K be a solid pointed convex
cone in Y, e ∈ int(K), and F : X → 2Y be a set-valued map, with A ⊆ dom(F). Then F is said to be ρ-K-convex with
respect to e on A if there exists ρ ∈ R such that

λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + ρλ(1 − λ)‖x1 − x2‖
2e + K,∀x1, x2 ∈ A and ∀λ ∈ [0, 1].

Das and Nahak [7] constructed an example of ρ-cone convex set-valued map, which is not cone convex. They also
characterized ρ-cone convex set-valued maps in terms of contingent epiderivative of set-valued maps.

Theorem 3.1 [7] Let A be a nonempty convex subset of X, e ∈ int(K), and F : X → 2Y be ρ-K-convex with respect to e
on A. Let x′ ∈ A and y′ ∈ F(x′). Then,

F(x) − y′ ⊆ D↑F(x′, y′)(x − x′) + ρ‖x − x′‖2e + K,∀x ∈ A.

Remark 3.1 If ρ > 0, then F is said to be strongly ρ-K-convex, if ρ = 0, we have the usual notion of K-convexity, and
if ρ < 0, then F is said to be weakly ρ-K-convex.
Obviously, strongly ρ-K-convexity⇒ K-convexity⇒ weakly ρ-K-convexity.

Remark 3.2 For the case of single-valued map, Definition 3.1 coincides with the existing one. Let X,Y be real normed
spaces, A be a nonempty convex subset of X, K be a solid pointed convex cone in Y, x′ ∈ X, and e ∈ int(K). Let
f : X → Y be continuously differentiable function and convex. By considering F(x) = { f (x)}, from Definition 3.1 and
Proposition 2.1, we can conclude that f is called ρ-K-convex with respect to e on A if there exists ρ ∈ R such that

f (x) − f (x′) ∈ f ′(x′)(x − x′) + ρ‖x − x′‖2e + K,∀x ∈ X.
The followings are some special cases.
When Y = Rm, K = Rm

+ , f = ( f1, f2, ..., fm), and e = (1, 1, ..., 1), we have
fi(x) − fi(x′) ≥ f ′i (x′)(x − x′) + ρ‖x − x′‖2,∀x ∈ X and i = 1, 2, ...,m.

When Y = R, K = R+, and e = 1, we have
f (x) − f (x′) ≥ f ′(x′)(x − x′) + ρ‖x − x′‖2,∀x ∈ X.

When X = Rn, Y = R, K = R+, and e = 1, we have
f (x) − f (x′) ≥ (x − x′)T∇ f (x′) + ρ‖x − x′)‖2,∀x ∈ X,

where ∇ f (x′) is the gradient of f at x′.

3



Let X, Y , Z, and W be real normed spaces and K, L, and M be solid pointed convex cones in Y , Z, and W,
respectively. Let U be an arbitrary set and A be a nonempty subset of X. Suppose that F : X×U → 2Y , G : X×U → 2Z

are set-valued maps and p : X × U → W is a single-valued map with

A × U ⊆ dom(F) ∩ dom(G).

We consider a parametric set-valued optimization problem (PP).

minimize
(x,u) ∈ A×U

F(x, u)

subject to G(x, u) ∩ (−L) , ∅(PP)
p(x, u) = 0,

where x is the state variable and u is the parameter.
The feasible set S of the problem (PP) is defined by

S = {(x, u) ∈ A × U : G(x, u) ∩ (−L) , ∅ and p(x, u) = 0}.

The minimizer and weak minimizer of the problem (PP) are defined in the following ways.

Definition 3.2 A point (x′, u′, y′) ∈ X ×U × Y, with (x′, u′) ∈ S and y′ ∈ F(x′, u′), is called a minimizer of the problem
(PP) if there exists no point (x, u, y) ∈ X × U × Y, with (x, u) ∈ S and y ∈ F(x, u), such that

y − y′ ∈ −K \ {θY }.

Definition 3.3 A point (x′, u′, y′) ∈ X × U × Y, with (x′, u′) ∈ S and y′ ∈ F(x′, u′), is called a weak minimizer of the
problem (PP) if there exists no point (x, u, y) ∈ X × U × Y, with (x, u) ∈ S and y ∈ F(x, u), such that

y − y′ ∈ −int(K).

