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The Vijñāna Parishad of India
[ Society for Applications of Mathematics ]

DAYANAND VEDIC POSTGRADUATE COLLEGE
(Bundelkhand University)

ORAI-285001, U. P., INDIA
www.vijnanaparishadofindia.org/jnanabha



ISSN 0304-9892 (Print) ISSN 2455-7463 (Online) 

Jñānābha 

EDITORS 
H. M. Srivastava 

Chief Editor 

University of Victoria 

Victoria, B.C., Canada 

harimsri@math.uvic.ca 

AND 

R.C. Singh Chandel 

Executive Editor 

D.V. Postgraduate College 

Orai, U.P., India 

rc_chandel@yahoo.com 

ASSOCIATE EDITORS 
Dinesh K. Sharma (Univ. of Maryland, USA) 

C.K. Jaggi (Delhi Univ., New Delhi) 

Madhu Jain (IIT, Roorkee) 

Avnish Kumar (CSST, GOI, New Delhi) 

MANAGING EDITORS 
Ram S. Chandel (Pleasanton, Ca, USA)                    Hemant Kumar (D.A-V. College, Kanpur) 

EDITORIAL ADVISORY BOARD 
S.C. Agrawal (Meerut)  
R.R. Bhargava (Roorkee) 
R.G. Buschman (Langlois, OR) 
S. R. Chakravarthy (Flint, MI, USA) 
R.C. Chaudhary  (Jaipur) 
Maslina Darus (Selangor, Malaysia)  
G. Dattoli (Rome, Italy) 
Sunil Datta (Lucknow)  
M.C. Joshi (Nainital) 
B. M. Golam Kibria (FIU, Miami, USA) 

Santosh Kumar (Dar es Salam, Tanzania) 
S.A. Mohiuddine (Kingdom of Soudi Arbia) 
J. Matkowski (Poland) 
R.B. Misra (Lucknow) 
P.N. Pandey (Allahabad) 
M.A. Pathan (Aligarh) 
B.E. Rhoades (Bloomington, IN) 
D. Roux (Milano, Italy) 
V.P. Saxena (Bhopal) 
M. Shakil (Hialeah, Florida) 
Dinesh Singh (Delhi) 
T. Singh (BITS, Pilani, Goa Campus) 
S.P. Sharma (Roorkee) 

M. Ahsanullah (Lawrencelle, NJ, USA) 
Pradeep Banerji (Jodhpur) 
A. Carbone (Rende, Italy) 
Peeyush Chandra (Barodara) 
N.E. Cho (Pusan, Korea)  
B.K. Dass (Delhi) 
R.K. Datta (Delhi) 
D.S. Hooda (Rohtak) 
Karmeshu (Greater Noida) 
V.K.   Katiyar   (Roorkee) 
Pranesh Kumar (Prince George, BC, Canada) 
I. Massabo (Rende, Italy)  
G.V. Milovanović (Belgrade, Serbia) 
S. Owa (Osaka, Japan)  
K.R. Pardasani (Bhopal) 
T.M. Rassias (Athens, Greece) 
P.E. Ricci (Roma, Italy) 
R.K. Saxena (Jodhpur)  
G.C. Sharma (Agra) 
A.P. Singh (Kisangarh, Ajmer) 
J.N. Singh  (Miami Shores, Florida)  
Rekha Srivastava (Victoria, Canada) 
Dashrath Singh (Zaria, Nigeria) 

Vijñāna Parishad of India 

(Society for Applications of Mathematics) 

(Registered under the Societies Registration Act XXI of 1860) 

Office : D.V. Postgraduate College, Orai-285001, U.P., India 

www.vijnanaparishadofindia.org 

COUNCIL 
President 

Vice-Presidents 

 

 

Secretary-Treasurer 

Foreign Secretary 

: D.S. Hooda (Rohtak) 

: S.C. Agrawal (Meerut) 

: Avnish Kumar (New Delhi) 

: Principal (D.V. Postgraduate College, Orai) 

: R. C. Singh Chandel (Orai) 

: H.M. Srivastava (Victoria) 

MEMBERS 
Madhu Jain ( I P P )  (Roorkee) 

G. C. Sharma (Agra) 

Karmeshu (Greater Noida) 

K. R. Pardasani (Bhopal) 

S. S. Chauhan (Orai)  

U. C. Gairola (Pauri) 

V. K. Sehgal (Jhansi) 

V. P. Saxena (Bhopal) 

A. P. Singh (Kishangarh) 

Renu Jain (Indore) 

H. Kumar (Kanpur) 

Omkar Lal Shrivastava (Rajnandgaon) 

Anamika Jain (Jaipur) 

Rakhee (Pilani) 



Foreword
It gives me immense pleasure to write the Foreword to this Special Dedication Issue of Jñānābha in honour of
Dr. R. C. Singh Chandel, who is now a retired member of the teaching faculty in the Department of Mathematics
of Dayanand Vedic Post-Graduate College at Orai in the Province of Uttar Pradesh in India, on the occasion of his
seventy-fifth birthday.

My close professional association with Dr. Chandel dates back to the year 1971 when he almost single-handedly
launched and founded this 50- year-old journal. My personal as well professional friendship and editorial collaboration
with Dr. Chandel has developed remarkably ever since the establishment of Jñānābha.

Finally, on my own behalf as well as on behalf of the members of the Jñānābha fraternity, I am exceedingly
delighted to thank all of the authors for their invaluable and active participation toward the notable success of this
Special Dedication Issue.

Professor Hari Mohan Srivastava
Department of Mathematics and Statistics,

University of Victoria, Victoria, British Columbia V8W 3R4;
Canada

Email:harimsrimath.uvic.ca

Website: http://www.math.uvic.ca/harimsri/
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This Special Volume of
JÑĀNĀBHA

is Being Dedicated to Honor
DR. R. C. SINGH CHANDEL

on His 75th Birth Anniversary Celebrations

DR. RAM CHARAN SINGH CHANDEL
(Born : July 07, 1945)
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J ñānābha , Vol. 50(2) (2020), 1-8
(Dedicated to Honor Dr. R. C. Singh Chandel on His 75th Birth Anniversary Celebrations)

DR. R. C. SINGH CHANDEL (RAM CHARAN SINGH CHANDEL) :
A DOWN-TO-EARTH PERSON WITH DELIGENCE, DEDICATION AND MODESTY

By
Professor Vinod Prakash Saxena

Former Vice-Chancellor, Jiwaji University, Gwalior, Madhya Pradesh, India
Fellow and Former President of VPI

Res. : B-147, New Minal Residency, Bhopal-462023, Madhya Pradesh, India
Email:vinodpsaxena@gmail.com

Mob. : +91 - 942510904

I know Dr. R. C. Singh Chandel since July 1964 when both of us were first year students in Master’s Program in
Mathematics at Government Science College, Gwalior, a premier institute of learning of Madhya Pradesh those days.
When the university center of learning were not established he was a shy young lad and innocent looks as with few
words as he came from a rural background of the Nagla Fauzi a Village of bordering Uttar Pradesh State, India, where
he born on 7th July, 1945. He did his schooling at Sirsaganj, Jasrana and graduation form Narain College, Shikohabad
(Agra University, Agra) of Uttar Pradesh.

During Masters’ program he was a silent and deligdent student unlike two other top position competitors students,
myself and one Gopal Das Lakhani, who is in USA at present. We two were together again when joined Ph.D.
program in 1966 jointly at SATI, Vidisha registered at Vikram University, Ujjain, MP, India under the same supervisor
Professor P. M. Gupta but on different topics. We shared the same apartment in Vidisha and were couleague round the
clock. He got married during this period with Ms. Madhavi Chandel, a silent well educated and dedicated house wife
who stood solid behind Dr. Chandel througout her life till she expired about 9 year back. Still RCS Continued his hard
work for the VPI and Journal Jñānābha even having responsibility of house hold.

After completing Ph.D. he joined as Lecturer at D. V. Postgraduate College, Orai (Bundelkhand University, Jhansi)
Uttar Pradesh located at Jhansi-Kanpur highway, while I parted his company to join as postdoctoral fellow at SATI
first and then at M.A.C.T. (MANIT) Bhopal. I was little bit surprised by his decision to join a semi Government
institution, that too at a town not known as an educational destination. But I proved wrong as he became asset to the
institution by developing it as center of Mathematical Education and Research. He dedicated his entire teaching carrier
to D. V. Postgraduate College, Orai, working at successive higher positions till he retired as Associate Professor of
Mathematics in 2008. His unofficial affiliation to the college still continues due to establishment of a Research society
called ‘Vijñāna Parishad of India’ (VPI) and launching simultaneously its research journal named as’ ‘Jñānābha’
pronounced as in Hindi. I was keenly and anxiously supporting him and contributed a landmark research
articles in it.

Vijñāna Parishad of India has become synonymous with Dr. R. C. Singh Chandel and D. V. Postgraduate College,
Orai, which is now completing fifty years of glorious journey with support from Professor H. M. Srivastava, University
of Victoria, B. C., Canada as Foreign Secretary and Chief Editor, Jñānābha. Eminent mathematicians are on the
Editorial Board from all over the world while Dr. Chandel is its Founder Executive Editor. This journal is recognized
internationally and reviewed regularly among others by Zentralblatt für Mathematik Germany and Mathematical
Reviews, USA, This journal is already recognized by the University Grant Commission of India. With Dr. Chandel’s
almost single handed efforts Jñānābha has achieved new highlights and circulated throughout the country and abroad,
VPI saw a new dimension in terms of National and International conferences hosted at leading Institutions of North
India including MANIT, Bhopal, Netaji Subhas Institute Delhi and BITS, Pilani with participants from different parts
of India and abroad. It grew fast and collaborated with other leading societies like Gwalior Academy of Mathematical
Sciences and Society for Special Functions and Applications of which Dr. Chandel is an integral part. VPI is also a
member of prestigious TMC (The Mathematics Consortium).

At the same time R. C. S. Chandel created his own pitch in the field of Mathematics by publishing large number
of research papers and books (List enclosed) and delivering Lectures all India and abroad. He supervised about
twenty Ph.D. scholars and visited following Institutions : Memorial University of Newfoundland, St. John’s, Canada,
University of Victoria, Victoria, B. C., Canada. He was also offered as Associate Professor in University of Minnesota,
Duluth, USA but he did not join due to some personal circumstances.

He participated, gave invited talks and chaired sessions in International Conference at University of Newfoundland
St. John’s, Canada, Summer Meeting of American Mathematical Society (Chicago), Conference of American Math.
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Society and Mathematics Association of America at Wyoming and delivered lecture at Fourth ISAAC Congress at
York University, Toronto, Canada.

He has several prestigious awards and honours to his credit including life membership of several academic
societies. Some of them are given below:

Awards and Honors:
1. Life-Long Achievements Award 2019 : Vijñāna Parishad of India for Life-Long Outstanding Contribution to his

subject and Life-Time Whole Hearted Distinguished and Dedicated Services to Vijñāna Parishad of India and
its Journal Jñānābha.

2. Bharat Ratn Mother Teresa Gold Medal Award, 2019 : Global Economic Progress Research Association, Tamil
Nadu, India.

3. Senior Rotary Distinguished Service Award, 2019 :Rotary club of Orai (RI District 3110).
4. Biography Pubished by : The Marquis Who’s Who in the World- 20th Edition, 2003.
5. Best Teacher Award and Gold Medal, 2001 : Bundelkhand University, Jhansi, Uttar Pradesh, India for

outstanding contribution in Teaching, Research and National Development.
6. The Twentieth Century Award for Achievement, 2000 : International Biographical Institute, Cambridge, England.
7. Outstanding Man of the 20th Century, 1999: American Biographical Institute, USA.
8. Distinguished Service Award 1996 : Vijñāna Parishad of India for the outstanding contribution to Mathematics

and Distinguished Services rendered to Vijñāna Parishad of India.
9. Outstanding Youth Person of District Jalaun, Uttar Pradesh, India, 1977: JCI, Orai.

Fellowship Award:
1. Paul Harris Fellow Award (PHF), 2018 : Rotary International .
2. Honorary Elected Fellow (FVPI), 2008 : Vijñāna Parishad of India.

Life Member of various National or International Societies:
1. National Academy of Sciences, India.
2. Vijñāna Parishad of India.
3. Indian Math, Society.
4. BHU Math, Society.
5. SSFA (Society for Special Functions and Applications, India).
6. GAMS (Gwalior Academy of Mathematical Sciences).
7. CONSORTIUM.
8. Annual Member of American Math, Society for last 20 years.

Social Services: Rotary International since last 38 years
1. Chairman Literacy Volunteer Management : RI District 3110 (2020-21).
2. Rotary District Secretary (Youth Promotion) : RI District 3110 (2019- 20).
3. President : Rotary Club of Orai, RI District 3110 [ 1996-97, 2016-17, 2017-18].
4. Rotary District Management Committee, District Health and Family Welfare Authority Jalaun, Uttar Pradesh,

India, (2000).
5. Rotary International, District 3110, Pulse Polio Coordinator (1997-98).

Books Authored (See Appendix)
Single Authored : 4 Books for Graduate classes.
Co-authored : 1 Book for B.E. Classes.

8 Books for Graduate classes.

List of Research Publications (See Appendix)

We his colleagues and friends feel proud at the achievements of an un parallel
personality of Dr. R. C. Singh Chandel. I am sure his parents Late Shri Bridawan Singh
and Late Smt. Champa Devi will shower heavenly blessings as well as his worthsons
Parmatma, Onkar Singh (Washington, USA) and Ram Chandel (California, USA) will be
bestowing their heart felt admiration on the completion of seventy five gracious years
of age of Dr. Ram Charan Singh Chandel.
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APPENDIX
List of Publications

1. Generalized Laguerre polynomials and the polynomials related to them, Indian J. Math., 11 (1969). 57-66.
2. A short note on generalized Laguerre polynomials and the polynomials related to them, Indian J. Math., 13

(1971), 25-27.
3. Generalized Laguerre polynomials and the polynomials related to them II, Indian J. Math., 14 (1972), 149-155.
4. Generalized Laguerre polynomials and the polynomials related to them III. Jñānābha Sect. A, 2 (1972), 49-58.
5. Operational representations and hypergeometric functions of three variables, Proc. Nat. Acad. Sci., India, 39

(A) (1969), 217-222.
6. The products of certain classical polynomials and the generalized Laplacian operator, Ganita, 20 (1969), 79-87.

Corrigendum Ganita, 23 (1972), 90.
7. Fractional integration and integral representations of certain generalized hypergeometric functions of several

variables, Jñānābha, Sect. A., 1 (1971), 45-56.
8. On the G-function of two variables, Jñānābha, Sect. A., 1 (1971), 84-91 [With R. D. Agrawal].
9. Generalized Hermite polynomials, Jñānābha, Sect. A. 2 (1972), 19-27.

10. On some multiple hypergeometric functions related to Lauricella functions, Jñānābha Sect. A. 3 (1973),
119-136.

11. A new class of polynomials, Indian J. Math., 15 (1973), 41-49.
12. A further note on the class of polynomials T (α,k)

n (x, r, p), Indian J. Math., 16 (1974), 39-48.
13. A further generalization of the class of polynomials T (α,k)

n (x, r, p), Kyunpook Math. J., 14 (1974), 45-54.
14. Operational representations of certain generalized hypergeometric functions in several variables, Ranchi Univ.

Math. J., 7 (1976), 56-60.
15. On some generalized Jacobi polynomials, Ranchi Univ. Math. J., 6 (1975), 54-61 [with H. C. Agrawal].
16. Generalized Rice polynomials, Jour. Maulana Azad College Tech. 8 (1975), 67-71 [with R. S. Pal].
17. A note on Stirling numbers and polynomials, Jour. Maulana Azad College Tech. 9 (1976), 143-146 [H. C.

Yadava].
18. On some operational relationships, Indian J. Math. 19 (1977), 173-179 [with H. C. Agrawal].
19. Generalized Stirling numbers and polynomials, Pub. del. Institute Mathematique, tome 22 (36) (1977), 145-149.
20. Some polynomials of R. Panda and the polynomials related to them, Bul. Inst. Math. Acad. Sinica. 7 (1979),

145-149. [with S. K. Bhargava]
21. Some generating functions for certain polynomials systems in several variables, Proc. Nat. Acad. Sci. India, 51

(1981), 133-138 [with H. C. Yadava]
22. A note on binomial and exponential identities, Ranchi Univ. Math. J., 10 (1979), 33-38 [With B. N. Dwivedi]
23. Corrigendum to ” On a new class of polynomials and the polynomials related to them” by Sunil Kumar Sinha.

Indian J. Math., 19 (1977), 141-148; ibid 21 (1979), 207-208.
24. A note on generating functions for certain polynomial systems Ranchi Univ. Math. J., 10 (1979), 62-66 [with

H. C. Yadava]
25. Generalized Whittaker transforms of hypergeometric functions of several variables, Bul. Inst Math. Acad.

Sinica, China, 8 No. 4 (1980), 595-601 [with B. N. Dwivedi].
26. Srivastava and Daoust functions of several variables, Pure Appl. Math. Sci., 14 No. 1-2 Sept (1981), 53-59

[with B. N. Dwivedi]
27. Operational representations of hypergeometric functions of four variables, Pure Appl. Math. Sci., 16 (1982),

43-52 [with B. N. Dwivedi].
28. A generalization of certain classes of polynomials. Indian J. Pure Appl. Math., 12 (1981), 103-110 [with S. K.

Bhargava]
29. A further note on the polynomials of R. Panda and the polynomials related to them, Ranchi Univ. Math. J., 10

(1979), 74-80 [with S. K. Bhargava]
30. Multidimensional Whittaker transforms, Indian J. Math., 24 (1982), 49-53 [with B. N. Dwivedi]
31. A class of polynomials and the polynomials related to them, Indian J. Math., 24 (1982), 41-48. [with S. K.

Bhargava]
32. A note on some generating functions, Indian J. Math., 25 (1983), 185-188.
33. A problem on heat conduction, The Math. Student, 46 (1978), 240-247.
34. On some associated polynomials, Ranchi Univ. Math. J., 11 (1980), 13-19 [with B. N. Dwivedi]
35. A note on some generating functions for a certain class of polynomials, Vijñāna Parishad Anusandhan Patrika,

25 (1982), 25-30 [with B. N. Dwivedi]
36. A problem on the cooling of a heated cylinder, Jour. MACT, 15 (1982), 99-103] (with S. K. Bhargava)
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37. A new class of polynomials and the polynomials related to them, Rev. Tec. Ing, Univ. Zulia, 7 No. 1 (1984),
63-67 [with R. S. Chandel]

38. Two transformation formulas for the generalized multiple hypergeometric function of Srivastava and Daoust,
Indian J. Pure Appl. Math., 15 (6) (1984), 633-640 [with Anil Kumar Gupta]

39. A binomial analogue of Srivastava’s Theorem, Indian J. Pure Appl. Math. 15 (4) (1984), 383-386 [with H. C.
Yadava]

40. Heat conduction and multiple hypergeometric function of Srivastava and Daoust, Indian J. Pure Appl. Math.,
15(4) (1984), 371-376 [with H. C. Yadava]

41. Applications of Srivastava Theorem, Indian J. Pure Appl. Math., 15 (1984), 1315-1318 [with H. C. Yadava]
42. Additional applications of binomial analogue of Srivastava’s Theorem, Indian J. Pure Appl. Math., 27 (1985),

137-141 [with H. C. Yadava]
43. Heat conduction and generalized Kamp de Friet function of Srivastava and Daoust, Ranchi Univ. Math. J., 14

(1983), 1-10 [with S. K. Bhargava]
44. Recurrence relations of multiple hypergeometric functions of several variables, Pure Appl. Math. Sci., 21

(1985), 65-70 [with Anil Kumar Gupta]
45. Heat conduction and H-function of several variables Jour. MACT, 12 (1984), 85-92 [with Anil Kumar Gupta]
46. Applications of Srivastava’s hypergeometric function of three variables, Jñānābha, 15, (1985), 65-69 [with B.

N. Dwivedi]
47. Multiple hypergeometric functions related to Lauricella functions, Jñānābha, 16 (1986), 195-209 [with Anil

Kumar Gupta]
48. Use of multivariable H-function of Srivastava and Panda in cooling of a heated cylinder, Pure Appl. Math. Sci.,

25 (1987), 43-48 [with Anil Kumar Gupta]
49. Recurrence relations of multiple hypergeometric function of Srivastava and Daoust and the multivariable H-

function of Srivastava and Panda, Indian J. Pure Appl. Math., 18 (1987), 347-359. [with Anil Kumar Gupta].
50. A problem on heat conduction in a finite bar, Jour. MACT, 19 (1986), 91-95 [with Anil Kumar Gupta]
51. Further applications and extensions of the addition theorems of Srivastava, Lavoie and Tremblay, Indian J. Pure

Appl. Math., 18 (1987), 830-834 [with S. Sahgal].
52. Karlsson’s multiple hypergeometric function and its confluent forms, Jñānābha,19 (1989), 173-185 [with P. K.

Vishwakarma]
53. Fractional integration and integral representations of Karlsson’s multiple hypergeometric function and it’s

confluent forms, Jñānābha,20 (1990), 101-110 [with P. K. Vishwakarma].
54. A multivariable H-function of Srivastava and Panda and it’s applications in a problem on electrostatic potential

in spherical regions, Jour. MACT. 23 (1990), 39-46 [with R. D. Agarwal and H. Kumar]
55. A multivariable analogue of Panda’s polynomials, Indian J. Pure Appl. Math., 21 (12) (1990), 1101-1106 [with

S. Sahgal]
56. A class of polynomials in several variables, Ganita Sandesh, 4 (1990), 27-32 [with R. D. Agarwal and H.

Kumar].
57. A multivariable analogue of Gould and Gould-Hooper’s polynomials, Indian J. Pure Appl. Math., 22 (3) (1991),

225-229 [with S. Sahgal].
58. A binomial analogue of the class of addition theorems of Srivastava, Lavoie and Tremblay and its applications,

Proc. VPI, 1 (1989), 145-148.
59. A remark on ” Hypergeometric functions of four variables I” by Chhaya Sharma and C. L. Parihar, {Indian Acad.

Math., 11 (2) (1989), 121-133}, Proc. VPI, 2 (1990), 113-115 [with H. Kumar]
60. Another multivariable analogue of Gould and Hopper’s polynomials, Pure Math. Manuscript, 9 (1990-1991),

125-135 [with Abha Tiwari].
61. Unified study of two general classes of functions, Pure Math. Manuscript, 9 (1990-1991), 111-123 [with Shashi

Agrawal]
62. A generalization of a class of polynomials, Jñānābha, 21 (1991), 19-25 [with Shashi Agrawal]
63. Generating relations involving hypergeometric functions of four variables, Pure Appl. Math. Sci., 34 (1991),

15-25 [with Abha Tiwari]
64. Multivariable analogue of Gould and Hooper’s polynomials defined by Rodrigues’ formula, Indian J. Pure Appl.

Math., 22 (1991), 757-761 [with Abha Tiwari]
65. A multivariable analogue of Hermite polynomials, Ganita Sandesh, 5 (1991), 92-95 [with Abha Tiwari]
66. Fractional derivatives of confluent hypergeometric forms of Karlsson’s multiple hypergeometric function, Pure

Appl. Math. Sci., 35 (1992), 31-39 [with P. K. Vishwakarma]
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67. An integral involving sign functions, exponential functions, the Kamp de Friet function and the multivariable H-
function of Srivastava and Panda, and its applications in potential problem on a circular disk, Pure Appl. Math.
Sci., 35 (1992), 59-69 [with R. D. Agrawal and H. Kumar].

68. Hypergeometric functions of four variables and their integral representations, Math. Education, 26 (1992),
76-94 [with R. D. Agrawal and H. Kumar].

69. Two variables analogue of Gould and Hopper’s polynomials, Jour. MACT, 25 (1992), 63-69 [with R. D. Agrawal
and H. Kumar].

70. Unified presentation of two general sequences of functions, Jñānābha, 22 (1992), 13-22 [with Shashi Agrawal]
71. Binomial analogues of the class of addition theorems of Srivastva, Lovoie and Tremblay, Jñānābha, 22 (1992),

23-29 [with Shashi Agrawal]
72. Fourier series involving the multivariable H- function of Srivastava and Panda, Indian J. Pure Appl. Math., 23

(1992), 343-357 [with R. D. Agrawal and H. Kumar]
73. Velocity coefficient of chemical reaction and Lauricella’s multiple hypergeometric function, Math. Student, 63

(1993), 1-4 [with R. D. Agrawal and H. Kumar]
74. Multiple hypergeometric function of Srivastava and Daoust and it’s applications in two boundary value

problems, Jñānābha 23 (1993), 97-103 [with Abha Tiwari].
75. Multivariable analogues of a class of polynomials, Jñānābha 23 (1993), 105-113 [with Shashi Agrawal]
76. Multidimensional fractional derivatives of multiple hypergeometric functions of several variables, Jñānābha,24

(1994), 19-27 [with P. K. Vishwakarma]
77. Fractional derivatives of certain generalized hypergeometric functions of several variables, Jour. Math. Anal.

Appl., 184 (1994), 560-572 [with H. M. Srivastava and P. K. Vishwakarma].
78. A multilinear generating function, Math Ed. (Siwan), 28 (1994), 32-37 [with Abha Tiwari]
79. On some relations between hypergeometric functions of three and four variables, Jñānābha,26 (1996), 72-82

[with P. K. Vishwakarma]
80. Fractional derivatives of the multiple hypergeometric functions of four variables, Jñānābha, 26 (1996), 83-87

[with P. K. Vishwakarma].
81. Some probability distributions and expectations associated with multivariate beta and gamma distributions

involving multiple hypergeometric functions of Srivastava and Daoust, Jñānābha,27 (1997), 131-137 [with
P. K. Vishwakarma].

82. Some more inequalities involving Fox’s H-function, Jñānābha,28 (1998), 133-140 [with H. Kumar].
83. Determination of phase shift difference for binomial potential function, Jñānābha,28 (1998). 141-146 [with H.

Kumar].
84. Phase shifts involving multiple hypergeometric functions of Srivastava and Daoust, Jñānābha, 29 (1999), 117-

122 [with H. Kumar and R. D. Agarwal]
85. Some expectations associated with Multivariate Gamma and Beta Distributions involving the multiple hyperge-

ometric function of Srivastava and Daoust, Jñānābha, 30 (2000), 9-16 [with P. K. Vishwakarma].
86. On some multidimensional integral transforms of Srivastava and Panda’s H-function of several complex

variables, Jñānābha, 30 (2000), 125-130 [With Kamlendra Kumar]
87. Integrals involving multiple hypergeometric functions of several variables through difference operator approach,

Jñānābha31/32 (2002) 151-157. (with S. S. Chauhan)
88. Remarks on ” Certain integrals involving hypergeometric functions of three and four variables” by Sunil Joshi

and S. S. Bhati (Jñānābha, 27 (1997), 93-98), Jñānābha, 31/32 (2002) 167 (with S. S. Chauhan)
89. Multidimensional Laguerre transforms, Jour. Pure Math., 20 (2003) 59-72 (with S. S. Chauhan)
90. On two boundary value problems, Jñānābha, 31/32 (2002), 89-104. (with S. Sengar)
91. A problem on heat conduction in a rod under the Robin condition, Jñānābha, 33 (2003), 131-138. (with S.

Sengar)
92. Hypergeometric functions of four variables, Pure Appl. Math. Sci., 58 (2003), 7-18, (with S. Sharma)
93. Temperature distribution due to population growth of interacting multispecies in the limited environment,

Mathematics and Information Theory: Recent topics and applications, (Editor V. K. Kanpur), Anannya
Publishers, New Delhi, India, 2004 [with Hemant Kumar]

94. Fractional derivatives of our hypergeometric functions of four variables, Jñānābha,34 (2004), 113-132. (with
S. Sharma).

95. Two boundary value problems, Indian J. Theoretical Physics, 53 (4), (2005), 339-350. (with Yogesh Kumar)
96. Generalized multidimensional Laguerre transforms, Jnānābha, 35 (2005), 17-27 (with Kamalendra Kumar)
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Birthday) Jñānābha, 37 (2007), 1-20.
6. Professor H. M. Srivastava: Man and Mathematician. (Special Issue: Dedicated to Honor Professor H. M.

Srivastava on His Platinum Jubilee Celebrations) Jñānābha, 15 (2015), 1-12
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Abstract
This paper predicts the performance of an unreliable MX/G/1 G-queue with delayed repair. The negative

customers stop functioning of the server and force the server to undergo repair. The failed server takes a random
amount of time called delay time before going for repair. It is assumed that the positive customers arrive in batches
and negative customers arrive singly, according to Poisson process. The server provides first phase of regular
service to all arriving customers whereas it provides l types of optional services to only those who demand the
same. The working vacation period of the server starts either if queue becomes empty or repairing of the server
finishes. Numerical experiments are provided to show the effects of various critical system parameters on performance
measures.
2010 Mathematics Subject Classifications: 68M20, 60K25.
Keywords and phrases: Batch arrival, G-queue, Server breakdown, Two phase service, Working Vacation, Delayed
repair.

1 Introduction
This work is motivated by modeling general service non-Markovian queueing systems having two types of customers,
positive and negative, depending upon their nature. The positive customers are usual customers which enter the
queue for receiving service if it not immediate, otherwise depart from the system after getting service, while negative
customers are those who remove the positive customer in service and force the server for immediate repair. There are
many real life congestion situations in which we found these type of customers. For example, in distributed computer
systems or databases, there are some commands which delete some transaction because of locking of data or because
of inconsistency. In the paper by Gelenbe [3], the author provides analogy of queueing networks with neural networks
wherein each queue represents a neuron and customers represent excitation (positive) or inhibition (negative) signals.
This type of queueing system which involves negative customers is termed as “G-queues”. Applications of these
types of queues can be found in computer networks, data communication systems, distributed systems, manufacturing
systems, neural networks and many more. A survey on G-queues has been presented by Do [2]. Some useful
performance characteristics of an unreliable M/G/1 retrial G-queue under priority scheme have been obtained by
Wu and Lian [8]. Further Peng et al. [5] examined the performance characteristics of an unreliable M/G/1 retrial
G-queue with preemptive resume priority and collisions under delayed repairs. Recently, Kirupa and Chandrika [4]
throw light on the performance prediction of MX/G/1 G-queue with heterogeneous service, setup time and reserved
time.

The concept of working vacation was introduced by Servi and Finn [7], according to which server may provide
service during vacation with comparatively slower rate rather than completely stops service during vacation as found in
the past literature. Working vacation queues with negative arrivals find wide applicability in the working of computer
networks, web servers, file transfer systems and email servers. Do et al. [1] studied an M/M/1 retrial G-queue
with working vacation. Further, using S VT (Supplementary Variable Technique), Rajadurai et al. [6] examined the
performance of an M/G/1 retrial queue with balking under working vacation policy. Zhang and Liu [9] investigated the
behavior of an M/G/1 queue with negative arrivals and server breakdowns, working vacation and vacation interruption,
using both S VT and matrix analytic method.

Due to scarcity of work done on batch arrival G-queues with working vacation and vacation interruption, we put
forward our effort to analysze it. The rest of the work done is as follows. Section 2 describes the model by stating
requisite assumptions and notations. The queue size distribution has been explored in Section 3 via probability
generating function method. Various useful performance measures of our model are explored in Section 4 using
queue size distribution obtained in Section 3. In Section 5, we show that the stochastic decomposition results holds
good for the developed model. Some special cases have been deduced in Section 6. The cost function is constructed
in Section 7. A numerical example and the effect of some sensitive parameters on various performance measures are
explored in Section 8. Finally concluding remarks and future scope have been outlined in Section 9.
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2 System Description
Consider a single server batch arrival G-queue with unreliable server and delayed repair. The server renders first phase
of essential service to all the arriving customers whereas it renders any type of l optional services to only those who
demand for the same. The server may undergo breakdown due to the presence of a negative arrival. To formulate the
model, we make following assumptions as given below:

The arrival stream is composed of two types of customers’ positive customers and negative customers. The positive
customers arrive in groups or batches with rate p+. The batch size is an arbitrary distributed independent random
variable denoted by γ with probability distribution Pr{γ = k} = εk, k ≥ 0, pg f (probability generating function)
γ(z) =

∑∞
k=1 εkzk and first and second finite moments ε1 and ε2. The arrival of a negative customer with rate p− not

only removes the positive customer in service but also leads the server to undergo repair. The failed server waits
for the repair to start; this waiting time of the server is called as delay time which follows a general distribution
with distribution function Di(x), LST (Laplace Steiljes Transform) D∗i (s) and rth factorial moments ω(r)

i (r ≥ 1), where
0 ≤ i ≤ l. The repair time of the server is assumed to be arbitrarily distributed random variable with distribution
function =i(x), LST (Laplace Steiljes Transform) =∗i (s) and rth factorial moments ω(r)

i (r ≥ 1), where 0 ≤ i ≤ l.
The negative customer affects the server if and only if it is busy. The server renders first phase of essential service
denoted by FES to all positive customers whereas only few of them will receive second phase of optional service
(SOS) based upon their demand. After finishing FES by the customer, he may demand for any of l different kinds of
optional services with probability ζi(1 ≤ i ≤ l), otherwise he leaves the service area with complementary probability
ζ̄i(= 1 − ζi), 1 ≤ i ≤ l. The service discipline is FCFS (first come first served). The service times during FES and SOS
are i.i.d. (independent and identically distributed) random variables having probability distribution E0(x) and Ei(x);
LST E0

∗(x) and Ei
∗(x) and rth factorial moments ζ(r)

0 and ζ(r)
i (r ≥ 1)(0 ≤ i ≤ l), respectively.

During regular busy period, the server serves the positive customers with rate µB. After each service completion or
repair completion, the server enters into a working vacation period of random length ’W’ which follows an exponential
distribution with parameter ν. When the server finds that the queue is non-empty, it immediately changes the service
rate from µν to µB and initiates a regular busy period no matter whether or not the vacation has ended. The vacation
time is assumed to be i.i.d random variable with probability distribution H(x); LST H∗(x) and rth factorial moments
ϑ(r) with r ≥ 1. The service discipline during both regular busy period and working vacation period is FCFS (first
come first served). We assume that the hazard rates for service time, delay time and repair time are Ψi(x), ηi(x) and
φi(x)(0 ≤ i ≤ l), respectively whereas that of working vacation time is γ(x). So we can define service time, delay time,
repair time and working vacation time distribution by

Ei(x) = 1 − exp
{
−

∫ x
0 ϕi(t)dt

}
, 0 ≤ i ≤ l; Di(x) = 1 − exp

{
−

∫ x
0 ηi(t)dt

}
; 0 ≤ i ≤ l;

=i(x) = 1 − exp
{
−

∫ x
0 φi(t)dt

}
; 0 ≤ i ≤ l;

H(x) = 1 − exp
{
−

∫ x
0 γ(t)dt

}
.

The LST for service time, delay time, repair time and working vacation time distribution are defined as
E∗i (s) =

∫ ∞
0 exp{−sx}dEi(x), D∗i (x) =

∫ ∞
0 exp{−sx}dDi(x), =∗i (s) =

∫ ∞
0 exp{−sx}d=i(x),

H∗v (s) =
∫ ∞

0 exp{−sx}dHv(x); 0 ≤ i ≤ l.

Also, where, ’A’ denotes random variable for either service time or repair time or vacation time distribution.

3 Queue Size Distribution
At time t ≥ 0, we define the system state by forming a Markov process λ(t) = {ξ(t), π(t), κ(t)}, , where

π(t) =



0, if the server is in working vacation period at time t
1, if the server is busy with FES at time t
2, if the server is busy with SOS at time t
3, if the server is waiting for repair at time t
4, if the server is under repair at time t.

Here ξ(t) represents the number of customers in the queue. When π(t) = 0 and ξ(t) ≥ 0, κ(t) denotes the elapsed
working vacation time of the server. If π(t) = 1, 2 and ξ(t) ≥ 0, κ(t) denotes the elapsed service time either during
FES or during SOS at time t. If π(t) = 3 and ξ(t) ≥ 0, κ(t) denotes the elapsed delay time at time t. If π(t) = 4
and ξ(t) ≥ 0, κ(t) denotes the elapsed repair time at time t. In order to construct an embedded Markov chain of our
developed model, we assume that ξ(t+n ) be the number of customers in the queue, respectively just after the time tn.
Then the sequence of random variables {Mn, n ∈ N} forms an embedded Markov chain of our developed model.
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Lemma 3.1 The embedded Markov chain {Mn, n ∈ N}is ergodic iff ρ < 1, which is the necessary and sufficient
condition for the stability of the system, where ρ is given by

(3.1) ρ = p+ε1[ν0 + E∗0(p−)
∑l

i=1 ςiνi + p−{ν0$
(1)
0 + E∗0(p−)

∑l
i=1 ςiνi$

(1)
i + ν0ω

(1)
0 + E∗0(p−)

∑l
i=1 ςiνiω

(1)
i }].

Proof. To prove the sufficient condition one can use Foster’s criterion. According to this, an irreducible and aperiodic
Markov chain Mnwith state space ϕis ergodic if there exists a non-negative function f ( j), j ∈ ϕ called test function,
and δ > 0 such that the mean drift N j = E[ f (Mn+1) − f (Mn)/Mn = j] is finite for all j ∈ ϕ and M j ≤ −δ for all
j ∈ ϕ except perhaps a finite number. For this model, it is easy to show that Mnis irreducible and aperiodic. Further
one can prove the necessary condition by proceeding in the same way as done by Zhang and Liu ([9], p. 262-263,
Theorem 3.1).

Under the established stability condition, we define some limiting probabilities for the Markov process {M(t), t ≥ 0}
as given below:

Hn = Lim
t→∞

Pr{Γ(t) = 0,M(t) = n}, n ≥ 0,

E0,n(x) = Lim
t→∞

Pr{Γ(t) = 1,M(t) = n, x ≤ Φ(t) ≤ x + dx}, n ≥ 0,

Ei,n(x) = Lim
t→∞

Pr{Γ(t) = 2,M(t) = n, x ≤ Φ(t) ≤ x + dx}, n ≥ 0, 1 ≤ i ≤ l,

D0,n(x) = Lim
t→∞

Pr{Γ(t) = 3,M(t) = n, x ≤ Φ(t) ≤ x + dx}, n ≥ 0,

Di,n(x) = Lim
t→∞

Pr{Γ(t) = 3,M(t) = n, x ≤ Φ(t) ≤ x + dx}, n ≥ 0, 1 ≤ i ≤ l,

=0,n(x) = Lim
t→∞

Pr{Γ(t) = 4,M(t) = n, x ≤ Φ(t) ≤ x + dx}, n ≥ 0,

=i,n(x) = Lim
t→∞

Pr{Γ(t) = 4,M(t) = n, x ≤ Φ(t) ≤ x + dx}, n ≥ 0, 1 ≤ i ≤ l.

State Governing equations

(3.2)
d
dx

Hn(x) = −{p+ + θ + ϕV (x)}Hn(x) + p+(1 − δ0, j)
∑ j

k=1 εkHn−k(x); n ≥ 1,

(3.3)
d
dx

E0,n(x) = −{p + ϕ0(x)}E0,n(x) + p+(1 − δ1,n)
∑n

k=1 εkE0,n−k(x); n ≥ 0,

(3.4)
d
dx

Ei,n(x) = −{p + ϕi(x)}Ei,n(x) + p+(1 − δ1,n)
∑n

k=1 εkEi,n−k(x); n ≥ 0; 1 ≤ i ≤ l,

(3.5)
d
dx

D0,n(x) = −{p+ + η0(x)}D0,n(x) + p+(1 − δ1,n)
∑n

k=1 εkD0,n−k(x); n ≥ 0,

(3.6)
d
dx

Di,n(x) = −{p+ + ηi(x)}Di,n(x) + p+(1 − δ1,n)
∑n

k=1 εkDi,n−k(x); n ≥ 0, 1 ≤ i ≤ l,

(3.7)
d
dx
=0,n(x) = −{p+ + φ0(x)}=0,n(x) + p+(1 − δ1,n)

∑n
k=1 εk=0,n−k(x); n ≥ 0,

(3.8)
d
dx
=i,n(x) = −{p+ + φi(x)}=i,n(x) + p+(1 − δ1,n)

∑n
k=1 εk=i,n−k(x); n ≥ 0; 1 ≤ i ≤ l.

Boundary Conditions

(3.9) p+ε1H0 =
∫ ∞

0 H1(x)ϕV (x)dx + ς0
∫ ∞

0 E0,1(x)ϕ0(x)dx +
∑l

i=1 ς̄i
∫ ∞

0 Ei,n+1(x)ϕi(x)dx+∫ ∞
0 =0,0(x)φ0(x)dx +

∑l
i=1

∫ ∞
0 =i,0(x)φi(x)dx,

(3.10) H1(0) = p+ε1H0; Hn(0) = 0; n ≥ 2,

(3.11) E0,n(0) = ς0
∫ ∞

0 E0,n+1(x)ϕ0(x)dx +
∑l

i=1 ς̄i
∫ ∞

0 Ei,n+1(x)ϕi(x)dx +
∫ ∞

0 Hn+1(x)ϕV (x)dx+

θ
∫ ∞

0 Hn(x)dx +
∫ ∞

0 =0,n(x)φ0(x)dx +
∑l

i=1

∫ ∞
0 =i,n(x)φi(x)dx,

(3.12) Ei,n(0) = ςi
∫ ∞

0 E0,n(x)ϕ0(x)dx; 1 ≤ i ≤ l, j ≥ 0, n ≥ 1,

(3.13) D0,n(0) = p−
∫ ∞

0 E0,n+1(x)dx; n] ≥ 0,

(3.14) Di,n(0) = p−
∫ ∞

0 Ei,n+1(x)dx; 1 ≤ i ≤ l; n ≥ 0,
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(3.15) =0,n(0) =
∫ ∞

0 D0,n(x)η0(x)dx; n ≥ 0,

(3.16) =i,n(0) =
∫ ∞

0 =i,n(x)ηi(x)dx; n ≥ 0,

The normalizing condition of the system is given by
(3.17) H0 +

∑∞
n=1

∫ ∞
0 Hn(x)dx +

∑l
i=0

∑∞
n=1

[∫ ∞
0 Ei,n(x)dx +

∫ ∞
0 Di,n(x)dx +

∫ ∞
0 <i,n(x)dx

]
= 1.

The probability generating functions of sequences of the above probabilities are given by
A(z) = H∗V (p+(1 − γ(z)) + θ); D(z) = H̃V (p+(1 − γ(z)) + θ)
Ei(z) = E∗i (p − p+γ(z)); Vi(z) = Ẽi(p − p+γ(z)); Fi(z) = D∗i (p+(1 − γ(z))); 0 ≤ i ≤ l.

For solution purpose, we define following generating functions for different states of the server:
H(x, z) =

∑∞
n=1 Hn(x)zn, Ei(x, z) =

∑∞
n=0 Ei,n(x)zn; 0 ≤ i ≤ l,Di(x, z) =

∑∞
n=0 Di,n(x)zn; 0 ≤ i ≤ l,

=i(x, z) =
∑∞

n=0 =i,n(x)zn; 0 ≤ i ≤ l.