3.1 Sufficient optimality conditions
Let (x, u), (x′, u), (x, u′), (x′, u′) ∈ X ×U, y′ ∈ F(x′, u′), and z′ ∈ G(x′, u′). Throughout the paper, we use the following
assumptions.

(3.1) F(x, u) − F(x′, u) ⊆ K,

(3.2) G(x, u) −G(x′, u) ⊆ L,

(3.3) F(x, u′) − y′ ⊆ −K,

(3.4) G(x, u′) − z′ ⊆ −L,

and

(3.5) p(x, u′) + p(x′, u) ∈ −M.

We now prove the following Lemma 3.1 which is required in establishing the sufficient KKT conditions of the
parametric set-valued optimization problem (PP).

Lemma 3.1 Let A be a nonempty convex subset of X and (x′, u′) ∈ X × U, with y′ ∈ F(x′, u′), z′ ∈ G(x′, u′), and
p(x′, u′) ≥ 0. Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M). Suppose that F(., u′) : X → 2Y is ρ1-K-convex with respect
to e, G(., u′) : X → 2Z is ρ2-L-convex with respect to e′, and p(., u′) : X → W is ρ3-M-convex with respect to e′′, on
A. Assume that the contingent epiderivatives D↑F(., u′)(x′, y′) and D↑G(., u′)(x′, z′) exist and the Gâteaux derivative
p′(., u′)(x′) exists. If Eqs. (3.1) - (3.5) are satisfied, then we have

(3.6) 〈y∗, F(x, u) − y′〉 + 〈z∗,G(x, u) − z′〉

≥ 〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉

+‖x − x′‖2(ρ1〈y∗, e〉 + ρ2〈z∗, e′〉 + ρ3〈w∗, e′′〉),∀(x, u) ∈ A × U.
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Proof. Let (x, u) ∈ A × U. As F(., u′) : X → 2Y is ρ1-K-convex with respect to e on A and y′ ∈ F(x′, u′), we have

(3.7) F(x, u′) − y′ ⊆ D↑F(., u′)(x′, y′)(x − x′) + ρ1‖x − x′‖2e + K.

As G(., u′) : X → 2Z is ρ2-L-convex with respect to e′ on A and z′ ∈ G(x′, u′), we have

(3.8) G(x, u′) − z′ ⊆ D↑G(., u′)(x′, z′)(x − x′) + ρ2‖x − x′‖2e′ + L.

Again, as p(., u′) : X → W is ρ3-M-convex with respect to e′′ on A, we have

(3.9) p(x, u′) − p(x′, u′) ∈ p′(., u′)(x′)(x − x′) + ρ3‖x − x′‖2e′′ + M.

Hence, from Eqs. (3.7) - (3.9), we have

〈y∗, F(x, u′) − y′ + F(x′, u) − y′〉 + 〈z∗,G(x, u′) − z′ + G(x′, u) − z′〉

+ 〈w∗, p(x, u′) − p(x′, u′) + p(x′, u)〉
≥

〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+ 〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+ 〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉

+ ‖x − x′‖2(ρ1〈y∗, e〉 + ρ2〈z∗, e′〉 + ρ3〈w∗, e′′〉).

By Eqs. (3.1) - (3.5), we have

〈y∗, F(x, u) − y′〉 ≥ 〈y∗, F(x′, u) − y′〉,

〈z∗,G(x, u) − z′〉 ≥ 〈z∗,G(x′, u) − z′〉,

〈y∗, F(x, u′) − y′〉 ≤ 0,

〈z∗,G(x, u′) − z′〉 ≤ 0,

and

〈w∗, p(x, u′) + p(x′, u)〉 ≤ 0.

By assumption, we have

p(x′, u′) ≥ 0.

Therefore,
〈y∗, F(x, u) − y′〉 + 〈z∗,G(x, u) − z′〉

≥

〈y∗, F(x, u′) − y′ + F(x′, u) − y′〉 + 〈z∗,G(x, u′) − z′ + G(x′, u) − z′〉

+ 〈w∗, p(x, u′) − p(x′, u′) + p(x′, u)〉.

Consequently,

〈y∗, F(x, u) − y′〉 + 〈z∗,G(x, u) − z′〉

≥

〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+ 〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+ 〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉

+ ‖x − x′‖2(ρ1〈y∗, e〉 + ρ2〈z∗, e′〉 + ρ3〈w∗, e′′〉).

It completes the proof of the Lemma 3.1.
The sufficient KKT conditions of the parametric set-valued optimization problem (PP) are established under

contingent epiderivative and generalized cone convexity assumptions.

Theorem 3.2 (Sufficient optimality conditions) Let A be a nonempty convex subset of X and (x′, u′) ∈ X × U, with
(x′, u′) ∈ S , y′ ∈ F(x′, u′), z′ ∈ G(x′, u′) ∩ (−L), and p(x′, u′) ≥ 0. Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M).
Suppose that F(., u′) : X → 2Y is ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with respect
to e′, and p(., u′) : X → W is ρ3-M-convex with respect to e′′, on A. Assume that the contingent epiderivatives
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D↑F(., u′)(x′, y′) and D↑G(., u′)(x′, z′) exist and the Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions
of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗) for some (y∗, z∗,w∗) ∈ K+ × L+ × M+, with y∗ , θY∗ and

(3.10) ρ1〈y∗, e〉 + ρ2〈z∗, e′〉 + ρ3〈w∗, e′′〉 ≥ 0,

such that

(3.11) 〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉

≥ 0,∀(x, u) ∈ A × U

and

(3.12) 〈z∗, z′〉 = 0,

then (x′, u′, y′) is a weak minimizer of the problem (PP).

Proof. Suppose that (x′, u′, y′) is not a weak minimizer of the problem (PP).
Then there exist (x, u) ∈ S and y ∈ F(x, u) such that

y < y′.

As y∗ ∈ K+ \ {θY∗ },

〈y∗, y − y′〉 < 0.

As (x, u) ∈ S , there exists

z ∈ G(x, u) ∩ (−L).

So,

〈z∗, z〉 ≤ 0, as z∗ ∈ L+.

Since 〈z∗, z′〉 = 0, we have

〈z∗, z − z′〉 = 〈z∗, z〉 ≤ 0.

Therefore,

(3.13) 〈y∗, y − y′〉 + 〈z∗, z − z′〉 < 0.

As the conditions of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗), from Eqs. (3.6), (3.10), and (3.11), we have

〈y∗, F(x, u) − y′〉 + 〈z∗,G(x, u) − z′〉 ≥ 0.

Hence,

〈y∗, y − y′〉 + 〈z∗, z − z′〉 ≥ 0,

which contradicts (3.13).
Consequently, (x′, u′, y′) is a weak minimizer of the problem (PP).

3.2 Mond-Weir type dual
We consider a Mond-Weir type dual (MWD), where F(., u′) and G(., u′) are contingent epiderivable set-valued maps
and p(., u′) is a Gâteaux derivable single-valued map, where u′ ∈ U.

maximize y′,

subject to,
〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+ 〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+ 〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉 ≥ 0,∀(x, u) ∈ A × U,
(MWD)

〈z∗, z′〉 ≥ 0,
x′ ∈ A, u′ ∈ U, y′ ∈ F(x′, u′), z′ ∈ G(x′, u′), p(x′, u′) ≥ 0,
(y∗, z∗,w∗) ∈ K+ × L+ × M+, and 〈y∗, e〉 = 1.
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Definition 3.4 A point (x′, u′, y′, z′, y∗, z∗,w∗) satisfying all the constraints of the problem (MWD) is called a feasible
point of (MWD).

Definition 3.5 A feasible point (x′, u′, y′, z′, y∗, z∗,w∗) of the problem (MWD) is called a weak maximizer of the problem
(MWD) if there exists no feasible point (x, u, y, z, y∗1, z

∗
1,w

∗
1) of (MWD) such that

y − y′ ∈ int(K).

Theorem 3.3 (Weak duality) Let A be a nonempty convex subset of X, (x0, u0) ∈ S , (x′, u′, y′, z′, y∗, z∗,w∗) be a feasible
point of the problem (MWD), and p(x′, u′) ≥ 0. Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M). Suppose that
F(., u′) : X → 2Y is ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with respect to e′, and p(., u′) :
X → W is ρ3-M-convex with respect to e′′, on A. Assume that the contingent epiderivatives D↑F(., u′)(x′, y′) and
D↑G(., u′)(x′, z′) exist and the Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions of Lemma 3.1 hold
at (x′, u′, y′, z′, y∗, z∗,w∗). Assume that

(3.14) ρ1 + ρ2〈z∗, e′〉 + ρ3〈w∗, e′′〉 ≥ 0.

Then,

F(x0, u0) − y′ ⊆ Y \ −int(K).