Using probability generating function method, we multiply each of the equations (3.2)-(3.8) by zn and then
summing over all values of n, we get

(3.18)
∂

∂x
H(x, z) = −{p+(1 − γ(z)) + θ + ϕV (x)}H(x, z),

(3.19)
∂

∂x
Ei(x, z) = −{p − p+(1 − γ(z)) + ϕi(x)}Ei(x, z); 0 ≤ i ≤ l,

(3.20)
∂

∂x
Di(x, z) = −{p+(1 − γ(z)) + ηi(x)}Di(x, z); 0 ≤ i ≤ l,

(3.21)
∂

∂x
=i(x, z) = −{p+(1 − γ(z)) + φi(x)}=i(x, z); 0 ≤ i ≤ l.

On solving equations (3.17)-(3.20), we obtain
(3.22) H(x, z) = H(0, z) × exp[−{p+(1 − γ(z)) + θ}x]HV (x),
(3.23) Ei(x, z) = Ei(0, z) × exp[−{p − p+γ(z)}x]Ei(x); 0 ≤ i ≤ l,

(3.24) Di(x, z) = Di(0, z) × exp[−{p+(1 − γ(z))}x]D̄i(x); 0 ≤ i ≤ l,

(3.25) =i(x, z) = =i(0, z) × exp[−{p+(1 − γ(z))}x]=i(x); 0 ≤ i ≤ l.

Again multiplying each of the equations (3.8)-(3.15) by zn and then summing over all values of n, we get
(3.26) H(0, z) = p+ε1H0z,

(3.27) E0(0, z) =
ς0E0(z)E0(0, z)

z
+

∑l
i=1

Ei(z)Ei(0,z)
z +

A(z)H(0,z)
z + θD(z)H(0, z) + E0(z)=0(0, z) − (ς0

∫ ∞
0 E0,1(x)ϕ0(x)dx

+
∑l

i=1 ς̄i
∫ ∞

0 Ei,1(x)ϕi(x)dx+
∫ ∞

0 H1(x)ϕV (x)dx)−(
∫ ∞

0 Hn(x)ϕV (x)dx+
∫ ∞

0 =0,0(x)φ0(x)dx+
∑l

i=1

∫ ∞
0 =i,0(x)φi(x)dx),

(3.28) Ei(0, z) = ςiE0(0, z)Ei(z); 1 ≤ i ≤ l,

(3.29) Di(0, z) =
p−Vi(z)Ei(0, z)

z
; 0 ≤ i ≤ l,

(3.30) =i(0, z) = Di(0, z)Fi(z); 0 ≤ i ≤ l.

Now, substituting equations (3.25) and (3.27)-(3.29) in equation (3.26) and solving, we get

(3.31) E0(0, z) =
p+ε1zH0[θ(z − 1) + p+{γ(z) − 1}]D(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
.

Using equation (3.30) equation (3.27) yields

(3.32) Ei(0, z) =
p+ε1ςizH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
1 ≤ i ≤ l.

Applying (3.30)-(3.31) in equation (3.28), we get two equations given below for i = 0 and 1 ≤ i ≤ l, respectively

(3.33) D0(0, z) =
p+ p−ε1H0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
,

(3.34) Di(0, z) =
p+ p−ε1ςiH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
; 1 ≤ i ≤ l.

Using (3.32)-(3.33) in equation (3.29), we get two equations given below for i = 0 and 1 ≤ i ≤ l, respectively

(3.35) =0(0, z) =
p+ p−ε1H0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)F0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
,

(3.36) =i(0, z) =
p+ p−ε1ςiH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)Fi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
; 1 ≤ i ≤ l.
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Lemma 3.2 The probability generating functions of the stationary joint distribution of the system size and server state
of the Markov process under the established stability condition are given by

H(x, z) = p+ε1zH0 exp[−{p+(1 − γ(z)) + θ}x]HV (x),

E0(x, z) =
p+ε1zH0[θ(z − 1) + p+{γ(z) − 1}]D(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
exp[−{p − p+γ(z)}x]E0(x),

Ei(x, z) =
p+ε1ςizH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
exp[−{p−p+γ(z)}x]Ei(x); 1 ≤ i ≤ l,

D0(x, z) =
p+ p−ε1H0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
exp[−{p+(1 − γ(z))}x]D̄0(x),

Di(x, z) =
p+ p−ε1ςiH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
exp[−{p+(1−γ(z))}x]D̄i(x); 1 ≤ i ≤ l,

=0(x, z) =
p+ p−ε1H0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)F0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
exp[−{p+(1 − γ(z))}x]=0(x),

=i(x, z) =
p+ p−ε1ςiH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)Fi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
exp[−{p+(1−γ(z))}x]=i(x); 1 ≤ i ≤ l.

Lemma 3.3 The marginal probability generating functions of the system size when the server is on working vacation,
busy with FES, busy with SOS, waiting for repair due to failure in FES, waiting for repair due to failure in SOS, under
repair due to failure in FES and under repair due to failure in SOS, respectively are given by

H(z) = (1 + p+ε1z)D(z)H0,

E0(z) =
p+ε1zH0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
,

Ei(z) =
p+ε1ςizH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]

′

1 ≤ i ≤ l,

D0(z) =
p−ε1H0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
[1 − F0(z)]
[1 −C(z)]

,

Di(z) =
p−ε1ςiH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
[1 − Fi(z)]
[1 −C(z)]

; 1 ≤ i ≤ l,

=0(z) =
p−ε1H0[θ(z − 1) + p+{γ(z) − 1}]D(z)V0(z)F0(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
[1 − E0(z)]
[1 −C(z)]

,

=i(z) =
p−ε1ςiH0[θ(z − 1) + p+{γ(z) − 1}]D(z)E0(z)Vi(z)Fi(z)

[z − {ς0 +
∑l

i=1 ςiEi(z)}E0(z) − p−{E0(z)V0(z)F0(z) + E0(z)
∑l

i=1 ςiEi(z)Vi(z)Fi(z)}]
[1 − Ei(z)]
[1 −C(z)]

; 1 ≤ i ≤ l.

where, H0 =
(1 − ρ)

(1 − ρ) + (p+ε1 + θρ)H̃(θ)
which is obtained by using normalizing condition (3.16).

Theorem 3.1 The probability generating function of system size denoted by GS (Z), is given by

GS (z) =
θ

p+
H0 + H(z) +

∑k
i=0 Ei(z) +

∑k
i=0 Di(z) +

∑k
i=0 =i(z).

4 Performance Indices
The performance prediction of a queueing system can be done by analyzing the system. For this, first we find the
steady state probabilities for different states of the server which we use to obtain various useful performance measures.
Various useful queueing and reliability indices of an unreliable MX/G/1/G-queue with delayed repair where server
follows working vacation policy, are given by
(a) Steady state probabilities

1. Probability that the server is on working vacation, denoted by P[H] and is given by

P[H] = H(1) =

[
1 +

p+ε1{1 − H∗V (θ)}
θ

]
H0.
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2. Probability that the server is busy in providing FES to the customers denoted by P[E0] and is obtained as

P[E0] = E0(1) =
p+ε1[θ + p+ε1][1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
.

3. Probability that the server is busy in providing SOS to the customers denoted by
P[Ei] for 1 ≤ i ≤ l and is found to be

P[Ei] = Ei(1) =
p+ε1ςi[θ + p+ε1]E∗0(p−)[1 − E∗i (p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
; 1 ≤ i ≤ l.

4. Probability that the server is waiting for repair due to failure in FES of the customers denoted by P[D0] and is
given by

P[D0] = D0(1) =
p+ε1ω

(1)
0 [θ + p+ε1][1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
.

5. Probability that the server is waiting for repair due to failure in SOS of the customers denoted by P[Di] and is
given by

P[Di] = Di(1) =
p+ε1ςiω

(1)
i [θ + p+ε1]E∗0(p−)[1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
; 1 ≤ i ≤ l.

6. Probability that the server is under repair due to failure in FES of the customers denoted by P[=0] and is given
by

P[=0] = =0(1) =
p+ p−ε1$

(1)
0 [θ + p+ε1][1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
.

7. Probability that the server is under repair due to failure in SOS of the customers denoted by P[=i] and is given
by

P[=i] = =i(1) =
p+ p−ε1ςi$

(1)
i [θ + p+ε1]E∗0(p−)[1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
; 1 ≤ i ≤ l.

(b) Average number and mean waiting time of customers in the system
The average number and mean waiting time of customers in the system denoted by LS and WS , respectively are

given by

LS = G′S (1) = H′(1) + E0
′(1) +

∑l
i=1 Ei

′(1) + D0
′(1) +

∑l
i=1 Di

′(1) + =0
′(1) +

∑l
i=1 =i

′(1) and WS =
LS

p+ε1
.

For, 0 ≤ i ≤ l we have

bi = E′∗i (p−), νi =
[1 − E∗i (p−)]

p−
, ei = fi = 1, e′i = p+ε1$

(1)
i , f ′i = p+ε1ω

(1)
i ,

b′i = −p+ε1E∗i
′(p−), ν′i =

p+ε1[p−E∗i
′(p−)1 − E∗i (p−)]
(p−)2 ,

e′′i = p+ε2$
(1)
i + (p+ε1)2$(2)

i , f ′′i = p+ε2ω
(1)
i + (p+ε1)2ω(2)

i , b′′i = −p+ε2E∗i
′(p−) + (p+ε1)2E∗i

′′(p−),

ν′′i =
[p+ p−{p−ε2 + 2p+ε2

1}{p
−E∗i

′(p−)1 − E∗i (p−)} − (p−)3(p+ε1)2E∗i
′′(p−)]

(p−)4 ,

d1 =
1 − H∗V (θ)

θ
; d′1 =

p+ε1[d1 + H∗V
′(θ)]

θ
; T ′ = (θ + p+ε1); T ′′ = p+ε2,

Ψ′0 = b0
∑l

i=1 b′i + b′0(ς0 +
∑l

i=1 ςibi),Ψ′′0 = b0
∑l

i=1 ςib′′i + b′′0 (ς0 +
∑l

i=1 ςibi) + 2b′0
∑l

i=1 ςib′i ,

Ψ′1 = e′0ν0 f0 + e0ν
′
0 f0 + e0ν0 f ′0 ,Λ

′′ = −2ε1Ω′; Λ′′′ = −3(ε1Ω′′ + ε2Ω′)

Ψ′2 = b0
∑l

i=1 ςi(e′iνi fi + eiν
′
i fi + eiνi f ′i )Ψ′′1 = 2(e′0ν

′
0 f0 + e′0ν0 f ′0 + e0ν

′
0 f ′0) + e′′0 ν0 f0 + e0ν

′′
0 f0 + e0ν0 f ′′0 ,

Ψ′′2 = 2b′0
∑l

i=1 ςi(e′0ν
′
0 f0 + e′0ν0 f ′0 + e0ν

′
0 f ′0) +

∑l
i=1[2(e′iν

′
i fi + e′iνi f ′i + eiν

′
i f ′i ) + e′′i νi fi + eiν

′′
i fi + eiνi f ′′i ],

Ω′ = 1 − ψ′0 − p−(ψ′1 + ψ′2); Ω′′ = −ψ′′0 − p−(ψ′′1 + ψ′′2 ),

H′(1) =
p+ε1[(p+ε1 + θ)d1 + p+ε1H∗V (θ)]H0

θ
; E′0(1) =

p+ε1H0[Num′′Ω′ − Num′Ω′′]
2(Ω′)2 ,

E′i (1) =
p+ε1ςiH0[Num′′1 Ω′ − Num′1Ω′′]

2(Ω′)2 ,
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D′0(1) =
p−ε1H0[Num′′′2 Λ′′ − Num′′2 Λ′′′]

3(Λ′′)2 ; D′i(1) =
p−ε1ςiH0[Num′′′3 Λ′′ − Num′′3 Λ′′′]

3(Λ′′)2 ,

=′0(1) =
p−ε1H0[Num′′′4 Λ′′ − Num′′4 Λ′′′]

3(Λ′′)2 ;=′i(1) =
p−ε1ςiH0[Num′′′5 Λ′′ − Num′′5 Λ′′′]

3(Λ′′)2 ,

Num′ = d1ν0T ′; Num′′ = 2(d1ν0T ′ + d′1ν0T ′ + d1ν
′
0T ′) + d1ν0T ′′,

Num′1 = d1νib0T ′; Num′′1 = 2(d1νib0T ′ + d′1νib0T ′ + d1ν
′
ib0T ′ + d1νib′0T ′) + d1νib0T ′′,

Num′′2 = −2d1ν0 f ′0T ′; Num′′′2 = −6(d1ν
′
0 + d′1ν0 + d1ν

′
0) f ′0T ′ − 3d1ν0(T ′ f ′′0 + T ′′ f ′0),

Num′′3 = −2d1ν0 f ′i T ′; Num′′′3 = −6(d1ν
′
ib0 + d′1νib0 + d1νib′0) f ′i T ′ − 3d1νib0(T ′ f ′′i + T ′′ f ′i ),

Num′′4 = −2d1ν0e′0 f0T ′; Num′′′4 = −6(d1ν
′
0 f0 + d′1ν0 f0 + d1ν0 f ′0)e′0T ′ − 3d1ν0 f0(T ′e′′0 + T ′′e′0),

Num′′5 = −2d1νie′0b0T ′; Num′′′5 = −6[d1b0(νi f ′i + fiν′i ) + νi(d′1b0 + d1b′0)]e′iT
′ − 3d1νib0(T ′e′′i + T ′′e′i).

(c) Reliability Indices
Let A(t) represents the point wise availability of the server at time ‘t′ i.e. probability that the server is either serving

a customer in FES or in SOS or the server is free. Let Ã = Lim
t→∞

A(t) denotes the steady state availability of the server,
then we have

Ã = Lim
t→∞

A(t) = 1 − =0(1) −
∑l

i=1 =i(1) = 1 − P[=0] −
∑l

i=1 P[=i].

Let F̃ denotes the steady state failure frequency of the server and it is given by

F̃ = p−[E0(1, 1) +
∑l

i=1 Ei(1, 1)] = p−[P[E0] +
∑l

i=1 P[Ei]].

(d) Busy Period

Theorem 4.1 Under the steady state conditions, let the expected length of busy period and busy cycle be denoted by
E[B]and E[C], respectively then we have

E[C] =
1

p+ε1H0
and E[B] =

(1 − H0)
p+ε1H0

.

Proof. By applying the arguments of an alternating renewal process, we can use the following results directly as

H0 =
E[I]

E[I] + E[B]
, E[B] =

(1 − H0)
p+ε1H0

and E[C] =
1

p+ε1H0
= E[I] + E[B],

where, E[I]is the time length that the system is in empty state. Since the inter arrival time between two customers
follows exponential distribution with parameter p+, we have E[I] = 1

p+ε1
.

5 Special Cases
In this section, we deduce some special cases to validate our results with that of the developed model from the
literature:
Case I: M/G/1 G-queue with unreliable server, working vacations and vacation interruption (i.e. No batch arrival, No
two phase service and No delayed repair)

Setting ε1 = 1, εn = 0 ∀n ≥ 1, C(z) = z, ςi = 0(1 ≤ i ≤ l), $(1)
i = 1, $(r)

i = 0(1 ≤ i ≤ l), (r ≥ 2), we have

H(1) = [1 +
p+{1 − H∗V (θ)}

θ
]H0,

E0(1) =
p+[θ + p+][1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
,

=0(1) =
p+ p−[θ + p+][1 − E∗0(p−)][1 − H∗V (θ)]H0

θp−(1 − ρ)
.

The above results coincide with that of Zhang and Liu [5].
Case II: M/G/1 queue with unreliable server, working vacations and vacation interruption (i.e. No negative arrival,
No batch arrival, No two phase service and No delayed repair)

Setting p → 0, ε1 = 1, εn = 0 ∀n ≥ 1, C(z) = z, ςi = 0(1 ≤ i ≤ l), $(1)
i = 1, $(r)

i = 0(1 ≤ i ≤ l)(r ≥ 2), our
results coincides with that of Zhang and Hou [10].
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6 Cost Function
In this section, we have constructed a cost function to make the system cost effective. The various cost elements
associated with different activities are given as follows:
C1 : Holding cost per unit time of each customer present in the system,
C2 : Cost per unit time when the server is on and in operation,
C3 : Setup cost per busy cycle,
C4 : Startup cost per unit time for the preliminary work done by the server before initiating the service.

We construct the function for the expected total cost per unit time as follows:
E[TC] = C1LS + C2[1 − H0] + C3 p+ε1 + C4H0.

7 Numerical Illustration
This section explores the queueing congestion situation of a call/contact center of a certain mobile company. For
illustration purpose, we assume that all distribution functions used in this paper are exponential i.e. H(x), Ei(x), Di(x),
=i(x)(0 ≤ i ≤ l) are all exponential with rates q (working vacation completion rate), µB (service rate during FES),
µB1 , µB2 , µB3 (service rate during SPS with l = 3), g1 (delayed repair rate during FES), g21, g22, g23 (delayed repair rate
during SPS with l = 3), b1 (repair rate during FES), b21, b22, b23 (repair rate during SPS with l = 3, respectively.
There are company service representatives (CSR’s) whose primary job is to attend and respond to customer’s calls.
When CSR is free, he/she may perform some secondary task during which he/she can make phone calls to promote
company’s service and products, but if a fresh call arrives, the CSR resumes its primary job and assist the call. This
situation is called as working vacation and vacation interruption in queueing terminology. The calls arrive to the
call/contact center in batches in Poisson fashion with rate p+ = 4 messages/min.. The batch size is assumed to
be geometrically distributed with ε1 = 0.67 and ε2 = 0.89. The calls are served by the CSR with rate µB = 5
calls/min.. If the customer’s problem is not solved by that CSR, he/she passes the request to another CSR’s with
rates µB1 = µB2 = µB3 = 4.5 calls /min.. The CSR can perform secondary task during working vacation with rate
h = 0.2 calls/min. and if there is some primary call, it interrupts its vacation and returns to the system with rate
q = 0.4 calls/min. There are various harmful activities such as stealing hard disk space or CPU time, retrieving
secret information, distorting data, etc. (called negative customers in queueing terminology) which arrives with rate
p− = 0.5 messages/min. and forces the server to leave the system for repair. Before repair, the repairman took some
time for preliminary settings; the CSR is said to be under delayed repair state. The delayed repair (repair) rates are
taken as g1 = 8, g21 = 6 = g22 = g23 (b1 = 12, b21 = 8 = b22 = b23). For cost effective model, we consider
cost sets as C1 = $5; C2 = $20; C3 = $100; C4 = $20. By coding a program in MATLAB software, we obtain
following performance measures:P[H] = 0.1483; P[E0] = 0.3109; P[ES ] =

∑3
i=1 P[Ei] = 0.0821; P[D0] = 0.1360;

P[DS ] =
∑3

i=1 P[Di] = 0.1541; P[=0] = 0.0907; P[=S ] =
∑3

i=1 P[=i] = 0.1156; LS = 13.33; WS = 4.99 min.;
Ã = 0.7937; F̃ = 1.3756 and E[TC] = $353.31.

8 Sensitivity Analysis
In this section, we explore the effects of some critical system parameters on various queueing and reliability indices
by coding a program in MATLAB software. We assume that batch size is geometric distributed whereas service
time, delayed repair time, repair time and vacation time are assumed to be exponential distributed. The results are
summarized in Figures 8.1-8.2 and in Tables 8.1-8.5. We have made the system cost effective by providing trends
in expected system cost by varying some critical system parameters and cost elements. The default parameters for
Table 8.1 are taken as k = 3, p− = 3.5, p+ = 4, µB = 5, µB1 = µB2 = µB3 = 4.5, θ = 0.2, µν = 0.2, γ1 = 8, γ21 = γ22 =

γ23 = 6, β1 = 12, β21 = 8, β22 = 8, β23 = 8; for Tables 8.2-8.5 are taken as k = 3, p− = 3.5, p+ = 4, µB = 5, µB1 = µB2 =

µB3 = 4.5, θ = 0.2, µν = 0.2, γ1 = 8, γ21 = γ22 = γ23 = 6, β1 = 12, β21 = 8, β22 = 8, β23 = 8 and for Figs 8.1-8.2 are
taken as k = 3, p− = 3, p+ = 3, µB = 4.5, µB1 = µB2 = µB3 = 4, θ = 0.2, µν = 0.2, γ1 = 8, γ21 = γ22 = γ23 = 6, β1 =

12, β21 = β22 = β23 = 8 and for Figs 8.1 are taken as k = 3, p− = 3, p+ = 3, µB = 4.5, µB1 = µB2 = µB3 = 4.5, θ =

0.2, µν = 0.2, γ1 = 8, γ21 = γ22 = γ23 = 6, β1 = 12, β21 = 8, β22 = 8, β23 = 8 and for Figs 8.2 are taken as k = 3, p− =

3, p+ = 3, µB = 4.5, µB1 = µB2 = µB3 = 4, θ = 0.2, µν = 0.2, γ1 = 8, γ21 = γ22 = γ23 = 6, β1 = 12, β21 = β22 = β23 = 8.
Tables 8.1-8.2 show the effect of some parameters such as p−, µB, γ1 and β1 on various performance measures.

Table 8.1 depicts that the negative arrival rate p− has significant effect on the server when the server is either on working
vacation or under delayed repair state or under repair state; we see an increasing trend in the long run probabilities
P[H], P[D0], P[DS ], P[=0] and P[=S ] for increasing values of negative arrival rate p−. On the other hand P[E0] and
P[ES ] decrease with the increase in the values of p−. This is due to the fact that the presence of negative customer
leads to server failure which forces the server to leave the system for repair. Moreover we observe from Table 8.1 that
the server is more prone to failure and is less available in the system when the negative customer enters the system
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with higher rate. From Table 8.1, we also notice that the long run probabilities P[E0], P[ES ], P[D0], P[DS ], P[=0]
and P[=S ] decrease while that of P[H] increase with the increase in service rate µB. Also F̃ decreases but Ã increases
on increasing the values of µB.

Table 8.1: Effect of (a) p− and (b) µB on various performance measures

p− P[H] P[E0] P[ES ] P[D0] P[DS ] P[=0] P[=S ] Ã F̃
3.2 0.0345 0.3244 0.1121 0.1297 0.1842 0.1038 0.1382 0.7579 1.3970
3.4 0.0421 0.3165 0.1065 0.1345 0.1907 0.1076 0.1430 0.7492 1.4387
3.6 0.0494 0.3090 0.1014 0.1390 0.1968 0.11128 0.1476 0.7410 1.4778
3.8 0.0564 0.3019 0.0966 0.1434 0.2027 0.1147 0.1520 0.7332 1.5145
µB P[H] P[E0] P[ES ] P[D0] P[DS ] P[=0] P[=S ] Ã F̃
5.0 0.0458 0.3127 0.1039 0.1368 0.1938 0.1094 0.1453 0.7451 1.4585
5.2 0.0527 0.3054 0.1014 0.1336 0.1937 0.1069 0.1453 0.7477 1.4242
5.4 0.0593 0.2984 0.0991 0.1305 0.1936 0.1044 0.1452 0.7502 1.3914
5.6 0.0656 0.2917 0.0968 0.1276 0.1936 0.1021 0.1452 0.7526 1.3602

As clear from Table 8.2, the average system size, average waiting time and the expected system cost decreases
with the increase in the values of either γ1 or β1. This is because on increasing either γ1 or β1, customers spent less
time under delayed repair or repair state, which in turn decreases each of LS ,WS and E[TC]. In Tables 8.3-8.5, we
explore the effect of various cost elements viz. C1,C2,C3 and C4 on E[TC].

Figures 8.1-8.2 display the trends in average system size and expected system cost by varying some parameters
such as p+, mB, mV and µB1. From Figs 8.1-8.2, we observe that both LS and E[TC] increases linearly with the
increase in values of arrival rate of positive customers whereas these decrease first slowly then sharply for increasing
the values of either of service rates mB, mV and µB1. This feature matches with many real life congestion situations
wherein if the server provides service during working vacation with higher rate, customers tend to accumulate more
in the system which increases both average system size and expected system cost. Moreover the average system size
decreases on increasing the values of vacation rate q. Also, Fig. 8.2 depict that the negative arrival rate tends to
increase the total system cost.

Table 8.2: Effect of (a) γi and (b) β1 on LS , WS and E[TC] for cost sets C1 = $5, C2 = $20, C3 = $100, C4 = $20.

q = 0.4 q = 0.5
γ1 LS WS E[TC] LS WS E[TC]
6 13.5522 5.0835 $354.44 12.8803 4.8301 $351.06
7 13.4869 5.0576 $354.10 12.7379 4.7767 $350.35
8 13.3281 4.9980 $353.30 12.5360 4.7010 $349.34
9 13.1784 4.9419 $352.55 12.3580 4.6342 $348.45
β1 LS WS E[TC] LS WS E[TC]
9 13.5225 5.0709 $354.27 12.8014 4.8005 $350.67
10 13.4657 5.0496 $353.99 12.7136 4.7676 $350.23
11 13.3963 5.0236 $353.64 12.6215 4.7330 $349.77
12 13.3281 4.9980 $353.30 12.5360 4.7010 $349.34

Table 8.3: Effects of cost elements (C1, C2) on E[TC] with fixed (C3, C4) = ($100, $20).

(C1,C2) ($5, $20) ($5,$ 40) ($5, $60) ($10, $40) ($15, $40)
E[TC] $353.307276 $372.762397 $392.217519 $439.403006 $506.043615
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Table 8.4: Effect of cost elements (C2,C4) on E[TC] with fixed (C1,C3) = ($5, $100).

(C2,C4) ($40, $10) ($40,$20) ($40, $30) ($50, $20) ($60, $20)
E[TC] $372.489958 $372.762397 $373.034836 $382.489958 $392.217519

Table 8.5: Effects of cost elements (C3,C4) on E[TC] with fixed (C1,C2) = ($5, $40).

(C2,C4) ($110, $10) ($110,$20) 399.701503 ($120, $20) ($130, $20)
E[TC] $399.156625 $399.429064 399.701503 $426.095731 $452.762397

Finally we conclude that 
• The system designers and decision makers can build a cost effective system by 
controlling some critical system parameters such as delayed repair rate, repair rate, service rate 
and various cost elements as our results show a significant effect of these parameters on expected 
system cost. 
• As observed from these results, the negative arrival rate has a significant impact on 
average system size, average waiting time and expected system cost; this parameter must be 
controlled in an effective manner. 

• The average queue length, average waiting time and expected system cost can be reduced 
to some extent with the provision of working vacation as we have noticed the decreasing trends 
in these indices by increasing θ. 
 

 

              

(a)                                                                           (b) 

              

 (c)                                                                                (d) 

Fig. 8.1: LS versus (a) p+ (b) µB (c) µV (d) µB1. Figure 8.1: LS versus (a) p+ (b) µB (c) µν (d) µB1
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(a)      (b) 

(c)                                                                  (d) 

9. Conclusion 

In this paper, we have investigated an MX/G/1 G-queue with working vacation and vacation 
interruption under delayed repair. Such queueing systems can be used to model many real life
congestion situations wherein servers are not always available for rendering service; during the 
idle time, the servers may leave for more economical type of vacation called working vacation. 
On the other hand our model can be used to examine the effect of negative customers (virus, 
unwanted programs, distorted data, etc.) in CCN’s, packet switching networks, 
telecommunication networks and many more wherein the presence of some unwanted arrivals 
forces the server to fail and therefore the server requires immediate repair. A numerical 
illustration for the proposed model has been provided and sensitivity analysis is carried out to 
observe the influence of some critical system parameters on various performance indices. 
Moreover, stochastic decomposition results have been derived for the proposed model. 

Figure 8.2: E[TC] versus (a) p+ (b) µB (c) µν (d) µB1 for cost sets C1 = 5, C2 = 20, C3 = 100, C4 = 20.

Finally we conclude that

• The system designers and decision makers can build a cost effective system by controlling some critical system
parameters such as delayed repair rate, repair rate, service rate and various cost elements as our results show a
significant effect of these parameters on expected system cost.
• As observed from these results, the negative arrival rate has a significant impact on average system size, average

waiting time and expected system cost; this parameter must be controlled in an effective manner.
• The average queue length, average waiting time and expected system cost can be reduced to some extent with

the provision of working vacation as we have noticed the decreasing trends in these indices by increasing θ.
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9 Conclusion
In this paper, we have investigated an MX/G/1 G-queue with working vacation and vacation interruption under delayed
repair. Such queueing systems can be used to model many real life congestion situations wherein servers are not always
available for rendering service; during the idle time, the servers may leave for more economical type of vacation
called working vacation. On the other hand our model can be used to examine the effect of negative customers (virus,
unwanted programs, distorted data, etc.) in CCN’s, packet switching networks, telecommunication networks and
many more wherein the presence of some unwanted arrivals forces the server to fail and therefore the server requires
immediate repair. A numerical illustration for the proposed model has been provided and sensitivity analysis is carried
out to observe the influence of some critical system parameters on various performance indices. Moreover, stochastic
decomposition results have been derived for the proposed model.
Acknowledgement. Authors are thankful to the Editor and referee for their valuable suggestions to bring the paper in
its present form.
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Abstract

This investigation analyzes a breakdown service with setup time under N-policy. Only in working condition,
the server may fail and dispatch immediately for the repair job which can be performed according to exponential
distribution by a repairman. The server goes on vacation if the system does not have job to perform, i.e. the system is
empty and later on switches on when the system accumulates N jobs. The arrivals at service station of the customers
follow Poisson fashion with rate dependent on the server’s status which may be idle, busy or brokendown state. By
using generating function method, we derive the queue size distribution. The expressions for various performance
characteristics including average queue length, probabilities of long-term fraction of time for which the server is
idle, busy, broken down and in repair state. The optimal value of threshold parameter N which minimizes the total
average cost is determined analytically. The parameters’ sensitivity on different performance measures is examined
by facilitating the numerical results.
2010 Mathematics Subject Classifications: 69K25, 90B15, 90B22.
Keywords and phrases: N-policy, Finite queue, Server breakdown, Generating function, Queue size, Set up time,
State dependent rate.

1 Introduction
Queueing problems with server breakdown have found increasing attention of research workers to portray realistic
congestion scenarios of routine as well as commercial/industrial systems. Queueing systems subject to server
breakdown have many applications in practical problems which ranges from computer networks to high speed
distributed networks, call centers to cloud computing centers, Hospitals to malls, mobile computing to Internet of
Things (IoT). Several authors have contributed towards server vacation model with threshold-based service policies.
In N-policy queueing systems, the server starts the service as soon as the customers’ count reached to a threshold level
(say N). In recent past, Gaver [2], Grey et al. [3], Hersh and Brosh [4] and many more authors analyzed N- policy
for a variant of queueing problems. Mitrans and Wright [10], Jain [5], Wang [12], Wang and Hung [13] analyzed a
queueing model for N-parallel servers with server breakdowns and repairs.

Jain et al. [6] suggested (N, F) policy for the control of service and arrivals in case of an unreliable server queue
in which repair is performed in multi-optional phase along with start-up. Kumar and Jain [8] proposed threshold
‘N’ based policy for the performance prediction of (M, m) degraded machine repair problem with spare provisioning
by including the concepts of the multi-heterogeneous servers, standby switching failure and multiple vacations. In
recent years, Jiang et al. [6], Lan and Tang [9], Bu et al. [1] and Yen et al. [14] developed some queueing models
for congestion problems under N-policy strategy. Sethi et al.. [11] developed Markovian model for unreliable single
server queue by considering the impatience behavior of the customers and system operating under N-policy. They
have also proposed the ANFIS soft computing approach and cost optimization.

The period for which the server is engaged in service is known as busy period. Due to unreliable server, there
may be breakdown period during which the server cannot provide service to the customers. The time taken by the
repairman before starting the repairing of the breakdown server is called setup time. A busy cycle is called the amount
of idle time, busy period, breakdown period and restored period. In this paper, we investigate a queueing model subject
to random breakdowns and repairs by incorporating the state dependent rate and setup time. The method of generating
function is used to for establishing the probabilities for various states. The key performance measures are derived by
using probabilities generating function (PGF). The optimum value of threshold parameter ‘N’ is obtained to minimize
the average total cost. The rest of the paper is arranged as follows. Section 2 provides the model description and
formulation of Chapman-Kolmogorov equations for steady state using appropriate transition rates. Section 3 provides
results for PGF. In Section 4 we calculate the value of P0(0) by using the normalizing conditions. In Section 5, we
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derive various performance measures in order to establish optimal N-policy. In Section 6, cost analysis is suggested
so as to evaluate optimal value of threshold parameter based on different parameter values. Section 7 discusses special
cases while Section 8 discusses sensitivity analysis. Finally, Section 9 concludes the work done by highlighting the
novel features.

2 Model Description
To formulate Markov’s finite queueing model with server breakdown, setup time under N-policy and state dependent
rates, we denote the server’s status any time epoch ‘t’ by

J(t) =


0, server is idle
1, server is turned on and operating
2, server is turned on and breakdown
3, server is turned on and under repair

The customers arrive independent to each other at the service stations in Poisson fashion. The server performs
service in the first come first out (FIFO) order. The input rate of the customers is assumed to be state-dependent based
on the status of the server. When in working condition, the server is subject to random failure and is returned to its
previous state after repair. The repairman needs some time called set up time before beginning repair of the failed
server. The repairman’s setup process starts as soon as the server fails. The customers’ service time as well as server’s
life, maintenance time and installation time are governed by exponential distributions.

The notations used for mathematical formulation of the model are described as below:

λ, λ1, λ2, λ3 Customers’ arrival rate when J(t) = 0, 1, 2, 3, respectively
α(β) Failure (repair) rate of the server
µ0(µ1) Service rate of the server for 1 ≤ n ≤ N(N + 1 ≤ n ≤ K)
ν0(ν1) Setup rate of repairmen for 1 ≤ n ≤ N(N + 1 ≤ n ≤ K)
E[I](E[B]) Expected idle (busy) time length.
E[D](E[R]) Expected breakdown (repair) time length.
E[C] Expected cyclic time length.
PI(PB) The long-term portion of the time for which the server is idle (busy)
PD (PR) The long-term portion of the time for which server is in breakdown

(under repair) state.
Pi,n The steady state probability that the service will have n customers when the

server is in state J(t) = i, (i = 0, 1, 2, 3.)

To formulate the mathematical model, the governing difference equations are constructed using appropriate
transition rates. Chapman-Kolmogorov equations for formulating the mathematical model of concerned system for
steady state are framed as follows:
(2.1) 0 = −λp0,0 + µ0 p1,1,

(2.2) 0 = −λp0,n + λp0,n−1, 1 ≤ n ≤ N − 1 ,

(2.3) 0 = −(λ1 + α + µ0)P1,1 + µ0P1,2 + β P3,1 ,

(2.4) 0 = −(λ1 + α + µ0)P1,n + λ1P1,n−1 + µ0P1,n+1 + βP3,n, 2 ≤ n ≤ N − 1,

(2.5) 0 = −(λ1 + α + µ0)P1,N + λ1P1,N−1 + µ1P1,N+1 + β P3,N + λP0,N−1,

(2.6) 0 = −(λ1 + α + µ1)P1,n + λ1P1,n−1 + µ1P1,n+1 + β P3,n, N + 1 ≤ n ≤ K − 1,

(2.7) 0 = −(µ1 + α)P1,K + λ1P1,K−1 + β P3,K ,

(2.8) 0 = −(λ2 + ν0)P2,1 + α p1,1,

(2.9) 0 = −(λ2 + ν0)P2,n + λ2P2,n−1 + α p1,n, 2 ≤ n ≤ N,

(2.10) 0 = −(λ2 + ν1)P2,n + λ2P2,n−1 + α p1,n, N + 1 ≤ n ≤ K − 1 ,

(2.11) 0 = −ν1 P2,K + α P1,K + λ2P2,K−1 ,

(2.12) 0 = −(λ3 + β)P3,1 + ν0 p2,1 ,

(2.13) 0 = −(λ3 + β)P3, n + ν0 p2, n + λ3P3, n−1, 2 ≤ n ≤ N ,

(2.14) 0 = −(λ3 + β)P3, n + ν1 p2, n + λ3P3, n−1, N + 1 ≤ n ≤ K − 1 ,

(2.15) 0 = −β P3,K + ν1 p2,K + λ3P3,K−1.
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3 Queue Size Distribution
The generating functions are defined as:

(3.1) G0(z) =
∑N−1

n=0 P0,nzn,

(3.2) Gi(z) =
∑K

n=1 Pi,nzn, i = 1, 2, 3..

Using (2.1)-(2.15) and (3.1)-(3.2), we get

(3.3) G0(z) =
1 − zN

1 − z
P0,0 ,

(3.4) G1(z) =

[
[λz(1 − zN)P0, 0 + (z − 1)a(z)]L2(z)L3(z) + λ2βz(z − 1)b(z) − λ1(1 − z)
zK+1L2(z)L3(z)P1,K − βz(1 − z)λ2ν1zK+1P2,K + λ3βzzK+1(1 − z)L2(z)P3,K

]
[αβν1z + L1(z)L2(z)L3(z)]

,

(3.5) G2(z) =

[
[αλz(zN − 1)P0, 0 + α(1 − z)a(z)]L3(z) − [αβz − L1(z)L3(z)]b(z) + αλ1(1 − z)
zK+1L3(z)P1,K − λ2L1(z)L3(z)zK+1(1 − z)P2,K − αβzλ3zK+1(1 − z)P3,K

]
[αβν1z + L1(z)L2(z)L3(z)]

,

(3.6) G3(z) =

[
αν1[λz(1 − zN)P0, 0 + (z − 1)a(z)] − λ2(z − 1)L1(z)b(z) − αν1λ1(1 − z)zK+1P1,K
+λ2ν1(1 − z)L1(z)zK+1P2,K − λ3L1(z)L2(z)(1 − z)zK+1P3,K

]
[αβν1z + L1(z)L2(z)L3(z)]

,

where,

L1(z) =
[
λ1z2 − (λ1 + α + µ1)z + µ1

]
,

L2(z) = (λ2z − λ2 − ν1) ,

L3(z) = (λ3z − λ3 − β) ,

a(z) = (µ0 − µ1)
∑N

n=1 P1, nzn ,

b(z) = (ν0 − ν1)
∑N

n=1 P2, nzn .

4 Computation of P0, 0
Using normalizing condition stated as

G(1) =
∑3

i=1 Gi(1) = 1,

we get,

(4.1) P0, 0 =

[
γ + [αβ + ν1(α + β)]a(1) + [α(λ2 − λ3) + β(λ2 − λ1 + µ1)]b(1)

+[αβ + ν1(α + β)]
∑3

i=1 λiPi,K

]
N[γ + λ{αβ + ν1(α + β)}]

.

5 Performance Characteristics
Various performance characteristics are obtained explicitly as follows:
The long-term portion of the time for which the server is idle, busy, in breakdown and repair states respectively are

(5.1) PI = G0(1) = NP0, 0 .

(5.2) PB = G1(1) =
βλν1 − βν1a(1) − β(λ − λ2)b(1) − βν1

∑3
i=1 λiPi,K

[γ + λ{αβ + ν1(α + β)}]
.

(5.3) PD = G2(1) =
αλβ − αβa(1) − [α(λ3 − λ) + β(λ1 − λ − µ1)]b(1) − αβ

∑3
i=1 λiPi,K

[γ + λ{αβ + ν1(α + β)}]
.

(5.4) PR = G3(1) =
αλν1 − αν1a(1) − α(λ − λ2)b(1) − αν1

∑3
i=1 λiPi,K

[γ + λ{αβ + ν1(α + β)}]
.

We derive the formulae for the average number of customers in various states namely when idle [E(N0)] busy
[E(N1)], broken down [E(N2)], and under repair [E(N3)] as follows:

(5.5) E(N0) =
N(N−1)

2
P0, 0,
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(5.6) E(Ni) = lim
z→1

G′i(z) = lim
z→1

N′′i (1)D′(1)−D′′(1)N′i(1)

2(D′(1))2 , i = 1, 2, 3

where

D′(1) = (µ1 − λ1)βν1 − αβλ2 − αν1λ3 = γ,

D′′(1) = 2[λ1βν1 − (λ1 − α − µ1)(ν1λ3 + βλ2) − αλ2λ3] = 2δ,

N′1(1) = [−βλν1NP0, 0 + βν1a(1) + βλ2b(1) + βν1
∑3

i=1 λiPi,K ],

N′′1 (1) = [−βλν1N(N + 1)P0, 0 + 2βν1a′(1) + 2(βλ2 + λ3ν1) {λNP0, 0 − a(1)}

+2βλ2{b(1) + b′(1)} + 2λ1{(K + 1)βν1 − ν1λ3 − βλ2}P1,K

+2λ2βν1(K + 2)P2,K + 2λ3β{(K + 2)ν1 − λ2}P3,K],

N′′2 (1) = [αλNP0, 0{2λ3 − β(N + 1)} − 2αλ3a(1) + 2αβa′(1) − 2(λ1β − λ1λ3

+αλ3 + µ1λ3)b(1) + 2(µ1β − λ1β − αλ3)b′(1) + 2αλ1{(K + 1)β − λ3}P1,K

+λ2{2(K + 1)αβ − 2αλ3 − (λ1 − α − µ1)}P2,K + 2αβλ3(K + 2)P3,K],

N′3(1) = [−αλν1NP0, 0 + αν1a(1) + αλ2b(1) + αν1
∑3

i=1 λiPi,K],

N′′3 (1) = [−αλν1N(N + 1)P0, 0 + 2αν1a′(1) − 2λ2(λ1 − α − µ1)b(1)

+2αλ2b′(1) + 2αλ1ν1(K + 1)P1,K + λ2ν1{2(K + 1)α − 2(λ1 − α − µ1)}

P2,K − 2λ3{−αν1(K + 1) + αλ2 + ν1(λ1 − α − µ1)}P3,K].

Using (5.5)-(5.6) the average number of customers in the system obtained

(5.7) E(NS ) = E(N0) +
∑3

i=1 E(Ni).

Some More important Results are obtained as follows:

(5.8) E[I] =
N
λ
.

(5.9) E[C] = E[I] + E[D] + E[B] + E[R],

(5.10) PI =
E [I]
E[C]

, PD =
E [D]
E[C]

, PB =
E [B]
E[C]

, PR =
E [R]
E[C]

.

Expected cyclic time length is now obtained as

(5.11) E[C] =
E[I]
PI

=
N[γ + λ{αβ + ν1(α + β)}]

λ

[
γ + [αβ + ν1(α + β)]a(1) + [α(λ2 − λ3) + β(λ2 − λ1 + µ1)]b(1)

+[αβ + ν1(α + β)]
∑3

i=1 λiPi,K

] .
Expected busy time length is

(5.12) E [B] = E[C]PB =
N

[
βλν1 − βν1a(1) − β(λ − λ2)b(1) − βν1

∑3
i=1 λiPi,K

]
λ

[
γ + [αβ + ν1(α + β)]a(1) + [α(λ2 − λ3) + β(λ2 − λ1 + µ1)]b(1)

+[αβ + ν1(α + β)]
∑3

i=1 λiPi,K

] .
Also, expected bkeakdown time length is given by

(5.13) E [D] = E[C]PD =
N

[
αλβ − αβa(1) − [α(λ3 − λ) + β(λ1 − λ − µ1)]b(1) − αβ

∑3
i=1 λiPi,K

]
λ

[
γ + [αβ + ν1(α + β)]a(1) + [α(λ2 − λ3) + β(λ2 − λ1 + µ1)]b(1)

+[αβ + ν1(α + β)]
∑3

i=1 λiPi,K

] .