Proof. We prove the theorem by the method of contradiction.
Suppose that for some y0 ∈ F(x0, u0),

y0 − y′ ∈ −int(K).

Therefore,

〈y∗, y0 − y′〉 < 0, as θY∗ , y∗ ∈ K+.

Again, since (x0, u0) ∈ S , we have

G(x0, u0) ∩ (−L) , ∅ and p(x0, u0) = 0.

We choose z0 ∈ G(x0, u0) ∩ (−L).
So,

〈z∗, z0〉 ≤ 0, as z∗ ∈ L+.

Again, from the constraints of (MWD), we have

〈z∗, z′〉 ≥ 0.

Therefore,

〈z∗, z0 − z′〉 = 〈z∗, z0〉 − 〈z∗, z′〉 ≤ 0.

Hence,

(3.15) 〈y∗, y0 − y′〉 + 〈z∗, z0 − z′〉 < 0.

As the conditions of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗), from Eqs. (3.6), (3.14), and the constraints of
(MWD), we have

〈y∗, F(x0, u) − y′〉 + 〈z∗,G(x0, u) − z′〉 ≥ 0.

Hence,

〈y∗, y0 − y′〉 + 〈z∗, z0 − z′〉 ≥ 0,

which contradicts (3.15).
Therefore,

F(x0, u0) − y′ ⊆ Y \ −int(K).

It completes the proof of the Theorem 3.3.

Theorem 3.4 (Strong duality) Let (x′, u′, y′) be a weak minimizer of the problem (PP) and z′ ∈ G(x′, u′)∩(−L). Assume
that for some (y∗, z∗,w∗) ∈ K+×L+×M+, with 〈y∗, e〉 = 1, Eqs. (3.11) and (3.12) are satisfied at (x′, u′, y′, z′, y∗, z∗,w∗).
Then (x′, u′, y′, z′, y∗, z∗,w∗) is a feasible solution for (MWD). If the weak duality Theorem 3.3 between (PP) and
(MWD) holds, then (x′, u′, y′, z′, y∗, z∗,w∗) is a weak maximizer of (MWD).
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Proof. As the Eqs. (3.11) and (3.12) are satisfied at (x′, u′, y′, z′, y∗, z∗,w∗),

〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+ 〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+ 〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉 ≥ 0,∀(x, u) ∈ A × U

and

〈z∗, z′〉 = 0.

As (x′, u′) ∈ S ,

p(x′, u′) = 0.

Hence, (x′, y′, z′, y∗, z∗) is a feasible solution for (MWD).
Suppose that the weak duality Theorem 3.3 between the problems (PP) and (MWD) holds and (x′, u′, y′, z′, y∗, z∗,w∗)

is not a weak maximizer of the problem (MWD).
Let (x, u, y, z, y∗1, z

∗
1,w

∗
1) be a feasible point for (MWD) such that

y′ − y ∈ −int(K).

It contradicts the weak duality Theorem 3.3 between (PP) and (MWD).
Consequently, (x′, u′, y′, z′, y∗, z∗,w∗) is a weak maximizer for (MWD).

Theorem 3.5 (Converse duality) Let A be a nonempty convex subset of X, p(x′, u′) ≥ 0, and (x′, u′, y′, z′, y∗, z∗,w∗) be
a feasible point of the problem (MWD). Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M). Suppose that F(., u′) : X → 2Y is
ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with respect to e′, and p(., u′) : X → W is ρ3-M-convex
with respect to e′′, on A. Assume that the contingent epiderivatives D↑F(., u′)(x′, y′) and D↑G(., u′)(x′, z′) exist and the
Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗) and
(3.14) is satisfied. If (x′, u′) ∈ S , then (x′, u′, y′) is a weak minimizer of (PP).

Proof. Suppose that (x′, u′, y′) is not a weak minimizer of the problem (PP). Then there exist (x, u) ∈ S and y ∈ F(x, u)
such that

y < y′.

As y∗ ∈ K+ \ {θY∗ },

〈y∗, y − y′〉 < 0.

As (x, u) ∈ S , there exists

z ∈ G(x, u) ∩ (−L).

So,

〈z∗, z〉 ≤ 0, as z∗ ∈ L+.

By the constraints of (MWD), we have

〈z∗, z′〉 ≥ 0.

Therefore,

〈z∗, z − z′〉 = 〈z∗, z〉 − 〈z∗, z′〉 ≤ 0.

Therefore,

(3.16) 〈y∗, y − y′〉 + 〈z∗, z − z′〉 < 0.

As the conditions of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗), from Eqs. (3.6), (3.14), and the constraints of
(MWD), we have

〈y∗, F(x, u) − y′〉 + 〈z∗,G(x, u) − z′〉 ≥ 0.

Hence,

〈y∗, y − y′〉 + 〈z∗, z − z′〉 ≥ 0,

which contradicts (3.16).
Consequently, (x′, u′, y′) is a weak minimizer of the problem (PP).
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3.3 Wolfe type dual
We consider a Wolfe type dual (WD), where F(., u′) and G(., u′) are contingent epiderivable set-valued maps and
p(., u′) is a Gâteaux derivable single-valued map, where u′ ∈ U.

maximize y′ + 〈z∗, z′〉e,
subject to,

(WD) 〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+ 〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+ 〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉 ≥ 0,∀(x, u) ∈ A × U,

x′ ∈ A, u′ ∈ U, y′ ∈ F(x′, u′), z′ ∈ G(x′, u′), p(x′, u′) ≥ 0,
(y∗, z∗,w∗) ∈ K+ × L+ × M+, and 〈y∗, e〉 = 1.

Definition 3.6 A point (x′, u′, y′, z′, y∗, z∗,w∗) satisfying all the constraints of (WD) is called a feasible point of the
problem (WD).

Definition 3.7 A feasible point (x′, u′, y′, z′, y∗, z∗,w∗) of the problem (WD) is called a weak maximizer of (WD) if
there exists no feasible point (x, u, y, z, y∗1, z

∗
1,w

∗
1) of (WD) such that

(y + 〈z∗1, z〉e) − (y′ + 〈z∗, z′〉e) ∈ int(K).

We prove the duality results of Wolfe type of the problem (PP). The proofs are very similar to Theorems 3.3 - 3.5,
and hence omitted.

Theorem 3.6 (Weak duality) Let A be a nonempty convex subset of X, (x0, u0) ∈ S , (x′, u′, y′, z′, y∗, z∗,w∗) be a feasible
point of the problem (WD), and p(x′, u′) ≥ 0. Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M). Suppose that F(., u′) : X →
2Y is ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with respect to e′, and p(., u′) : X → W is ρ3-M-
convex with respect to e′′, on A. Assume that the contingent epiderivatives D↑F(., u′)(x′, y′) and D↑G(., u′)(x′, z′) exist
and the Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗)
and (3.14) is satisfied.

Then,

F(x0, u0) − (y′ + 〈z∗, z′〉e) ⊆ Y \ −int(K).

Theorem 3.7 (Strong duality) Let (x′, u′, y′) be a weak minimizer of the problem (PP) and z′ ∈ G(x′, u′)∩(−L). Assume
that for some (y∗, z∗,w∗) ∈ K+×L+×M+, with 〈y∗, e〉 = 1, Eqs. (3.11) and (3.12) are satisfied at (x′, u′, y′, z′, y∗, z∗,w∗).
Then (x′, u′, y′, z′, y∗, z∗,w∗) is a feasible solution for (WD). If the weak duality Theorem 3.6 between (PP) and (WD)
holds, then (x′, u′, y′, z′, y∗, z∗,w∗) is a weak maximizer of the problem (WD).

Theorem 3.8 (Converse duality) Let A be a nonempty convex subset of the space X and (x′, u′, y′, z′, y∗, z∗,w∗) be a
feasible point of the problem (WD) with 〈z∗, z′〉 ≥ 0 and p(x′, u′) ≥ 0. Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M).
Suppose that F(., u′) : X → 2Y is ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with respect to e′, and
p(., u′) : X → W is ρ3-M-convex with respect to e′′, on A. Assume that the contingent epiderivatives D↑F(., u′)(x′, y′)
and D↑G(., u′)(x′, z′) exist and the Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions of Lemma 3.1
hold at (x′, u′, y′, z′, y∗, z∗,w∗) and (3.14) is satisfied. If (x′, u′) ∈ S , then (x′, u′, y′) is a weak minimizer of (PP).