Expected repair time length is obtained as

(5.14) E [R] = E[C]PR =
N

[
αλν1 − αν1a(1) − α(λ − λ2)b(1) − αν1

∑3
i=1 λiPi,K

]
λ

[
γ + [αβ + ν1(α + β)]a(1) + [α(λ2 − λ3) + β(λ2 − λ1 + µ1)]b(1)

+[αβ + ν1(α + β)]
∑3

i=1 λiPi,K

] .
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6 Cost Analysis
In order to determine the optimal value of control parameter N, total expected cost per unit time is evaluated using
different cost components.

The total cost per unit time is estimated

E{TC(N)} = (C1 + C2)
1

E[C]
+ C3PB + C4PI + C5PD + C6PR + C7E(Ns)

where
C1 Start-up costs when the system is up and running,
C2 Shutdown costs when the server is turned off,
C3 Cost per unit time for server servicing,
C4 Cost per unit time to shut down the server,
C5 Price for a broken down server per unit time,
C6 Price per system failure server repair time,
C7 Holding costs per unit time per system customer.

We observe that PB, PI , PD, PR are not the function of decision variable N, hence the effective expected total cost
per unit time is given by

(6.1) E{C(N)} = (C1 + C2)
1

E[C]
+ C7E(Ns).

The aim is to minimize E{C(N)} to determine the optimal value (say N∗) of the N factor for decision. A heuristic
approach based on a discrete distribution can be used to measure N∗.

7 Special Cases
Now we deduce results for some special cases by setting appropriate parameter as follows:

I. When µ0 = µ1, v0 = v1, λ = λ1 = λ2 = λ3 and K → ∞ then our results matches with Wang [12].
II. If λ = λ1 = λ2 = λ3 and service station is perfect i.e. β = α = 0, then the results coincide with Wang and Huang

[13].
III. If we take service rate constant, then the model is without setup time. It is noticed that G3(z) → G2(z),K → ∞

and λ3 → λ2 so that our model matches with Jain [5].

8 Sensitivity Analysis
We conduct statistical experiments using MATLAB to show the effect of different parameters on the average queue
size. Figures 8.1-8.6 depict the comparison of total queue size for homogenous arrival rate (λ = λ1 = λ2 = λ3 = 0.5)
with heterogeneous arrival rates (λ1 = 0.9λ, λ2 = 0.5λ, λ3 = 0.3λ) and (λ1 = 0.7λ, λ2 = 0.4λ, λ3 = 0.3λ) by varying
other parameters. From Table 8.1 which displayed the effects of parameters λ, (α, β) and N on cost function, we note
that the cost function decreases first and then increases by increasing the value of N. The minimum costs corresponding
to different values of λ, (α, β) are shown by bold letters. Table 8.2 exhibits the effect of parameters (λ, µ, α, β, ν) on
queue length in the idle state, busy state, breakdown state, under repair state and in the cycle for homogenous and
heterogeneous cases.
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Table 8.1: The threeshold value of N and corresponding expected cost by varying different parameters

E{C(N)} 

λ N α=.1 α=.1 α=.5 α=.5 

β=2 β=4 β=2 β=4 

5 14.36 14.44 13.13 13.52 
6 13.74 13.81 12.71 13.04 

0.5 7 13.44 13.49 12.55 12.84 
8 13.33 13.39 12.56 12.81 
9 13.37 13.41 12.68 12.90 
5 15.44 15.54 13.85 14.33 
6 14.78 14.87 13.45 13.85 

0.6 7 14.46 14.53 13.30 13.64 
8 14.34 14.40 13.31 13.61 
9 14.35 14.41 13.43 13.70 
5 16.25 16.38 14.38 14.91 
6 15.61 15.71 14.04 14.48 

0.7 7 15.29 15.38 13.94 14.30 
8 15.18 15.25 13.98 14.30 
9 15.20 15.27 14.12 14.40 
5 16.85 16.99 14.87 15.37 
6 16.27 16.38 14.64 15.03 

0.8 7 15.99 16.09 14.61 14.92 
8 15.91 15.99 14.71 14.96 
9 15.96 16.03 14.89 15.10 
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Table 8.2: The expected number of customers for homogenous and heterogeneous arrival rates

 

  
λ 

Homogenous arrival rate 
 

Heterogeneous arrival rate 
  

E[I] E[B] E[D] E[R] E[C] E[I] E[B] E[D] E[R] E[C] 

0.1 20.51 2.44 0.81 0.61 24.37 20.62 2.30 0.77 0.57 24.25 
0.2 13.07 3.83 1.28 0.96 19.13 13.38 3.36 1.12 0.84 18.69 
0.3 9.35 5.35 1.78 1.34 17.82 9.95 4.29 1.43 1.07 16.75 
0.4 6.77 7.39 2.46 1.85 18.46 7.78 5.24 1.75 1.31 16.08 

0.5 4.56 10.95 3.65 2.74 21.91 6.19 6.29 2.10 1.57 16.16 

µ E[I] E[B] E[D] E[R] E[C] E[I] E[B] E[D] E[R] E[C] 

1.0 4.56 10.95 3.65 2.74 21.91 6.19 6.29 2.10 1.57 16.16 
1.5 6.87 4.85 1.62 1.21 14.55 7.46 3.76 1.25 0.94 13.41 
2.0 7.77 3.22 1.07 0.80 12.87 8.08 2.71 0.90 0.68 12.37 
2.5 8.27 2.42 0.81 0.60 12.10 8.46 2.12 0.71 0.53 11.82 

3.0 8.58 1.94 0.65 0.49 11.66 8.71 1.75 0.58 0.44 11.48 

α E[I] E[B] E[D] E[R] E[C] E[I] E[B] E[D] E[R] E[C] 

0.4 5.16 9.68 2.58 1.94 19.36 6.42 6.25 1.67 1.25 15.58 
0.5 4.56 10.95 3.65 2.74 21.91 6.19 6.29 2.10 1.57 16.16 
0.6 3.87 12.91 5.16 3.87 25.82 5.97 6.35 2.54 1.90 16.76 
0.7 3.03 16.51 7.71 5.78 33.03 5.75 6.41 2.99 2.24 17.40 

0.8 1.83 27.39 14.61 10.95 54.77 5.53 6.48 3.46 2.59 18.07 

β E[I] E[B] E[D] E[R] E[C] E[I] E[B] E[D] E[R] E[C] 

2.0 4.56 10.95 3.65 2.74 21.91 6.19 6.29 2.10 1.57 16.16 
3.0 5.00 10.00 3.33 1.67 20.00 6.32 6.32 2.11 1.05 15.81 
4.0 5.20 9.61 3.20 1.20 19.22 6.39 6.34 2.11 0.79 15.64 
5.0 5.32 9.39 3.13 0.94 18.79 6.44 6.35 2.12 0.64 15.54 

6.0 5.40 9.26 3.09 0.77 18.52 6.46 6.36 2.12 0.53 15.47 

ν E[I] E[B] E[D] E[R] E[C] E[I] E[B] E[D] E[R] E[C] 

1.5 4.56 10.95 3.65 2.74 21.91 6.19 6.29 2.10 1.57 16.16 
2.0 5.00 10.00 2.50 2.50 20.00 6.37 6.22 1.55 1.55 15.70 
2.5 5.24 9.53 1.91 2.38 19.07 6.48 6.17 1.23 1.54 15.43 
3.0 5.40 9.26 1.54 2.31 18.52 6.55 6.14 1.02 1.54 15.26 
3.5 5.51 9.07 1.30 2.27 18.15 6.61 6.12 0.87 1.53 15.14 

4.0 5.59 8.94 1.12 2.24 17.89 6.65 6.11 0.76 1.53 15.05 
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In Fig. 8.1 we display the effect of arrival rate λ on the average queue length E(NS ) for fixed values N = 5, α = .1,
β = 5, ν = 2.5, µ = 1. It is observed that when λ increases, the average queue length increases, the effect is more
prevalent for higher λ value. In Fig. 8.2, we fix N = 5, λ = .5, ν = 2.5, β = 2, α = .1 and plot the graph for average
queue length by varying µ from 0.7 to 2.8. From the graph we examine that E(NS ) decreases with the increase in value
of µ. As we expect, E(NS ) decreases sharply for lower value of µ.

Figure 8.1: Average Queue Length vs. λ
(N = 5, µ = 1, v = 2.5, β = 2, α = 1)

Figure 8.2: Average Queue Length vs. µ
(N = 5, λ = .5, v = 2.5, β = 2, α = 1)

In Fig. 8.3 and 8.4, we vary α(β) for fix values N = 5, λ = .5, ν = 2.5, µ = .1 and find that the average queue
length increases (decreases) as the value of α(β) increases. By fixing λ = 0.5, α = 0.1, β = 5, µ = 1, we plot graphs
for the average queue length E(NS ) vs. ν and N in Figures 8.5 and 8.6, respectively. It is seen that E(NS ) decreases
asymptotically with the increase in ν. Also, E(NS ) increases linearly with N.

Figure 8.3: Average Queue Length vs. α
(N = 5, λ = .5, v = 2.5, β = 2, µ = 1)

Figure 8.4: Average Queue Length vs. β
(N = 5, λ = .5, v = 2.5, α = .5, µ = 1)

Figure 8.5: Average Queue Length vs. v
(N = 5, λ = .5, β = 2, α = .1, µ = 1)

Figure 8.6: Average Queue Length vs. N
(λ = 5, β = 2, α = .1, µ = 1, v = 2.5)
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We conclude numerical results based on the sensitivity analysis carried as follows:

• that minimum expected length increases for both homogenous and heterogeneous arrival rate.
• As we expect, average queue lengths, indicates increasing (decreasing) trend with (λ, µ) and (α, β), but for

threshold parameter N, E(NS ) linearly increase.
• By improving the rate of service station to some specific threshold level, the average queue length can be reduced

to some extend only.
• For constant input rate system, all results seem to be better in terms of reduced average queue length.

9 Concluding Remarks
In this investigation, we have analyzed a finite queue operating under N-policy by including some realistic features
namely setup time, server breakdown and state dependent rates. The incorporation of setup time, which can be realized
in many real time systems makes our model more versatile than previous existing models in the literature. The explicit
expressions provided for various staging measures in term of steady state probabilities can be easily computed as
illustrated by taking numerical examples. The sensitivity analysis facilitated may be helpful in exploring the effect of
different parameters on key indices describing the system dynamic.
Acknowledgement. We are very much thankful to the Editor and Reviewers for their insight and fruitful suggestions
to bring the paper in its present form.
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Abstract

Time series analysis has been widely used by the researchers in the field of mathematical forecasting; it has been
mainly used to obtain the forecast of time series dealing with pollutants, groundwater level, and stock exchange
so as to study their future behavior of such time series. The present research work deals with the black carbon
concentrations in three major coal mines of India namely, Bokaro, Jharia and Raniganj. In this study, a time series
data last 38 years (from 1980 to 2018) obtained from a reliable source (NASA) have been considered by statistical
analysis tools like mean, median, mode, standard deviation, skewness, kurtosis, coefficient of variation and time
series (ARIMA (Autoregressive Integrated Moving Average)) model at 95% confidence limits have been applied.The
validation of the model is tested using R-square, stationary R-square, root mean square error (RMSE), normalized
Bayesian information criterion (BIC). It is observed that the model fitted very well, based on these past observations,
ARIMA model is applied to obtain the prediction of the amount of black carbon emission for next 7 years 5 months
(from Jun 2018 to Oct 2025). These results will help to develop new policies and preventive measures in future by the
government agencies, NGOs in these areas and take a note of the seriousness and impact of such huge concentration
of black carbon emission in these areas.
2010 Mathematics Subject Classifications: 93A30, 97M10.
Keywords and phrases: ARIMA, Black Carbon, RMS E, Mathematical Modeling.

1 Introduction
Black carbon (BC) has emerged as an alarming area of interest among the researchers, in recent times due to its share
in global warming and severe health impacts. Black carbon is black sooty material produced as substantial particle of
the carbonaceous aerosol released due incomplete combustion of biofuels, fossil fuels and biomass in coal-fired power
plants, steel plants, petroleum industries and oil refineries. In indoor conditions it mainly released due to cooking and
burning of fuels like wood, coal, animal manure, residues of crops [3, 38]. In Asia, the contribution of open biomass
burning from fossil fuels is nearly 40%, and that from burning of biofuels is 20% in the overall BC emission [29]. It
is a global problem as it has negative impact on human health such as Inhalation of BC leads to problems related to
respiratory such as chronic bronchitis and asthma, lung disease, damage to eye sights, cardio vascular disease, cancer
and even leads to birth defects. It gets mixed with air, water and soil thus entering the food chain and enters the human
body. Carbonaceous aerosols have received a great attention of the researchers recently due to its severe impact on
human health [14, 17, 21, 26, 37], agriculture [7] and the quality of air [10, 13, 39].

Black carbon is the major absorber of solar heat radiation in the atmosphere, BC leads to the heating of the Earths
atmosphere as it results into the reduction in incoming short-wave solar radiation at the Earths surface [8, 11, 12],
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and thus leading to the change in the temperature of the troposphere, which affects the microphysical properties of the
clouds and thus affecting the rainfall mechanisms [20]. BC aerosol affects the rainfall pattern by influencing the cloud
formation and precipitation process [28]. India is the worlds second largest producer of coal in the world and various
mining activities performed in the coal mining regions are leading to the spontaneous emission of black carbon along
with various other harmful gases in these regions [35].

Time series modeling has been largely used [9, 24, 30] to study the fluctuations and making good modeling
forecasts, it is very beneficial in decision-making of climatic conditions and estimation of future data. The Auto
regressive integrated moving average (ARIMA) models have been used in various studies of time series modeling of
air pollution [1, 2, 4, 6, 7, 16, 27] and water pollution [22, 24, 25, 36, 40].Time series modeling methods have also
been used to study the emission of black carbon [1, 5, 15, 31, 32, 33, 34].

Thus due to the above discussed severe impact of black carbon on human life and environment both nationally
and globally, the future study of black carbon is very important for framing national and international policies for
prediction of the level of black carbon emission in the future. Coal mines region being one of the major sources for
BC emission, the aim of this study is to calculate the amount of BC mass concentrations in the major coal fields of
India viz. coal field area of Raniganj, Jharia and Bokaro and making future forecast for these regions using statistical
and time series analysis.

2 Research methodology
2.1 Statistical analysis
Statistical analysis consists of mean, median, mode, standard deviation, kurtosis, skewness and coefficient of variation,
the spreadness or variability of the data in the sample is explained by standard deviation, to determine the nature of
the distribution curve it is classified as platykurtic, mesokurtic and leptokurtic which depends on the peakedness or
flatness of the curve we use kurtosis, skewness refers to the symmetry of the sample, the relative measure of the series
is termed as coefficient of variation (CV) [22, 23] and is defined as:

(2.1) CV% =
σ

µ
× 100%,

where, σ is the standard deviation and µ is the mean of the series. It is used to find the total variation in the BC
concentration.
2.2 Time series
A time series is a sequential set of data points measured over successive time intervals arranged in a proper
chronological order. It is one of the most widely used mathematical technique developed by researchers in the field
of mathematical modeling for studying fluctuations, extracting meaningful statistics and making good forecasts of the
time series. It is very beneficial in decision-making of climatic conditions and estimation of future values [18, 19].
2.2.1 Autoregressive Moving Average ARMA (p, q) Model
The Autoregressive (AR) and the Moving average (MA) are effectively combined together to form the Autoregressive
Moving average (ARMA) model. Mathematically it is represented as,
(2.2) yt = c + εt +

∑p
i=1 φiyt−i +

∑q
j=1 θ jεt− j.

2.2.2 ARIMA Model
The most widely used time series model is the Box Jenkins based ARIMA (Autoregressive Integrated Moving) model.
In recent years the ARIMA model has been widely used in the fields of medicine, engineering, stock markets, weather
forecasting, economics, business, finance etc. In ARIMA model a non-stationary time series can be converted to
stationary by using the finite differencing technique. Mathematically the ARIMA (p, d, q) model is expressed,
(2.3) φ(L) = (1 − L)dyt = θ(L)εt,

i.e.,

(2.4)
(
1 −

∑p
i=1 φiLi

)
(1 − L)dyt =

(
1 +

∑q
j=1 θ jL j

)
εt.

Here p, d and q are the order of the autoregressive, integrated and moving average parts and these are non-negative
integers greater than or equal to zero. If any of these values become zero than it becomes the basic AR, MA or the
ARMA model of the time series.

The level of differencing is defined by the parameter d and it keeps a check on the level of differencing. The value
of d = 1 in most of the cases and if d = 0 then the model gets reduced to the ARMA (p, q) model.

If d = q = 0, then ARIMA(p, 0, 0) reduces to the AR(p) model and if p = d = 0, then ARIMA(0, 0, q) reduces to the
MA(q) model.

If p = q = 0 and d = 1, then ARIMA (0, 1, 0) becomes yt = yt−1 + εt which is known as the Random walk model.
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2.3 Root Mean Square error (RMSE)
It is the coefficient of error representing the standard deviation of the difference of actual values of the data from
the values predicted by the time series model also termed as the residual values, it is used to determine amount of
spreadness of the values from the line of best fit for a model and to determine the accuracy of the forecasted values.
Mathematically it is given by,

(2.5) RMS E =

√
1
n

∑n
i=1 e2

i ,

where n denotes the time period and ei denotes the error of forecasting.
2.4 R-squared and stationary R-squared values
These values are used as a measures for goodness of fit for a time series model; they are used as a coefficient of
determination of a model. The value of R square ranges from 0 to 1 while that of stationary R-squared ranges from
−∞ to 1, higher values indicate that the model considered is better than the baseline model.

3 Results and discussion
3.1 Sample sites
Raniganj (23o 40′ N 87o 05′ E) in West Bengal, Jharia (23o 50′ N86o 33′ E) and Bokaro
(23o 46′ N 85o 55′ E) in Jharkhand as shown in Fig. 3.1 are main focused sites for our current study, these are among
the major coal mines of India.The data of BC is obtained by NASA and processing the data is done via Giovanni
website (http://nasa.gov/). Using statistical and time series analysis the concentration of black carbon at these three
sites have been discussed. The results are based on long term trend analysis of the concentration of black carbon
expressed in volume(magnitude) as e−11 kgm−3 units over the past 38 year, 05 months data from Jan 1980 to May
2018. IBMS PS S Statistics software has been used for testing and training the data for choosing an appropriate time
series model. Further the statistical and time series results have been obtained using the same.

Figure 3.1: Map of India showing coal mines of Raniganj, Jharia and Bokaro.
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3.2 Statistical Analysis of Black carbon
Statistical parameters such as mean, mode, median, standard deviation, variance, skewness, kurtosis, range, coefficient
of variation have been used to study the behavior of our parameter i.e. BC concentration. The results of statistical
analysis have been shown in Table 3.1 and bar chart depiction of the observed results has been shown in Fig. 3.2.

Figure 3.2: Statistical analysis of black carbon at Raniganj, Jharia and Bokaro.

3.2.1 Raniganj (23o 40′ N 87o 05′ E)
The mean, mode and median value of BC concentration are at 2.192875807, 2.002202643 and 1.983193277, these
values are close to 2 depicting that the data distribution curve is symmetrical and follows a normal distribution. The
value of standard deviation and skewness are at 1.113654555 and 1.507609253 indicating that the data points are
distributed close to each other along the mean and the distribution curve is moderately skewed to the right. The curve
is leptokurtic as indicated by the value 4.192888602 in the Table 3.1.

Table 3.1: Time series and ARIMA forecast of Jharia
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3.2.2 Jharia (23o 50′ N86o 33′ E)
As shown in Table 3.1 the mean, mode and median value of BC concentration stand at 2.232444485, 1.846846847
and 2.059907834 all near to 2 as shown in the Table 3.1 indicating that the data exhibit normal distribution and
the distribution curve is symmetrical. Standard deviation is 1.130771534 and skewness as 1.560077228 indicating
moderately positive skewness of the data with data value near to each other. The curve is leptokurtic as the value of
kurtosis is 4.245785802.
3.2.3 Bokaro (23o 46′ N 85o 55′ E)
The value of mean, mode and median value of BC concentration are 2.269679113, 1.962719298 and 2.078581871 all
near to 2 as shown in Table 3.1 indicating that the data curve exhibit normal distribution and is symmetrical. Small
value of standard deviation along with skewness at 1.142111571 and 1.529151854 respectively indicate that the data
values are closely distributed with the mean and the data is positively skewed moderately towards the right. The curve
is leptokurtic as the value of kurtosis is greater than 3.
3.3 Time series prediction of Black carbon
For all the sample sites, it is observed that time series ARIMA (1,0,1) (0,1,1) model fitted very well to the data at 95%
confidence limits with 460 degree of freedom. As shown in Table 3.2, the values of stationary R2 and R-squared which
are the measures for goodness of fit, are both close to 1 depicting that the applied model fitted very well to the data.

Table 3.2: Time series and ARIMA forecast of Bokaro

Small value of RMSE show that the actual time series is very near to the model predicted, it can also be seen from
the Fig. 3.3 , Fig. 3.4 and Fig. 3.5 that the actual time series of the data and the predicted time series obtained using
ARIMA (1,0,1) (0,1,1) model are nearly coinciding with each other, along with the LCL (lower confidence limit) and
UCL (upper confidence limit) values presented in the figures. The figures also represent the forecasting for next 7
years and 5 months starting from Jun 2018 to Oct 2025 obtained using this model.The numerical values of normalized
BIC, mean predicted, lower confidence limit (LCL), upper confidence limit (UCL) and residual values for each of the
sample sites is discussed below.
3.3.1 Raniganj (23o 40′ N 870 05′ E)
The value of normalized BIC is -0.851. The mean predicted, lower confidence limit (LCL), upper confidence limit
(UCL) and residual values are observed to be 2.33769715, 1.247798074, 3.761368167 and 0.004329502.
3.3.2 Jharia (23o 50′ N 86o 33′ E)
Normalized BIC value is at -0.783. The mean predicted, lower confidence limit (LCL), upper confidence limit (UCL)
and residual values are observed to be as 2.369926804, 1.271560365, 3.82001922 and 0.004394215.

34



3.3.3 Bokaro (23o 46′ N 85o 55′ E)
For normalized BIC the value is -0.739. The mean predicted, lower confidence limit (LCL), upper confidence limit
(UCL) and residual values are observed to be 2.426624731, 1.272485047, 3.945160031and 0.004352878.

Figure 3.3: Statistical analysis of black carbon Figure 3.4: Time series analysis of black carbon

Figure 3.5: Time series and ARIMA forecast of Raniganj

4 Conclusion
Considering a long term data for black carbon concentration of 38 years, 05 months from Jan 1980 to May 2018for coal
mine regions of Raniganj, Jharia and Bokaro,time series ARIMA(1,0,1) (0,1,1) model is used to obtain a prediction of
next 7 years and 5 months starting from Jun 2018 to Oct 2025. The shape of the distribution curve is leptokurtic at all
the three sites. Small value of RMS E in all the three cases indicates that the values of the original time series and the
predicted model are very close to each other. It can been seen from Fig. 3.3 , Fig. 3.4 and Fig. 3.5 that ARIMA(1,0,1)
(0,1,1) model fitted quite well to the data over the three sample sites, the curves representing the observed and predicted
values of black carbon concentration coincide with each other depicting that the difference between the values is very
small. The figure also represents the future prediction made from Jun 2018 to Oct. 2025. Thus the model applied gave
quite reliable results and it can be used as a future forecasting tool over the coal mines to measure the BC concentration
over these regions and help in framing policies necessary for controlling air pollution and its adverse effect due to black
carbon in the coal mine regions of India.
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Abstract

In this paper, we prove the Hyers-Ulam (HU) stability of the first and second order partial differential equations:
ux(x, t) + K(x, u(x, t)) = 0 and uxx(x, t) + F(x, u)ux(x, t) + H(x, u) = 0 respectively.
2010 Mathematics Subject Classifications: 26D10; 35B35; 34K20; 39B52.
Keywords and phrases: Hyers Ulam stability, Partial differential equations, Banach Contraction Principle.

1 Introduction
Hyers Ulam (HU) stability of differential equation has drawn much attention since Ulam’s [16] presentation of the
problem on stability of group homomorphism in 1940 and Hyers’ [5] partial solution to it in 1941. For ordinary
differential equations one can refer [3, 15, 6, 7] and [8, 9] for partial differential equations. Its various extensions have
been named with additional word. One such extension is Hyers Ulam Rassias (HUR) stability. HUR stability for linear
differential operators of nth order with non-constant coefficients is studied in [10] and [11]. HUR stability for special
types of non-linear equations has been studied in [1, 2, 12, 13, 14]. In 2011, Gordji et al. [4], proved the HUR stability
of non-linear partial differential equations by using Banach’s Contraction Principle. In this paper, we prove the HU
stability of first and second order partial differential equations:

(1.1) ux(x, t) + K(x, u(x, t)) = 0,

where K : J × R→ R is a continuous function, u(x, t) ∈ C1(J × J), J = [a, b] be a closed interval and

(1.2) uxx(x, t) + F(x, u)ux(x, t) + H(x, u) = 0,

where F,H : J × R→ R are continuous functions. Here u(x, t) ∈ C2(J × J).
First we define HU stability.

Definition 1.1 The equation (1.1) is said to be HU stable if the following holds:
Let ε ≥ 0. Assume that , for any function u(x, t) ∈ C1 satisfying the differential inequality

(1.3) |ux(x, t) + K(x, u(x, t))| ≤ ε, ∀x, t ∈ J,

there exists a solution u0(x, t) ∈ C1 of equation (1.1) and M(ε) > 0 such that

u(x, t) − u0(x, t)| ≤ M(ε), ∀(x, t) ∈ J × J.

Similarly we can define HU stability for equation (1.2).
We need the following result.

Theorem 1.1 (Banach Contraction Principle) [4] : Let (X, d) be a complete metric space and T : X → X be a
contraction , that is, there exists α ∈ (0, 1) such that d(T x,Ty) ≤ αd(x, y),∀x, y ∈ X. Then ∃ a unique a ∈ X such that
Ta = a. Moreover, a = lim

n→∞T nx and d(a, x) ≤ 1
(1−α) d(x,T x),∀x ∈ X.
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2 Main Results
In this section we prove the HU stability of first and second order partial differential equations (1.1) and (1.2)
respectively.

Theorem 2.1 Let x0 ∈ J and K : J × R→ R be a continuous function such that

(2.1) |K(x, v(x, t)) − K(x,w(x, t))| ≤ λ|v(x, t) − w(x, t)|,∀x, t ∈ J,

where λ > 0, λ ∈ R and v(x, t),w(x, t) ∈ C1.
Let

(2.2) M1 = sup
x∈J

∣∣∣∣∫ x
x0

ds
∣∣∣∣ ,

with 0 < λM1 < 1. Let u(x, t) ∈ C1 satisfy

(2.3) |ux(x, t) + K(x, u(x, t))| ≤ ε,∀x, t ∈ J,

then there exists a unique function u0(x, t) ∈ C1, such that∣∣∣∣∣∂u0

∂x
(x, t) + K(x, u0(x, t))

∣∣∣∣∣ < ε and |u(x, t) − u0(x, t)| ≤
M1

1 − λM1
ε.

Proof. Consider the differential equation

(2.4) ux(x, t) + K(x, u(x, t)) = 0, ∀x, t ∈ J.

We define a metric d and an operator P on C1, respectively by

(2.5) d(ζ, η) = sup
x,t∈J
|ζ(x, t) − η(x, t)|

and

(Pζ)(x, t) = u(x0, t) −
∫ x

x0
K(s, ζ(s, t))ds,∀ζ ∈ C1.

Consider,

d(Pζ, Pη) = sup
x,t∈J
|(Pζ)(x, t) − (Pη)(x, t)|

= sup
x,t∈J
| −

∫ x
x0

K(s, ζ(s, t))ds +
∫ x

x0
K(s, η(s, t))ds|

= sup
x,t∈J
|
∫ x

x0
K(s, ζ(s, t))ds −

∫ x
x0

K(s, η(s, t))ds|

≤ sup
x,t∈J

∣∣∣∣ ∫ x
x0
|K(s, ζ(s, t)) − K(s, η(s, t))|ds

∣∣∣∣
≤ sup

x,t∈J

∣∣∣∣ ∫ x
x0
λ|ζ(s, t)) − η(s, t)|ds

∣∣∣∣ (by equation (2.1))

≤ λ sup
x,t∈J

∣∣∣∣ ∫ x
x0

sup
s,t∈J
|ζ(s, t)) − η(s, t)|ds

∣∣∣∣
≤ λd(ζ, η) × sup

x∈J

∣∣∣∣ ∫ x
x0

ds
∣∣∣∣

≤ λd(ζ, η) × M1 (by equation (2.2) ).

Then by using Banach Contraction Principle, there exists a unique u0(x, t) ∈ C1 such that Pu0(x, t) = u0(x, t). Thus
u0(x, t) satisfy u(x0, t) −

∫ x
x0

K(s, u0(s, t))ds = u0(x, t) and

(2.6) d(u0, u) ≤
1

1 − λM1
d(u, Pu).

Now by inequality (2.3) we get,

−ε ≤
∂u
∂x

(x, t) + K(x, u(x, t)) ≤ ε,∀x, t ∈ J.

Integrating from x0 to x we get,

−ε
∫ x

x0
ds ≤

∫ x
x0

{
∂u
∂s (s, t) + K(s, u(s, t))

}
ds ≤ ε

∫ x
x0

ds,

⇒ −ε
∫ x

x0
ds ≤ {u(x, t) − u(x0, t) +

∫ x
x0

K(s, u(s, t))}ds ≤ ε
∫ x

x0
ds.
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⇒ −ε sup
x∈J

∫ x
x0

ds ≤ −ε
∫ x

x0
ds ≤ {u(x, t) − u(x0, t) +

∫ x
x0

K(s, u(s, t))}ds ≤ ε
∫ x

x0
ds ≤ sup

x∈J

∫ x
x0

ds.

⇒ −ε sup
x∈J
|
∫ x

x0
ds| ≤ −ε sup

x∈J

∫ x
x0

ds ≤ −ε
∫ x

x0
ds ≤ {u(x, t) − u(x0, t) +

∫ x
x0

K(s, u(s, t))}ds

≤ ε
∫ x

x0
ds ≤ sup

x∈J

∫ x
x0

ds ≤ ε sup
x∈J
|
∫ x

x0
ds|.

⇒ −εM1 ≤ {u(x, t) − u(x0, t) +
∫ x0

x K(s, u(s, t))}ds ≤ εM1.

⇒ |u(x, t) − u(x0, t) +
∫ x0

x K(s, u(s, t))ds| ≤ εM1.

⇒ |u(x, t) − (Pu)(x, t)| ≤ εM1.

⇒ sup
x,t∈J
|u(x, t) − (Pu)(x, t)| ≤ εM1.

⇒ d(u, Pu) ≤ εM1.

Using this inequality and equation (2.6) we get,

|u(x, t) − u0(x, t)| = |u0(x, t) − u(x, t)|
≤ sup

x,t∈J
|u0(x, t) − u(x, t)|

= d(u0(x, t), u(x, t))

≤
1

1 − λM1
d(u, Pu)

≤
M1

1 − λM1
ε.

We now prove the HU stability of equation (1.2).

Theorem 2.2 Let x0 ∈ J and F,H : J × R→ R be a continuous functions such that

(2.7) |F(x, v(x, t))vx(x, t) − F(x,w(x, t))wx(x, t)| ≤ λ1|v(x, t) − w(x, t)|,

and

(2.8) |H(x, v(x, t)) − H(x,w(x, t))| ≤ λ2|v(x, t) − w(x, t)|, ∀x, t ∈ J,

where λ1, λ2 > 0, λ1, λ2 ∈ R and v(x, t),w(x, t) ∈ C2(J × J).
Let

(2.9) M2 = sup
x,y∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

dsdy
∣∣∣∣,

with 0 < {λ1 + λ2}M2 < 1. If u(x, t) ∈ C2(J × J) satisfy

(2.10) |uxx(x, t) + F(x, u)ux(x, t) + H(x, u)| ≤ ε, ∀x, t ∈ J,

then there exists, a unique function, u0(x, t) ∈ C2(J × J),
such that ∂2u0

∂x2 (x, t) + F(x, u0(x, t)) ∂u0
∂x (x, t) + H(x, u0(x, t)) = 0 and |u(x, t) − u0(x, t)| ≤ M2

1−{λ1+λ2}M2
ε.

Proof. Consider the differential equation

(2.11)
∂2u
∂x2 (x, t) + F(x, u(x, t))

∂u
∂x

(x, t) + H(x, u(x, t)) = 0,∀x, t ∈ J.

We define a metric d and an operator P on C2(J × J), respectively by

(2.12) d(ζ, η) = sup
x,t∈J
|ζ(x, t) − η(x, t)|,

and

(Pζ)(x, t) = u(x0, t) −
∫ x

x0

∫ y
x0

F(s, ζ(s, t))ζs(s, t)dsdy −
∫ x

x0

∫ y
x0

H(s, ζ(s, t))dsdy

∀ ζ ∈ C2(J × J).
Consider

d(Pζ, Pη) = sup
x,t∈J
|(Pζ)(x, t) − (Pη)(x, t)|
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= sup
x,t∈J
| −

∫ x
x0

∫ y
x0

F(s, ζ(s, t))ζs(s, t)dsdy −
∫ x

x0

∫ y
x0

H(s, ζ(s, t))dsdy

+
∫ x

x0

∫ y
x0

F(s, η(s, t))ηs(s, t)dsdy +
∫ x

x0

∫ y
x0

H(s, η(s, t))dsdy|

= sup
x,t∈J
|
∫ x

x0

∫ y
x0

F(s, ζ(s, t))ζs(s, t)dsdy +
∫ x

x0

∫ y
x0

H(s, ζ(s, t))dsdy

−
∫ x

x0

∫ y
x0

F(s, η(s, t))ηs(s, t)dsdy −
∫ x

x0

∫ y
x0

H(s, η(s, t))dsdy|

= sup
x,t∈J
|
∫ x

x0

∫ y
x0

F(s, ζ(s, t))ζs(s, t)dsdy −
∫ x

x0

∫ y
x0

F(s, η(s, t))ηs(s, t)dsdy

+
∫ x

x0

∫ y
x0

H(s, ζ(s, t))dsdy −
∫ x

x0

∫ y
x0

H(s, η(s, t))dsdy|

≤ sup
x,t∈J
|
∫ x

x0

∫ y
x0

F(s, ζ(s, t))ζs(s, t)dsdy −
∫ x

x0

∫ y
x0

F(s, η(s, t))ηs(s, t)dsdy|

+ sup
x,t∈J
|
∫ x

x0

∫ y
x0

H(s, ζ(s, t))dsdy −
∫ x

x0

∫ y
x0

H(s, η(s, t))dsdy|

≤ sup
x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0
|F(s, ζ(s, t))ζs(s, t) − F(s, η(s, t))ηs(s, t)|dsdy

∣∣∣∣
+ sup

x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0
|H(s, ζ(s, t)) − H(s, η(s, t))|dsdy

∣∣∣∣
≤ sup

x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0
λ1|ζ(s, t)) − η(s, t)|dsdy

∣∣∣∣ + sup
x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0
λ2|ζ(s, t)) − η(s, t)|dsdy

∣∣∣∣
(by equation (2.7) and (2.8))

≤ λ1 sup
x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

sup
s,t∈J
|ζ(s, t)) − η(s, t)|dsdy

∣∣∣∣+
λ2 sup

x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

sup
s,t∈J
|ζ(s, t)) − η(s, t)|dsdy

∣∣∣∣
≤ λ1 sup

x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

d(ζ, η)dsdy
∣∣∣∣ + λ2 sup

x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

d(ζ, η)dsdy
∣∣∣∣

≤ {λ1 + λ2}d(ζ, η) sup
x,t∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

dsdy
∣∣∣∣

≤ {λ1 + λ2}d(ζ, η)M2 (by equation (2.9))
≤ {λ1 + λ2}M2 × d(ζ, η).

Therefore by using Theorem 1.1 , there exists, a unique, u0(x, t) ∈ C2(J × J) such that Pu0(x, t) = u0(x, t). Thus
u0(x, t) satisfies
(2.13) u(x0, t) −

∫ x
x0

∫ y
x0

F(s, u0(s, t))us(s, t))dsdy −
∫ x

x0

∫ y
x0

H(s, u0(s, t))dsdy = u0(x, t)

and

d(u0, u) ≤
1

1 − (λ1 + λ2)M2
d(u, Pu).

Now by inequality (2.10) we get,

−ε ≤
∂2u
∂x2 (x, t) + F(x, u)

∂u
∂x

(x, t) + H(x, u) ≤ ε, ∀x, t ∈ J.

Integrating from x0 to x we derive,
−ε

∫ x
x0

ds ≤ ∂u
∂x (x, t) − ∂u

∂x (x0, t) +
∫ x

x0
F(s, u(s, t))us(s, t)ds +

∫ x
x0

H(s, u(s, t))ds ≤ ε
∫ x

x0
ds.

Again integrating from x0 to x we obtain,
−ε

∫ x
x0

∫ y
x0

dsdy ≤ u(x, t) − u(x0, t) − [u(x0, t) − u(x0, t)] +
∫ x

x0

∫ y
x0

F(s, u(s, t))us(s, t)dsdy

+
∫ x

x0

∫ y
x0

H(s, u(s, t))dsdy ≤ ε
∫ x

x0

∫ y
x0

dsdy.

By using the equation (2.12) we get,
−ε

∫ x
x0

∫ y
x0

dsdy ≤ u(x, t) − (Pu)(x, t) ≤ ε
∫ x

x0

∫ y
x0

dsdy.

⇒ −ε sup
x,y∈J

∫ x
x0

∫ y
x0

dsdy ≤ −ε
∫ x

x0

∫ y
x0

dsdy ≤ u(x, t) − (Pu)(x, t) ≤ ε
∫ x

x0

∫ y
x0

dsdy ≤ ε sup
x,y∈J

∫ x
x0

∫ y
x0

dsdy.

⇒ −ε sup
x,y∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

dsdy
∣∣∣∣ ≤ −ε sup

x,y∈J

∫ x
x0

∫ y
x0

dsdy ≤ −ε
∫ x

x0

∫ y
x0

dsdy ≤ u(x, t) − (Pu)(x, t)
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≤ ε
∫ x

x0

∫ y
x0

dsdy ≤ ε sup
x,y∈J

∫ x
x0

∫ y
x0

dsdy ≤ ε sup
x,y∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

dsdy
∣∣∣∣.

⇒ −ε sup
x,y∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

dsdy
∣∣∣∣ ≤ u(x, t) − (Pu)(x, t) ≤ ε sup

x,y∈J

∣∣∣∣ ∫ x
x0

∫ y
x0

dsdy
∣∣∣∣.

⇒ −εM2 ≤ u(x, t) − (Pu)(x, t) ≤ εM2.

⇒ |u(x, t) − (Pu)(x, t)| ≤ εM2.

⇒ sup
x,t∈J
|u(x, t) − (Pu)(x, t)| ≤ εM2.

⇒ d(u, Pu) ≤ εM2,

which with equation (2.13) yields

|u(x, t) − u0(x, t)| = |u0(x, t) − u(x, t)|
≤ sup

x,t∈J
|u0(x, t) − u(x, t)|

= d(u0(x, t), u(x, t)),

≤
1

1 − {λ1 + λ2}M2
d(u, Pu),

≤
M2

1 − {λ1 + λ2}M2
ε.

Hence the result.

3 Conclusion
In this paper, we have proved the Hyers - Ulam stability of first and second order partial differential equations (1.1)
and (1.2) respectively by employing Banach’s Contraction Principle.
Acknowledgement. The authors are very much grateful to the Editor and Reviewer for their valuable suggestion’s for
the improvements of the paper in its present form.
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Abstract

In the present paper, we introduce fuzzy preopen (closed) sets and fuzzy pre-continuity in Sostak fuzzy topological
space. Also we investigate their significant characteristic properties.
2010 Mathematics Subject Classifications: 54A40.
Keywords and phrases: Fuzzy sets, fuzzy topological space, gradation of openness.

1 Introduction
The concept of fuzzy sets was introduced by Zadeh [9] and later Chang [2] defined fuzzy topological spaces. Sostak
[8] introduced a new fuzzy topological space exploiting the idea of partial openness of fuzzy sets. This generalized
fuzzy topological space was later rephrased by Chattopadhyay et.al. [3]. Several mathematicians have worked on this
space (see [4], [5]).

The concepts of fuzzy preopen sets, fuzzy strong preopen sets and strong pre continuity (see [6], [7]) have been
introduced in case of classical fuzzy topological spaces introduced by Chang [2]. In the present paper, we introduce
fuzzy preopen (closed) sets and fuzzy pre continuity in the Sostak fuzzy topological space redefined by Chattopdhyay
[3]. Further we establish their significant properties.

2 Preliminaries
Let X be a non-empty set and I ≡ [0, 1] be the unit closed interval of real line. Let IX denote the set of all fuzzy sets
on X. A fuzzy set A on X is a mapping A : X → I, where for any x ∈ X, A(x) denotes the degree of membership of
element x in fuzzy set A. The null fuzzy set 0 and whole fuzzy set 1 are the constant mappings from X to {0} and {1}
respectively.

A family τ of fuzzy sets on X is called a fuzzy topology (see [2]) on X if (i) 0 and 1 belong to τ, (ii) Any union of
members of τ is in τ, (iii) a finite intersection of members of τ is in τ. The system consisting of X equipped with fuzzy
topology τ defined on it, is called a fuzzy topological space and is denoted as (X, τ). Now we define the So-fuzzy
topological space (see [3], [8]).

A So-fuzzy topology on a non-empty set X is a family τ of fuzzy sets on X satisfying the following axioms with
respect to a mapping τ : IX → I such that

1. τ(0) = τ(1) = 1;
2. τ(A ∩ B) ≥ τ(A) ∧ τ(B); for any A, B ∈ IX;
3. τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai), for any arbitrary family {Ai : i ∈ J} ⊆ IX .
The system (X, τ) is called So-fuzzy topological space and the real number τ(A) is called the degree (or grade) of

openness of fuzzy set A. We note that

Proposition 2.1 Let X be a non-empty set. Then the map τ : IX → I given by τ(0) = 1 and τ(A) = inf{A(x) : x ∈
suppA}, if A , 0, satisfies the axioms of gradation of openness.

If (X, τ) is a So-fuzzy topological space, then we observe that (see [2]) for any ρ ∈ [0, 1], the family τρ ≡ { A ∈ IX :
τ(A) ≥ ρ} is actually a fuzzy topology in sense of Chang [2] and it is called ρ-level fuzzy topology on X with respect
to the gradation of openness τ. All fuzzy sets belonging to τρ are called fuzzy-ρ-open sets and their complements are
called fuzzy-ρ-closed sets.

For any fuzzy set A, the interior and closure of A with respect to τρ are defined as follows:

Intρ(A) = ∪{G ∈ IX : G ⊆ A and G ∈ τρ}

Clρ(A) = ∩{K ∈ IX : A ⊆ K and Kc ∈ τρ}
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3 Fuzzy-ρ-Pre Open (Closed) Sets
In this section, we define fuzzy-ρ-pre open sets and fuzzy-ρ-pre closed sets in So-fuzzy topological space and
investigate their properties.

Definition 3.1 Let (X, τ) be a So-fuzzy topological space and A ∈ IX be a fuzzy set. Then for any ρ ∈ I, a fuzzy set A
is said to be a

(i) Fuzzy-ρ-pre open set in X iff A ⊆ Intρ(Clρ(A)),
(ii) Fuzzy-ρ-pre closed set in X iff A ⊇ Clρ(Intρ(A)).
Clearly fuzzy sets 0 and 1 are both trivially fuzzy ρ-pre open as well as fuzzy ρ-pre closed sets in X.

Remark 3.1 It is clear that every fuzzy-ρ-open (closed) set is a fuzzy-ρ-pre open (closed) set, but converse of these may
not be true in general.

Example 3.1 Let X = {a, b} and A, B, C ∈ IX be fuzzy sets defined as follows:

A = {(a, 0.6), (b, 0.3)}; B = {(a, 0.4), (b, 0.2)}; C = {(a, 0.8), (b, 0.5)}.

Define a map τ : IX → I as follows:

τ(F) = {

1, i f F = 0, 1
0.3, i f F = A
0.2, i f F = B
0, otherwise.

.

Suppose ρ = 0.1. We see that fuzzy set C is a fuzzy-ρ-pre open set because Intρ(Clρ(C)) = 1 ⊇ C. But it is not a
fuzzy-ρ-open set (because τ(C) = 0 ≯ 0.1).

Theorem 3.1 Let (X, τ) be a So-fuzzy topological space. Then for any ρ ∈ I,
(a) Any union of fuzzy-ρ-pre open sets is a fuzzy-ρ-pre open set;
(b) Any intersection of fuzzy-ρ-pre closed sets is a fuzzy-ρ-pre closed set.

Proof. (a) Let {Ai : i ∈ J} be an arbitrary collection of fuzzy-ρ-pre open sets in So-fuzzy topological space (X, τ).
Then for each i ∈ J, we have Ai ⊆ Intρ(Clρ(Ai)). Hence

∪i∈J Ai ⊆ ∪i∈J Intρ(Clρ(Ai)) ⊆ Intρ(∪i∈J Clρ(Ai)) ⊆ Intρ(Clρ(∪i∈J Ai)).

Thus ∪i∈J Ai is a fuzzy-ρ-pre open set. We can prove (b) similarly.

Definition 3.2 Let (X, τ) be a So-fuzzy topological space and A ∈ IX be a fuzzy set. Then for each ρ ∈ I, fuzzy-ρ-pre
interior and fuzzy-ρ-pre closure of fuzzy set A denoted as P-intρ(A) and P-clρ(A) are defined as follows:

P − intρ(A) = ∪{G ∈ IX : G ⊆ A and G is a f uzzy − ρ − pre open set in X},

P − clρ(A) = ∩{K ∈ IX : K ⊇ A and K is a f uzzy − ρ − pre closed set in X}.

Theorem 3.2 Let (X, τ) be a So-fuzzy topological space and A ∈ IX be a fuzzy set. Then for any ρ ∈ I,
(i) P-clρ(1 − A) = 1 − P-intρ(A),
(ii) P-intρ(1 − A) = 1 − P-clρ(A).

Proof. (i) Suppose {Gi}i∈J is the family of all fuzzy-ρ-preopen sets in X contained in A. Then

P − intρ(A) = ∪i∈JGi = 1 − ∩i∈J Gc
i .

Since Gi ⊆ A, we have Gc
i ⊇ Ac, ∀ i ∈ J. Thus {Gc

i }i∈J is the collection of all fuzzy-ρ-preclosed sets containing Ac.
Hence ∩i∈JGc

i = P-clρ(Ac) = P-clρ(1 − A). Thus P-intρ(A) = 1 − P-clρ(1 − A). Hence P-clρ(1 − A) = 1 − P-intρ(A).
Proof. (ii) It can be proved in a similar manner.

Theorem 3.3 Let (X, τ) be a So-fuzzy topological space. Then for any ρ ∈ I, a fuzzy set A ∈ IX is a
(a) Fuzzy-ρ-pre open set iff P-intρ(A) = A;
(b) Fuzzy-ρ-pre closed set iff P-clρ(A) = A.

45



Proof. (a) Let A be fuzzy-ρ-pre open set in X. Let {Gi}i∈J be the family of all fuzzy ρ-pre open sets contained in A.
Since each Gi ⊆ A, i ∈ J, we have ∪i∈JGi ⊆ A. Therefore

(3.1) P − intρ = ∪i∈J{Gi ∈ IX : Gi ⊆ A and Gi is a fuzzy − ρ − preopen set} ⊆ A.

Since A ⊆ A and A is a fuzzy-ρ-preopen set in X, hence A ∈ {Gi}i∈J . Therefore

(3.2) A ⊆ ∪i∈JGi ≡ P − intρ(A).

From equations (3.3.1) and (3.3.2), A = P-intρ(A).
Conversely; suppose A is a fuzzy set in So-fuzzy topological space (X, τ) such that A = P-intρ(A). Then

(3.3) A = P − intρ(A) = ∪{Gi ∈ IX : Gi ⊆ A and Giis a fuzzy − ρ − pre open set}.

Since any union of fuzzy-ρ-preopen sets is a fuzzy-ρ-preopen set, in view of (3.3.3), set A is a fuzzy-ρ-pre open
set in X.
Proof. (b) This can be proved in a similar manner.

Theorem 3.4 Let (X, τ) be a So-fuzzy topological space. Then for any ρ ∈ I, the following properties hold for fuzzy-ρ-
pre closure:

(i) P-clρ(0) = 0;
(ii) P-clρ(A) is a fuzzy-ρ-pre closed set in X;
(iii) P-clρ(A) ⊆ P-clρ(B), i f A ⊆ B;
(iv) P-clρ(P-clρ(A)) = P-clρ(A);
(v) P-clρ(A ∪ B) ⊇ P-clρ(A) ∪ P-clρ(B);
(vi) P-clρ(A ∩ B) ⊆ P-clρ(A) ∩ P-clρ(B).

Proof. It is easy to prove.

Theorem 3.5 Let (X, τ) be a So-fuzzy topological space and A, B ∈ IX be fuzzy sets. Then for any ρ ∈ I,
(i) P-intρ(1) = 1;
(ii) P-intρ(A) is a fuzzy-ρ-pre open set in X;
(iii) P-intρ(A) ⊆ P-intρ(B), if A ⊆ B;
(iv) P-intρ(P-intρ(A)) = P-intρ(A);
(v) P-intρ(A ∪ B) ⊇ P-intρ(A) ∪ P-intρ(B);
(vi) P-intρ(A ∩ B) ⊆ P-intρ(A) ∩ P-intρ(B).

4 Fuzzy-ρ-Pre Continuous Map
In this section, we define a fuzzy-ρ-pre continuous map from one So-fuzzy topological space to another and investigate
its characteristic properties. We know fuzzy-ρ-continuous map is defined (see [3]) as follows:

Definition 4.1 Let (X, τ) and (Y, σ) be two So-fuzzy topological spaces. A map f : X → Y is said to be a fuzzy-ρ-
continuous map if τ( f −1(B)) ≥ σ(B), for each fuzzy set B ∈ IY such that σ(B) ≥ ρ.

Now we define fuzzy-ρ-pre continuous map as follow:

Definition 4.2 Let (X, τ) and (Y, σ) be two So-fuzzy topological spaces. A map f from X to Y is called a fuzzy-ρ-pre
continuous map iff f −1(B) is a fuzzy-ρ-pre open set for any fuzzy set B ∈ IY such that σ(B) ≥ ρ.

Remark 4.1 It is obvious that every fuzzy-ρ-continuous map is a fuzzy-ρ-pre continuous map, but converse may not be
true.

Example 4.1 Let X = {a, b}, Y = {u, v} and A, B ∈ IX , C ∈ IY be fuzzy sets defined as follows:
A = {(a, 0.7), (b, 0.2)}; B = {(a, 0.5), (b, 0.6)}; C = {(a, 0.7), (b, 0.6)};
D = {(a, 0.5), (b, 0.2)}; E = {(u, 0.8), (v, 0.7)}.
We define fuzzy topologies τ : IX → I and σ : IY → I as follows:

τ(F) =



1, if F = 0, 1
0.2, if F = A, D
0.5, if F = B
0.6 if F = C
0, otherwise,
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σ(F) =


1, if F = 0, 1
0.7, if F = E
0, otherwise.

Consider a map f : (X, τ) → (Y, σ) defined as f (A) = u, f (b) = v. Suppose ρ = 0.1. We see that f −1(E) ⊆
Intρ(Clρ( f −1(E))). Hence f −1(E) is a fuzzy-ρ-pre open set. Similarly f −1(0) ≡ 0 and f −1(1) ≡ 1 are also fuzzy-ρ-pre
open sets. Thus f is a fuzzy-ρ-pre continuous map. But f is not a fuzzy-ρ-continuous map because f −1(E) is not a
fuzzy-ρ-open set.

Theorem 4.1 Let f : (X. τ)→ (Y, σ) be a map from one So-fuzzy topological space to another such that τ∗( f −1(B)) ≥ ρ,
for each B ∈ IY with σ∗(B) ≥ ρ, then f is a fuzzy-ρ-pre continuous map.

Proof. Let f : (X, τ) → (Y, σ) be a map such that τ∗( f −1(B)) ≥ ρ, for each B ∈ IY for which σ∗(B) ≥ ρ.
Since f −1(B) ∈ IX and τ∗( f −1(B)) = τ(( f −1(B))c) = τ( f −1(Bc)) ≥ ρ, we conclude that f −1(Bc) is a fuzzy-ρ-open
set in X. Since every fuzzy ρ-open set is a fuzzy ρ-pre open set, f −1(Bc) is a fuzzy-ρ-pre open set in X. Further
σ(Bc) = σ∗(B) ≥ ρ. Thus f −1(Bc) is a fuzzy-ρ-pre open set in X for each Bc ∈ IY such that σ(Bc) ≥ ρ. Therefore f is
a fuzzy-ρ-pre continuous map.

Theorem 4.2 Let f : (X. τ) → (Y, σ) be a map from one So-fuzzy topological space to another. Then for any ρ ∈ I,
following statements are equivalent:

(a) f is a fuzzy-ρ-pre continuous map;
(b) f −1(B) is a fuzzy-ρ-pre closed set for each fuzzy-ρ-closed set B in Y;
(c) Clρ(Intρ( f −1(B))) ⊆ f −1(Clρ(B)), for each fuzzy set B in Y;
(d) f (Clρ(Intρ(A))) ⊆ Clρ( f (A)), for each fuzzy set A in X.

Proof. Let (X, τ) and (Y, σ) be two So-fuzzy topological spaces. We will prove this theorem in following steps:
(i) (a)arrow(b): Let f : X → Y be a fuzzy-ρ-pre continuous map for any ρ ∈ I. Let B be a fuzzy-ρ-closed set in

Y . Then Bc is a fuzzy-ρ-open set in Y so that σ(Bc) ≥ ρ. Since f is a fuzzy ρ-continuous map, we find that f −1(Bc) is
a fuzzy-ρ-pre open set in X. Therefore ( f −1(Bc))c

= f −1(B) is a fuzzy-ρ-pre closed set in X. Similarly we can prove
(b)arrow(a).

(ii) (b)arrow(c): Let B be a fuzzy set in Y , then Clρ(B) is a fuzzy-ρ-closed set in Y and hence by (b), f −1(Clρ(B))
is a fuzzy-ρ-pre closed set in X. Therefore by definition, f −1(Clρ(B)) ⊇ Clρ(Intρ( f −1(Clρ(B)))) ⊇ Clρ(Intρ( f −1(B))).
Thus Clρ(Intρ( f −1(B))) ⊆ f −1(Clρ(B)).

(iii) (c)arrow(d): Let A ∈ IX be any fuzzy set, then f (A) ∈ IY . Now by (c), Clρ(Intρ( f −1( f (A)))) ⊆ f −1(Clρ( f (A))).
It implies that Clρ(Intρ(A)) ⊆ f −1(Clρ( f (A))). Hence f (Clρ(Intρ(A))) ⊆ f ( f −1(Clρ( f (A)))) ⊆ Clρ( f (A)).

(iv) (d)arrow(b): can be proved easily.

Theorem 4.3 Let (X, τ), (Y, σ) and (Z, δ) be three So-fuzzy topological spaces and let ρ ∈ I be any real number. If
f : X → Y is a fuzzy-ρ-pre continuous map and g : Y → Z is a fuzzy-ρ-continuous map, then g ◦ f : X → Z is a
fuzzy-ρ-pre continuous map.

Proof. Let C be a fuzzy-ρ-open set in Z so that δ(C) ≥ ρ, then σ(g−1(C)) ≥ δ(C) ≥ ρ. Thus by hypothesis g−1(C) is
a fuzzy-ρ-open set in Y . Since f is a fuzzy-ρ-pre continuous map, we get that f −1(g−1(C)) is a fuzzy-ρ-pre open set in
X. Now f −1(g−1(C)) = (g ◦ f )−1(C). Hence (g ◦ f )−1(C) is a fuzzy-ρ-pre open set in X. Now g ◦ f : (X, τ) → (Z, δ)
is a map and we have derived that for any fuzzy-ρ-open set C in Z, fuzzy set (g ◦ f )−1(C) is a fuzzy-ρ-pre open set in
X. Hence (g ◦ f ) is a fuzzy-ρ-pre continuous map.

5 Conclusion
In the present paper, we have defined fuzzy pre open (closed) sets and fuzzy pre-continuity in Sostak fuzzy topological
space. The concept is introduced as an extension of concepts of fuzzy preopen sets introduced in [6]. Several
significant results have been obtained.
Acknowledgement. We are very much thankful to the Editor and Reviewer of the paper for their kind suggestions to
bring the paper in the present form.
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Abstract
In this article, we have developed a new technique for solving stochastic integral equations. A new Haar wavelets

stochastic operational matrix of integration (HWSOMI) is developed in order to obtain efficient and accurate solution
for stochastic integral equations. In the beginning we study the properties of stochastic integrals and Haar wavelets.
Convergence and error analysis of Haar wavelet method is presented. Accuracy of the method investigated is justified
through some examples.
2010 Mathematics Subject Classifications: 60H05, 60H35, 65T60.
Keywords and phrases: Stochastic operational matrix of integration, Haar wavelets, stochastic integral equations.

1 Introduction
Wavelet is a newly emerging area of mathematics. Wavelets have a number of applications in signal processing [11].
Integral equations are the most important tools describing knowledge models. Since many a times, the exact solution
of integral equations does not exist, the numerical approximation of these equations become necessary. Different
methods are used for approximating these equations and different basis functions are used.

Modeling various phenomena in science, engineering and physics requires stochastic integrals [4]. Numerical
computations of stochastic integral equations have been studied by various authors. Some of which are Claeden and
Platen [6], Oksendal [8], Maleknejad et al. [7], Cortes et al. [3], Douglas et al. [4], and Zhang [12].

Due to the large number of applications of Haar wavelets in solving differential, integral and integro differential
equations, many authors have studied the computational methods for the solution of these equations using Haar
wavelets. Some of which are found in [9], [10], [1] and [2]. In the present investigation with the help of Haar
wavelets we are developing a novel stochastic operational matrix of Haar wavelets through which we can obtain an
accurate solution for the stochastic integral equations. Here, we consider the following stochastic integral equation,

(1.1) U(t) = g(t) +
∫ t

0 k1 (s, t) U(s)ds +
∫ t

0 k2 (s, t) U(s)dB(s), t ∈ [0,T ),
where U (t) , g (t) , k1 (s, t) and k2 (s, t) for s, t ∈ [0, T ) are the stochastic processes on the same probability space
(Ω, F, P) and U(t) is unknown. Also B(t) is a Brownian motion process and

∫ t
0 k2 (s, t) U(s) dB(s) is the Itô integral

[8].
The article is organized in the following way. Some definitions of stochastic calculus, properties of Haar wavelets

and operational matrix of integration of Haar wavelets are studied. Also, HWSOMI is derived in Section 2. Method
of solution is given in Section 3. In Section 4, convergence and error analysis of the proposed method is studied.
Section 5 presents some examples which shows the efficiency of the presented method. Lastly, Section 6 gives the
conclusion.

2 Stochastic Calculus and Wavelets
Here we examine some definitions existing in stochastic calculus. And we study the properties of Haar wavelets and
operational matrix of integration of Haar wavelets (HWOMI). Stochastic operational matrix of integration of Haar
wavelet is derived. Lastly, some results which will are used in further sections are mentioned.
2.1 Stochastic calculus
Definition 2.1 A standard Brownian motion defined on the interval [0, T ) is a random variable B (t) which depends
on t ∈ [0 , T ) and satisfies the following conditions:

1. B (0) = 0 with probability 1.
2. For 0 ≤ s < t ≤ T, the random variable given by increment B (t) − B (s) is distributed normally with mean zero

and variance t − s, equivalently, B (t) − B (0) ∼
√

t − sN (0, 1), where N (0, 1) is a random variable distributed
normally with mean zero and variance 1.
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3. The increments B (t) − B (s) and B (v) − B (u) are independent for 0 ≤ s < t < u < v ≤ T.

Definition 2.2 [5] The sequence Un converge to U in L2 if for each n, E
(
|Un|

2
)
< ∞. Let us assume that 0 ≤ s ≤ T, let

v = v(s,T ) be the class of functions that g(t,w) : [0,∞] ×Ω→ Rn, satisfy,

1. the function (t,w)→ g(t,w) is β ×G measurable, where β is Borel algebra.
2. g is adapted to Gt.
3. E

[∫ T
s g (t,w)2 dt

]
< ∞.

Definition 2.3 (The Itô-integral [8]) Let g ∈ v(s,T ), then the Itô-integral of g is defined by∫ T
s g(t,w)dB(t)(w) = lim

n→∞

∫ T
s ϕt,wdB(t)(w),

where, {ϕ} is the sequence of elementary functions such that

E
[∫ T

s
(g − ϕn)2 dt

]
→ 0 a.s, n→ ∞.

2.2 Haar Wavelets
Haar wavelets hn(t) are defined as,

(2.1) hn (t) = ψ(2 jt − k), j ≥ 0, 0 ≤ k < 2 j, n = 2 j + k, n, j, k ∈ Z,

where

(2.2) h0 (t) = 1, 0 ≤ t < 1, ψ (t) =

 1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1.

Every Haar wavelet hn (t) has the support
[

k
2 j ,

k+1
2 j

)
and is elsewhere zero in the interval [0, 1).

Function Approximation: Any square integrable function g(t) can be expressed with respect to Haar wavelets as

g(t) = g0h0(t) +
∑∞

i=1 gihi(t), i = 2 j + k, j ≥ 0, 0 ≤ k < 2 j, j, k ∈ N,

where gi is given by

gi =
∫ 1

0 g(t)hi(t)dt, i = 0, 2 j + k, j ≥ 0, 0 ≤ k < 2 j, j, k ∈ N.

The above infinite series can be truncated after 2J terms(J is the level of resolution) as

g(t) =
∑2J−1

i=1 g(t)hi(t), i = 2 j + k, 0 ≤ j ≤ J − 1, 0 ≤ k < 2 j, j, k ∈ N.

Rewriting this equation in the vector form as

g(t) ' GT H(t) = GHT (t),

where G and H(t) are Haar wavelet coefficients given as

G =
[
g0, g1, ..., g2J−1

]
, H (t) = [h0(t), h1(t), ..., h2J−1(t)] .

Similarly, any two dimensional function k(s, t) ∈ L2 ([0, 1) × ([0, 1)) can be written in terms of Haar wavelets as

ki j =
∫ 1

0

∫ 1
0 k(s, t)hi(t)h j(s)dtds, i, j = 1, 2, ...N (N = 2J).

For example, from equations (2.1) and (2.2), we can write

h1(t) =

 1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1,

h2(t) =

 1, 0 ≤ t < 1
4 ,

−1, 1
4 ≤ t < 1

2 ,

h3(t) =

 1, 1
2 ≤ t < 3

4 ,

−1, 3
4 ≤ t < 1,

and so on.
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2.3 Haar wavelets operational matrix of integration
HWOMI is computed as follows. Integrating equation (2.1), we get

(2.3)
∫ t

0 H(s)ds'PH(t),

where P is a matrix of order N × N and is called operational matrix of Haar wavelets.For example, for N = 4, we have

H(t) = [h0(t), h1(t), h2(t), h3(t)] ,∫ t
0 h0(s)ds = t, 0 ≤ t < 1,(2.4) ∫ t
0 h1(s)ds =

 t, 0 ≤ t < 1
2 ,

1 − t, 1
2 ≤ t < 1,

(2.5)

∫ t
0 h2(s)ds =

 t, 0 ≤ t < 1
4 ,

(1/2) − t, 1
4 ≤ t < 1

2 ,
(2.6)

∫ t
0 h3(s)ds =

 t − 1
2 ,

1
2 ≤ t < 3

4 ,

1 − t, 3
4 < t < 1.

(2.7)

Thus, seeing equations (2.4), (2.5), (2.6) and (2.7), we can write P in general as,

(2.8) P =


t − k

m , t ∈
[

k
2 j ,

k+0.5
2 j

)
,

k+1
m − t, t ∈

[
k+0.5

2 j , k+1
2 j

)
,

0, elsewhere.

2.4 Haar wavelets stochastic operational matrix of integration
HWSOMI is written as follows,

(2.9)
∫ t

0 H(s)dB(s)'PsH(t),

where Ps is a matrix of order N × N and is called stochastic operational matrix of Haar wavelets. For example, we
obtain

(2.10)
∫ t

0 h0(s)dB(s) = B(t), 0 ≤ t < 1,

(2.11)
∫ t

0 h1(s)dB(s) =

 B(t), 0 ≤ t < 1
2 ,

2B( 1
2 ) − B(t), 1

2 ≤ t < 1,

(2.12)
∫ t

0 h2(s)dB(s) =

 B(t), 0 ≤ t < 1
4 ,

2B( 1
4 ) − B(t), 1

4 ≤ t < 1
2 ,

(2.13)
∫ t

0 h3(s)dB(s) =

 B(t) − B
(

1
2

)
, 1

2 ≤ t < 3
4 ,

2B
(

3
4

)
− B

(
1
2

)
− B(t), 3

4 ≤ t < 1.

Thus, seeing equations (2.10), (2.11), (2.12), and (2.13), we write the stochastic operational matrix of integration
of Haar wavelets Ps in general as

(2.14) Ps =


B(t) − B( k

2 j ), t ∈
[

k
2 j ,

k+0.5
2 j

)
,

B( k+0.5
2 j ) − B( k

2 j ) − B(t), t ∈
[

k+0.5
2 j , k+1

2 j

)
,

0, elsewhere.

Remark 2.1 Using equation (2.1) for a N-vector G, we have

(2.15) H(t)HT (t)G = G̃H(t),

where, H(t) is the Haar wavelet coefficient matrix and G̃ is an N × N matrix given by

(2.16) G̃ = HḠH−1,

where Ḡ = diag(H−1G). Also, for a N × N matrix X, we have

(2.17) HtXH(t) = X̃T H(t),

where, X̃T = VH−1 and V = diag(HT XH) is a N-vector.
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3 Method of solution
Consider the stochastic integral equation given in (1.1). Approximating the functions U(t), g(t), k1(x, t), and k2(x, t)
using Haar wavelets, we get
(3.1) U(t) ' UT H(t) = UHT (t),
(3.2) g(t) ' GT H(t) = GHT (t),

(3.3) k1(s, t) ' HT (s)K1H(t) = HT (t)KT
1 H(s),

(3.4) k2(s, t) ' HT (s)K2H(t) = HT (t)KT
2 H(s),

where U and G are Haar wavelet coefficient vectors and K1 and K2 are Haar wavelet matrices. Substituting
(3.1),(3.2),(3.3) and (3.4) in (1.1), we get

(3.5) UT H(t) ' GT H(t) + HT (t)K1(
∫ t

0 H(s)HT (s)Uds) + HT (t)K2(
∫ t

0 H(s)HT (s)UdB(s)).
By the use of HWOMI, HWSOMI and Remark 2.1, we have

(3.6) UT H(t) ' GT H(t) + HT (t)K1ŨPH(t) + HT (t)K2ŨPsH(t).
Using Ũ1 = K1ŨP and U2 = K2ŨPs and using Remark 2.1, we get

(3.7) UT H(t) ' GT H(t) + Ũ1H(t) + Ũ2H(t).
This gives,

(3.8) UT − Ũ1 − Ũ2 ' GT ,

where Ũ1 and Ũ2 are functions of U and (3.8) is a system of linear equations. Solving this system of linear equations
and substituting the obtained unknown vector U (3.1), we get the solution of (1.1).

4 Convergence and error analysis
The convergence and error analysis of the method presented for solving stochastic integral equations is studied.

Theorem 4.1 Let g(t) ∈ L2[0, 1) be any arbitrary function such that |g′(t)| < ε, and eN(t) = g(t) −
∑N−1

i=0 gihi(t), then

(4.1) ||eN(t)||2 ≤
ε
√

3N
.

Proof. By the definition,

(4.2) ||eN(t)||22 =
∫ 1

0

(∑∞
i=N gihi(t)dt

)2 dt =
∑∞

i=N g2
i .

In equation (4.2), i = 2 j + k and

gi =
∫ 1

0 hi(t)g(t)dt = 2
j
2

(∫ (k+ 1
2 )2− j

k2− j g(t)dt −
∫ (k+1)2− j

(k+ 1
2 )2− j g(t)dt

)
.

Using the mean value theorem for integrals, there exist
η1 j ∈

(
k2− j,

(
k+1

2

)
2− j

)
and η2 j ∈

((
k+1

2

)
2− j, (k + 1) 2− j

)
such that

gi =
∫ 1

0 hi(t)g(t)dt = 2
j
2

(
g(η1 j)

∫ (k+ 1
2 )2− j

k2− j dt − g(η2 j)
∫ (k+1)2− j

(k+ 1
2 )2− j dt

)
(4.3)

= 2
j
2

(
g(η1 j)

[(
k +

1
2

)
2− j − k2− j

]
− g(η2 j)

[
(k + 1) 2− j −

(
k +

1
2

)
2− j

])
= 2−

− j
2 −1

(
g(η1 j) − g(η2 j)

)
= 2−

− j
2 −1

(
η1 j − η2 j

)
g′(η j), η1 j < η j < η2 j.

Equation (4.3) gives
||eN(t)||22 =

∑∞
i=N g2

i =
∑∞

j=J 2− j−2(η1 j − η2 j)2(4.4)

≤
∑∞

j=J 2− j−22−2 jε2

=
ε2

4
∑∞

j=J 2−3 j

=
ε2

3
2−2J .

Therefore,

(4.5) ||eN(t)||2 ≤
ε
√

3N
.
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Theorem 4.2 Let g(s, t) ∈ L2 ([0, 1) × [0, 1)) be any arbitrary function such that | ∂
2g

∂s∂t | < ε, and eN(s, t) = g(s, t) −∑N−1
i=0

∑N−1
j=0 gi jhi(s)h j(t), then

(4.6) ||eN(s, t)||2 ≤
ε

3N2 .

Proof. By the definition,

(4.7) ||eN(s, t)||22 =
∫ 1

0

(∑∞
i=N

∑∞
j=N gi jhi(s)h j(t)

)2
dt =

∑∞
i=N

∑∞
j=N g2

i j.

In equation (4.7), i = 2 j + k, j = 2 j′ + k, and

gi j =
∫ 1

0

∫ 1
0 hi(s)h j(t)g(s, t)dsdt.

Using the mean value theorem for integrals, there exist η j, η1 j, η2 j, η j′ , η1 j′ , and η2 j′ such that

gi j =
∫ 1

0 hi(s)(
∫ 1

0 hi(t)g(s, t)dt)ds(4.8)

=
∫ 1

0 hi(s)
[
2
− j′

1 −1(η1 j′ − η2 j′ )
∂g(s,η j′ )

∂t

]
ds

= 2
− j′

1 −1(η1 j′ − η2 j′ )
∫ 1

0
∂g(s,η j′ )

∂t hi(s)ds

= 2
− j
2 −

j′

2 −2(η1 j′ − η2 j′ )(η1 j − η2 j)
∂2g(η j, η j′ )

∂t∂s
.

Equation (4.8) gives

||eN(s, t)||22 =
∑∞

i=N
∑∞

j=N g2
i j =

∑∞
j=J

∑∞
j′=J 2− j− j′−4(η1 j′ − η2 j′ )2(η1 j − η2 j)2|

∂2g(η j,η j′ )
∂t∂s |2(4.9)

≤
∑∞

j=J
∑∞

j′=J ε
22−3 j−3 j′−4.

From equation (4.4), we get

(4.10) ||eN(s, t)||22 ≤ N2 ∑∞
j=J 2−3 j−2 ∑∞

j′=J 2−3 j′−2 = ε2

(3N2)2 .

Therefore

||eN(s, t)||2 ≤
ε

3N2 .

Theorem 4.3 Let U(t) and UN(t) be the exact and approximate solution of (1.1). Let us assume that

1. ||U(t)|| ≤ δ, t ∈ [0, 1),
2. ||ki(s, t)|| ≤ Di, i = 1, 2,
3. (D1 + ξ1) + ||B(t)||∞(D2 + ξ2),

then,

||U(t) − UN(t)||2 ≤
µN + ξ1N + ||B(t)||∞ξ2N

1 − (D1 + ξ1) − ||B(t)||∞(D2 + ξ2N)
,

where

µN = sup
t∈[0,1)

g′(t)
√

3N
,

ξi =
1

3N2 sup
s,t∈[0,1)

|
∂2ki(s, t)
∂s∂t

|, i = 1, 2.

Proof. From equation (1.1), we have

U(t) − UN(t) = g(t) − gN(t) +
∫ t

0 (k1(s, t)U(s) − k1N(s, t)UN(s)ds)

+
∫ t

0 (k2(s, t)U(s) − k2N(s, t)UN(s)) dB(s).

By using mean value theorem we have,

||U(t) − UN(t)|| ≤ ||g(t) − gN(t)|| + t||k1(s, t)U(s) − k1N(s, t)UN(s)||
(4.11)

+ B(t)||k2(s, t)U(s) − k2N(s, t)UN(s)||.
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Using Theorem 4.1 and Theorem 4.2, we have

||ki(s, t)U(s) − kiN(s, t)UN(s)|| ≤ ||ki(s, t)|| ‖|U(t) − UN(t)||
(4.12)

+ ||ki(s, t) − kiN(s, t)|| ‖|U(t)||
+ ||ki(s, t) − kiN(s, t)|| ‖|U(t) − UN(t)||.

Substituting (4.12) in (4.11), we get

||U(t) − UN(t)|| ≤ µN + t
[
(D1 + ξ1N)||U(t) − UN(t)|| + δξ1N

](4.13)

+ B(t)
[
(D2 + ξ2N)||U(t) − UN(t)|| + δξ2N

]
.

Using the assumption (3), we get

||U(t) − UN(t)||2 ≤
µN + ξ1N + ||B(t)||∞ξ2N

1 − (D1 + ξ1) − ||B(t)||∞(D2 + ξ2N)
.

5 Numerical Experiments
Here some examples are presented in order to show the efficiency of the method presented.

Test Problem 5.1 Consider the stochastic integral equation,

(5.1) U (t) = 1 +
∫ t

0 sin(s)U(s)dB(s),

where U(t) is the unknown stochastic process defined on the probability space (Ω, F, P), and B(t) is the Brownian
motion process. Exact solution of equation (5.1) is

(5.2) U (t) = exp
[
−1
4

(t − cos(t)sin(t)) +
∫ t

0 sin(s)dB(s)
]
.

Method of Implementation
For N = 4.

Comparing (5.1)with equation (1.1), we get

(5.3) g(t) = 1,

(5.4) k1(s, t) = 0,

and

(5.5) k2(s, t) = sin(s).

Approximating equations (5.3), (5.4), and (5.5) using Haar wavelets, we obtain

G = [ 1 0 0 0 ],

K1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and K2 =


0.4609 0 0 0
−0.2154 0 0 0
−0.1208 0 0 0
−0.0912 0 0 0

 .
Let our assumed solution be U and approximating this using Haar wavelets, we get

U(t) ' UT H(t) = UHT (t).

Substituting the obtained vector G, matrices K1 and K2 and the approximated unknown solution U in equation
(5.1)and by the use of operational matrix of integration of Haar wavelets and the stochastic operational matrix of
integration Haar wavelets, we obtain the unknown vector U as

U = [ 0.90697 0.043482 0.024383 0.018413 ].

Substituting this in U(t) ' UT H(t) = UHT (t),we obtain the solution as

U(t) = [ 0.9748 0.9261 0.8819 0.8451 ].

The exact and approximate solutions of Test Problem 5.1 for N = 4 and N = 8 are shown in Table 5.1, maximum
absolute error (Emax) for different values of N are shown in Table 5.2 and the graphs of absolute errors for different
values of N are shown in Figure 5.1.
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Table 5.1: Exact solution, approximate solution and absolute errors for Test Problem 5.1.

N = 4 N = 8
t Exact Solution Approximate Solution Absolute error Exact Solution Approximate Solution Absolute error
0 1.0000 0.9256 0.0744 1.0000 1.0440 0.0440

0.1 0.9996 0.9799 0.0197 1.0024 1.0107 0.0083
0.2 0.9965 0.9602 0.0363 1.0070 1.0213 0.0143
0.3 0.9925 0.9407 0.0518 1.0142 1.0318 0.0176
0.4 0.9864 0.9217 0.0647 1.0225 1.0418 0.0193
0.5 0.9737 0.9040 0.0697 1.0310 1.0515 0.0204
0.6 0.9610 0.8863 0.0747 1.0390 1.0606 0.0216
0.7 0.9403 0.8709 0.0695 1.0459 1.0692 0.0233
0.8 0.9169 0.8561 0.0608 1.0510 1.0771 0.0261
0.9 1.4098 1.3190 0.0907 1.0536 1.0841 0.0306

Table 5.2: Absolute errors for different values of N of Test Problem 5.1.

N Emax

4 0.0907
8 0.0440

16 0.0194
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Figure 5.1: Absolute errors for different values of N of Test Problem 5.1.

Test Problem 5.2 Consider the stochastic integral equation

(5.6) U (t) =
1

12
+

∫ t
0 cos(s)U(s)ds +

∫ t
0 sin(s)U(s)dB(s),

where U(t) is the unknown stochastic process defined on the probability space (Ω, F, P), and B(t) is the Brownian
motion process. Exact solution of (5.6) is

(5.7) U (t) =
1

12
exp

[
−t
4

+ sin(t) +
sin(2t)

8
+

∫ t
0 sin(s)dB(s)

]
.

Implementation is shown in Test Problem 5.1. The exact as well as approximate solutions of Test Problem 5.2
for N = 4 and N = 8 are shown in Table 5.3, maximum absolute error (Emax) for different values of N are shown in
Table 5.4 and the graphs of absolute errors for different values of N are shown in Figure 5.2.
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Table 5.3: Exact solution, approximate solution and absolute errors for Test Problem 5.2.

N = 4 N = 8
t Exact Solution Approximate Solution Absolute error Exact Solution Approximate Solution Absolute error
0 0.0833 0.0759 0.0075 0.0833 0.0729 0.0105

0.1 0.0921 0.0636 0.0285 0.0918 0.0729 0.0190
0.2 0.1017 0.0655 0.0362 0.1004 0.0782 0.0223
0.3 0.1116 0.0747 0.0368 0.1089 0.0710 0.0379
0.4 0.1214 0.0801 0.0413 0.1167 0.0775 0.0391
0.5 0.1311 0.0739 0.0572 0.1235 0.0710 0.0525
0.6 0.1409 0.0677 0.0732 0.1291 0.0647 0.0644
0.7 0.1487 0.0732 0.0756 0.1331 0.0720 0.0611
0.8 0.1560 0.0826 0.0734 0.1350 0.0649 0.0701
0.9 0.2133 0.1174 0.0959 0.1346 0.0711 0.0635

Table 5.4: Absolute errors for different values of N of test problem Test Problem 5.2.

N Emax

4 0.0959
8 0.0701

16 0.0411
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Figure 5.2: Absolute errors for different values of N of Test Problem 5.2.

Test Problem 5.3 Consider the stochastic integral equation

(5.8) U (t) =
1

10
+

∫ t
0 ln(1 + s)U(s)ds +

∫ t
0 sU(s)dB(s).

where U(t) is the unknown stochastic process defined on the probability space (Ω, F, P), and B(t) is the Brownian
motion process. Exact solution of (5.8) is

(5.9) U (t) =
1
10

exp
[
(1 + t)ln(1 + t) − t −

t3

6
+

∫ t
0 sdB(s)

]
.

Implementation is shown in Test Problem 5.1. The exact as well as approximate solutions of Test Problem 5.3
for N = 4 and N = 8 are shown in Table 5.5, maximum absolute error (Emax) for different values of N are shown in
Table 5.6 and the graphs of absolute errors (Emax) for different values of N are shown in Figure 5.3.
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Table 5.5: Exact solution, approximate solution and absolute errors for Test Problem 5.3.

N = 4 N = 8
t Exact Solution Approximate Solution Absolute error Exact Solution Approximate Solution Absolute error
0 0.0833 0.0750 0.0083 0.1000 0.0806 0.0194

0.1 0.0997 0.0907 0.0090 0.0999 0.0949 0.0051
0.2 0.0985 0.0847 0.0137 0.0997 0.0907 0.0090
0.3 0.0969 0.0798 0.0171 0.0992 0.0845 0.0147
0.4 0.0948 0.0736 0.0211 0.0981 0.0836 0.0145
0.5 0.0909 0.0636 0.0274 0.0963 0.0759 0.0205
0.6 0.0871 0.0535 0.0336 0.0939 0.0694 0.0246
0.7 0.0816 0.0536 0.0281 0.0907 0.0709 0.0198
0.8 0.0756 0.0571 0.0186 0.0867 0.0615 0.0251
0.9 0.1237 0.0932 0.0305 0.0817 0.0670 0.0147

Table 5.6: Absolute errors for different values of N of Test Problem 5.3.
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Figure 5.3: Absolute errors for different values of N of Test Problem 5.3.

6 Conclusion
In this article, using Haar wavelets a new HWSOMI is developed to solve stochastic integral equations. From tables
and figures we can see that the solutions obtained by proposed method are in good agreement with that of exact
solutions. Hence, the investigated method is efficient and convenient for solving stochastic integral equations.
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Abstract

The object of this paper is to establish some interesting integrals involving the product of extended Bessel-
Maitland function and I*- function and then, express them in terms of extended I*- function. Further some special
cases of our results are also deduced.
2010 Mathematics Subject Classifications: 33C60, 33C45.
Keywords and phrases: I*-function, Wright’s generalized Bessel-Maitland function, I-function, definite integrals.

1 Introduction
In the last decade, many authors (for example, see [1], [4] - [9]) have developed numerous integral formulas involving
a variety of special functions. Such integrals play a very important role in many diverse fields of engineering and
sciences ([5], [11], [14]).

Recently, Ghayasuddin and Khan [4], Khan et al. ([6] - [9]) and Ali et al. [1] obtained certain interesting new
class of integrals involving the generalized Bessel-Maitland function and expressed in terms of generalized (Wright)
hypergeometric function.

In order to derive our main results, we are required to express following definitions and formulae of some well
known special functions:

The I- function [13] defined in terms of following Mellin - Barnes type integral is given by

(1.1) Im,n
pi,qi;r

[
z
∣∣∣∣∣(a j, α j)1,n; (a ji, α ji)n+1,pi

(b j, β j)1,m; (b ji, β ji)m+1,qi

]
=

1
2πω

∫
L ϕ(ξ)zξdξ, ω =

√
(−1),

where

ϕ(ξ) =

∏m
j=1 Γ(b j − β jξ)

∏n
j=1 Γ(1 − a j + α jξ)∑r

i=1

[∏qi
j=m+1 Γ(1 − b ji)(+β jiξ)

∏pi
j=n+1 Γ(a ji)(−α jiξ)

]
pi, qi(i = 1, 2, . . . , r),m and n are integers satisfying 0 ≤ n ≤ pi, 0 ≤ m ≤ qi(i = 1, 2, . . . , r), r is finite,α j, β j, α ji, β ji

are real and positive and a j, b j, a ji, b ji are numbers such that αk(bh + v) , βh(ak − 1 − k) for k, v = 0, 1, 2 . . . ; h =

1, 2, . . . ,m; i = 1, 2, .., r.
L is contour running form σ − i∞ to σ + i∞, where σ is real in the complex ξ-plane such that the poles

ξ =
(a j − 1 − v)

α j
, j = 1, 2, . . . n; v = 0, 1, 2, · · ·

ξ =
(b j + v)
β j

, j = 1, 2 · · · ,m; v = 0, 1, 2, · · ·

to the left and right hand sides of L, respectively.
The I*-function [5], related to the I-function [13], is introduced as a contour integral in complex ξ-plane given by

(1.2) Im,n
pi,qi;r

[
z
∣∣∣∣∣(a j, α j)1,n : (a ji, α ji)1,pi

(b j, β j)1,m : (a ji, β ji)1,qi

]
=

1
2πω

∫
L ϕ(ξ)zξdξ,

in which

ϕ(ξ) =

∏m
j=1 Γ(b j − β jξ)

∏n
j=1 Γ(1 − a j + α jξ)∑r

i=1

[∏qi
j=1 Γ(1 − b ji + β jiξ)

∏pi
j=1 Γ(a ji − α jiξ)

]
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Here, for finite value of r, all pi, qi(i = 1, 2, . . . r),m and n are positive integers, satisfying the inequalities;
0 ≤ n ≤ p, pi ≥ n ≥ 1(i = 1, 2, . . . ..r), 1 ≤ m ≤ q, qi ≥ m ≥ 1 (i = 1, 2, . . . ..r), α j( j = 1, . . . ., n), β j( j = 1, . . . ,m),
α ji(1 ≤ j ≤ pi, i = 1, 2, . . . r), β ji(1 ≤ j ≤ qi, i = 1, 2, . . . r) are real and positive and a j( j = 1, . . . ., n), b j( j =

1, . . . ,m), a ji(1 ≤ j ≤ pi, i = 1, 2, . . . r), b ji(1 ≤ j ≤ qi, i = 1, 2, . . . r) are complex numbers such that αk(bh + ν) ,
βh(ak − 1 − l) f orl, ν = 0, 1, 2, . . . ; h = 1, 2, . . . ,m.