3.4 Mixed type dual
We consider a mixed type dual (MD), where F(., u′) and G(., u′) are contingent epiderivable set-valued maps and
p(., u′) is a Gâteaux derivable single-valued map, where u′ ∈ U.

maximize y′ + 〈z∗, z′〉e,
subject to,

(MD) 〈y∗,D↑F(., u′)(x′, y′)(x − x′) + F(x′, u) − y′〉

+ 〈z∗,D↑G(., u′)(x′, z′)(x − x′) + G(x′, u) − z′〉

+ 〈w∗, p′(., u′)(x′)(x − x′) + p(x′, u)〉 ≥ 0,∀(x, u) ∈ A × U,

〈z∗, z′〉 ≥ 0,
x′ ∈ A, u′ ∈ U, y′ ∈ F(x′, u′), z′ ∈ G(x′, u′), p(x′, u′) ≥ 0,
(y∗, z∗,w∗) ∈ K+ × L+ × M+, and 〈y∗, e〉 = 1.
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Definition 3.8 A point (x′, u′, y′, z′, y∗, z∗,w∗) satisfying all the constraints of (MD) is called a feasible point of the
problem (MD).

Definition 3.9 A feasible point (x′, u′, y′, z′, y∗, z∗,w∗) of the problem (MD) is called a weak maximizer of (MD) if
there exists no feasible point (x, u, y, z, y∗1, z

∗
1,w

∗
1) of (MD) such that

(y + 〈z∗1, z〉e) − (y′ + 〈z∗, z′〉e) ∈ int(K).

We prove the duality results of mixed type of the problem (PP). The proofs are very similar to Theorems 3.3 - 3.5,
and hence omitted.

Theorem 3.9 (Weak duality) Let A be a nonempty convex subset of X with respect to η : A × A → X, (x0, u0) ∈ S ,
(x′, u′, y′, z′, y∗, z∗,w∗) be a feasible point of the problem (MD), and p(x′, u′) ≥ 0. Let e ∈ int(K), e′ ∈ int(L), and
e′′ ∈ int(M). Suppose that F(., u′) : X → 2Y is ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with
respect to e′, and p(., u′) : X → W is ρ3-M-convex with respect to e′′, on A. Assume that the contingent epiderivatives
D↑F(., u′)(x′, y′) and D↑G(., u′)(x′, z′) exist and the Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions
of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗) and (3.14) is satisfied. Then,

F(x0, u0) − (y′ + 〈z∗, z′〉e) ⊆ Y \ −int(K).

Theorem 3.10 (Strong duality) Let (x′, u′, y′) be a weak minimizer of the problem (PP) and z′ ∈ G(x′, u′) ∩ (−L).
Assume that for some (y∗, z∗,w∗) ∈ K+ × L+ × M+, with 〈y∗, e〉 = 1, Eqs. (3.11) and (3.12) are satisfied at
(x′, u′, y′, z′, y∗, z∗,w∗). Then (x′, u′, y′, z′, y∗, z∗,w∗) is a feasible solution for (MD). If the weak duality Theorem
3.9 between (PP) and (MD) holds, then (x′, u′, y′, z′, y∗, z∗,w∗) is a weak maximizer of (MD).

Theorem 3.11 (Converse duality) Let A be a nonempty convex subset of X, p(x′, u′) ≥ 0, and (x′, u′, y′, z′, y∗, z∗,w∗) be
a feasible point of the problem (MD). Let e ∈ int(K), e′ ∈ int(L), and e′′ ∈ int(M). Suppose that F(., u′) : X → 2Y is
ρ1-K-convex with respect to e, G(., u′) : X → 2Z is ρ2-L-convex with respect to e′, and p(., u′) : X → W is ρ3-M-convex
with respect to e′′, on A. Assume that the contingent epiderivatives D↑F(., u′)(x′, y′) and D↑G(., u′)(x′, z′) exist and the
Gâteaux derivative p′(., u′)(x′) exists. Suppose that the conditions of Lemma 3.1 hold at (x′, u′, y′, z′, y∗, z∗,w∗) and
(3.14) is satisfied. If (x′, u′) ∈ S , then (x′, u′, y′) is a weak minimizer of (PP).

4 Conclusions
In this paper, we establish the sufficient Karush-Kuhn-Tucker (KKT) conditions for the parametric set-valued
optimization problem (PP) under generalized cone convexity and contingent epiderivative assumptions. We also
formulate the duals of Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types and prove the duality results for
weak minimizers between the primal problem (PP) and corresponding dual problems.
Acknowledgement. The authors are very much thankful to the Editor and referees for their valuable comments which
improved the presentation of the paper.
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