L is contour running from σ− i∞ to σ+ i∞, where σ is real in the complex ξ- plane such that the poles ξ =
(a j−1−l)

α j

, j=1,2,. . . ,n; l=0,1,2,. . . ,ξ =
(b j+ν)
β j

, j = 1, 2, . . . ,m; ν = 0, 1, 2, . . . lie to the left and right hand sides of the contour L
respectively, the empty product is represented as 1.

The I*- function converges absolutely in the ξ- plane if | arg z| < π
2 A.

(1.3) where, A =
∑n

j=1 α j +
∑m

j=1 β j −max1≤i≤r

[∑pi
j=1 α ji +

∑qi
j=1 β ji

]
> 0

Property 1.1 The I*- function (1.2) - (1.3) is most probably identical to I-function given in (1.1).

Property 1.2 For r = 1, the I*-function defined in (1.2) - (1.3) has a relation with Fox’s H- function [3] as

Im,n
p1,q1;1

[
z
∣∣∣∣∣(a j, α j)1,n : (a j1, α j1)1,p1

(b j, β j)1,m : (a j1, β j1)1,q1

]
= Hm,n

p1+n,q1+m

[
z
∣∣∣∣∣(a j, α j)1,n : (a j1, α j1)n+1,p1 , (a j1, α j1)1,n
(b j, β j)1,m : (b j1, β j1)m+1,q1 , (b j1, β j1)1,m

]
where, | arg z| < π

2 A and A =
∑n

j=1 α j +
∑m

j=1 β j −

[∑p1
j=1 α j1 +

∑q1
j=1 β j1

]
> 0.

A new extension of Bessel-Maitland function is introduced by Khan et al. [9] as

(1.4) Jβ,δ,σ,tα,γ,µ,ρ,v,s(z) =
∑∞

h=0
(β)δh(σ)th(−z)h

Γ(γh+α+1)(v)sh(µ)ρh
,

where α, γ, µ, ρ, v, β, δ, σ ∈ C; (β) > 0, (γ) > 0, (δ) > 0, (µ) > 0, (ρ) > 0, (σ) > 0, (v) > 0, (α) ≥ −1; s, t > 0 and t <
(γ) + s and (β)0 = 1, (β)δh =

Γ(β+δh)
Γ(β) denotes the generalized Pochhammer symbol.

Some formulae of definite integrals are found by the authors:
By Edward [2] as

(1.5)
∫ 1

0

∫ 1
0 yk(1 − x)k−1(1 − y)l−1(1 − xy)1−k−ldxdy =

Γ(k)Γ(l)
Γ(k+l) ,

provided 0 < (l) < (k).
By Oberhettinger [12] given as

(1.6)
∫ ∞

0 xα−1(x + c +
√

x2 + 2cx)−βdx = 2βc−β( c
2 )α Γ(2α)Γ(β−α)

Γ(1+α+β) ,

provided 0 < (α) < (β).
MacRobert [10] presented as

(1.7)
∫ 1

0 xα−1(1 − x)β−1[cx + d(1 − x)]−α−βdx = 1
cαdβ

Γ(α)Γ(β)
Γ(α+β) ,

provided (α) > 0, (β) > 0 and c, d are non zero constants and the expression cx + d(1 − x), where 0 ≤ x ≤ 1 is non
zero.

2 Main Results
In this section we derive following theorems on extended Bessel-Maitland function and I*- function.

Theorem 2.1 If α, γ, µ, ρ, v, β, δ, σ ∈ C; (β) > 0, (γ) > 0, (δ) > 0, (µ) > 0, (ρ) > 0, (σ) > 0, (v) > 0, (α) ≥ −1; s, t > 0
and t < (γ) + s and 0 < (l) < (k). Then following integral exists

(2.1)
∫ 1

0

∫ 1
0 yk(1 − x)k−1(1 − y)l−1(1 − xy)1−k−lJβ,δ,σ,tα,γ,µ,ρ,v,s

[
y(1−x)(1−y)

(1−xy)2

]
Im,n

pi,qi;r

[
zy(1−x)(1−y)

(1−xy)2

∣∣∣∣∣(a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi

]
dxdy

=
∑∞

h=0
(−1)h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh
Im,n+2

pi,qi+1;r

[
z
∣∣∣∣∣(a j, A j)1,n, (1 − k − h, 1), (1 − l − h, 1) : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (1 − k − l − 2h, 2)

]
,

provided that | arg z| < π
2 A′, A′ =

∑n
j=1 A j +

∑m
j=1 B j −max1≤i≤r[

∑pi
j=1 A ji +

∑qi
j=1 B ji] > 0.

Proof. In left hand side of (2.1), expand Jβ,δ,σ,tα,γ,µ,ρ,v,s(.), in the series by (1.4) and the function Im,n
pi,qi;r[.], in the Mellin

integral (1.2) and then, interchange the order of summation and integration, we get

(2.2)
∑∞

h=0
(−1)h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh

1
2πω

∫
L ϕ(ξ)zξ

∫ 1
0

∫ 1
0 yk+h+ξ(1 − x)k+h+ξ−1(1 − y)l+h+ξ−1(1 − xy)1−k−l−2h−2ξdxdydξ.

Now, in (2.2) apply the formula (1.5) to achieve

(2.3)
∑∞

h=0
(−1)h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh

1
2πω

∫
L ϕ(ξ) Γ(k+h+ξ)Γ(l+h+ξ)

Γ(k+l+2h+2ξ) zξdξ,

By definition of (1.2), the expression (2.3) immediately gives the result (2.1).
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Theorem 2.2 If α, γ, µ, ρ, v, β, δ, σ ∈ C; (β) > 0, (γ) > 0, (δ) > 0, (µ) > 0, (ρ) > 0, (σ) > 0, (v) > 0, (α) ≥ −1; s, t >
0, t < (γ) + s, 0 < (τ) + 1 < (), | arg z| < π

2 A′ and A′ =
∑n

j=1 A j +
∑m

j=1 B j − max1≤i≤r[
∑pi

j=1 A ji +
∑qi

j=1 B ji] > 0, then
following integral exists

(2.4)
∫ ∞

0 xτ(x + c +
√

x2 + 2cx)−Jβ,δ,σ,tα,γ,µ,ρ,v,s

(
x

x+c+
√

x2+2cx

)
Im,n

pi,qi;r

[
zx

(x+c+
√

x2+2cx)

∣∣∣∣∣(a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi

]
dx

= (c)1+τ−λ(
1
2

)1+τ(−τ)
∑∞

h=0
(− 1

2 )h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh
Im,n+1

pi,qi+1;r

[
z
2

∣∣∣∣∣ (−1 − 2τ − 2h, 2), (a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (−1 − −τ − 2h, 2)

]
+(c)1+τ−λ(

1
2

)1+τ(−τ − 1)
∑∞

h=0
(− 1

2 )h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh
Im,n+1

pi,qi+1;r

[
z
2

∣∣∣∣∣(−1 − 2τ − 2h, 2), (a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (− − τ − 2h, 2)

]
,

Proof. In the integrand of (2.4) define by the definitions given in (1.2) and (1.4) and then interchanging the order of
integration and summation to get that

(2.5)
∑∞

h=0
(−1)h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh

1
2πω

∫
L ϕ(ξ)zξ

∫ ∞
0 xτ+h+ξ(x + c +

√
x2 + 2cx)−−h−ξdxdξ.

In the inner integral of (2.5), use the result (1.6) to find that

(2.6) (c)1+τ−λ(
1
2

)1+τ(−τ)
∑∞

h=0
(− 1

2 )h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh

1
2πω

∫
L ϕ(ξ) (2+2τ+2h+2ξ)

(2+λ+τ+2h+2ξ) (
z
2 )ξdξ

+(c)1+τ−λ(
1
2

)1+τ(−τ − 1)
∑∞

h=0
(− 1

2 )h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh

1
2πω

∫
L ϕ(ξ) (2+2τ+2h+2ξ)

(1+λ+τ+2h+2ξ) (
z
2 )ξdξ.

Finally, use the definition (1.2) in the contour integrals of (2.6), we obtain the right hand side of (2.4) as

(2.7) (c)1+τ−λ(
1
2

)1+τ(−τ)
∑∞

h=0
(− 1

2 )h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh
Im,n+1

pi,qi+1;r

[
z
2

∣∣∣∣∣ (−1 − 2τ − 2h, 2), (a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (−1 − −τ − 2h, 2)

]
+(c)1+τ−λ(

1
2

)1+τ(−τ − 1)
∑∞

h=0
(− 1

2 )h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh
Im,n+1

pi,qi+1;r

[
z
2

∣∣∣∣∣(−1 − 2τ − 2h, 2), (a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (− − τ − 2h, 2)

]
.

In the result (2.7), apply the conditions of the results (1.3), (1.4) and (1.6), we get the conditions given in the
Theorem 2.2. Hence, the Theorem 2.2 is followed.

Theorem 2.3 If α, γ, µ, ρ, v, β, δ, σ ∈ C; (β) > 0, (γ) > 0, (δ) > 0, (µ) > 0, (ρ) > 0, (σ) > 0, (v) > 0, (α) ≥ −1; s, t >
0, t < (γ) + s, (k) > 0, (l) > 0, | arg z| < π

2 A′ and A′ =
∑n

j=1 A j +
∑m

j=1 B j − max1≤i≤r[
∑pi

j=1 A ji +
∑qi

j=1 B ji] > 0, then
following integral holds good

(2.8)
∫ 1

0 xk−1(1 − x)l−1[cx + d(1 − x)]−k−lJβ,δ,σ,tα,γ,µ,ρ,v,s

[
cdx(1−x)

[cx+d(1−x)]2

]
Im,n

pi,qi;r[
zx(1−x)

[cx+d(1−x)]2

∣∣∣∣∣(a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi
]dx

=
1

ckdl

∑∞
h=0

(−1)h(β)δh(σ)th
Γ(γh+α+1)(v)sh(µ)ρh

Im,n+2
pi,qi+1;r

[
z

cd

∣∣∣∣∣(1 − k − h, 1), (1 − l − h, 1), (a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (1 − k − l − 2h, 2)

]
,

Proof. In the similar manner of the Theorems 2.1 and 2.2, and using the result of Eqn. (1.7), we obtain the result
(2.7) of the Theorem 2.3.

3 Special cases
Here, among numerous special cases of the results in Section 2, only three of which are presented.

1. On replacing α by α − 1 in the Theorem 2.1,we get

(3.1)
∫ 1

0

∫ 1
0 yk(1 − x)k−1(1 − y)l−1(1 − xy)1−k−lEβ,δ,σ,t

α,γ,µ,ρ,v,s

[
y(1−x)(1−y)

(1−xy)2

]
Im,n

pi,qi;r

[
zy(1−x)(1−y)

(1−xy)2

∣∣∣∣∣(a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi

]
dxdy

=
∑∞

h=0
(−1)h(β)δh(σ)th

Γ(γh+α)(v)sh(µ)ρh
Im,n+2

pi,qi+1;r

[
z
∣∣∣∣∣(a j, A j)1,n, (1 − k − h, 1), (1 − l − h, 1) : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (1 − k − l − 2h, 2)

]
,

provided that | arg z| < π
2 A′, A′ =

∑n
j=1 A j +

∑m
j=1 B j−max1≤i≤r[

∑pi
j=1 A ji +

∑qi
j=1 B ji] > 0, and γ, µ, ρ, v, β, δ, σ ∈ C; (β) >

0, (γ) > 0, (δ) > 0, (µ) > 0, (ρ) > 0, (σ) > 0, (v) > 0, (α) > 0; s, t > 0andt < (γ) + s, 0 < (l) < (k).
Here, Eβ,δ,σ,t

α,γ,µ,ρ,v,s(z), a generalized Mittag - Leffler function, is defined by Khan and Ahmed [6].

2. On setting r = 1 in Theorem 2.1, we obtain

(3.2)
∫ 1

0

∫ 1
0 yk(1 − x)k−1(1 − y)l−1(1 − xy)1−k−lJβ,δ,σ,tα,γ,µ,ρ,v,s

[
y(1−x)(1−y)

(1−xy)2

]
Im,n

p1,q1;1

[
zy(1−x)(1−y)

(1−xy)2

∣∣∣∣∣(a j, A j)1,n : (a j1, A j1)1,p1

(b j, B j)1,m : (a j1, B j1)1,q1

]
dxdy
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=
∑∞

h=0
(−1)h(β)δh(σ)th

Γ(γh+α+1)(v)sh(µ)ρh
Hm,n+2

p1+n+2,q1+m+1

[
z
∣∣∣∣∣(a j, α j)1,n, (1 − k − h, 1), (1 − l − h, 1) : (a j1, α j1)n+1,p1 , (a j1, α j1)1,n

(b j, β j)1,m : (b j1, β j1)m+1,q1 , (b j1, β j1)1,m, (1 − k − l − 2h, 2)

]
,

provided that α, γ, µ, ρ, v, β, δ, σ ∈ C; (β) > 0, (γ) > 0, (δ) > 0, (µ) > 0, (ρ) > 0, (σ) > 0, (v) > 0, (α) ≥ −1; s, t > 0, t <
(γ) + s, 0 < (l) < (k), | arg z| < π

2 A′ and A′ =
∑n

j=1 A j +
∑m

j=1 B j − [
∑p

j=1 A j +
∑q

j=1 B j] > 0.

3. On setting ρ = s = t = δ = 0 in Theorem 2.1, we obtain

(3.3)
∫ 1

0

∫ 1
0 yk(1 − x)k−1(1 − y)l−1(1 − xy)1−k−lJγα

[
y(1−x)(1−y)

(1−xy)2

]
Im,n

pi,qi;r

[
zy(1−x)(1−y)

(1−xy)2

∣∣∣∣∣(a j, A j)1,n : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi

]
dxdy

=
∑∞

h=0
(−1)h

h!Γ(γh+α+1) Im,n+2
pi,qi+1;r

[
z
∣∣∣∣∣(a j, A j)1,n, (1 − k − h, 1), (1 − l − h, 1) : (a ji, A ji)1,pi

(b j, B j)1,m : (a ji, B ji)1,qi, (1 − k − l − 2h, 2)

]
,

provided that z ∈ C, (β) > 0, (α) > −1, 0 < (l) < (k), | arg z| < π
2 A and A =

∑n
j=1 A j +

∑m
j=1 B j − max1≤i≤r[

∑pi
j=1 A ji +∑qi

j=1 B ji] > 0, and Jγα(z) is Bessel-Maitland function [9, Eq.(8.3)].
Acknowledgement. We wish to express our sincere thanks to the Editor and Reviewer for their valuable suggestions
to improve the paper in its present form.
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Abstract

In this paper, an attempt has been made to provide the step-wise detailed algebraic expression for evaluation of
expected values of different orders of error term (u) by employing multinominal theorem. The expectation of even
order moments of error term (u) has been provided in case error term is not necessarily following normal distribution.
2010 Mathematics Subject Classifications: 15A30, 60E10, 62J05
Keywords and phrases: Characteristic function, Expectations, Linear Models, Matrices, Multinominal Theorem.

1 Introduction
The literature review of linear regression has witnessed the extensive utilization of algebraic expression for providing
proof of various problems. The several research articles have employed algebraic methods to provide important
results but avoided the step-wise derivation for the sake of continuity. However, it take sufficient time for the
young researchers to break down these expression by applying knowledge of Algebra. Therefore, the detailed
derivations of expressions pertaining to expected value of disturbance term u for different distributional conditions have
been obtained by employing well-known results of Multinominal theorem. Also, the detailed derivations of results
pertaining to inversion of characteristic function have been obtained by using special methods such as integration by
parts.

2 Model and measures of goodness of fit
Let us postulate the linear regression model as under

(2.1) y = αe + Xβ + u,

where, y is a vector of n × 1 observations on the variable to be explained, α is a scalar representing the intercept term,
e is a n × 1 vector with all elements of unity, X is a n × p full column rank matrix of n-observations on p-explanatory
variables, β is a p× 1 vector of the coefficients associated with them and u is a n× 1 vector of disturbances. Further, it
is assumed that the elements of disturbance vector (u) are distributed independently and identically.

The multinomial theorem has been employed to solve the expressions in this paper and statement of multinomial
theorem is stated as here-under
Theorem 2.1: It is stated that for real numbers a1, a2, a3, ..., am and non-negative integers n, s1, s2, s3,...,sm, the
following proposition holds

(2.2) (a1 + a2 + a3 + ... + am)n =
∑ n!

s1!s2!s3!...sm! a
s1
1 as2

2 as3
3 ...a

sm
m ,

where,
∑

denotes the sum of all possible combinations of (s1, s2, s3,...,sm), such that

s1 + s2 + s3 + ... + sm = n.

Proof. The standard proof of aforesaid theorem can be seen in any related book of mathematics.

3 Derivation of results
Lets us assume that expressions pertaining to real numbers (ai’s) are given by

(3.1) [a1 + a2 + ... + an]
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and expressions for different orders of (3.1) can be obtained by employing multinomial theorem, as under

(3.2) (a1 + a2 + a3 + ... + an)1 =
1!
1!

∑
i ai =

(
n
1

)
ai = nai

(3.3) (a1 + a2 + a3 + ... + an)2 =
2!
2!

∑
i a2

i + 2!
1!1!

∑
i, j aia j =

∑
i a2

i + 2
∑

i, j aia j

=
(

n
1

)
a2

i +
(

n
2

)(
2
1

)
aia j = na2

i + n(n − 1)aia j

= na2
i + (n2 − n)aia j = na2

i + (n2 − n)aia j,

(3.4) (a1 + a2 + a3 + ... + an)3 =
3!
3!

∑
i a3

i + 3!
2!1!

∑
i, j a2

i a j + 3!
1!1!1!

∑
i, j,k aia jak

=
∑

i a3
i + 3

∑
i, j a2

i a j + 6
∑

i, j,k aia jak

=
(

n
1

)
a3

i +
(

n
2

)(
2
1

)
a2

i a j +
(

n
3

)(
3
0

)
aia jak

= na3
i + 3n(n − 1)a2

i a j + n(n − 1)(n − 2)aia jak

= na3
i + (3n2 − 3n)a2

i a j + (n3 − 3n2 + 2n)aia jak,

(a1 + a2 + a3 + ... + an)4 =
4!
4!

∑
i a4

i + 4!
3!1!

∑
i, j a3

i a2
j + 4!

2!2!
∑

i, j a2
i a2

j(3.5)

+
4!
2!

∑
i, j,k a2

i a jak + 4!
1!1!1!1!

∑
i, j,k,l aia jakal

=
∑

i a4
i + 4

∑
i, j a3

i a2
j + 6

∑
i, j a2

i a2
j + 12

∑
i, j,k a2

i a jak

+ 24
∑

i, j,k,l aia jakal

=
(

n
1

)(
1
1

)
a4

i + 4
(

n
2

)(
2
1

)
a3

i a2
j + 6

(
n
2

)(
2
2

)
a2

i a2
j

+ 12
(

n
3

)(
3
1

)
a2

i a jak + 24
(

n
4

)(
4
0

)
aia jakal

=na4
i +

8n(n − 1)
2

a3
i a2

j +
6n(n − 1)

2
a2

i a2
j

+
36n(n2 − 3n + 2)

6
a2

i a jak +
24(n3 − 3n2 + 2n)(n − 3)

24
aia jakal

=na4
i + 4n(n − 1)a3

i a2
j + 3n(n − 1)a2

i a2
j + 6n(n − 1)(n − 2)

a2
i a jak + n(n − 1)(n − 2)(n − 3)aia jakal

=na4
i + (4n2 − 4n)a3

i a2
j + (3n2 − 3n)a2

i a2
j + (6n3 − 18n2 + 12n)

a2
i a jak + (n4 − 6n3 + 11n2 − 6n)aia jakal

=na4
i + (4n2 − 4n)a3

i a2
j + (3n2 − 3n)a2

i a2
j + (6n3 − 18n2 + 12n)

a2
i a jak + (n4 − 6n3 + 11n2 − 6n)aia jakal,

(a1 + a2 + a3 + ... + an)5 =
5!
5!

∑
i a5

i + 5!
4!1!

∑
i, j a4

i a j + 5!
3!2!

∑
i, j a3

i a2
j(3.6)

+
5!

3!1!1!
∑

i, j,k a3
i a jak + 5!

2!2!1!
∑

i, j,k a2
i a2

jak

+
5!

2!1!1!1!
∑

i, j,k,l a2
i a jakal + 5!

1!1!1!1!1!
∑

i, j,k,l,m aia jakalam

=na5
i + 5

n(n − 1)
2

2a4
i a j + 10

n(n − 1)
2

2a3
i a2

j

+ 20
n(n − 1)(n − 2)

6
3a3

i a jak + 30
n(n − 1)(n − 2)

6
3a2

i a2
jak

+ 60
n(n − 1)(n − 2)(n − 3)

24
4a2

i a jakal

+ 120
n(n − 1)(n − 2)(n − 3)(n − 4)

120
aia jakalam
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=na5
i + 5n(n − 1)a4

i a j + 10n(n − 1)a3
i a2

j

+ 10n(n − 1)(n − 2)a3
i a jak + 15n(n − 1)(n − 2)a2

i a2
jak

+ 10n(n − 1)(n − 2)(n − 3)a2
i a jakal

+ n(n − 1)(n − 2)(n − 3)(n − 4)aia jakalam

=na5
i + 5n(n − 1)a4

i a j + 10n(n − 1)a3
i a2

j

+ 10n(n − 1)(n − 2)a3
i a jak + 15n(n − 1)(n − 2)a2

i a2
jak

+ 10n(n − 1)(n − 2)(n − 3)a2
i a jakal

+ n(n − 1)(n − 2)(n − 3)(n − 4)aia jakalam

=na5
i + (5n2 − 5n)a4

i a j + (10n2 − 10n)a3
i a2

j

+ (10n3 − 30n2 + 20n)a3
i a jak

+ (15n3 − 45n2 + 30n)a2
i a2

jak

+ (10n4 − 60n3 + 110n2 − 60n)a2
i a jakal

+ (n5 − 10n4 + 35n3 − 50n2 + 24n)aia jakalam,
(a1 + a2 + ... + an)6 = 6!

6!
∑

i a6
i + 6!

5!1!
∑

i, j a5
i a j + 6!

4!2!
∑

i, j a4
i a2

j + 6!
4!1!1!

∑
i, j,k a4

i a jak(3.7)

+ 6!
3!3!

∑
i, j a3

i a3
j + 6!

3!2!1!
∑

i, j,k a3
i a2

jak + 6!
3!1!1!1!

∑
i, j,k,l a3

i a jakal

+ 6!
2!2!2!

∑
i, j,k a2

i a2
ja

2
k + 6!

2!2!1!1!
∑

i, j,k,l a2
i a2

jakal

+ 6!
2!1!1!1!1!

∑
i, j,k,l,m a2

i a jakalam

+ 6!
1!1!1!1!1!1!

∑
i, j,k,l,m,n aia jakalaman

=
∑

i a6
i + 6

∑
i, j a5

i a j + 15
∑

i, j a4
i a2

j + 30
∑

i, j,k a4
i a jak + 20

∑
i, j a3

i a3
j

+ 60
∑

i, j,k a3
i a2

jak + 120
∑

i, j,k,l a3
i a jakal + 90

∑
i, j,k a2

i a2
ja

2
k

+ 180
∑

i, j,k,l a2
i a2

jakal + 360
∑

i, j,k,l,m a2
i a jakalam

+ 720
∑

i, j,k,l,m,n aia jakalaman

=
(

n
1

)(
1
1

)
a6

i + 6
(

n
2

)(
2
1

)
a5

i a j + 15
(

n
2

)(
2
2

)
a4

i a2
j

+ 30
(

n
3

)(
3
1

)
a4

i a jak + 20
(

n
2

)(
2
2

)
a3

i a3
j

+ 60
(

n
3

)(
3
1

)(
2
1

)
a3

i a2
jak + 120

(
n
4

)(
4
1

)
a3

i a jakal

+ 90
(

n
3

)(
3
3

)
a2

i a2
ja

2
k + 180

(
n
4

)(
4
2

)
a2

i a2
jakal

+ 360
(

n
5

)(
5
1

)
a2

i a jakalam + 720
(

n
6

)(
6
0

)
aia jakalaman

=na6
i + 6 n(n−1)

2 2a5
i a j + 15 n(n−1)

2 2a4
i a2

j

+ 30 n(n−1)(n−2)
6 3a4

i a jak + 20 n(n−1)
2 a3

i a3
j

+ 60 n(n−1)(n−2)
6 6a3

i a2
jak + 120 n(n−1)(n−2)(n−3)

24 4a3
i a jakal

+ 90 n(n−1)(n−2)
6 a2

i a2
ja

2
k + 180 n(n−1)(n−2)(n−3)

24 6a2
i a2

jakal

+ 360 n(n−1)(n−2)(n−3)(n−4)
120 5a2

i a jakalam

+ 720 n(n−1)(n−2)(n−3)(n−4)(n−5)
720 aia jakalaman

=na6
i + 6n(n − 1)a5

i a j + 15n(n − 1)a4
i a2

j + 15n(n − 1)(n − 2)a4
i a jak

+ 10n(n − 1)a3
i a3

j + 60n(n − 1)(n − 2)a3
i a2

jak

+ 20n(n − 1)(n − 2)(n − 3)a3
i a jakal

+ 15n(n − 1)(n − 2)a2
i a2

ja
2
k + 45n(n − 1)(n − 2)(n − 3)a2

i a2
jakal

+ 15n(n − 1)(n − 2)(n − 3)(n − 4)a2
i a jakalam

+ n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)aia jakalaman
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=na6
i + 6n(n − 1)a5

i a j + 15n(n − 1)a4
i a2

j

+ 15n(n − 1)(n − 2)a4
i a jak + 10n(n − 1)a3

i a3
j

+ 60n(n − 1)(n − 2)a3
i a2

jak + 20n(n − 1)(n − 2)(n − 3)a3
i a jakal

+ 15n(n − 1)(n − 2)a2
i a2

ja
2
k + 45n(n − 1)(n − 2)(n − 3)a2

i a2
jakal

+ 15n(n − 1)(n − 2)(n − 3)(n − 4)a2
i a jakalam

+ n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)aia jakalaman

=na6
i + (6n2 − 6n)a5

i a j + (15n2 − 15n)a4
i a2

j

+ (15n3 − 45n2 + 30n)a4
i a jak + (10n2 − 10n)a3

i a3
j

+ (60n3 − 180n2 + 120n)a3
i a2

jak

+ (20n4 − 120n3 + 220n2 − 120n)a3
i a jakal

+ (15n3 − 45n2 + 30n)a2
i a2

ja
2
k

+ (45n4 − 270n3 + 495n2 − 270n)a2
i a2

jakal

+ (15n5 − 150n4 + 525n3 − 750n2 + 360n)a2
i a jakalam

+ (n6 − 15n5 + 85n4 − 155n3 + 274n2 − 120)aia jakalaman.

From equations (3.2) to (3.7) we get respectively
(3.8) (a1 + a2 + a3 + ... + an)1 = n

[
ai
]
,

(a1 + a2 + a3 + ... + an)2 =n
[
a2

i

]
+ (n2 − n)

[
aia j

]
,

(a1 + a2 + a3 + ... + an)3 =n
[
a3

i

]
+ (3n2 − 3n)

[
a2

i a j

]
+ (n3 − 3n2 + 2n)

[
aia jak

]
,

(a1 + a2 + a3 + ... + an)4 =n
[
a4

i

]
+ (4n2 − 4n)

[
a3

i a2
j

]
+ (3n2 − 3n)

[
a2

i a2
j

]
+ (6n3 − 18n2 + 12n)

[
a2

i a jak

]
+ (n4 − 6n3 + 11n2 − 6n)

[
aia jakal

]
,

(a1 + a2 + a3 + ... + an)5 =n
[
a5

i

]
+ (5n2 − 5n)

[
a4

i a j

]
+ (10n2 − 10n)

[
a3

i a2
j

]
+ (10n3 − 30n2 + 20n)

[
a3

i a jak

]
+ (15n3 − 45n2 + 30n)

[
a2

i a2
jak

]
+ (10n4 − 60n3 + 110n2 − 60n)

[
a2

i a jakal

]
+ (n5 − 10n4 + 35n3 − 50n2 + 24n)

[
aia jakalam

]
,

(a1 + a2 + a3 + ... + an)6 =n
[
a6

i

]
+ (6n2 − 6n)

[
a5

i a j

]
+ (15n2 − 15n)

[
a4

i a2
j

]
+ (15n3 − 45n2 + 30n)

[
a4

i a jak

]
+ (10n2 − 10n)

[
a3

i a3
j

]
+ (60n3 − 180n2 + 120n)

[
a3

i a2
jak

]
+ (20n4 − 120n3 + 220n2 − 120n)

[
a3

i a jakal

]
+ (15n3 − 45n2 + 30n)

[
a2

i a2
ja

2
k

]
+ (45n4 − 270n3 + 495n2 − 270n)

[
a2

i a2
jakal

]
+ (15n5 − 150n4 + 525n3 − 750n2 + 360n)

[
a2

i a jakalam

]
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+ (n6 − 15n5 + 85n4 − 155n3 + 274n2 − 120)
[
aia jakalaman

]
.

In case, we required the expectations of (u′u), (u′u)2, (u′u)3, (u′u)4, (u′u)5 and (u′u)6, the same can be obtained by
using (3.8) as stated in Theorem 3.1.

Theorem 3.1 The expected value of different orders of disturbance term (u), when u follows normal distribution with
mean zero and variance σ2 is given by

(3.9) E(u′u) = nσ2,

E(u′uu′u) = σ4(n2 − 2n),

E(u′uu′uu′u) = σ6(n3 + 6n2 + 8n),

E(u′uu′uu′uu′u) = σ8(n4 + 12n3 + 44n2 + 48),

E(u′uu′uu′uu′uu′u) = σ10(n5 + 20n4 + 140n3 + 400n2 + 384n),

E(u′uu′uu′uu′uu′uu′u) = σ12(n6 + 30n5 + 340n4 + 1870n3 + 4384n2 + 3840n).

Proof. As disturbances are following normal distribution, the generalized form of central moments (with mean zero
and variance σ2) is given by

(3.10) m2n = σ2n(2n − 1)!! for even moments,

m2n+1 = 0 for odd moments.

Using (3.9) one can see that all odd order moments of normal distribution are zero and even order central moments
for normal distribution with mean zero and variance σ2 as

(3.11) m2 = σ2(2 − 1)!! = σ2,

m4 = σ4(4 − 1)!! = σ4(4 − 1)(4 − 3) = 3σ4,

m6 = σ6(6 − 1)!! = σ6(6 − 1)(6 − 3)(6 − 1) = 15σ6,

m8 = σ8(8 − 1)!! = σ8(8 − 1)(8 − 3)(8 − 5)(8 − 7) = 105σ8,

m10 = σ10(10 − 1)!! = σ10(10 − 1)(10 − 3)(10 − 5)(10 − 7)(10 − 9) = 945σ8,

m12 = σ12(12 − 1)!! = σ12(12 − 1)(12 − 3)(12 − 5)(12 − 7)(12 − 9)(12 − 11) = 10395σ12.

By utilizing equations (3.1), (3.8) and (3.11) the expected value of disturbance term u following normal distribution
with mean zero and variance σ2 can be derived as

(3.12) E(u2
1 + u2

2 + ... + u2
n)1 = E

[
a1 + a2 + a3 + ... + an

]1
= nE[ai] = nE[u2

i ] = nσ2,

(3.13) E(u2
1 + u2

2 + ... + u2
n)2 = E

[
a1 + a2 + a3 + ... + an

]2
= nE

[
a2

i

]
+ (n2 − n)E

[
aia j

]
= nE

[
u4

i

]
+ (n2 − n)E

[
u2

i u2
j

]
= nE

[
u4

i

]
+ (n2 − n)E

[
u2

i

][
u2

j

]
= n[3σ4] + (n2 − n)[σ2σ2] = σ4[n2 − 2n],

(3.14) E(u2
1 + u2

2 + ... + u2
n)3 = E

[
a1 + a2 + a3 + ... + an

]3

= nE
[
a3

i

]
+ (3n2 − 3n)E

[
a2

i a j

]
+ (n3 − 3n2 + 2n)E

[
aia jak

]
= nE

[
u6

i

]
+ (3n2 − 3n)E

[
u4

i u2
j

]
+ (n3 − 3n2 + 2n)E

[
u2

i u2
ju

2
k

]
= nE

[
u6

i

]
+ (3n2 − 3n)E

[
u4

i

]
E
[
u2

j

]
+ (n3 − 3n2 + 2n)E

[
u2

i

]
E
[
u2

j

]
E
[
u2

k

]
= n[15σ6] + (3n2 − 3n)[3σ4σ2] + (n3 − 3n2 + 2n)[σ6]

= σ6[15n + 9n2 − 9n + n3 − 3n2 + 2n]

= σ6[n3 + 6n2 + 8n],

(3.15) E(u2
1 + u2

2 + ... + u2
n)4 = E

[
a1 + a2 + a3 + ... + an

]4

=nE
[
a4

i

]
+ (4n2 − 4n)E

[
a3

i a2
j

]
+ (3n2 − 3n)E

[
a2

i a2
j

]
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+ (6n3 − 18n2 + 12n)E
[
a2

i a jak

]
+ (n4 − 6n3 + 11n2 − 6n)E

[
aia jakal

]
=nE

[
u8

i

]
+ (4n2 − 4n)E

[
u6

i u4
j

]
+ (3n2 − 3n)E

[
u4

i u4
j

]
+ (6n3 − 18n2 + 12n)E

[
u4

i u2
ju

2
k

]
+ (n4 − 6n3 + 11n2 − 6n)E

[
u2

i u2
ju

2
ku2

l

]
=nE

[
u8

i

]
+ (4n2 − 4n)E

[
u6

i

]
E
[
u4

j

]
+ (3n2 − 3n)E

[
u4

i

]
E
[
u4

j

]
+ (6n3 − 18n2 + 12n)E

[
u4

i

]
E
[
u2

j

]
E
[
u2

k

]
+ (n4 − 6n3 + 11n2 − 6n)E

[
u2

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
=n[105σ8] + (4n2 − 4n)[15σ63σ4] + (3n2 − 3n)[3σ43σ4]

+ (6n3 − 18n2 + 12n)[3σ4σ2σ2]

+ (n4 − 6n3 + 11n2 − 6n)[σ2σ2σ2σ2]

=σ8[105n + 45(4n2 − 4n) + 9(3n2 − 3n)

+ 3(6n3 − 18n2 + 12n)

+ (n4 − 6n3 + 11n2 − 6n)]

=σ8[n4 + 12n3 + 44n2 + 48],

(3.16) E(u2
1 + u2

2 + ... + u2
n)5 = E

[
a1 + a2 + a3 + ... + an

]5

=nE
[
a5

i

]
+ (5n2 − 5n)E

[
a4

i a j

]
+ (10n2 − 10n)E

[
a3

i a2
j

]
+ (10n3 − 30n2 + 20n)E

[
a3

i a jak

]
+ (15n3 − 45n2 + 30n)E

[
a2

i a2
jak

]
+ (10n4 − 60n3 + 110n2 − 60n)E

[
a2

i a jakal

]
+ (n5 − 10n4 + 35n3 − 50n2 + 24n)E

[
aia jakalam

]
=nE

[
u10

i

]
+ (5n2 − 5n)E

[
u8

i u2
j

]
+ (10n2 − 10n)E

[
u6

i u4
j

]
+ (10n3 − 30n2 + 20n)E

[
u6

i u2
ju

2
k

]
+ (15n3 − 45n2 + 30n)E

[
u4

i u4
ju

2
k

]
+ (10n4 − 60n3 + 110n2 − 60n)E

[
u4

i u2
ju

2
ku2

l

]
+ (n5 − 10n4 + 35n3 − 50n2 + 24n)E

[
u2

i u2
ju

2
ku2

l u2
m

]
=nE

[
u10

i

]
+ (5n2 − 5n)E

[
u8

i

]
E
[
u2

j

]
+ (10n2 − 10n)E

[
u6

i

]
E
[
u4

j

]
+ (10n3 − 30n2 + 20n)E

[
u6

i

]
E
[
u2

j

]
E
[
u2

k

]
+ (15n3 − 45n2 + 30n)E

[
u4

i

]
E
[
u4

j

]
E
[
u2

k

]
+ (10n4 − 60n3 + 110n2 − 60n)E

[
u4

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
+ (n5 − 10n4 + 35n3 − 50n2 + 24n)

E
[
u2

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
E
[
u2

m

]
=n

[
945σ10

]
+ (5n2 − 5n)E

[
105σ8σ2

]
+ (10n2 − 10n)E

[
15σ63σ4

]
+ (10n3 − 30n2 + 20n)

68



E
[
15σ6σ2σ2

]
+ (15n3 − 45n2 + 30n)E

[
3σ43σ4σ2

]
+ (10n4 − 60n3 + 110n2 − 60n)E

[
3σ4σ2σ2σ2

]
+ (n5 − 10n4 + 35n3 − 50n2 + 24n)E

[
σ2σ2σ2σ2σ2

]
=σ10

[
n5 + 20n4 + 140n3 + 400n2 + 384n

]
,

(3.17) E(u2
1 + u2

2 + ... + u2
n)6 = E

[
a1 + a2 + a3 + ... + an

]6

=nE
[
u12

i

]
+ (6n2 − 6n)E

[
u10

i u2
j

]
+ (15n2 − 15n)E

[
u8

i u4
j

]
+ (10n2 − 10n)E

[
u6

i u6
j

]
+ (15n3 − 45n2 + 30n)E

[
u8

i u2
ju

2
k

]
+ (60n3 − 180n2 + 120n)E

[
u6

i u4
ju

2
k

]
+ (20n4 − 120n3 + 220n2 − 120n)E

[
u6

i u2
ju

2
ku2

l

]
+ (15n3 − 45n2 + 30n)E

[
u4

i u4
ju

4
k

]
+ (45n4 − 270n3 + 495n2 − 270n)E

[
u4

i u4
ju

2
ku2

l

]
+ (15n5 − 150n4 + 525n3 − 750n2 + 360n)E

[
u4

i u2
ju

2
ku2

l u2
m

]
+ (n6 − 15n5 + 85n4 − 155n3 + 274n2 − 120)

E
[
u2

i u2
ju

2
ku2

l u2
mu2

n

]
=nE

[
u12

i

]
+ (6n2 − 6n)E

[
u10

i

]
E
[
u2

j

]
+ (15n2 − 15n)E

[
u8

i

]
E
[
u4

j

]
+ (10n2 − 10n)E

[
u6

i

]
E
[
u6

j

]
+ (15n3 − 45n2 + 30n)E

[
u8

i

]
E
[
u2

j

][
u2

k

]
+ (60n3 − 180n2 + 120n)E

[
u6

i

]
E
[
u4

j

]
E
[
u2

k

]
+ (20n4 − 120n3 + 220n2 − 120n)

E
[
u6

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
+ (15n3 − 45n2 + 30n)E

[
u4

i

]
E
[
u4

j

]
E
[
u4

k

]
+ (45n4 − 270n3 + 495n2 − 270n)

E
[
u4

i

]
E
[
u4

j

]
E
[
u2

k

]
E
[
u2

l

]
+ (15n5 − 150n4 + 525n3 − 750n2 + 360n)

E
[
u4

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
E
[
u2

m

]
+ (n6 − 15n5 + 85n4 − 155n3 + 274n2 − 120)

E
[
u2

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
E
[
u2

m

]
E
[
u2

n

]
=nE

[
10395σ12

]
+ (6n2 − 6n)E

[
945σ10

]
E
[
σ2

]
+ (15n2 − 15n)E

[
105σ8

]
E
[
3σ4

]
+ (10n2 − 10n)E

[
15σ6

]
E
[
15σ6

]
+ (15n3 − 45n2 + 30n)E

[
105σ8

]
E
[
σ2

]
E
[
σ2

]
+ (60n3 − 180n2 + 120n)E

[
15σ6

]
E
[
3σ4

]
E
[
σ2

]
+ (15n3 − 45n2 + 30n)E

[
3σ4

]
E
[
3σ4

]
E
[
3σ4

]
+ (20n4 − 120n3 + 220n2 − 120n)E

[
15σ6

]
E
[
σ2

]
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E
[
σ2

]
E
[
σ2

]
+ (45n4 − 270n3 + 495n2 − 270n)

E
[
3σ4

]
E
[
3σ4

]
E
[
σ2

]
E
[
σ2

]
+ (15n5 − 150n4 + 525n3 − 750n2 + 360n)

E
[
3σ4

][
σ2

][
σ2

][
σ2

][
σ2

]
+ (n6 − 15n5 + 85n4 − 155n3 + 274n2 − 120)

E
[
σ2

][
σ2

][
σ2

][
σ2

][
σ2

][
σ2

]
=σ12

[
n6 + 30n5 + 340n4 + 1870n3 + 4384n2 + 3840n

]
.

Thus, using (3.12) to (3.17) we obtain the results (3.9) of the Theorem 3.1.

Theorem 3.2 The even order moments of disturbance term (u), when u is distributed with non-normal distribution with
finite moments as

(3.18) m2 = σ2,

m4 = σ4(γ2 + 3),

m6 = σ6(γ4 + 15γ2 + 10γ2
1

+ 15),

m8 = σ8(γ6 + 28γ4 + 56γ3γ1 + 35γ2
2

+ 210γ2 + 280γ2
1

+ 105).

Further, the expected value of different orders of u′u are given by

(3.19) E(u′u) = σ2
[
n
]
,

E(u′u)2 = σ4
[
γ2 n + n2 + 2n

]
,

E(u′u)3 = σ6
[
γ4 n + γ2 (3n2 + 12n) + 10γ2

1
n + 6n2 + 8n

]
,

E(u′u)4 = σ8
[
n4 + 12n3 + 44n2 + 48n + γ2(6n3 + 60n2 + 144n)

+γ4(4n2 + 24n) + γ6n + γ2
1(40n2 + 240n) + γ2

2(3n2 + 32n) + 56γ1γ2n
]
,

where, Pearson’s measure of skewness and kurtosis are termed as γ1 & γ2 and γ4 , γ6 may be treated as measures of
deviation from the normality. Also, disturbance term is distributed with mean zero and variance σ2 and elements of
error term are i.i.d.

Proof. Using equations (3.1), (3.8) and (3.18) the expression for expectation of u under given conditions of non-
normality as derived here-under

(3.20) E(u′u) = nE(ai) = nE(u2
i ) = σ2[n],

(3.21) E(u′u)2 = nE(a2
i ) + (n2 − n)E(aia j) = nE(a2

i ) + (n2 − n)E(ai)E(a j)

= nσ4(γ2 + 3) + (n2 − n)σ2σ2 = σ4
[
n(γ2 + 3) + n2 − n

]
= σ4

[
nγ2 + n2 + 2n

]
,

(3.22) E(u′u)3 = nE(a3
i ) + (3n2 − 3n)E(a2

i a j) + (n3 − 3n2 + 2n)E(aia jak)

= nE(a3
i ) + (3n2 − 3n)E(a2

i )E(a2
j ) + (n3 − 3n2 + 2n)E(ai)E(a j)E(ak)

= nσ6(γ4 + 15γ2 + 10γ2
1 + 15) + σ6(3n2 − 3n)(γ2 + 3)

+σ6(n3 − 3n2 + 2n)

= σ6
[
γ4 n + γ2 (3n2 + 12n) + 10γ2

1
n + 6n2 + 8n

]
,

(3.23) E(u2
1 + u2

2 + ... + u2
n)4 = E

[
a1 + a2 + a3 + ... + an

]4

= nE
[
a4

i

]
+ (4n2 − 4n)E

[
a3

i a2
j

]
+ (3n2 − 3n)E

[
a2

i a2
j

]
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+(6n3 − 18n2 + 12n)E
[
a2

i a jak

]
+(n4 − 6n3 + 11n2 − 6n)E

[
aia jakal

]
= nE

[
u8

i

]
+ (4n2 − 4n)E

[
u6

i u4
j

]
+ (3n2 − 3n)E

[
u4

i u4
j

]
+(6n3 − 18n2 + 12n)E

[
u4

i u2
ju

2
k

]
+(n4 − 6n3 + 11n2 − 6n)E

[
u2

i u2
ju

2
ku2

l

]
= nE

[
u8

i

]
+ (4n2 − 4n)E

[
u6

i

]
E
[
u4

j

]
+ (3n2 − 3n)E

[
u4

i

]
E
[
u4

j

]
+(6n3 − 18n2 + 12n)E

[
u4

i

]
E
[
u2

j

]
E
[
u2

k

]
+(n4 − 6n3 + 11n2 − 6n)E

[
u2

i

]
E
[
u2

j

]
E
[
u2

k

]
E
[
u2

l

]
= nσ8

[
n4 + 12n3 + 44n2 + 48n + γ2(6n3 + 60n2 + 144n)

+γ4(4n2 + 24n) + γ6n + γ2
1(40n2 + 240n) + γ2

2(3n2 + 32n)

+56γ1γ2n
]

+ (4n2 − 4n)[σ6(γ4 + 15γ2 + 10γ2
1 + 15)σ2]

+(3n2 − 3n)[σ4(γ2 + 3)]2 + (6n3 − 18n2 + 12n)[σ8(γ2 + 3)]

+(n4 − 6n3 + 11n2 − 6n)[σ2σ2σ2σ2]

= σ8[n4 − 6n3 + 11n2 − 6n + 105n + γ2(6n3 − 18n2 + 12n)

+18n3 − 54n2 + 36n + γ2
2(3n2 − 3n) + 27n2 − 27n

+γ2(18n2 − 18n) + γ4(4n2 − 4n) + γ2(60n2 − 60n)

+γ2
1(40n2 − 40n) + 60n2 − 60n + γ6n + 28γ4n + 56γ2γ1n

+35γ2
2n + 210γ2n + 280γ2

1n + 105n

= σ8
[
n4 + 12n3 + 44n2 + 48n + γ2(6n3 + 60n2 + 144n)

+γ4(4n2 + 24n) + γ6n + γ2
1(40n2 + 240n) + γ2

2(3n2 + 32n)

+56γ1γ2n
]
.

Thus, we obtain the results of the Theorem 3.2.

4 Derivation of expression pertaining to integrals
The derivation of integral utilized in solving expressions pertaining to inversion of characteristic function are provided
in this section. Further, to carry out the detailed derivations of integrals expression by utilizing integration by parts
method, let us state following theorem:

Theorem 4.1 The integration of I1, I2 and I3 as follows

(4.1) I1 =
1

2Π

∫ ∞
−∞

te−at2/2e−ιtW1 dt = −
[
ιW1

a

]
f (W1),

I2 =
1

2Π

∫ ∞
−∞

t2e−at2/2e−ιtW1 dt =
[
ι2W2

1
a2

]
f (W1),

I3 =
1

2Π

∫ ∞
−∞

t3e−at2/2e−ιtW1 dt == −ι
[

3W1
a2 −

W3
1

a3

]
f (W1),

where,

(4.2)
1

2Π

∫ ∞
−∞

e−at2/2e−ιtW1 dt = f (W1),

given that W1 follows normal distribution with mean zero and variance (σ2) equals to a, such that a > 0.
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Proof. In order to proof results at (4.1), let us write f (x1), f (x2) and f (x3) as

f (x1) =
∫

te−at2/2,(4.3)

f (x2) =
∫

t2e−at2/2,

f (x3) =
∫

t3e−at2/2,

where, integration of f (x1), f (x2) and f (x3) can be derived as given by∫
f (x1) =

∫
te−at2/2(4.4)

=
∫

e−au/2 du
2 (Let t2 = u =⇒ 2tdt = du)

=
1
2

[e−au/2

−a/2

]
= −

e−au/2

a

= −
1
a

e−at2/2 + C,

3cm f (x2) =
∫

t2e−at2/2dt(4.5)

=t2
[e−at2/2

−at

]
− 2

∫
e−at2/2

−a dt

= −
t
a

e−at2/2 −
2
a2

e−at2/2

t
+ C,

f (x3) =
∫

t3e−at2/2dt(4.6)

=t3
[e−at2/2

−at

]
−

∫
3t2 e−at2/2

−at dt

= −
t2

a
e−at2/2 −

3
a2 e−at2/2 + C.

Further, let g(x) = cos(tW1) − ι sin(tW1) and derivative of g(x) is given by

g′(x) =
d
dx

[(cos(tW1) − ι sin(tW1)]dt(4.7)

= −W1 sin(tW1) − ιW1 cos(tW1)
= − ιW1g(x).

We may re-write I1 as

I1 =
1

2Π

∫ ∞
−∞

te−at2/2e−ιtW1 dt(4.8)

=
1

2Π

∫ ∞
−∞

te−at2/2[cos(tW1) − ι sin(tW1)]dt

=
1

2Π

∫ ∞
−∞

f (x1)g(x),

where, f (x1) =
∫

te−at2/2 and g(x) = cos(tW1) − ι sin(tW1) as defined in equations (4.3)) and (4.7). Further, employing
integration by parts and utilizing results (4.4) and (4.7), we derive

I1 =
1

2Π

∫ ∞
−∞

g(x) f (x1)dt(4.9)

=
1

2Π

[
g(x)

∫ ∞
−∞

f (x1)dt −
∫ ∞
−∞

g′(x)
∫ ∞
−∞

f (x1)dtdt
]

=
1

2Π

[
−g(x)

1
a

e−at2/2
∣∣∣∣+∞
−∞
−
ιW1

2Π

1
a

∫ ∞
−∞

g(x)e−at2/2dt
]

=
1

2Π

[
−

1
a

g(x)e−at2/2
∣∣∣∣+∞
−∞
−
ιW1

2Π

1
a

∫ ∞
−∞

g(x)e−at2/2dt
]

= −
[ ιW1

a

]
f (W1).
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Similarly

I2 =
1

2Π

∫ ∞
−∞

t2e−at2/2e−ιtW1 dt

(4.10)

=
1

2Π

∫ ∞
−∞

g(x) f (x2)dt

=
1

2Π

[
g(x)

∫ ∞
−∞

f (x2)dt + ιW1
∫ ∞
−∞

g(x)
(
− t

a e−at2/2 − 2
a2

e−at2/2

t

)]
dt

=
1

2Π

[
−
ιW1

a

∫ ∞
−∞

g(x)te−at2/2dt − 2ιW1
a2

∫ ∞
−∞

g(x) e−at2/2

t

]
=

1
2Π

[
−
−ιW1

a

(
2Π
−ιW1

a
f (W1)

)]
=
[ ι2W2

1

a2

]
f (W1).

Using (4.7) and (4.8), we obtain

I3 =
1

2Π

∫ ∞
−∞

t3e−at2/2e−ιtW1 dt

(4.11)

=
1

2Π

∫ ∞
−∞

g(x) f (x3)dt

=
1

2Π

[
g(x)

∫ ∞
−∞

f (x3)dt −
∫ ∞
−∞

g′(x)
∫ ∞
−∞

f (x3)dtdt
]

= + ιW1
∫ ∞
−∞

g(x)
[
−t2

a e−at2/2 − 3
a2 e−at2/2

]
dt

= −
[ ιW1

2Πa

] ∫ ∞
−∞

t2e−ιtW1 e−at2/2dt −
[

3ιW1
2Πa2

] ∫ ∞
−∞

e−ιtW1 e−at2/2dt

= −
iW1

a

[ ι2W2
1

a2

]
f (W1) −

[3ιW1

a2

]
f (W1)

= − ι
[3W1

a2 −
W3

1

a3

]
f (W1).

Thus, we obtain the results of Theorem 4.1.

5 Conclusion
The present work provide insights to the algebraic expression, utilized for the deducing the several important results
available in literature, by providing step-wise derivation.
Acknowledgement. The authors are grateful to the Editor and Reviewer for their comments to bring the paper in its
present form.
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Abstract

This paper deals with the nonlinear dynamics of Susceptible, Infected, Recovered epidemic model with a
particular non linear incidence rate and the consequences of media awareness program. The model analysis shows
that the spread of an infectious disease can be controlled by using awareness programs. Different equilibrium points
and their stability are discussed. The basic reproduction number R0 is obtained. We also apply Lasalle’s invariance
principle to show that the disease-free equilibrium is globally asymptotically stable if R0 < 1 and we use a geometric
approach to find out the global stability of the endemic equilibrium. In addition, to our analytical results, several
numerical simulations are also illustrated.
2010 Mathematics Subject Classifications: 34D20, 34D23, 92B05, 92D05.
Keywords and phrases: social distancing, wearing protective masks, geometric approach, stability, media, COVID-
19.

1 Introduction
Mathematical models of infectious diseases are proven to be very important in better understanding of epidemiological
patterns and disease control in human populations. In the study of the epidemiological models, incidence rate play a
very important role while controlling the transmission of infectious diseases. Epidemic models with different types of
incidence rate have been studied and developed by many authors. In order to model this disease transmission process
many authors use the incidence functions: The earliest one is the bilinear incidence rate λS I used by Kermack and
Mckendrick [7] in 1927. In 1978, Capasso and Serio [3] introduced a saturated incidence rate λI

1+αI by research of the
Cholera epidemic spread in Bari. Also in 1978, May and Anderson [1] proposed the saturated incidence rate λS I

1+αS .
The general incidence rate λIpS

1+αIq was proposed by Liu et. al. [10, 11] in 1986-87, Derick and Ven Den Driessche [4] in
1993, etc. Ruan and Wang [17] studied an epidemic model with a specific nonlinear incidence rate λI2S

1+αI2 and presented
a detailed quantitative analysis and bifurcation analysis and Bogdanov-Takens bifurcation for the model in 2003. Xiao
and Zhou [20] considered the non-monotone incidence rate λIS

1+βI+αI2 in 2006. To model the effects of psychological
factor, protection measures and intervention policies when a serious disease emerges, Xiao and Ruan [21] proposed
the specific incidence rate λIS

1+αI2 in 2007.
Controlling infectious diseases has been an increasingly more and more complex issue in recent years. In the

field of epidemiology, treatment, vaccination, isolation, media awareness program and many more play a crucial
role in controlling the disease spread. Media is can be helpful to develop the awareness among in common people
regarding the rich nature of the disease, make people knowledgeable about the disease to take precautions such as
social distancing, wearing protective masks, vaccination etc., to reduce their probabilities of being infected and some
other impacts. It is observed that, media coverage gives rise to healthy behaviour among the population. Few research
works on media coverage can be found in [8, 9, 12, 16, 18]. However, mathematical models to study the disease
transmission dynamics together with media effect is still largely remain unexplored.
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In the present research, we intend to study the influence of media coverage to control and eradicate the disease with
a particular non-linear incidence function U(S , I) = λS I

1+α1S +α2I2 used by [2], which has the property of being saturated
with infectives as well as with susceptible individuals. We can see that

∂U(S , I)
∂I

=
λS (1 + α1S − α2I2)

(1 + α1S + α2I2)2 ,

which is positive when I2 < (1+α1S )
α2

and negative when I2 > (1+α1S )
α2

. Hence, U(S , I) is a non-monotonic function
with respect to I, since it increases when the number of infectives is relatively small but decreases as the number of
infectives becomes larger. On the other hand

∂U(S , I)
∂S

=
λI(1 + α2I2)

(1 + α1S + α2I2)2 > 0,

so U(S , I) grows monotonically with respect to susceptibles.
This kind of non-linear and non-monotonic incidence function models the idea that, at the beginning of the

infection, the population has little awareness of preventive measures, so the contact rate increases rapidly. As time
advances, media reporting on early stage symptoms of the disease, the population becomes more aware of the risk and
takes measures to control or eradicate the disease, so the number of infectious contacts decreases.

This manuscript is organized as follows: In Sect.2, S IRS model is presented. In Sect.3, basic properties of
solutions are discussed. In Sect.4, we calculate the basic reproduction number then in Sect.5, we determine all possible
equilibria of model. In Sect.6, we discuss and analyze the local stability of the equilibriums. In Sect.7, we discuss and
analyze the global stability of the equilibriums. We present in Sect.8, some numerical examples of the dynamics of
the model. Finally, in Sect.9, swe discussed the conclusion.

2 Model Formulation
In this section, deterministic nonlinear S IRS model is considered by taking media awareness and particular incidence
rate into account. The variables and parameters of the model are described in Table 2.1 and Table 2.2 respectively.

Table 2.1: Description of the model state variables.

State variables Description
S (t) Number of susceptible individuals at time t
I(t) Number of infected individuals at time t
R(t) Number of recovered individuals at time t
N(t) The total population size at time t

To model the situation considered a region with total population N(t) at any instant of time t. By taking into
account the aforementioned considerations, the system of equations that capture the dynamics of the infectious disease
is designed and the ordinary differential equations of the system (2.1) is as follows.

(2.1)



dS
dt

= a − dS −
λS I

1 + α1S + α2I2 + βR − pS M

dI
dt

=
λS I

1 + α1S + α2I2 − (d + δ)I

dR
dt

= δI − (d + β)R + pS M,

whose state space is the first quadrant R+
3 = {(S , I, R) : S ≥ 0, I ≥ 0, R ≥ 0} and subject to the initial conditions

S (0) = S 0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0. It is assumed that all the parameters are positive.
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Table 2.2: Description of the model parameters.

State parameters Description
a Recruitment rate of the population
d The natural death rate of the population
λ The effective contact rate

α1&α2 The parameter measures of the psychological or
inhibitory effect

β The rate at which recovered individuals lose immunity
and return to susceptible class

δ The natural recovery rate of infection
p The dissemination rate of awareness among unaware

susceptible due to which they form a different class
M The media control parameter (fixed)

3 Basic Properties of the Model
Summing up the four equations of model (2.1) and denoting

N(t) = S (t) + I(t) + R(t),

having

N′(t) = a − dN.

If disease is not present, then N′(t) = a− dN. This shows that population size N → a
d as t → ∞. It follows that the

solutions of model (2.1) exists in the region defined by

(3.1) Ω =
{
(S , I, R) ∈ R+

4 : S , I, R ≥ 0, S + I + R ≤ a/d
}
.

This gives the following lemma which shows that the solutions of model (2.1) are bounded, continuous for all
positive time and lie in a compact set.

Lemma 3.1 The set Ω defined in (3.1) is a positively invariant region for model (2.1). Moreover, every trajectory of
model (2.1) is eventually staying in a compact subset of Ω.

4 Basic Reproductive Number
The basic reproduction number sometimes called basic reproductive rate or basic reproductive ratio is one of the
most useful threshold parameters which characterize mathematical problems concerning infectious diseases. This
metric is useful because it helps determine whether or not an infectious disease will spread through a population. In
this section, we will calculate the basic reproduction number R0 of system (2.1) by using the next-generation matrix
method described in [19]. For that, we rewrite model (2.1) as

dx
dt

= F(x) −V(x),

where x = (I,R, S ),

F(x) =


λS I

1+α1S +α2I2

0
0

 and V(x) =


(γ + δ + d + d1)I
−δI + (µ + d + d2)Q
−γI − µQ + dR

−A + dS +
βS I

(1+α1S )(1+α2I)

.
We calculate the Jacobian matrices for F(x) and V(x) at the disease-free equilibrium x0 = (0, 0, a/d + pM ).

F =


λa

α1a+d+pM 0 0
0 0 0
0 0 0

, V =


d + δ 0 0
−δ d + β −pM
λa

d+pM+α1a −β d + pM

.
FV−1 is the next generation matrix for model (2.1). It then follows that the spectral radius of matrix FV−1 is

ρ(FV−1) = λa
(aα1+d+pM)(d+δ) . Thus, the basic reproduction number of model (2.1) is

R0 =
λa

(aα1 + d + pM)(d + δ)
.
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5 Existence of Equilibria
In this section, we obtain the existence of the disease-free equilibrium E0 and the endemic equilibrium E∗ of model
(2.1).
Set the right sides of model (2.1) equal zero, that is,

(5.1)


a − dS −

λS I
1 + α1S + α2I2 + βR − pS M = 0

λS I
1 + α1S + α2I2 − (d + δ)I = 0

δI − (d + β)R + pS M = 0.
The model (2.1) always has the disease-free equilibrium point E0( a

d+pM , 0, 0). Solving (5.1) we also get a unique
positive, endemic equilibrium point E∗ (S ∗, I∗,R∗) of the model (2.1), where

S ∗ =
(d + δ)(1 + α2I2)
λ − α1(d + δ)

,

R∗ =
δI + pS M

(d + β)
,

and I∗ is given as a root of the quadratic equation Ω1I
2

+ Ω2I + Ω3 = 0,
where

Ω1 = −α2d(d + δ)(d + β + pM),
Ω2 = −(d2 + dβ + δd)(λ − α1d − α1δ),

Ω3 = a(d + β)[λ − (d + δ)α1] + (d + δ)[−pMd − d(d + β)].

Now,

I∗ =
(d2 + dβ + δd)(λ − α1d − α1δ) +

√
∆

−2α2d(d + δ)(d + β + pM)
,

where,

∆2 = [−(d2 + dβ + δd)(λ − α1d − α1δ)]
2
− 4[{−α2d(d + δ)(d + β + pM}a(d + β)×

{λ − (d + δ)α1} + (d + δ){−pMd − d(d + β)}].

6 Local Stability Analysis
In this section, we study the local stability of the disease-free equilibrium E0 and the endemic equilibrium E∗ of model
(2.1).

Theorem 6.1 If R0 < 1, the disease-free equilibrium E0 of model (2.1) is locally asymptotically stable. If R0 > 1, the
disease-free equilibrium E0 is unstable.

Proof. The Jacobian matrix of model (2.1) at the disease-free equilibrium E0 is

J(E0) =


−d − pM

−λa
d + pM + α1a

β

0
λa

d + pM + α1a
− (d + δ) 0

pM δ −(d + β)

 .
The characteristic equation of J(E0) is{
{

λa
d + pM + α1a

− d − δ − µ}{µ2 + (2d + pM + β)µ + (d2 + dβ + pMd)}
}

= 0.

Clearly, the one eigenvalue µ1 = λa
d+pM+α1a − (d + δ) and other two eigenvalues are given by the quadratic equation

µ2 + (2d + pM + β)µ + (d2 + dβ + pMd) = 0
or

µ2 + µψ1 + ψ2 = 0, A0 , 0,
where ψ1 = 2d + pM + β, ψ2 = d2 + dβ + pMd.

By Routh-Hurwitz criteria, we know that the model is stable if ψ1 > 0 and ψ2 > 0, while µ1 < 0 for R0 < 1 and
µ1 > 0 for R0 > 1.

Hence E0 is locally asymptotically stable for R0 < 1, while it is unstable for R0 > 1.
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Theorem 6.2 If R0 > 1, the endemic equilibrium E∗ of model (2.1) is locally asymptotically stable.

Proof. Consider

J(E∗) =

−V1 − d − pM −V2 β
V1 V2 − (d + δ) 0
pM δ −(d + β)

 ,
where V1 =

(1+α1S ∗+α2I∗2)λI∗−λS ∗I∗α1

(1+α1S ∗+α2I∗2)2 , V2 =
(1+α1S ∗+α2I∗2)λS ∗−2λS ∗I∗2α2

(1+α1S ∗+α2I∗2)2 .
The characteristic equation of J(E∗) is

µ3 + µ2A1 + µA2 + A3 = 0, A0 , 0,

where

A1 = (3d + δ + β + pM + v1 − v2),

A2 = (d2 + βv1 + pMv2 + 2βpM + 2dβ + βδ − δv1 − βv2 − δpM),

A3 = (d + β)(dv2 + pMv2 − d2 − dpM − dv1 − dδ − δpM − δv1) + βv1δ + βpM(d + δ − v2).

We know that A1 > 0 if 3d+δ+β+pM+v1 > v2 and A2 > 0 if (d2+βv1+pMv2+2βpM+2dβ+βδ) > (δv1+βv2+δpM).
By Routh-Hurwitz criteria, endemic equilibrium E∗ of model (2.1) is locally asymptotically stable if and only if A1 > 0,
A2 > 0 and A1A2 > A0A3.

7 Global Stability Analysis
In this section, we study the global stability of the disease-free equilibrium E0 and the endemic equilibrium E∗ of
model (2.1).

Theorem 7.1 If R0 < 1, the disease-free equilibrium E0 of model (2.1) is globally asymptotically stable.

Proof. We prove the global stability of the model (2.1) at the equilibrium E0 when R0 < 1. Taking the Lyapunov
function

V(S , I,R) = I(t).

Calculating the derivative of V(t) along the positive solution of model (2.1), it follows that
dV
dt

=
dI
dt

=
λS I

(1 + α1S + α2I2)
− (d + δ)I.

Since the incidence function

λS I
(1 + α1S + α2I2)

≤

λIa
d+pM

1 + α1a
d+pM + α2I2

for 0 ≤ S ≤ a
d+pM ,

V̇(t) ≤
[

λa
(d + pM + α1a)

− (d + δ)
]

I

= (d + δ) [R0 − 1] I ≤ 0.

Furthermore, V̇ = 0 only if I = 0, so the largest invariant set contained {(S , I, R) ∈ Ω : V̇ = 0} is the plane I = 0.
By Lassalle’s invariance principle [13], this implies that all solution in Ω approach the plane I = 0 as t → ∞. On the
other hand, solutions of (2.1) contained in such plane satisfy dS

dt = a− dS + βR− pS M, dR
dt = −(d + β)R + pS M, which

implies that S → a
d+pM and R → 0 as t → ∞, that is, all of these solutions approach E0 is globally asymptotically

stable in Ω.
Next, we analysis the global stability of an endemic equilibrium E∗ by using geometric approach method described

by Li and Muldowney in [14]. For that, we need to consider a parameter

w = max

 −pM − λI
1+α1S +α2I2 (1 − S (α1−2α2I)

1+α1S +α2I2 ) + β, δ(2 − p) − β−
λ

1+α1S +α2I2 (S + I − S Iα1
1+α1S +α2I2 ),−β + δ − −2λSα2I2

1+α1S +α2I2

 ,
and we will make use of the following Theorem.
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Theorem 7.2 (Li Muldowney [14]). Suppose that the system x′ = f (x), with f : D ⊂ Rn → Rn, satisfies the following:
(H1) D is a simply connected open set,
(H2) there is a compact absorbing set K ⊂ D,
(H3) x∗ is the only equilibrium in D.
Then the equilibrium x∗ is globally stable in D if there exists a Lozinski

^

i measure ηsuch that

(7.1) lim
t→∞

sup sup
x0∈K

1
t

∫ t
0 η(B(x(s, x0)))ds < 0,

(7.2) B = P f P−1 + PJ[2]P−1

and Q→ Q(x) is an
(
n
2

)
×

(
n
2

)
matrix valued function.

In our case, model (2.1) can be written as x′ = f (x) with f : D ⊂ Rn → Rn and D being the interior of the feasible
region Ω. The existence of a compact absorbing set K ⊂ D is equivalent to proving that (2.1) is uniformly persistent
(see [14, 5]) and the proof for this in the case when R0 > 1 is similar to that of proposition 4.2 of [14]. Hence, (H1)
and (H2) hold for system (2.1), and by assuming the uniqueness of the endemic equilibrium in D, we can prove its
global stability with the aid of Theorem 7.2.

Theorem 7.3 If R0 > 1, d < w and the endemic equilibrium E∗ of system (2.1) is unique, then E∗ is globally
asymptotically stable in the feasible region Ω.

Proof. Let J be the Jacobian matrix of the system (2.1). Then the second additive compound matrix [15] of J is given
by

J[2] =

J11 + J22 J23 −J13
J32 J11 + J33 J12
−J31 J21 J22 + J33

 ,
J[2] =

−d − pM − v1 + v2 − (d + δ) 0 −β
δ −d − pM − v1 + (−d − β) −v2
−pM v1 v2 − (d + δ) − (d + β)

 ,
where, v1 =

(1+α1S +α2I2)λI−λS Iα1

(1+α1S +α2I2)2 , v2 =
(1+α1S +α2I2)λS−2λS I2α2

(1+α1S +α2I2)2 .

Let P be the matrix-valued function defined by P = P(S , I,R) = diag( S
I ,

S
I ,

S
I ); then P is C1 and non-singular in

the interior of Ω, P f = diag( S ′I−S I′
I2 , S ′I−S I′

I2 , S ′I−S I′
I2 ) and P−1 = diag( I

S ,
I
S ,

I
S ), P f P−1 = diag( S ′

S −
I′
I ,

S ′
S −

I′
I ,

S ′
S −

I′
I )

and B = P f P−1 + PJ[2]P−1. Then B can be written in the block form

B =

(
B11 B12
B21 B22

)
,

with B11 = S ′
S −

I′
I − d − pM − v1 + v2 − (d + δ), B12 = (0,−β), B21 =

(
δ
−pM

)
and

B22 =

( S ′
S −

I′
I − d − pM − v1 + (−d − β) −v2

v1
S ′
S −

I′
I + v2 − (d + δ) − (d + β)

)
.

Consider the vector norm in R3 defined by ‖(u, v,w)‖ = max{|u| , |v| + |w|} ∈ R3 and let η1(B) be the Lozinski
^

i
measure with respect to this norm. Then

(7.3) η1(B) ≤ sup{g1, g2},

where, g1 = (B11) + |B12|, g2 = µ(B22) + |B21|, |B12| and |B21| denote the matrix norm with respect to l1 vector norm
in norm R2 and η1 is the Lozinski

^

i measure of B22 with respect to l1 vector norm in R2. We have |B12| = 0, |B21| = δ,
µ(B22) = S

′

S −
I
′

I − d + max{−pM − v1 − d − β, v2 − d − δ − β}. From the second equation in the system (2.1), we have

I′

I
=

βS
(1 + α1S )(1 + α2I)

− (γ + δ + d + d1 + q).

Therefore,

µ(B22) = g2 = S ′/S − d + max
{
δ − pM − β −

λ

(1 + α1S + α2I2)
(S + I −

S Iα1

(1 + α1S + α2I2)
)
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−β −
2λS I2α2

(1 + α1S + α2I2)2

}
.

Then

g1 = S ′/S − (d + pM) −
λI

(1 + α1S + α2I2)
(1 −

S [(α1 − 2α2I)]
[(1 + α1S + α2I2)]

+ β, )

g2 = S ′/S − d + max
{
δ − pM − β −

λ

(1 + α1S + α2I2)
(S + I −

S Iα1

(1 + α1S + α2I2)
)

−β −
2λS I2α2

(1 + α1S + α2I2)2

}
+ δ.

By (7.3), this implies that

η1(B) ≤ S ′/S − d + max


−pM −

λI
1 + α1S + α2I2 (1 −

S (α1 − 2α2I)
1 + α1S + α2I2 ) + β, δ(2 − p) − β−

λ

1 + α1S + α2I2 (S + I −
S Iα1

1 + α1S + α2I2 ),−β + δ −
−2λSα2I2

1 + α1S + α2I2


= S ′/S − (d − w).

By integrating both sides at the same time, we obtain
1
t

∫ t
0 η1(B)ds ≤ 1

t In S (t)
S (0) − (d − w).

Thus

lim
t→∞

sup sup
1
t

∫ t
0 η1(B)ds ≤ − (d − w)

and therefore,

lim
t→∞

sup sup
1
t

∫ t
0 η1(B)ds < 0,

provided d > w. Hence, E∗ is globally asymptotically stable in Ω.

8 Numerical Simulations
In this section, we will give some numerical examples to illustrate our main results by using Milstein’s Higher Order
Method [6]. All simulations are done using the function ode45, which is MATLAB’s standard solver for ordinary
differential equations (ODEs).

As the present study is not a case study, no real data are available. Hence, the choice of parametric values is
hypothetical with appropriate units and does not base on data. They are chosen only for illustrative purpose. Because
the parametric values are not related to a specific disease, system (2.1) can be considered to be dimensionless.
The interval of time is supposed to be [0, 50], while the various set of initial size of population are assumed to be
(S (0), I(0),R(0)) = (50, 40, 30). Here we present some numerical examples to discuss the effect of the choice of the
parameters, nonlinear incidence rate and media awareness effect on the basic reproduction number R0. For simulations,
we take the set of parameters as shown in Table 8.1 and Table 8.2.

Table 8.1: Parameters used for simulation purpose when R0 = 0.09375 < 1.

Symbol a β d δ λ M p α1 α2

Value 15 0.5 0.01 0.9 0.5 0.8 20 0.7 0.1

Table 8.2: Parameters used for simulation purpose when R0 = 3.024194 > 1.

Symbol a β d δ λ M p α1 α2

Value 1.0 0.1 0.1 0.4 2.0 0.8 0.78 0.1 0.7

For this simulation, we take the set of parameters as shown in Table 8.1. In this case, S (t) approaches to its steady
state value while I(t), Q(t) and R(t) approaches to zero as t → ∞. Hence the disease disappears and dies out. (Fig. 8.1).
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Figure 8.1: The figure represents that the disease dies out. Figure 8.2: The figure represents that the disease endemic.

For these simulations, we take the set of parameters as shown in Table 8.2. Here, Fig. 8.2 present S (t), I(t) and
R(t) all approaches to their steady state values as t → ∞. Hence the disease becomes endemic.

Fig. 8.3 we present the variation of susceptible class when media effect is applied. The main importance of
applying media effect can be observed in Fig. 8.4, where we draw the variations of infected individuals. It is observed
that when media effect is applied optimally, the infected class population remains the least.Fig. 8.5 represents the
variation of recovered class of population. Thus the Figs. 8.3-8.5 represent the behavioral change of all classes of
population as time evolves. Fig. 8.6, represents the phase portrait in S IRS -space with different initial conditions. This
phase diagram shows that lim

t→∞
(S (t), I(t),R(t)) = (S ∗, I∗,R∗) for R0 > 1.

Figure 8.3: Variation of the susceptible population for media control. Figure 8.4: Variation of the infected population for media control.

Figure 8.5: Variation of the recovered population for media control.

Figure 8.6: The phase diagram at different initial values endemic equilibrium.

9 Discussions and Conclusions
This paper presented a mathematical study of S IRS epidemiological model with a non-monotonic incidence rate and
effect of awareness program through media coverage is considered as measure of disease control. The mathematical
analysis shows that the basic reproduction number R0 plays an important role to control the disease, we see that the
basic reproduction number R0 of our model contains the term aα1 in the denominator. Hence the saturation factor
of epidemic control (α1) can contribute to reducing R0, whereas the inhibition factor with respect to infective (α2)
does not influence that value. We also show that the disease-free equilibrium E0 is locally and globally asymptotically
stable if R0 < 1 and unstable if R0 > 1 under certain conditions. Similarly, for the endemic equilibrium E∗, it has
been obtained under certain conditions for locally as well as globally asymptotically stable. The phase diagram is
demonstrated in Fig. 8.6, at different initial values to validate the global stability. The model analysis further shows
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that awareness programs through the media campaigning are helpful in decreasing the spread of infectious diseases.
This kind of models can be particularly enlightening for the planning of public health policies for the control

of diseases such as influenza, malaria, salmonella, cholera, whooping cough, and measles, COVID-19 since we can
discover the many different behaviours the model can have as the parameters are varied.
Acknowledgement. We are very much thankful to the Editor and Reviewer for their valuable suggestions to bring the
paper in the present form.
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Jñānābha, Vol. 50(2) (2020), 84-92
(Dedicated to Honor Dr. R. C. Singh Chandel on His 75th Birth Anniversary Celebrations)

APPLICATION IN INITIAL VALUE PROBLEMS VIA OPERATIONAL TECHNIQUES ON A CONTOUR
INTEGRAL FOR SRIVASTAVA - DAOUST FUNCTION OF TWO VARIABLES

By
Hemant Kumar

Department of Mathematics
D. A-V. Postgraduate College Kanpur - 208001, Uttar Pradesh, India

Email:palhemant2007@rediffmail.com

(Received : May 27, 2020 ; Revised: August 13, 2020)

Abstract

In this paper, we introduce the contour integrals for two variables functions namely as Srivastava - Daoust and
generalized Kampé de Fériet functions and then, by the fractional and partial derivatives operational techniques,
obtain their many results and relations for various special functions useful in quantum mechanical fields. Again then,
apply them to solve the fractional calculus problems involving the initial values with the Caputo fractional derivatives
and Riemann - Liouville fractional integrals.
2010 Mathematics Subject Classifications: 33C15, 33C20, 33C60, 26A33, 11M06.
Keywords and phrases: Two variables Srivastava - Daoust function and generalized Kampé de Fériet function,
contour integral representations, Mittag - Leffler functions, operational techniques, Caputo fractional derivatives and
Riemann fractional integrals.

1 Introduction
In this section, we introduce some preliminaries and formulae to be used in our investigation:

Mittag - Leffler [22], in his a series of five notes (from 1901 to 1905), defined a function

(1.1) Eν(z) =
∑∞

k=0
zk

Γ(νk+1) , ν, z ∈ C,<(ν) > 0, C being the set of complex numbers,

and studied various properties of his named Mittag - Leffler function (1.1) (see also in, [2] and [32]) to propose the
generalization of the Laplace-Abel integral in the form

∫ +∞

0 e−tEν(ztν)dt.
The properties and generalization of (1.1) are introduced as namely as generalized Mittag - Leffler function (see,

Dattoli et al. [2], Humbert and Agrawal [11], Wiman [32])

(1.2) Eν,ρ(z) =
∑∞

k=0
zk

Γ(νk+ρ) , z, ν, ρ ∈ C,<(ν) > 0,<(ρ) > 0.

The functions (1.1) and (1.2) have used in various scientific and physical problems found in the literature of the
authors (for example [4], [8] - [10], [12], [13] - [19], [21]). The Mittag - Leffler function (1.2) has a relation to the
function (1.1) as Eν,1(z) = Eν(z) and an integral formula of (1.2) is used in quantum mechanical problems by Borel
transforms (see in Dattoli and Licciardi [3]) as

(1.3)
∫ ∞
−∞

E1,β+1(−x2)dx = 1
Γ(β+ 1

2 )
,<(β) > − 1

2 .

Recently, the contour integral has studied for Kummer confluent hypergeometric function by (see [1], [7], [24])

(1.4) M(α, β, y) =
y1−βΓ(β)

2πi

∫ (0+,1+)
−∞

eytt−β
(
1 − 1

t

)−α
dt, α, β ∈ C, | arg(y)| < π

2 , i =
√

(−1).

The function M(α, β, y) in the series form ([1], [5], [30, p.36]) is written by

M(α, β, y) = 1F1(α; β; y) =
Γ(β)
Γ(α)

∑∞
k=0

Γ(α+k)
Γ(β+k)

yk

k! .

Here in (1.4), the relation between Gamma function and Pochhammer symbol (a generalized factorial function) is
known as

Γ(ν + k)
Γ(ν)

= (ν)k =

 1, k = 0;
ν(ν + 1) . . . (ν + k − 1),∀k ∈ N;

where, N being the set of natural numbers.
In the present investigation, we introduce a contour integral for two variables Srivastava and Daoust function ([20],

[26]-[28]) defined by

(1.5) S
A : B; B

′

C : D; D
′

(
z
w

)
= S

A : B; B
′

C : D; D
′

(
[(a) : θ, ϑ] : [(b) : ψ]; [(b

′

) : ψ
′

];
[(c) : δ, κ] : [(d) : ϕ]; [(d

′

) : ϕ
′

]; z,w
)

=
∑∞

m,n=0 H
A : B; B′

C : D; D′(m, n) zm

m!
wn

n! ,

84

DOI: https://doi.org/10.58250/jnanabha.2020.50210



where,

H
A : B; B′

C : D; D′(m, n) =

∏A
j=1 Γ(a j + θ jm + ϑ jn)∏C
j=1 Γ(c j + δ jm + κ jn)

∏B
j=1 Γ(b j + ψ jm)∏D
j=1 Γ(d j + ϕ jm)

∏B
′

j=1 Γ(b
′

j + ψ
′

jn)∏D
′

j=1 Γ(d
′

j + ϕ
′

jn)
.

The series in (1.5) is convergent under the conditions given by∑C
j=1 δ j +

∑D
j=1 ϕ j −

∑A
j=1 θ j −

∑B
j=1 ψ j + 1 > 0;

∑C
j=1 κ j +

∑D
′

j=1 ϕ
′

j −
∑A

j=1 ϑ j −
∑B

′

j=1 ψ
′

j + 1 > 0.

Again, by the formula (1.5), on setting θ j = ϑ j = 1 with ( j = 1, 2, . . . , A); ψ j = 1 with ( j = 1, 2, . . . , B); ψ
′

j = 1
with ( j = 1, 2, . . . , B

′

); δ j = κ j = 1 with ( j = 1, 2, . . . ,C); ϕ j = 1 with ( j = 1, 2, . . . ,D); ϕ
′

j = 1 with ( j = 1, 2, . . . ,D
′

);

a relation between the Srivastava and Daoust function S
A : B; B

′

C : D; D
′

(
z
w

)
function (1.5) and the generalized Kampé de

Fériet function [31], denoted by F
A : B; B

′

C : D; D
′

[ z
w

]
, is found in the form

(1.6)

∏C
j=1 Γ(c j)∏A
j=1 Γ(a j)

∏D
j=1 Γ(d j)∏B
j=1 Γ(b j)

∏D
′

j=1 Γ(d
′

j)∏B
′

j=1 Γ(b
′

j)
S

A : B; B
′

C : D; D
′

(
[(a) : 1, 1] : [(b) : 1]; [(b

′

) : 1];
[(c) : 1, 1] : [(d) : 1]; [(d

′

) : 1];z,w
)

= F
A : B; B

′

C : D; D
′

[(a j)1,A : (b j)1,B; (b
′

j)1,B′ ;
(c j)1,C : (d j)1,D; (d

′

j)1,D′ ;
z,w

]
.

The generalized Kampé de Fériet function, given in right hand side of (1.6), has the relations with various one and
two variables functions of Appell’s and Lauricella’s functions used in various fields of science and technologies (see
in [6], [29], [30]). Recently in [25], Pathan and Kumar presented a representation of multi-parametric Mittag - Leffler
function in terms of Srivstava and Daoust function (1.5) and used in analysis of multivariable Cauchy residue theorem.
On the other hand, currently, Chandel and Kumar [1] established two contour integral representations involving Mittag
- Leffler functions (i) for a two variable generalized hypergeometric function of Srivastava and Daoust function (1.5)
and (ii) a sum of the Kummer’s confluent hypergeometric functions (1.4). Motivated by above researches, we will
introduce a new contour integral in (2.3) in the complex t- plane for Srivastava and Daoust function (1.5) and then
obtain various results and relations through operational techniques. Finally, we use these results in solving of some of
the initial value problems consisting of Caputo fractional derivatives and Riemann - Liouville fractional integrals.

2 The contour integral representation for Srivastava and Daoust function and related
special cases

Lemma 2.1 If in the complex t - plane, α, β, z, y ∈ C, | arg(y)| < π
2 , and for c > <(t), min{<(t),<(z),<(β)} > 0, then,

there exists a contour integral for Kummer’s confluent hypergeometric function as

(2.1)
1

2πi

∫ c+i∞
c−i∞ eytt−β

(
1 − z

t

)−α
dt =

yβ−1

Γ(β) 1F1(α; β; yz).

Then,

(2.2)
1

Γ(β)

∫ ∞
0 e−tyyβ−1

1F1(α; β; yz)dy = 1
tβ

(
1 − z

t

)−α
Again then,∫ ∞

0 e−ty
[

1
2πi

∫ c+i∞
c−i∞ eyξξ−β

(
1 − z

ξ

)−α
dξ

]
dy = y−β

(
1 − z

y

)−α
δty;

δmn =

{0,m , n,

1,m = n;
being the Dirac - delta function.

Proof. In the left hand side of first integral in (2.2), expand 1F1(α; β; yz) by the series (1.4) and thus find that∑∞
k=0

(α)kzk

Γ(β+k)

∫ ∞
0 e−tyyβ+k−1dy = t−β

(
1 − z

t

)−α
,
(

since,
∫ ∞

0 e−tyyβ+k−1dy =
Γ(β+k)

tβ+k

)
.

Further, apply the formula (2.1) in the left hand side of equation (2.2) to get
1

2πi

∫ c+i∞
c−i∞ ξ−β

(
1 − z

ξ

)−α{ ∫ ∞
0 e−y(t−ξ)dy

}
dξ = −1

2πi

∫ c+i∞
c−i∞

y−β
(
1− z

y

)−α
y−t dy = y−β

(
1 − z

y

)−α
δty.

Hence, by the statement of the Lemma 2.1, we get the equalities of (2.2). (Also, see Erdélyi et al. [5, p. 217],
Srivastava and Manocha [30, p.219]).

Particularly, for z = 1, the contour integral relation in (2.1) becomes the integral relation in (1.4).
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Theorem 2.1 In the complex t- plane, if ν, µ ∈ R such that ν > 0, µ > 0 and (ν + µ) > 0, and also α, β, ρ, w, z, y, λ ∈ C,
| arg(y)| < π

2 , where, λ , 0,<(ρ) > 0, then, for c > <(t), and min{<(t),<(z),<(β)} > 0, there exists a contour

integral 1
2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt, and thus it has the equality for Srivastava - Daoust function as

(2.3)
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt = yβ−1S

1 : 1; 0
1 : 2; 0

(
[α : µ, 1] : [1 : 1]; [− : −];

[β : µ, 1] : [ρ : ν], [α : µ]; [− : −];λwνyµ, yz
)
,

provided that (ν + µ) > 0.

Proof. In left hand side of (2.3), define the Mittag - Leffler function (1.2), to get the equality
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt =

∑∞
k=0

(λwν)k

Γ(νk+ρ)
1

2πi

∫ c+i∞
c−i∞ eytt−β−µk

(
1 − z

t

)−α−µk
dt,

and then, in right hand side of this equality apply the formula (2.1), to find the double series

yβ−1 ∑∞
k=0

∑∞
m=0

Γ(α+µk+m)Γ(1+k)
Γ(β+µk+m)Γ(ρ+νk)Γ(α+µk)

(λwνyµ)k

k!
(yz)m

m! .

Again, with the help of convergence conditions of (1.5), this double series converges for (ν+µ) > 0. Hence, by the
definition of Srivastava and Daoust function (1.5), the following formula holds

(2.4)
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt = yβ−1S

1 : 1; 0
1 : 2; 0

(
[α : µ, 1] : [1 : 1]; [− : −];

[β : µ, 1] : [ρ : ν], [α : µ]; [− : −];λwνyµ, yz
)
,

provided that (ν + µ) > 0.
Hence, the equality (2.3) is followed.

Corollary 2.1 For all conditions of the Theorem 2.2 and on specialization of the parameters, with ν = µ = 1, of the
formula (2.3) following equality holds for the Kampé de Fériet function (1.6) as

(2.5)
1

2πi

∫ c+i∞
c−i∞ eytE1,ρ(λw(t − z)−1)t−β

(
1 − z

t

)−α
dt =

yβ−1

Γ(β)Γ(ρ) F
1 : 1; 0
1 : 2; 0

(
[α : 1, 1] : [1 : 1]; [− : −];

[β : 1, 1] : [ρ : 1], [α : 1]; [− : −];λwy, yz
)
.

Remark 2.1 Again, on specialization of some other parameters in the formula (2.3) following special cases are
discussed:
Special case 2.1.1 In the formula (2.3), set ρ = 1, α,w → 0, β = k + 1 , then, it becomes Cauchy integral formula as
[25]

(2.6) lim
α,w→0

1
2πi

∫ c+i∞
c−i∞ eytEν,1(λwν(t − z)−µ)t−k−1

(
1 − z

t

)−α
dt = 1

2πi

∫ c+i∞
c−i∞ eytt−k−1dt =

yk

k! .

Special case 2.1.2 Again, set ρ = 1, z = 1, in the formula (2.3), then, by use of the formula (1.4), and for the conditions
given in the Theorem 2.2, its limiting case for w→ 0, gives us the equalities

(2.7) lim
w→0

1
2πi

∫ c+i∞
c−i∞ eytEν,1(λwν(t − 1)−µ)t−β

(
1 − 1

t

)−α
dt =

z1−βΓ(β)
2πi

∫ (0+,1+)
−∞

eytt−β
(
1 − 1

t

)−α
dt = M(α, β, y)

Special case 2.1.3 Further, in the Eqn. (2.3), set ν = µ,w = t, y = −1, z = −x
(−t)κ−1 , β = 1, |κ| < 1, and consider that

f
(

x
(−t)κ

)
= −

∑∞
k=0

∑∞
m=0 (α + µk)m

(λ)k

Γ(µk+ρ)

(
x

(−t)κ

)m
, then, it becomes the inverse Borel transformation formula of that

function f
(

x
(−t)κ

)
as (see in [3])

1
2πi

∫ c+i∞
c−i∞ e−tEµ,ρ(λ

(
1 − x

(−t)κ

)−µ
)t−1(1 − x

(−t)κ )−αdt =
∑∞

k=0
∑∞

m=0 (α + µk)m
(λ)k

Γ(µk+ρ)
1

2πi

∫ c+i∞
c−i∞

e−t

t

(
x

(−t)κ

)m
dt

=
i

2π

∫ c+i∞
c−i∞

e−t

t f ( x
(−t)κ )dt, |κ| < 1.

Here,

(2.8) f
(

x
(−t)κ

)
= −

∑∞
k=0

∑∞
m=0 (α + µk)m

(λ)k

Γ(µk+ρ)

(
x

(−t)κ

)m
.
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3 Operational techniques by fractional and partial derivatives on the contour integrals
In this section, we operate the contour integral defined in the Theorem 2.1 by the Caputo fractional and partial
derivatives and then obtain various results and relations.

The Caputo fractional derivative of the function f (t), denoted by C
t Dα

0+ f (t) where, m − 1 < α ≤ m,∀m ∈ N, is
defined by ([4], [12], [21])

(3.1) (C
t Dα

0+ f )(t) = (Im−α f (m))(t),

where, f (m)(t) = Dm
t f (t),

{
Dm

t ≡
dm

dtm = d
dt

(
dm−1

dtm−1

) }
, Im−α being the Riemann - Liouville fractional integral ([4], [12],

[23])

(3.2) (Im−α f )(t) =

 1
Γ(m−α)

∫ t
0 (t − τ)m−α−1 f (τ)dτ, t > 0,m − 1 < α ≤ m,

f (t), α = m,∀m ∈ N.

The operation of Caputo derivative (3.1); ∀m ∈ N, m − 1 < ν ≤ m; on the Mittag - Leffler function (1.1) is found
as ([4], [12])

(3.3) C
wDv

0+ Eν(λwν) = λEν(λwν).

Theorem 3.1 In the complex t- plane, if ν, µ ∈ R such that m − 1 < ν ≤ m,∀m ∈ N, µ > 0 and (ν + µ) > 0, and
α, β, y,w, z, ρ, λ ∈ C, | arg(y)| < π

2 , where, λ , 0,<(ρ) > 0, then, for c > <(t) and min{<(t),<(z),<(β)} > 0, there
exists a contour integral (2.3) in the form

(3.4)
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt = Iα,β,ν,ρ,µλ (w, z; y), (let).

Thus, following operational formulae hold

(3.5) C
wDv

0+

{
Iα,β,ν,1,µλ (w, z; y)

}
= λIα+µ,β+µ,ν,1,µ

λ (w, z; y).

and

(3.6) v
∂

∂y

{
Iα,β,ν,ρ,µλ (w, z; y)

}
= vIα,β−1,ν,ρ,µ

λ (w, z; y).

Proof. Operate (3.4) by the Caputo derivative (3.1) with respect to w to get

C
wDv

0+

{
Iα,β,ν,1,µλ (w, z; y)

}
= C

wDv
0+

{ 1
2πi

∫ c+i∞
c−i∞ eytEν,1(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt

}
=

{ 1
2πi

∫ c+i∞
c−i∞ eyt C

wDv
0+

{
Eν(λwν(t − z)−µ)

}
t−β

(
1 − z

t

)−α
dt

}
,

since then, in the first and last relations, applying the relations of Mittag - Leffler function, given in (1.3) and (3.3) to
get the identities

C
wDv

0+

{
Iα,β,ν,1,µλ (w, z; y)

}
=

{
λ

2πi

∫ c+i∞
c−i∞ eyt

{
Eν,1(λwν(t − z)−µ)

}
t−β−µ

(
1 − z

t

)−α−µ
dt

}
= λIα+µ,β+µ,ν,1,µ

λ (w, z; y).

In the similar manner to find

v
∂

∂y

{
Iα,β,ν,ρ,µλ (w, z; y)

}
=

{ v
2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t1−β

(
1 − z

t

)−α
dt

}
= vIα,β−1,ν,ρ,µ

λ (w, z; y).

Hence, the results (3.5) and (3.6) hold good.

Theorem 3.2 If in the complex t- plane, ν, µ ∈ R such that m − 1 < ν ≤ m,∀m ∈ N, µ > 0 and (ν + µ) > 0, and α, β,
w, y, z, λ ∈ C, | arg(y)| < π

2 , where, λ , 0, then, for c > <(t) and min{<(t),<(z),<(β)} > 0, there exists a contour
integral

(3.7)
1

2πi

∫ c+i∞
c−i∞ eytEν(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt = Iα,β,ν,µλ (w, z; y).

Again then, following operational formulae hold

(3.8)
∫ ∞

0

[
exp(−ty + C

wDv
0+ )

{
Iα,β,ν,µλ (w, z; y)

}]
dy = exp

{
λ

(t−z)µ

}
Eν(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
.

and

(3.9)
∫ ∞

0

[
exp

(
−ty + v ∂

∂y

) {
Iα,β,ν,ρ,µλ (w, z; y)

}]
dy = exp{vt}Eν(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
.
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Proof. On application of the Theorem 3.1, and by the properties of Mittag - Leffler function given in (1.3) and (3.3),
we obtain

(3.10) (C
wDv

0+ )n
{
Iα,β,ν,µλ (w, z; y)

}
=
λn

2πi

∫ c+i∞
c−i∞ eytEν(λwν(t − z)−µ)t−β−µn

(
1 − z

t

)−α−µn
dt = λnIα+µn,β+µn,ν,µ

λ (w, z; y).

and

(3.11)
(
v
∂

∂y

)n {
Iα,β,ν,µλ (w, z; y)

}
=

vn

2πi

∫ c+i∞
c−i∞ eytEν(λwν(t − z)−µ)tn−β

(
1 − z

t

)−α
dt = vnIα,β−n,ν,µ

λ (w, z; y).

Now, multiply by 1
n! in both of the sides of Eqns. (3.10) and (3.11) and then summing up n from n = 0 to n = ∞

to get

(3.12) exp(C
wDv

0+ )
{
Iα,β,ν,µλ (w, z; y)

}
=

1
2πi

∫ c+i∞
c−i∞ eytEν(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
exp

{
λ

(t−z)µ

}
dt

and

(3.13) exp
(
v
∂

∂y

) {
Iα,β,ν,ρ,µλ (w, z; y)

}
=

1
2πi

∫ c+i∞
c−i∞ eytEν(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
exp

{
vt
}
dt

Now, multiply by e−ty both the sides of (3.12) and (3.13) and then integrate to them with respect to y from y = 0 to
y = ∞, and with the help of the Lemma 2.1, we find the operational relations (3.8) and (3.9).

Theorem 3.3 If in the complex t- plane,α, β, y, z,w ∈ C, and | arg(y)| < π
2 , then, for c > <(t) and min

{
<(w),<(t),<(β)

}
>

0, there exists a contour integral for K ∈ N∗ =

{
2, 3, 4, . . . , L

}
, L < ∞,

(3.14)
1

2πi

∫ c+i∞
c−i∞ eytE 1

K
((zt)

1
K )t−β

(
1 − w

t

)−α
dt = Iα,β,K1 (z; y,w),

then for z, z0 ∈ C, a function F(z) is defined as such that
∫ z

z0
F(z)dz < ∞, and thus, following equalities hold

(3.15)
∫ z

z0
F(z)d

{
Iα,β,K1 (z; y,w)

}
=

∑K−1
r=0

{
I
α,β+ r

K −1,K
1 (0;y,w)

}
Γ(1− r

K )

∫ z
z0

F(z)z−
r
K dz

=
∑K−1

r=0

{
1F1(α; β + r

K − 1; wy)
}

yβ+ r
K −2

Γ(β+ r
K −1)Γ(1− r

K )

∫ z
z0

F(z)z−
r
K dz.

Proof. By the relation (3.14), we write
d
dz

{
Iα,β,K1 (z; y,w)

}
=

d
dz

{ 1
2πi

∫ c+i∞
c−i∞ e(y+z)t

{
e−ztE 1

K
((zt)

1
K )

}
t−β

(
1 − w

t

)−α
dt

}
=

{ 1
2πi

∫ c+i∞
c−i∞ e(y+z)t

{
e−ztE 1

K
((zt)

1
K )

}
t1−β

(
1 − w

t

)−α
dt

}
+

{ 1
2πi

∫ c+i∞
c−i∞ e(y+z)t d

dφ

{
e−φE 1

K
((φ)

1
K )

}
t1−β

(
1 − w

t

)−α
dt

}
,
{

on setting φ = zt
}
,

and since then, applying the result by Mathai and Haubold [21, p. 84], we have a relation
d

dφ

{
e−φE 1

K
((φ)

1
K )

}
= e−φ

∑K−1
r=1

φ−
r
K

Γ(1− r
K )

and thus to find
d
dz

{ 1
2πi

∫ c+i∞
c−i∞ eytE 1

K
((zt)

1
K )t−β

(
1 − w

t

)−α
dt

}
=

{
1

2πi

∫ c+i∞
c−i∞ eytE 1

K
((zt)

1
K )t1−β

(
1 − w

t

)−α
dt

}
+

∑K−1
r=1

z−
r
K

Γ(1− r
K )

{
1

2πi

∫ c+i∞
c−i∞ eytt1− r

K −β
(
1 − w

t

)−α
dt

}
=

∑K−1
r=0

z−
r
K

Γ(1− r
K )

{
1

2πi

∫ c+i∞
c−i∞ eytt1− r

K −β
(
1 − w

t

)−α
dt

}
It becomes

(3.16)
∫ z

z0
F(z)d

{
1

2πi

∫ c+i∞
c−i∞ eytE 1

K
((zt)

1
K )t−β

(
1 − w

t

)−α
dt

}
=

∑K−1
r=0

∫ z
z0

F(z) z−
r
K

Γ(1− r
K ) dz

{
1

2πi

∫ c+i∞
c−i∞ eytt1− r

K −β
(
1 − w

t

)−α
dt

}
.

Again, by (3.14), we again write

lim
z→0

1
2πi

∫ c+i∞
c−i∞ eytE 1

K
((zt)

1
K )t−β

(
1 − w

t

)−α
dt = limz→0 Iα,β,K1 (z; y,w)

and since by the definition (1.1) , there exists a result limz→0 E 1
K

((zt)
1
K ) = 1, and hence by Lemma 2.1, there implies

that

(3.17)
1

2πi

∫ c+i∞
c−i∞ eytt−β

(
1 − w

t

)−α
dt = Iα,β,K1 (0; y,w) =

yβ−1

Γ(β) 1F1(α; β; yw).

Finally, using the definition of (3.14) and the relation of (3.17) in the result (3.16), we obtain the equalities of
(3.15).
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Theorem 3.4 If in the Theorem 3.2 , set ν = 1, w = x2, x, µ ∈ R, µ > 0 and α, β, ρ, z, y ∈ C, | arg(y)| < π
2 , λ = −1,

replace ρ by ρ + 1, then, for c > <(t) and min{<(t),<(z),<(β)} > 0, there exists a contour integral

(3.18)
1

2πi

∫ c+i∞
c−i∞ eytE1,ρ+1(−x2(t − z)−µ)t−β

(
1 − z

t

)−α
dt = Iα,β,1,ρ,µ

−1 (x2, z; y).

Again then, following formula holds

(3.19)
∫ ∞
−∞

Iα,β,1,ρ,µ
−1 (x2, z; y)dx = 1

Γ(ρ+ 1
2 )

yβ−
µ
2 −1

Γ(β− µ
2 ) 1F1(α − µ

2 ; β − µ
2 ; yz),

provided that ρ > − 1
2 and β − µ

2 , 0,−1,−2, . . . , |yz| < ∞.

Proof. Integrate both sides of (3.18) with respect to x from x = −∞ to x = ∞, to get∫ ∞
−∞

Iα,β,1,ρ,µ
−1 (x2, z; y)dx = 1

2πi

∫ ∞
−∞

∫ c+i∞
c−i∞ eytE1,ρ+1(−x2(t − z)−µ)t−β

(
1 − z

t

)−α
dtdx

Now, in the right hand side of the double integral of above equality, change the order of integration and set
x2(t − z)−µ = y2, to find that∫ ∞

−∞
Iα,β,1,ρ,µ
−1 (x2, z; y)dx = 1

2πi

∫ c+i∞
c−i∞ eytt−β+

µ
2

(
1 − z

t

)−α+
µ
2
∫ ∞
−∞

E1,ρ+1(−y2)dydt,
where, in right hand side, in the inner integral use the Borel transformation formula (1.3), we get∫ ∞

−∞
Iα,β,1,ρ,µ
−1 (x2, z; y)dx = 1

2πi
1

Γ(ρ+ 1
2 )

∫ c+i∞
c−i∞ eytt−β+

µ
2

(
1 − z

t

)−α+
µ
2 dt,

which on defining by the formula given in Lemma 2.1, we obtain

(3.20)
∫ ∞
−∞

Iα,β,1,ρ,µ
−1 (x2, z; y)dx = 1

Γ(ρ+ 1
2 )

yβ−
µ
2 −1

Γ(β− µ
2 ) 1F1(α − µ

2 ; β − µ
2 ; yz),

which is valid for ρ + 1
2 > 0 and β − µ

2 , 0,−1,−2, . . .and |yz| < ∞ .
Hence, by the result (3.20), the Theorem 3.4 has followed.

4 Application with numerical examples
In this section, we apply our above results in following problems:

Problem 4.1 If Iα,β,ν,ρ,µλ (w, z; y) = (C
y Dη

0+ F)(y), where the Iα,β,ν,ρ,µλ (w, z; y) is given in (3.4) and C
t Dη

0+ being the Caputo

fractional derivative (3.1), for m − 1 < η ≤ m,∀m ∈ N, and with the initial conditions dm−1

dym−1 F(y)
∣∣∣∣∣y = 0+ = 0 ∀m =

1, 2, 3, . . . .
Then, following solution exists

(4.1) F(y) = Iα,β+η,ν,ρ,µ
λ (w, z; y) = yβ+η−1S

1 : 1; 0
1 : 2; 0

(
[α : µ, 1] : [1 : 1]; [− : −];

[β + η : µ, 1] : [ρ : ν], [α : µ]; [− : −];λwνyµ, yz
)
,

provided that (ν + µ) > 0.

Solution. On applying (3.4), the equation, Iα,β,ν,ρ,µλ (w, z; y) = (C
y Dη

0+ F)(y), of the Problem 4.1, is written as

(4.2)
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt = (C

y Dη
0+ F)(y)

Now, multiply by e−yt, t > 0, in both of the sides of (4.2) , and integrate it with respect to y, (from y = 0 to y = ∞)
to get as

(4.3)
∫ ∞

0
1

2πi e
−yt

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dtdy =

∫ ∞
0 e−yt

(
C
y Dη

0+ F
)

(y)dy,
Then, in right hand side of (4.3), apply the result by [12] as∫ ∞

0 e−yt
(
C
y Dη

0+ F
)

(y)dy = tη f (t) −
∑m−1

k=0 tη−1−kF(k)(0+)∀m − 1 < η ≤ m,

where, f (t) =
∫ ∞

0 e−ytF(y)dy,and inversely, F(y) = 1
2πi

∫ c+i∞
c−i∞ eyt f (t)dt and thus use the Lemma 2.1, with the initial

conditions given in the Problem 4.1, we find

(4.4) f (t) = Eν,ρ(λwν(t − z)−µ)t−β−η
(
1 −

z
t

)−α
Finally, on taking contour integration (see, inverse Laplace transformation before (4.4)) of both sides of (4.4) and

using by (3.4) to obtain equality in first and second results of (4.1) as

(4.5) F(y) =
1

2πi

∫ c+i∞
c−i∞ eyt f (t)dt = 1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β−η

(
1 − z

t

)−α
dt = Iα,β+η,ν,ρ,µ

λ (w, z; y).

In right hand side of (4.5), use the Theorem 2.2, we find equality in first and third results of (4.1).
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Problem 4.2 If Iα,β,ν,ρ,µλ (w, z; y) = (IηF)(y), where the Iα,β,ν,ρ,µλ (w, z; y) is given in (3.4) and Iη being the Riemann -
Liouville fractional integral of order η defined in (3.2) for η > 0, then

(4.6) F(y) = Iα,β−η,ν,ρ,µλ (w, z; y).

Solution. On using formula (3.4), the equation in Problem 4.2 is written by

(4.7)
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dt = (IηF)(y).

Now, in both sides of (4.7), multiply e−yt, t > 0, and then integrate them with respect to y from y = 0 to y = ∞, to
get that∫ ∞

0 e−yt 1
2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−β

(
1 − z

t

)−α
dtdy =

∫ ∞
0 e−yt

{
1

Γ(η)

∫ y
0 (y − x)η−1F(x)dx

}
dy

Since, by Laplace convolution theorem, there exists a relation
1

Γ(η)

∫ y
0 (y − x)η−1F(x)dx = 1

2πi

∫ c+i∞
c−i∞ eytt−η f (t)dt,

and hence right hand side becomes

=
∫ ∞

0 e−yt
{

1
2πi

∫ c+i∞
c−i∞ eytt−η f (t)dt

}
dy.

Then, in both of the sides, apply the Lemma 2.1, to obtain

Eν,ρ(λwν(t − z)−µ)t−β
(
1 −

z
t

)−α
= t−η f (t)

or to find

f (t) = Eν,ρ(λwν(t − z)−µ)t−(β−η)
(
1 −

z
t

)−α
,

again, use the formula given in (4.4), we get

F(y) =
1

2πi

∫ c+i∞
c−i∞ eytEν,ρ(λwν(t − z)−µ)t−(β−η)

(
1 − z

t

)−α
dt = Iα,β−η,ν,ρ,µλ (w, z; y).

Finally, we obtain the result (4.6).

Problem 4.3 If Iα,β,ν,ρ,µλ (w, z; y) = d
dy F(y) +

(
C
y Dη

0+ F
)

(y), where the Iα,β,ν,ρ,µλ (w, z; y) is given in (3.4) and C
t Dη

0+ being the

Caputo fractional derivative (3.1), for m − 1 < η ≤ m,∀m ∈ N, and with the initial conditions , dm−1

dym−1 F(y)
∣∣∣∣∣y = 0+ =

0∀m = 1, 2, 3, . . . .
Then

(4.8) F(y) =
∑∞

k=0 (−1)kIα,β+η+(η−1)k,ν,ρ,µ
λ (w, z; y).

Solution. In the similar manner of the Problem 4.1, for m − 1 < η ≤ m,∀m ∈ N, by Problem 4.3, we have

(4.9) (t + tη) f (t) = Eν,ρ(λwν(t − z)−µ)t−β
(
1 −

z
t

)−α
.

Then, by Eqn. (4.9), it implies that

f (t) = (1 + t1−η)−1Eν,ρ(λwν(t − z)−µ)t−β−η
(
1 −

z
t

)−α
,

and then we have

f (t) =
∑∞

k=0 (−1)kEν,ρ(λwν(t − z)−µ)t−β−η−(η−1)k
(
1 − z

t

)−α
and then inversing it by formula (4.5), finally, we get the solution (4.8) as

(4.10) F(y) =
∑∞

k=0 (−1)kIα,β+η+(η−1)k,ν,ρ,µ
λ (w, z; y).
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Concluding remarks
This research work centralizes about a contour integral defined in the Theorem 2.1 for the Srivastava and Daoust
function of two variables (1.5). Specially, it gives the formula for the generalized Kampé de Fériet function (1.6)
in the Corollary 2.1. Other applicable special cases are also discussed in the Remark 2.1. In the Section 3, by
partial and Caputo fractional derivative operation techniques, various results and relations are obtained, in which
Theorem 3.2 may generate many generating functions and relations for various multiple special functions through Lie
group theoretic techniques. By the Borel transforms [3], (see in the Theorem 3.4) obtained results may use in quantum
mechanical problems. Next, we use and discuss our results in some numerical problems consisting of Caputo fractional
derivative and Riemann Liouville integrals. These fractional operators are helpful in construction and solving of many
diffusion and wave problems (see for example [8] - [10], [12], [13], [19], [21], [23] and others). It is also remarked that
the Laplace operator techniques play an important role in solving the given problems consisting of contour integral
in (3.4) and has a relation with two variables Srivastava - Daoust function (1.5) in Eqn. (2.3) and another relation
with Kampé de Fériet function in (2.5). Also other results and relations by different contour integral formulae have
carried out in the Sections 2 and 3. Hence, the contour integral in (2.3) becomes very much useful in doing of further
researches in the area of fractional calculus along with the fractional diffusion and wave problems occurring in the
modern science and technology.
Acknowledgements. We are thankful to the Editor and reviewer for their valuable suggestions to bring the paper it its
present form.
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[19] H. Kumar, H. Srivastava and S. K. Rai, On a bi dimensional basis involving special functions for partial in space
and time fractional wave mechanical problems and approximation, Jñānābha, 47 (2) (2017), 291-300.
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Abstract

In this paper we prove some common fixed point theorems in a complete bicomplex valued b-metric spaces for
rational contractions.
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1 Introduction, Definitions and Notations.
Segre’s [41] paper, published in 1892 made a pioneering attempt in the development of special algebras. He
conceptualized commutative generalization of complex numbers as bicomplex numbers, tricomplex numbers, etc.
as elements of an infinite set of algebras. Unfortunately this significant work of Segre failed to earn the attention of
the mathematicians for almost a century. However, recently a renewed interest in this subject contributes a lot in the
different fields of mathematical sciences and other branches of science and technology.

Price [36] developed the bicomplex algebra and function theory. In this field an impressive body of work has been
developed by different researchers during the last few years. One can see some of the attempts in (cf.[3]-[6], [15], [16],
[24]-[33], [39], [40], [42], [43]). Azam et al. [1] introduced a concept of complex valued metric space and established
a common fixed point theorem for a pair of self contracting mappings. Rouzkard & Imdad [37] generalized the result
obtained by Azam et al. [1] and proved another common fixed point theorem satisfying some rational inequality in
complex valued metric space. The Banach contraction principle (cf. [12]) is a very popular and effective tool to solve
the existence problems in many branches of mathematical analysis and it is an active area of research since 1922.
The famous Banach theorem (cf. [12]) states that ”Let (X, d) be a metric space and T be a mapping of X into itself
satisfying d(T x,Ty) ≤ kd(x, y),∀x, y ∈ X, where k is a constant in (0, 1). Then T has a unique fixed point x∗ ∈ X”.
In this connection Choudhury et al. ([13]&[14]) proved some fixed point results in partially ordered complex valued
metric spaces for rational type expressions. Datta & Ali [7] proved common fixed point theorems for four mappings
in complex valued metric space. Also one can see the attempts in (cf. [2], [8], [9], [44], [46], 47).

The concept of complex-valued b-metric spaces introduced by Rao et al.[38] proved a common fixed point theorem
in complex valued b-metric spaces. Mukheimer [34] proved some common fixed point theorems in complex-valued b-
metric spaces. Also Dubey et al.[18] proved some common fixed point theorems for contractive mappings in complex-
valued b-metric spaces and Singh et al.[45] common fixed point theorems in complex-valued b-metric spaces. In this
connection Mitra[35] proved a common fixed point theorem in complex valued b-metric spaces and Kumar et al.[19]
proved common fixed point theorem in complex valued b-metric space for rational contraction. We write the set of
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real, complex and bicomplex numbers respectively as C0,C1 and C2. In this paper we are going to prove some common
fixed point theorem in bicomplex valued b-metric space for rational contraction.

Let z1, z2 ∈ C1 be any two complex numbers, then the partial order relation - on C1 is defined as follows:
z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2),
i.e., z1 - z2 if one of the following conditions is satisfied:

(1) Re(z1) =Re(z2), Im(z1) = Im(z2),
(2) Re(z1) <Re(z2), Im(z1) = Im(z2),
(3) Re(z1) =Re(z2), Im(z1) < Im(z2) and
(4) Re(z1) <Re(z2), Im(z1) < Im(z2).

In particular, we can say z1 � z2 if z1 - z2 and z1 , z2 i.e. one of (2), (3) and (4) is satisfied and z1 ≺ z2 if only (4)
is satisfied. We can easily check the following fundamental properties of partial order relation - on C1:

1. If 0 - z1 � z2, then |z1| < |z2| ,
2. If z1 - z2, z2 ≺ z3then z1 ≺ z3 and
3. Ifz1 - z2 and λ > 0 is a real number then λz1 - λz2.

1.1 Complex valued metric space.
Azam et al.[1] defined the complex valued metric spaces as

Definition 1.1 Let X be a nonempty set. Suppose the mapping d : X × X → C1 satisfies the following conditions:
1. 0 - d(x, y) for all x, y ∈ X,
2. d(x, y) = 0 if and only if x = y,
3. d(x, y) = d(y, x) for all x, y ∈ X and
4. d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a complex valued metric on X and (X, d) is called the complex valued metric space.

Definition 1.2 Let X be a nonempty set and let s ≥ 1. Suppose the mapping d : X × X → C1 satisfies the following
conditions:

1. 0 - d(x, y) for all x, y ∈ X,
2. d(x, y) = 0 if and only if x = y,
3. d(x, y) = d(y, x) for all x, y ∈ X and
4. d(x, y) - s

[
d(x, z) + d(z, y)

]
for all x, y, z ∈ X .

Then d is called a complex valued b-metric on X and (X, d) is called the complex valued b-metric space.

1.2 Bicomplex Number.
Segre [41] defined the bicomplex number as:

ξ = a1 + a2i1 + a3i2 + a4i1i2,

where a1, a2, a3, a4 ∈ C0 and the independent units i1, i2 are such that i21 = i22 = −1 and i1i2 = i2i1. We denote i1i2 = j,
which is known as the hyperbolic unit and such that j2 = 1, i1 j = ji1 = −i2, i2 j = ji2 = −i1. Also C2 is defined as:

C2 = {ξ : ξ = a1 + a2i1 + a3i2 + a4i1i2, a1, a2, a3, a4 ∈ C0}

i.e.,

C2 = {ξ : ξ = z1 + i2z2, z1, z2 ∈ C1} ,

where z1 = a1 + a2i1 ∈ C1 and z2 = a3 + a4i1 ∈ C1.
If ξ = z1 + i2z2 and η = w1 + i2w2 be any two bicomplex numbers then the sum is ξ±η = (z1 + i2z2)± (w1 + i2w2) =

(z1 ± w1) + i2 (z2 ± w2) and the product is ξ.η = (z1 + i2z2) . (w1 + i2w2) = (z1w1 − z2w2) + i2 (z1w2 + z2w1).
1.2.1 Idempotent representation of bicomplex number.
There are four idempotent elements in C2, they are 0, 1, e1 = 1+i1i2

2 , and e2 = 1−i1i2
2 out of which e1 and e2 are nontrivial

such that e1 + e2 = 1 and e1e2 = 0. Every bicomplex number z1 + i2z2 can uniquely be expressed as the combination
of e1 and e2, namely

ξ = z1 + i2z2 = (z1 − i1z2) e1 + (z1 + i1z2) e2.

This representation of ξ is known as the idempotent representation of bicomplex number and the complex
coefficients ξ1 = (z1 − i1z2) and ξ2 = (z1 + i1z2) are known as idempotent components of the bicomplex number
ξ.
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1.2.2 Non-Singular and Singular elements.
An element ξ = z1 + i2z2 ∈ C2 is said to be invertible if there exists another element η in C2 such that ξη = 1 and η is
said to be the inverse (multiplicative) of ξ. Consequently ξ is said to be the inverse (multiplicative) of η. An element
which has an inverse in C2 is said to be the nonsingular element of C2 and an element which does not have an inverse
in C2 is said to be the singular element of C2.

An element ξ = z1 + i2z2 ∈ C2 is nonsingular if and only if
∣∣∣z2

1 + z2
2

∣∣∣ , 0 and singular if and only if
∣∣∣z2

1 + z2
2

∣∣∣ = 0 and
the inverse of ξ is defined as

ξ−1 = η =
z1 − i2z2

z2
1 + z2

2

.

Zero is the only one element in R which does not have multiplicative inverse and in C, 0 = 0 + i0 is the only one
element which does not have multiplicative inverse. We denote the set of singular elements of R and C by O0 and O1
respectively. But there are more than one element in C2 which do not have multiplicative inverse; we denote this set
by O2 and clearly O0 = O1 ⊂ O2.

1.2.3 Norm of a bicomplex number.
The norm ‖·‖ of C2 is a positive real valued function and ‖·‖ : C2 → R+ is defined by

‖ξ‖ = ‖z1 + i2z2‖ =
{
|z1|

2 + |z2|
2
} 1

2

=

[
|(z1 − i1z2)|2 + |(z1 + i1z2)|2

2

] 1
2

=
(
a2

1 + a2
2 + a2

3 + a2
4

) 1
2 ,

where ξ = a1 + a2i1 + a3i2 + a4i1i2 = z1 + i2z2 ∈ C2.
The linear space C2 with respect to defined norm is a norm linear space, also C2 is complete; therefore C2 is the

Banach space. If ξ, η ∈ C2 then ‖ξη‖ ≤
√

2 ‖ξ‖ ‖η‖ holds instead of ‖ξη‖ ≤ ‖ξ‖ ‖η‖, therefore C2 is not the Banach
algebra.

Now we define the partial order relation -i2 on C2 as follows:
Let C2 be the set of bicomplex numbers and ξ = z1 + i2z2, η = w1 + i2w2 ∈ C2 then ξ -i2 η if and only if z1 - w1.

and z2 - w2 i.e., ξ -i2 η if one of the following conditions is satisfied:
(1) z1 = w1, z2 = w2,
(2) z1 ≺ w1, z2 = w2,
(3) z1 = w1, z2 ≺ w2 and
(4) z1 ≺ w1, z2 ≺ w2.
In particular we can write ξ �i2 η if ξ -i2 η and ξ , η i.e. one of (2), (3) and (4) is satisfied and we will write

ξ ≺i2 η if only (4) is satisfied.
For any two bicomplex numbers ξ, η ∈ C2 we can verify the followings:
(i) ξ -i2 η→ ‖ξ‖ ≤ ‖η‖ ,
(ii) ‖ξ + η‖ ≤ ‖ξ‖ + ‖η‖ ,
(iii) ‖aξ‖ = a ‖ξ‖ if a is a non negative real number,
(iv) ‖ξη‖ ≤

√
2 ‖ξ‖ ‖η‖ and the equality holds only when at least one of ξ and η is equal to zero,

(v)
∥∥∥ξ−1

∥∥∥ = ‖ξ‖−1 if ξ is a nonsingular bicomplex number with 0 ≺ ξ,

(vi)
∥∥∥∥ ξη∥∥∥∥ =

‖ξ‖
‖η‖

, if η is a nonsingular bicomplex number.

1.3 Bicomplex valued metric space.
Choi et al.[17] defined the bicomplex valued metric space as follows:

Definition 1.3 Let X be a nonempty set. Suppose the mapping d : X × X → C2 satisfies the following conditions:
1. 0 -i2 d(x, y) for all x, y ∈ X,
2. d(x, y) = 0 if and only if x = y,
3. d(x, y) = d(y, x) for all x, y ∈ X and
4. d(x, y) -i2 d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a bicomplex valued metric on X and (X, d) is called the bicomplex valued metric space.

Definition 1.4 Let X be a nonempty set and let s ≥ 1. Suppose the mapping d : X × X → C2 satisfies the following
conditions:

1. 0 -i2 d(x, y) for all x, y ∈ X,
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2. d(x, y) = 0 if and only if x = y,
3. d(x, y) = d(y, x) for all x, y ∈ X and
4. d(x, y) -i2 s

[
d(x, z) + d(z, y)

]
for all x, y, z ∈ X.

Then d is called a bicomplex valued b-metric on X and (X, d) is called the bicomplex valued b-metric space.

Example 1.1 Let X = [0, 1] , and consider the mapping d : X×X → C2 as defined by d (x, y) = (1 + i1 + i2 + i1i2) |x − y|2.

Then for all x, y, z ∈ X,

d(x, y) = (1 + i1 + i2 + i1i2) |x − y|2

= (1 + i1 + i2 + i1i2) |x − z + z − y|2

= (1 + i1 + i2 + i1i2)
(
|x − z|2 + |z − y|2 + 2 |x − z| |z − y|

)
-i2 (1 + i1 + i2 + i1i2)

(
|x − z|2 + |z − y|2 + |x − z|2 + |z − y|2

)
-i2 2

[
d(x, z) + d(z, y)

]
therefore (X, d) is a bicomplex valued b-metric space as s = 2.

Definition 1.5 (i). Let A ⊆ X and a ∈ A is said to be an interior point of A if there exists a 0 ≺i2 r ∈ C2 such that

B(a, r) =
{
x ∈ X : d(a, x) ≺i2 r

}
⊆ A

and the subset A ⊆ X is said to be an open set if each point of A is an interior point of A.
(ii). A point a ∈ X is said to be a limit point of A if for all 0 ≺i2 r ∈ C2 such that

B(a, r) ∩ {A − {a}} , φ

and the subset A ⊆ X is said to be a closed set if all the limit points of A belong to A.
(iii). The family

F =
{
B(a, r) : a ∈ X, 0 ≺i2 r ∈ C2

}
is a sub-basis for a Hausdorff topology τ on X.

Definition 1.6 For a bicomplex valued metric space (X, d)
(i). A sequence {xn} in X is said to be a convergent sequence and converges to a point x if for any 0 ≺i2 r ∈ C2

there is a natural number n0 ∈ N such that d(xn, x) ≺i2 r, for all n > n0 and we write lim
n→∞

xn = x or xn → x as n→ ∞.
(ii). A sequence {xn} in X is said to be a Cauchy sequence in (X, d) if for any 0 ≺i2 r ∈ C2 there is a natural number

n0 ∈ N such that d(xn, xn+m) ≺i2 r, for all m, n ∈ N and n > n0.
(iii). If every cauchy sequence in X is convergent in X then (X, d) is said to be a complete bicomplex valued metric

space.

Definition 1.7 Let (X, d) be a bicomplex valued metric space and S ,T : X → X be two self-mappings then S and T are
said to be compatible if lim

n→∞
d (S T x,TS xn) = 0, whenever {xn} is a sequence in X such that lim

n→∞
S xn = lim

n→∞
T xn = u

for some u ∈ X.

Definition 1.8 Let S ,T : X → X be two self-mappings then S and T are said to be weakly compatible if S T x = TS x
whenever S x = T xfor all x ∈ X.

Definition 1.9 Let S ,T : X → X be two self-mappings then, S and T are said to be commuting if TS x = S T x for all
x ∈ X.

Definition 1.10 Let (X, d) be a bicomplex valued metric space and S ,T : X → X be two Self-mappings then S and T
are said to be weakly commuting if d (S T x,TS x) -i2 d (S x,T x) for all x ∈ X.

Definition 1.11 Let (X, d) be a cone metric space then the self-mapping T : X → X is said to be almost Jaggi
contraction if it satisfies the following condition:

(1.1) d (T x,Ty) ≤ α
d (x,T x) d (y,Ty)

d (x, y)
+ βd (x, y) + L min {d (x,Ty) , d (y,T x)}

for all x, y ∈ X,where L ≥ 0 and α, β are non-negative real numbers with α + β < 1.
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Definition 1.12 Let (X, d) be a cone metric space then the self-mapping T : X → X is said to be Jaggi contraction if it
satisfies the following condition:

d (T x,Ty) ≤ α
d (x,T x) d (y,Ty)

d (x, y)
+ βd (x, y)

for all x, y ∈ X, where L ≥ 0 and α and β are non-negative real numbers with α + β < 1.

Definition 1.13 Let (X, d) be a complete complex valued b−metric space then the self-mapping T : X → X is said to
be Jaggi contraction if it satisfies the following condition:

d (T x,Ty) - α
d (x,T x) d (y,Ty)

d (x, y)
+ βd (x, y)

for all x, y ∈ X, where α and β are non-negative real numbers with s (α + β) < 1.

Definition 1.14 Let (X, d) be a cone metric space then the self-mapping T : X → X is said to be Dass-Gupta
contraction if it satisfies the following condition:

d (T x,Ty) ≤ α
d (y,Ty) [1 + d (x,T x)]

1 + d (x, y)
+ βd (x, y) + L min {d (x,T x) , d (x,Ty) , d (y,T x)}

for all x, y ∈ X, where L ≥ 0 and α, β are non-negative real numbers with α + β < 1.

Definition 1.15 Let (X, d) be a complete complex valued b−metric space with coefficient s ≥ 1, then the self-mapping
T : X → X is said to be Dass-Gupta contraction if it satisfies the following condition:

d (T x,Ty) - α
d (y,Ty) [1 + d (x,T x)]

1 + d (x, y)
+ βd (x, y) + L min {d (x,T x) , d (x,Ty) , d (y,T x)}

for all x, y ∈ X, where L ≥ 0 and α, β are non-negative real numbers with s (α + β) < 1.

2 Lemmas.
In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 [20] Let (X, d) be a bicomplex valued metric space and a sequence {xn} in X is said to be convergent to a
point x if and only if lim

n→∞
‖d(xn, x)‖ = 0.

Lemma 2.2 [20] Let (X, d) be a bicomplex valued metric space and a sequence {xn} in X is said to be a Cauchy
sequence in X if and only if lim

n→∞
‖d(xn, xn+m)‖ = 0.

3 Main Theorems.
In this section we prove some fixed point theorems on bicomplex valued b-metric space for rational contraction.

Theorem 3.1 Let (X, d) be a complete bicomplex valued b-metric space with the coefficient s ≥ 1. Let the self-mapping
T : X → X be almost Jaggi contraction satisfying the condition

(3.1) d (T x,Ty) -i2 α
d (x,T x) d (y,Ty)

d (x, y)
+ βd (x, y) + L min {d (x,Ty) , d (y,T x)} .

for all x, y ∈ X and d (x, y) is nonsingular where L ≥ 0 and α, β are non-negative real numbers with s
(√

2α + β
)
< 1.

Then T has a unique fixed point in X.

Proof. Let {xn} be a sequence in X such that

xn = T xn−1, for all n = 1, 2, ...

where x0 is an arbitrary fixed point in X.
Therefore by using (3.1) we obtain that

d (xn, xn+1) =d (T xn−1,T xn)

-i2α
d (xn−1,T xn−1) d (xn,T xn)

d (xn−1, xn)
+ βd (xn−1, xn) +

L min {d (xn−1,T xn) , d (xn,T xn−1)}

-i2α
d (xn−1, xn) d (xn, xn+1)

d (xn−1, xn)
+ βd (xn−1, xn) +
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L min {d (xn−1, xn+1) , d (xn, xn)}

-i2α
d (xn−1, xn) d (xn, xn+1)

d (xn−1, xn)
+ βd (xn−1, xn)

Hence

‖d (xn, xn+1)‖ ≤
√

2α
‖d (xn−1, xn)‖ ‖d (xn, xn+1)‖

‖d (xn−1, xn)‖
+ β ‖d (xn−1, xn)‖

≤
√

2α ‖d (xn, xn+1)‖ + β ‖d (xn−1, xn)‖ ,

i.e.,‖d (xn, xn+1)‖ ≤ β

1−
√

2α
‖d (xn−1, xn)‖ ,

i.e.,‖d (xn, xn+1)‖ ≤ h ‖d (xn−1, xn)‖ ,
where h =

β

1−
√

2α
and 0 ≤ h < 1, as s

(√
2α + β

)
< 1 and s ≥ 1. Therefore for all n = 1, 2, 3, ...

‖d (xn, xn+1)‖ ≤ h ‖d (xn−1, xn)‖ ≤ h2 ‖d (xn−2, xn−1)‖ ≤ ... ≤ hn ‖d (x0, x1)‖ .
Thus

(3.2) ‖d (xn+1, xn+2)‖ ≤ hn+1 ‖d (x0, x1)‖ .
Since s

(√
2α + β

)
< 1 and s ≥ 1→ sh =

sβ
1−
√

2α
< 1.

Then for any two positive integers m, n with m > n we get that
d (xn, xm) -i2 s [d (xn, xn+1) + d (xn+1, xm)] .

Therefore,
‖d (xn, xm)‖
≤s ‖d (xn, xn+1)‖ + s ‖d (xn+1, xm)‖

≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s2 ‖d (xn+2, xm)‖

≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s3 ‖d (xn+2, xn+3)‖ + s3 ‖d (xn+3, xm)‖
... ... ...

... ... ...

i.e.,‖d (xn, xm)‖ ≤ s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s3 ‖d (xn+2, xn+3)‖ + ... + sm−n−1 ‖d (xm−1, xm)‖

≤

{
‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖+

s3 ‖d (xn+2, xn+3)‖ + ... + sm−n ‖d (xm−1, xm)‖

}
, as s ≥ 1.

Therefore by using(3.2) we get that
‖d (xn, xm)‖ ≤shn ‖d (x0, x1)‖ + s2hn+1 ‖d (x0, x1)‖

+ s3hn+2 ‖d (x0, x1)‖ + ... + sm−nhm−1 ‖d (x0, x1)‖
i.e., ‖d (xn, xm)‖

∑m−n
i=1 sihi+n−1 ‖d (x0, x1)‖ ,

i.e.,‖d (xn, xm)‖
∑m−n

i=1 si+n−1hi+n−1 ‖d (x0, x1)‖ , as s ≥ 1,
i.e.,‖d (xn, xm)‖

∑m−1
j=n s jh j ‖d (x0, x1)‖ ,

i.e.,‖d (xn, xm)‖
∑∞

j=n (sh) j ‖d (x0, x1)‖ ,
i.e.,‖d (xn, xm)‖ ≤ (sh)n

1−sh ‖d (x0, x1)‖ .
Since (sh)n

1−sh → 0 as n→ ∞, therefore for any ε > 0 there exists a positive integer n0 such that ‖d (xn, xm)‖ < ε, for
all m, n > n0. Hence {xn} is Cauchy in X. Since X is a complete bicomplex valued b-metric space, then there exists
u ∈ X such that lim

n→∞
xn = u.

Now we show that u = Tu, if not then there exists 0 ≺i2 ξ ∈ C2 such that d (u,Tu) = ξ.
Therefore,
ξ = d (u,Tu)

-i2 sd (u, xn+1) + sd (xn+1,Tu)

-i2 sd (u, xn+1) + sd (T xn,Tu)

-i2 sd (u, xn+1) + sα
d (xn,T xn) d (u,Tu)

d (xn, u)
+ sβd (xn, u) + sL min {d (xn,Tu) , d (u,T xn)}

-i2 sd (u, xn+1) + sα
d (xn, xn+1) ξ

d (xn, u)
+ sβd (xn, u) + sL min {d (xn,Tu) , d (u, xn+1)} .
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Therefore,

‖ξ‖ ≤s ‖d (u, xn+1)‖ + s
√

2α
‖d (xn, xn+1)‖ ‖ξ‖
‖d (xn, u)‖

+ sβ ‖d (xn, u)‖+

s ‖L min {d (xn,Tu) , d (u, xn+1)}‖ .

Since lim
n→∞

xn = u, taking limit both sides as n→ ∞ we get that ‖ξ‖ ≤ 0, which is a contradiction, hence ‖ξ‖ = 0→
‖d (u,Tu)‖ = 0→ u = Tu. Therefore u is a fixed point of T .

Now we show that T has a unique fixed point. If possible let u∗ ∈ X be another fixed point of T.
Then

d (u, u∗) = d (Tu,Tu∗)

-i2 α
d (u,Tu) d (u∗,Tu∗)

d (u, u∗)
+ βd (u, u∗) + L min {d (u,Tu∗) , d (u∗,Tu)}

-i2 α
d (u, u) d (u∗, u∗)

d (u, u∗)
+ βd (u, u∗) + L min {d (u, u∗) , d (u∗, u)}

-i2 (β + L) d (u, u∗)

i.e., ‖d(u, u∗)‖ ≤ (β + L)‖d(u, u∗)‖
i.e., ‖d(u, u∗)‖ = 0
i.e., u = u∗

This completes the proof of the Theorem 3.1.

Example 3.1 Let X = [0, 1] and consider the mapping d : X × X → C2 defined by d (x, y) = (1 + i1 + i2 + i1i2) |x − y|2

Then for all x, y, z ∈ X,we can easily show that

d(x, y) -i2 2
[
d(x, z) + d(z, y)

]
therefore (X, d) is a bicomplex valued b-metric space with s = 2.

Let us consider the mapping T : X → X by T x = x
2 , then

d (T x,Ty) =d
( x
2
,

y
2

)
= (1 + i1 + i2 + i1i2)

∣∣∣∣∣ x2 − y
2

∣∣∣∣∣2
=

1
4

(1 + i1 + i2 + i1i2) |x − y|2

=
1
4

d (x, y) .

if we choose α = 3
16
√

2
and β = 1

4 then s
(√

2α + β
)

= 2
(√

2 3
16
√

2
+ 1

4

)
= 7

8 < 1 and for all L ≥ 0 then all conditions

of the Theorem 3.1 is satisfied. And clearly 0 is the unique fixed point of T.

Corollary 3.1 Let (X, d) be a complete bicomplex valued b-metric space with the coefficient s ≥ 1. Let the self-
mapping T : X → X be Jaggi contraction satisfying the condition

d (T x,Ty) -i2 α
d (x,T x) d (y,Ty)

d (x, y)
+ βd (x, y)

for all x, y ∈ X and d (x, y) is nonsingular where α, β are non-negative real numbers with s
(√

2α + β
)
< 1. Then T

has a unique fixed point in X.

Proof. This can be proved by taking L = 0 in Theorem 3.1.

Theorem 3.2 Let (X, d) be a complete bicomplex valued b-metric space with the coefficient s ≥ 1. Let the mappings
S ,T : X → X be almost Jaggi contraction satisfying the condition

(3.3) d (S x,Ty) -i2 α
d (x, S x) d (y,Ty)

d (x, y)
+ βd (x, y) + L min {d (x,Ty) , d (y, S x)}

for all x, y ∈ X and d (x, y) is nonsingular where L ≥ 0 and α, β are non-negative real numbers with s
(√

2α + β
)
< 1.

Then the mappings S and T have a unique common fixed point in X.
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Proof. Let {xn} be any sequence in X and x0 be an arbitrary point in X. We define

x2n+1 = S x2n, x2n+2 = T x2n+1, n = 0, 1, 2, ...

Therefore by using (3.3) we obtain that

d (x2n+1, x2n+2) = d (S x2n,T x2n+1)

-i2 α
d (x2n, S x2n) d (x2n+1,T x2n+1)

d (x2n, x2n+1)
+ βd (x2n, x2n+1) + L min {d (x2n,T x2n+1) , d (x2n+1, S x2n)}

-i2 α
d (x2n, x2n+1) d (x2n+1, x2n+2)

d (x2n, x2n+1)
+ βd (x2n, x2n+1) + L min {d (x2n, x2n+2) , d (x2n+1, x2n+1)}

-i2 α
d (x2n, x2n+1) d (x2n+1, x2n+2)

d (x2n, x2n+1)
+ βd (x2n, x2n+1) .

Therefore,

‖d (x2n+1, x2n+2)‖ ≤
√

2α
‖d (x2n, x2n+1)‖ ‖d (x2n+1, x2n+2)‖

‖d (x2n, x2n+1)‖
+ β ‖d (x2n, x2n+1)‖

≤
√

2α ‖d (x2n+1, x2n+2)‖ + β ‖d (x2n, x2n+1)‖

(3.4) i.e., ‖d (x2n+1, x2n+2)‖ ≤
β

1 −
√

2α
‖d (x2n, x2n+1)‖

Similarly we get that

(3.5) ‖d (x2n+2, x2n+3)‖ ≤
β

1 −
√

2α
‖d (x2n+1, x2n+2)‖

From (3.4) and (3.5) we can say that

‖d (xn+1, xn+2)‖ ≤
β

1 −
√

2α
‖d (xn, xn+1)‖

Let h =
β

1−
√

2α
. Then 0 ≤ h < 1, as s

(√
2α + β

)
< 1 and s ≥ 1. Therefore for all n = 0, 1, 2, ...

(3.6) ‖d (xn+1, xn+2)‖ ≤ h ‖d (xn, xn+1)‖ ≤ h2 ‖d (xn−1, xn)‖ ≤ ... ≤ hn+1 ‖d (x0, x1)‖ .

Since s
(√

2α + β
)
< 1 and s ≥ 1, therefore sh =

sβ
1−
√

2α
< 1

Then for any two positive integers m, n with m > n, we obtain that

d (xn, xm) -i2 s [d (xn, xn+1) + d (xn+1, xm)] .

Therefore,

‖d (xn, xm)‖
≤s ‖d (xn, xn+1)‖ + s ‖d (xn+1, xm)‖

≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s2 ‖d (xn+2, xm)‖

≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s3 ‖d (xn+2, xn+3)‖ + s3 ‖d (xn+3, xm)‖
... ... ...

... ... ...

i.e., ‖d (xn, xm)‖ ≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖

+ s3 ‖d (xn+2, xn+3)‖ + ... + sm−n−1 ‖d (xm−1, xm)‖

≤

{
‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖+

s3 ‖d (xn+2, xn+3)‖ + ... + sm−n ‖d (xm−1, xm)‖

}
, as s ≥ 1.

Therefore by using(3.6) we obtain that

‖d (xn, xm)‖ ≤shn ‖d (x0, x1)‖ + s2hn+1 ‖d (x0, x1)‖

+ s3hn+2 ‖d (x0, x1)‖ + ... + sm−nhm−1 ‖d (x0, x1)‖

i.e., ‖d (xn, xm)‖
∑m−n

i=1 sihi+n−1 ‖d (x0, x1)‖
i.e.,‖d (xn, xm)‖

∑m−n
i=1 si+n−1hi+n−1 ‖d (x0, x1)‖ , as s ≥ 1.

i.e.,‖d (xn, xm)‖
∑m−1

j=n s jh j ‖d (x0, x1)‖
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i.e., ‖d (xn, xm)‖
∑∞

j=n (sh) j ‖d (x0, x1)‖
i.e.,‖d (xn, xm)‖ ≤ (sh)n

1−sh ‖d (x0, x1)‖ .
Since (sh)n

1−sh → 0 as n→ ∞, therefore for any ε > 0 there exists a positive integer n0 such that ‖d (xn, xm)‖ < ε, for
all m, n > n0. Hence {xn} is a Cauchy in X. Again since X is a complete bicomplex valued b-metric space, there exists
a u ∈ X such that lim

n→∞
xn = u.

Now we show that u = S u, if not then there exists 0 ≺i2 ξ ∈ C2 such that d(u, S u) = ξ.
Therefore,

ξ = d (u, S u)

-i2 sd (u, x2n+2) + sd (x2n+2, S u)

-i2 sd (u, x2n+2) + sd (S u,T x2n+1)

-i2 sd (u, x2n+2) + sα
d (u, S u) d (x2n+1,T x2n+1)

d (u, x2n+1)
+ sβd (u, x2n+1) + sL min {d (u,T x2n+1) , d (x2n+1, S u)}

-i2 sd (u, x2n+2) + sα
ξd (x2n+1, x2n+2)

d (u, x2n+1)
+ sβd (u, x2n+1) + sL min {d (u, x2n+2) , d (x2n+1, S u)} .

Therefore,

‖ξ‖ ≤s ‖d (u, x2n+2)‖ + sα
‖ξ‖ ‖d (x2n+1, x2n+2)‖
‖d (u, x2n+1)‖

+

sβ ‖d (u, x2n+1)‖ + s ‖L min {d (u, x2n+2) , d (x2n+1, S u)}‖ .

Since lim
n→∞

xn = u, taking limit both sides as n→ ∞ we get that ‖ξ‖ ≤ 0, which is a contradiction, hence ‖ξ‖ = 0→
‖d (u, S u)‖ = 0→ u = S u. Therefore u is a fixed point of S . Similarly we can show that Tu = u.

Now we show that S and T have a unique common fixed point. For this let u∗ ∈ X be another common fixed point
of S and T, i.e. S u∗ = Tu∗ = u∗.

Then

d (u, u∗) = d (Tu,Tu∗)

-i2 α
d (u∗,Tu∗) [1 + d (u,Tu)]

1 + d (u, u∗)
+ βd (u, u∗) + L min {d (u,Tu) , d (u,Tu∗) , d (u∗,Tu)}

-i2 α
d (u∗, u∗) [1 + d (u, u)]

d (u, u∗)
+ βd (u, u∗) + L min {d (u, u) , d (u, u∗) , d (u∗, u)}

-i2 βd (u, u∗)

i.e., ‖d (u, u∗)‖ ≤ β ‖d (u, u∗)‖
i.e., ‖d (u, u∗)‖ = 0
i.e., u = u∗

Hence the proof of the Theorem 3.2. is established.

Theorem 3.3 Let (X, d) be a complete bicomplex valued b−metric space with coefficient s ≥ 1. Let the self-mapping
T : X → X be a Dass-Gupta contraction satisfying the condition

(3.7) d (T x,Ty) -i2 α
d (y,Ty) [1 + d (x,T x)]

1 + d (x, y)
+ βd (x, y) + L min {d (x,T x) , d (x,Ty) , d (y,T x)}

for all x, y ∈ X and 1+d (x, y) be nonsingular, where L ≥ 0 and α, β are non-negative real numbers with s
(√

2α + β
)
<

1. Then T has a unique fixed point in X.

Proof. Let {xn} be a sequence in X such that

xn = T xn−1, for all n = 1, 2, ...

where x0 is an arbitrary fixed point in X.
Therefore by using (3.7) we obtain that

d (xn, xn+1) = d (T xn−1,T xn)

-i2 α
d (xn,T xn) [1 + d (xn−1,T xn−1)]

1 + d (xn−1, xn)
+ βd (xn−1, xn)

+ L min {d (xn−1,T xn−1) , d (xn−1,T xn) , d (xn,T xn−1)}
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-i2 α
d (xn, xn+1) [1 + d (xn−1, xn)]

1 + d (xn−1, xn)
+ βd (xn−1, xn) +

L min {d (xn−1, xn) , d (xn−1, xn+1) , d (xn, xn)}

-i2 α
d (xn, xn+1) [1 + d (xn−1, xn)]

1 + d (xn−1, xn)
+ βd (xn−1, xn) .

Therefore,

‖d (xn, xn+1)‖ ≤
√

2α
‖d (xn, xn+1)‖ ‖1 + d (xn−1, xn)‖

‖1 + d (xn−1, xn)‖
+ β ‖d (xn−1, xn)‖

≤
√

2α ‖d (xn, xn+1)‖ + β ‖d (xn−1, xn)‖ ,

i.e.,‖d (xn, xn+1)‖ ≤ β

1−
√

2α
‖d (xn−1, xn)‖ ,

i.e.,‖d (xn, xn+1)‖ ≤ h ‖d (xn−1, xn)‖ ,
where h =

β

1−
√

2α
, then 0 ≤ h < 1, since s

(√
2α + β

)
< 1 and s ≥ 1. Therefore for all n = 1, 2, 3, ...

‖d (xn, xn+1)‖ ≤ h ‖d (xn−1, xn)‖ ≤ h2 ‖d (xn−2, xn−1)‖ ≤ ... ≤ hn ‖d (x0, x1)‖ .

Therefore,

‖d (xn+1, xn+2)‖ ≤ hn+1 ‖d (x0, x1)‖

Since s (α + β) < 1 and s ≥ 1→ sh =
sβ

1−
√

2α
< 1

Then for any two positive integers m, n with m > n

d (xn, xm) -i2 s [d (xn, xn+1) + d (xn+1, xm)] .

Therefore,

‖d (xn, xm)‖
≤s ‖d (xn, xn+1)‖ + s ‖d (xn+1, xm)‖

≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s2 ‖d (xn+2, xm)‖

≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s3 ‖d (xn+2, xn+3)‖ + s3 ‖d (xn+3, xm)‖
... ... ...

... ... ...

i.e., ‖d (xn, xm)‖ ≤s ‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖ + s3 ‖d (xn+2, xn+3)‖ + ... + sm−n−1 ‖d (xm−1, xm)‖

≤

{
‖d (xn, xn+1)‖ + s2 ‖d (xn+1, xn+2)‖+

s3 ‖d (xn+2, xn+3)‖ + ... + sm−n ‖d (xm−1, xm)‖

}
as s ≥ 1.

Therefore by using (3.2) we get that

‖d (xn, xm)‖ ≤ shn ‖d (x0, x1)‖ + s2hn+1 ‖d (x0, x1)‖ + s3hn+2 ‖d (x0, x1)‖ + ... + sm−nhm−1 ‖d (x0, x1)‖

i.e.,‖d (xn, xm)‖
∑m−n

i=1 sihi+n−1 ‖d (x0, x1)‖
i.e.,‖d (xn, xm)‖

∑m−n
i=1 si+n−1hi+n−1 ‖d (x0, x1)‖ , since s ≥ 1.

i.e., ‖d (xn, xm)‖
∑m−1

j=n s jh j ‖d (x0, x1)‖
i.e., ‖d (xn, xm)‖

∑∞
j=n (sh) j ‖d (x0, x1)‖

i.e., ‖d (xn, xm)‖ ≤ (sh)n

1−sh ‖d (x0, x1)‖ .
Since (sh)n

1−sh → 0 as n→ ∞, therefore for any ε > 0 there exists a positive integer n0 such that ‖d (xn, xm)‖ < ε, for
all m, n > n0. Hence {xn} is Cauchy in X. Since X is a complete bicomplex valued b-metric space, then there exists
u ∈ X such that lim

n→∞
xn = u.

Now we show that u = Tu, if not then there exists 0 ≺i2 ξ ∈ C2 such that d (u,Tu) = ξ.
Therefore,

ξ =d (u,Tu)

-i2 sd (u, xn+1) + sd (xn+1,Tu)

-i2 sd (u, xn+1) + sd (T xn,Tu)

-i2 sd (u, xn+1) + sα
d (u,Tu) [1 + d (xn,T xn)]

1 + d (xn, u)
+
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sβd (xn, u) + sL min {d (xn,T xn) , d (xn,Tu) , d (u,T xn)}

-i2 sd (u, xn+1) + sα
ξ [1 + d (xn, xn+1)]

d (xn, u)
+ sβd (xn, u) +

sL min {d (xn, xn+1) , d (xn,Tu) , d (u, xn+1)} .
Thus

‖ξ‖ ≤s ‖d (u, xn+1)‖ + s
√

2α
‖ξ‖ ‖1 + d (xn, xn+1)‖
‖1 + d (xn, u)‖

+ sβ ‖d (xn, u)‖+

s ‖L min {d (xn, xn+1) , d (xn,Tu) , d (u, xn+1)}‖ .
Since lim

n→∞
xn = u, taking limit both sides as n → ∞ we get that ‖ξ‖ ≤ sα ‖ξ‖ , which is a contradiction. Hence

‖ξ‖ = 0→ ‖d (u,Tu)‖ = 0→ u = Tu. Therefore u is a fixed point of T.
Now we show that T has a unique fixed point. For this let u∗ ∈ X be another fixed point of T.
Then

d (u, u∗) =d (Tu,Tu∗)

-i2α
d (u∗,Tu∗) [1 + d (u,Tu)]

1 + d (u, u∗)
+ βd (u, u∗) +

L min {d (u,Tu) , d (u,Tu∗) , d (u∗,Tu)}

-i2α
d (u∗, u∗) [1 + d (u, u)]

d (u, u∗)
+ βd (u, u∗) +

L min {d (u, u) , d (u, u∗) , d (u∗, u)}
-i2βd (u, u∗)

i.e., ‖d (u, u∗)‖ ≤ β ‖d (u, u∗)‖
i.e., ‖d (u, u∗)‖ = 0
i.e., u = u∗.
This completes the proof of the Theorem 3.3.

Corollary 3.2 Let (X, d) be a complete bicomplex valued b−metric space with coefficient s ≥ 1. Let the self-mapping
T : X → X be a Dass-Gupta rational contraction satisfying the condition

(3.8) d (T x,Ty) -i2 α
d (y,Ty) [1 + d (x,T x)]

1 + d (x, y)
+ βd (x, y)

for all x, y ∈ X and 1 + d (x, y) be non degenerated, where α, β are non-negative real numbers with s
(√

2α + β
)
< 1.

Then T has a unique fixed point in X.

Proof. This can be proved by taking L = 0 in Theorem 3.3.

Corollary 3.3 Let (X, d) be a complete bicomplex valued b−metric space with coefficient s ≥ 1. Let the self-mapping
T : X → X be a Dass-Gupta rational contraction satisfying the condition

(3.9) d (T nx,T ny) -i2 α
d (y,T ny) [1 + d (x,T nx)]

1 + d (x, y)
+ βd (x, y)

for all x, y ∈ X and 1 + d (x, y) be nonsingular, where α, β are non-negative real numbers with s
(√

2α + β
)
< 1. Then

T has a unique fixed point in X.

By Corollary 3.2 there exists a unique point u ∈ X such that
T nu = u.

Therefore,

d (Tu, u) = d (TT nu,T nu) = d (T nTu,T nu) -i2 α
d (u,T nu) [1 + d (Tu,T nTu)]

1 + d (Tu, u)
+ βd (Tu, u)

i.e., d (Tu, u) -i2 α
d(u,u)[1+d(Tu,T nTu)]

1+d(Tu,u) + βd (Tu, u)
i.e., d (Tu, u) -i2 αd (Tu, u)
i.e., ‖d (Tu, u)‖ ≤ α ‖d (Tu, u)‖
i.e., ‖d (Tu, u)‖ = 0
i.e., Tu = u.
This completes the proof of the Corollary 3.3.
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4 Future prospect.
In the line of the works as carried out in the paper one may think of the deduction of fixed point theorems using fuzzy
metric, quasi metric, partial metric, probabilistic metric, p-adic metric (where p is a prime number), cone metric, quasi
semi metric, convex metric, D-metric and other different types of metrics under the flavour of bicomplex analysis. This
may be regarded as an active area of research to the future workers in this branch.
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Abstract

A comparative study of two numerical techniques is presented for solving nonlinear differential equations of the
Bernoulli’s type. Proposed techniques are based on the conversion of nonlinear differential equations into linear
differential equations by substituting particular factor and utilization of Haar wavelet collocation method (HWCM)
and Hermite wavelet collocation method (HeWCM) to these linear equations. Searching for numerical solutions of
such equations has attracted a considerable amount of research work where computer symbolic systems facilitate the
computational work.
2010 Mathematics Subject Classifications: 65N99
Keywords and phrases: Haar wavelets, Hermite wavelets, Bernoulli’s equation, Function approximation, Numerical
examples.

1 Introduction
As nonlinear differential equations have many applications in real life problems, several numerical methods have
been developed like Adomian decomposition method (ADM), Homotopy Perturbation method (HPM), Homotopy
Analysis method (HAM), Laplace transform method, B-splines methods and finite difference methods (FDM). All
these methods have huge procedure for solving nonlinear differential equations. Wavelets are more powerful tools
for solving differential as well as integral equations in comparison to pre-existing classical methods. Numerical
solutions of inverse euler-Bernoulli problem with integral overdetermination and periodic boundary conditions have
been presented in [1]. In [2], Chebyshev collocation method has been presented for solving Voltra-Fredholm integro-
differential equations. New ICI self-cancellation technique has been investigated to mitigate the effect of ICI in FFT-
OFDM and compared with DCT based OFDM system in terms of bit error rate (BER) and carrier to interference
ratio (CIR) in [3]. Problem of determining the time-dependent leading coefficient to the time derivative of heat
equation with nonlocal boundary and integral conditions has been discussed in [4]. In [5], a constructive approach has
been developed for solving system of linear and nonlinear fractional differential equations with the help of modified
differential transform method and Adomian polynomials. Haar wavelet is simplest and more reliable in comparison
to other members of wavelet family. Haar wavelets are not applied directly for solving differential equations due to
some shortcomings and these shortcomings were removed by regularizing the piecewise constant Haar functions with
interpolation splines [8, 9] or by expanding the highest derivative appearing in the differential equation into the Haar
series and other derivatives are obtained through integrations [10, 11]. The first possibility was discarded because by
using this technique, it is difficult to find the solution easily and simplicity of Haar wavelets gets lost. Haar wavelet
based numerical schemes have been discussed in [6, 14, 15, 18, 19, 20] for solving differential and integral equations.
In [7, 12, 13, 16, 17, 21], numerical techniques based on Hermite wavelet and collocation points have been discussed
for solving various variety of differential and integral equations.

The main objective of this research, is to compare the two wavelets based numerical techniques for solving
differential equations of the Bernoulli type. For this purpose Haar and Hermite wavelets are utilized. The mathematical
formulation of such differential equation is:

(1.1)
dy
dx

+ P(x)y = Q(x).F(y),

where F(y) is nonlinear function in y. The initial conditions is y(0) = a, a is constant.

2 Haar wavelets and their operational matrices
Haar functions are an orthogonal family of switched rectangular waveforms where amplitudes can differ from one
function to another. Haar wavelet is a sequence of rescaled square shaped functions which together forms a wavelet
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family or basis. The Haar wavelet function hi(x) is defined in the interval [α, γ] as

(2.1) hi(x) =


1, α ≤ x < β,
−1, β ≤ x < γ,
0, elsewhere,

where α = k
m , β = k+0.5

m , γ = k+1
m , m = 2 j and j = 0, 1, 2, ..., J. J denotes the level of resolution. The integer

k = 0, 1, 2, ...,m− 1 is the translation parameter. The index i is calculated as: i = m + k + 1. The minimal value of i = 2
and the maximal value of i = 2 j+1.
The collocation points are calculated as

(2.2) xl =
l − 0.5

2M
, l = 1, 2, 3, ..., 2M.

The operational matrix P, which is 2M × 2M, is calculated as below

(2.3) P1,i(x) =
∫ x

0 hi(x)dx,

and

(2.4) Pn+1,i(x) =
∫ x

0 Pn,i(x)dx, n = 1, 2, 3, ... .

From (2.3), we obtain:

(2.5) P1,i(x) =


x − α, α ≤ x < β,
γ − x, β ≤ x < γ,
0, elsewhere,

3 Hermite wavelets and their operational matrices
Wavelets constitute a family of functions from dilation and translation of a single function known as mother wavelet.
The continuous variation of dilation parameter α and translation parameter β, form a family of continuous wavelets as:

(3.1) ψα,β(x) = | α |−
1
2ψ

( x − β
α

)
, α, β ∈ R, α , 0,

if the dilation and translation parameters are restricted to discrete values by setting α = α0
−k, β = nβ0α0

−k, α0 > 1,
β0 > 0, we obtain the following family of discrete wavelets:

(3.2) ψk,n(x) = | α |−
1
2ψ(α0

k x − nβ0), α, β ∈ R, α , 0,

where ψk,n, form a wavelet basis for L2(R). For special case, if α0 = 2 and β0 = 1, then ψk,n(x) forms an orthonormal
basis. Hermite wavelets are defined as:

(3.3) ψn,m(x) =

 2
k+1

2
√
π

Hm(2km − 2n + 1), n−1
2k−1 ≤ x < n

2k−1 ,

0, Otherwise,

where m = 0, 1, 2, 3, ...,M − 1 and n = 1, 2, 3, ..., 2k−1 and k is assumed any positive integer. Also, Hm are Hermite
polynomials of degree m with respect to weight function W(x) =

√
1 − x2 on the real line R and satisfies the following

recurrence relation

(3.4) Hm+2(x) = 2xHm+1(x) − 2(m + 1)Hm(x),

where m = 0, 1, 2, .....,, H0(x) = 1 and H1(x) = 2x.
3.1 Operational matrices of integration[21]
For k = 1 and M = 6, Assume the six basis functions on [0, 1] as:

(3.5)



ψ1,0(x) = 2
√
π
,

ψ1,1(x) = 2
√
π
(4x − 2),

ψ1,2(x) = 2
√
π
(16x2 − 16x + 2),

ψ1,3(x) = 2
√
π
(64x3 − 96x2 + 36x − 2),

ψ1,4(x) = 2
√
π
(256x4 − 512x3 + 320x2 − 64x + 2),

ψ1,5(x) = 2
√
π
(1024x5 − 2560x4 + 2240x3 − 800x2 + 100x − 2).
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Let ψ6(x) = [ψ1,0(x), ψ1,1(x), ψ1,2(x), ψ1,3(x), ψ1,4(x), ψ1,5(x)]T . Integrating the above equations with respect to x,
from 0 to x and after expressing in the matrix form, we obtain

(3.6)



∫ x
0 ψ1,0(x)dx = 2

√
π

x =
[

1
2 ,

1
4 , 0, 0, 0, 0

]
ψ6(x),∫ x

0 ψ1,1(x)dx = 2
√
π
(2x2 − 2x) =

[
− 1

4 , 0,
1
8 , 0, 0, 0

]
ψ6(x),∫ x

0 ψ1,2(x)dx = 2
√
π
( 16

3 x3 − 8x2 + 2x) =
[
− 1

3 ,−
1
4 , 0,

1
12 , 0, 0

]
ψ6(x),∫ x

0 ψ1,3(x)dx = 2
√
π
(16x4 − 32x3 + 18x2 − 2x) =

[
1
8 , 0,−

1
8 , 0,

1
16 , 0

]
ψ6(x),∫ x

0 ψ1,4(x)dx = 2
√
π
( 256

5 x5 − 512
4 x4 + 320

3 x3 − 32x2 + 2x) =
[
− 1

15 , 0, 0,−
1

12 , 0,
1
20

]
ψ6(x),∫ x

0 ψ1,5(x)dx = 2
√
π
( 512

3 x6 − 2560
5 x5 + 1120

2 x4 − 800
3 x3 + 50x2 − 2x) =

[
1
24 , 0, 0, 0,−

1
16 , 0

]
ψ6(x).

Therefore,
(3.7)

∫ x
0 ψ6(x)dx = P6×6ψ6(x) + ψ6(x),

where

(3.8) P6×6 =



1
2

1
4 0 0 0 0

− 1
4 0 1

8 0 0 0
− 1

3 − 1
4 0 1

12 0 0
1
8 0 − 1

8 0 1
16 0

− 1
15 0 0 − 1

12 0 1
20

1
24 0 0 0 − 1

16 0


and
(3.9) ψ̄6(x) =

(
0, 0, 0, 0, 0,

1
24
ψ1,6(x)

)T
.

Similarly integrating (3.7) with respect to x, from 0 to x, we obtain
(3.10)

∫ x
0

∫ x
0 ψ6(x)dxdx = Q6×6ψ6(x) + ¯̄ψ6(x),

where

(3.11) Q6×6 =



3
16

1
8

1
32 0 0 0

− 1
6 − 3

32 0 1
96 0 0

− 3
32 − 1

12 − 1
24 0 1

192 0
1

10
1
16 0 − 1

64 0 1
320

− 1
24 − 1

60
1

96 0 − 1
120 0

1
42

1
96 0 1

192 0 − 1
192


and
(3.12) ¯̄ψ6(x) =

(
0, 0, 0, 0,

1
480

ψ1,6(x),
1

672
ψ1,7(x)

)T
.

4 Function Approximation
4.1 Haar wavelet method
Consider any square integrable function y(x) can be expanded in terms of infinite series of Haar basis functions as:
(4.1) y(x) =

∑∞
i=1aihi(x),

where ai are constants of this infinite series, known as Haar wavelet coefficients. For numerical approximation the
above infinite series is truncated upto finite terms as:
(4.2) y(x) =

∑2M
i=1aihi(x) = AT h(x),

where A and h(x) are 2M × 1 matrices and are given by
(4.3) AT = [a1, a2, ..., a2M],
and
(4.4) h(x) = [h1(x), h2(x), ..., h2M(x)]T .

4.2 Hermite wavelet method
Consider any square integrable function u(x) can be expanded in terms of infinite series of Hermite basis functions as:
(4.5) u(x) =

∑∞
n=1

∑∞
m=0Cn,mψn,m(x),

where Cn,m are constants of this infinite series, known as Hermite wavelet coefficients. For numerical approximation
the above infinite series is truncated upto finite terms as:
(4.6) u(x) =

∑2k−1

n=1
∑M−1

m=0 Cn,mψn,m(x) = CT Ψ(x),
where C and Ψ are 2k−1M × 1 matrices and are given by
(4.7) CT = [C1,0, ...,C1,M−1, ...,C2k−1,0, ...,C2k−1,M−1]
and
(4.8) Ψ = [ψ1,0, ..., ψ1,M−1, ..., ψ2k−1,0, ..., ψ2k−1,M−1]T .
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5 Proposed methods for solving Bernoulli’s equation
Consider the Bernoulli’s equation

(5.1)
dy
dx

+ P(x)y = Q(x).F(y),

where F(y) is a nonlinear term. Above equation (5.1) is nonlinear differential equation. Divide (5.1) with function
F(y). The transformed equation is

(5.2) F1(y)
dy
dx

+ P(x)F2(y) = Q(x),

where F1, F2 are functions of y. Putting F2(y) = z in (5.2), we get

(5.3)
dz
dx

+ P1(x)z = Q1(x),

where P1 and Q1 are new functions of x. Equation (5.3) is linear differential equation with initial condition z(0) = b,
where b is constant.
5.1 Haar wavelet collocation method
(HWCM) Consider the wavelet approximation

(5.4)
dz
dx

=
∑2M

i=1 aihi(x).

Integrating (5.4) with respect to x, from 0 to x, we get
(5.5) z(x) = z(0) +

∑2M
i=1 aiP1,i(x).

Substituting (5.4) and (5.5) in (5.3), and applying initial conditions, we get
(5.6)

∑2M
i=1 ai

[
hi(x) + P1(x)P1,i(x)

]
= Q1(x) − b.P1(x).

From (5.6), we get Haar wavelet coefficient. The Haar wavelet solution z(x) is obtained by substituting the values
of wavelet coefficients into (5.5). The solution of (5.1) is obtained from the relation y = F2

−1(z).
5.2 Hermite wavelet collocation method
(HeWCM) Consider the wavelet approximation

(5.7)
dz
dx

=
∑2k−1

n=1
∑M−1

m=0 Cn,mψn,m(x) = CT Ψ(x),

Integrating (5.7) with respect to x, from 0 to x, we get
(5.8) z(x) = z(0) +

∑2k−1

n=1
∑M−1

m=0 Cn,m
∫ x

0 ψn,m(x)dx.
Substituting (5.7) and (5.8) in (5.3), and applying initial conditions, we get

(5.9)
∑2k−1

n=1
∑M−1

m=0 Cn,m

[
ψn,m(x) + P1(x)

∫ x
0 ψn,m(x)dx

]
= Q1(x) − b.P1(x).

From (5.9), we get Hermite wavelet coefficient. The Hermite wavelet solution z(x) is obtained by substituting the
values of wavelet coefficients into (5.8). The solution of (5.1) is obtained from the relation y = F2

−1(z).

6 Numerical Observations
We present here, numerical examples for solving some nonlinear differential equations, to illustrate the accuracy of the
proposed method with the aid of two efficient techniques such as Haar wavelet method and Hermite wavelet method.
Example 6.1: Consider the nonlinear differential equation

(6.1)
dy
dx

+ xsin 2y = x3cos2 y,

with initial condition y(0) = 0. The exact solution of the equation is

(6.2) tan y =
1
2

(x2 − 1) +
1
2

e−x2
.

Table 6.1: Numerical solutions of Example 6.1 for 2M = 8.

x Exact solution Haar wavelet solution Hermite wavelet solution
1/16 3.8097e − 006 1.5141e − 005 4.5026e − 006
3/16 3.0540e − 004 4.3214e − 004 3.0590e − 004
5/16 2.3084e − 003 2.6383e − 003 2.3089e − 003
7/16 8.6014e − 003 9.1744e − 003 8.6019e − 003
9/16 2.2581e − 002 2.3382e − 002 2.2581e − 002

11/16 4.7963e − 002 4.8928e − 002 4.7964e − 002
13/16 8.8234e − 002 8.9264e − 002 8.8234e − 002
15/16 1.4602e − 001 1.4701e − 001 1.4602e − 001
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Table 6.2: Comparison of absolute errors of Example 6.1 for 2M = 8.

x Absolute errors for Absolute errors for
Haar wavelet Hermite wavelet

1/16 1.1331e − 005 6.9287e − 007
3/16 1.2674e − 004 4.9578e − 007
5/16 3.2985e − 004 5.0176e − 007
7/16 5.7292e − 004 4.4160e − 007
9/16 8.0075e − 004 4.0076e − 007
11/16 9.6413e − 004 3.2832e − 007
13/16 1.0300e − 003 3.0043e − 007
15/16 9.8735e − 004 1.0734e − 007

Table 6.1 represents the comparison of numerical solutions obtained by Haar and Hermite wavelet methods with
exact solution of Example 6.1. Table 6.2 represents the comparison of absolute errors obtained by Haar wavelet
method and Hermite wavelet method. Figure 6.1 and Figure 6.2 show the absolute errors of Example 6.1 for 2M = 8.
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Figure 6.1: Absolute errors of Example 6.1 for 2M = 8.
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Figure 6.2: Absolute errors of Example 6.1 for 2M = 8.
Example 6.2: Consider the nonlinear differential equation

(6.3) ey(
dy
dx

+ 1) = ex,

with initial condition y(0) = 0. The exact solution of the equation is

(6.4) ey =
1
2

(ex + e−x).

Table 6.3: Numerical solutions of Example 6.2 for 2M = 8.

x Exact solution Haar wavelet solution Hermite wavelet solution
1/16 1.9519e − 003 3.7866e − 003 1.9519e − 003
3/16 1.7476e − 002 1.9089e − 002 1.7476e − 002
5/16 4.8053e − 002 4.9471e − 002 4.8053e − 002
7/16 9.2797e − 002 9.4047e − 002 9.2797e − 002
9/16 1.5050e − 001 1.5161e − 001 1.5050e − 001
11/16 2.1977e − 001 2.2076e − 001 2.1977e − 001
13/16 2.9910e − 001 3.0000e − 001 2.9910e − 001
15/16 3.8703e − 001 3.8786e − 001 3.8703e − 001
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Table 6.4: Comparison of absolute errors of Example 6.2 for 2M = 8.

x Absolute errors for Absolute errors for
Haar wavelet Hermite wavelet

1/16 1.8348e − 003 1.1023e − 010
3/16 1.6130e − 003 6.6898e − 011
5/16 1.4174e − 003 6.3810e − 011
7/16 1.2496e − 003 5.1481e − 011
9/16 1.1095e − 003 4.5878e − 011
11/16 9.9544e − 004 3.6280e − 011
13/16 9.0478e − 004 3.7286e − 011
15/16 8.3425e − 004 5.4857e − 012

Table 6.3 represents the comparison of numerical solutions obtained by Haar and Hermite wavelet methods with
exact solution of Example 6.2. Table 6.4 represents the comparison of absolute errors obtained by Haar wavelet
method and Hermite wavelet method. Figure 6.3 and Figure 6.4 show the absolute errors of Example 6.2 for 2M = 8.
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Figure 6.3: Absolute errors of Example 6.2 for 2M = 8.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−10

x

A
b
s
o
lu

te
 e

rr
o
rs

 

 

Hermite wavelet method

Figure 6.4: Absolute errors of Example 6.2 for 2M = 8.

Example 6.3: Consider the nonlinear differential equation

(6.5) xy(1 + xy2)
dy
dx

= 1,

with initial condition x(0) = 1. The exact solution of the equation is

(6.6)
1
x

= (2 − y2) − e−
y2

2 .

Table 6.5: Numerical solutions of Example 6.3 for 2M = 8.

y Exact solution Haar wavelet solution Hermite wavelet solution
1/16 1.0020 1.0039 1.0020
3/16 1.0181 1.0201 1.0181
5/16 1.0526 1.0549 1.0526
7/16 1.1113 1.1139 1.1113
9/16 1.2049 1.2081 1.2049

11/16 1.3553 1.3594 1.3553
13/16 1.6104 1.6162 1.6104
15/16 2.0977 2.1075 2.0977
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Table 6.6: Comparison of absolute errors of Example 6.3 for 2M = 8.

y Absolute errors for Absolute errors for
Haar wavelet Hermite wavelet

1/16 1.9627e − 003 7.1279e − 008
3/16 2.0568e − 003 5.3094e − 008
5/16 2.2577e − 003 5.9452e − 008
7/16 2.5976e − 003 6.1041e − 008
9/16 3.1475e − 003 6.9398e − 008
11/16 4.0705e − 003 7.7959e − 008
13/16 5.7923e − 003 1.1056e − 007
15/16 9.7275e − 003 8.6224e − 008

Table 6.5 represents the comparison of numerical solutions obtained by Haar and Hermite wavelet methods with
exact solution of Example 6.3. Table 6.6 represents the comparison of absolute errors obtained by Haar wavelet
method and Hermite wavelet method. Figure 6.5 and Figure 6.6 show the absolute errors of Example 6.3 for 2M = 8.
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Figure 6.5: Absolute errors of Example 6.3 for 2M = 8.
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Figure 6.6: Absolute errors of Example 6.3 for 2M = 8.

7 Conclusion
From above discussion, it is concluded that the Hermite wavelet based collocation is much better in comparison to
Haar wavelet based collocation method for solving nonlinear differential equations of the Bernoulli’s type. For getting
the necessary accuracy the number of collocation points may be increased.
Acknowledgement. We are very much thankful to Editor and Reviewer for their valuable suggestions to improve the
paper in its present form.
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Abstract

Molodtsov was a father of soft set approach. We can’t easily settle the membership degree in some practical
application. So it must be much better to describe interval-valued data instead of explaining membership degree. In
this paper, we introduce the latest approach of the interval-valued fuzzy soft set by combining the interval-valued
fuzzy set and soft set models. This approach successfully follows distributive, associative and DeMorgans laws as
well. In the end, a decision problem is solved by this approach.
2010 Mathematics Subject Classifications: 15B15; 03E72; 28E10
Keywords and phrases: Fuzzy soft set, Interval-valued fuzzy set, Interval-valued fuzzy soft set, Operation, Choice
value.

1 Introduction
In 1999 a great researcher Molodtsov was born in Russia who gave an approach which is known as a soft set approach.
There are many approach which deal with uncertainty for example, probability, the theory of fuzzy set etc. But this
approach is different from all these approach. Molodtsov applied this approach and got positive results.

Many researchers are working on it, because of this approach has many application in several directions. Many
operations applied on soft sets by Maji et al. [21]. This approach has also solved many judgment constructing issue
by adopting fuzzy mathematics [20]. The characterization devaluation of soft sets analyzed by Chen at al. [10]. The
main objective of Kong at al. [16, 17, 18] is to show a devaluation of soft sets and fuzzy soft sets. They also explained
algorithm of normal parameter reduction.

By above analysis, we observed that classical soft set [26, 28] approach is the root of all above work. We link this
model with any mathematical model. Aktas et al. [1] obtained elementary properties of soft groups by this approach.
Feng et al. [11] suggested approach of soft semirings, soft subsemirings, soft ideals, idealistic soft semirings, soft
semiring homomorphisms and their characteristics. Approach of soft BCK/BCI-algebras and soft subalgebras are
presented by Jun [13, 14, 15]. Maji et al. [20] suggested this approach. It is a amalgam of fuzzy set and soft set
models. Yange et al. [29] applied some process on soft sets, these were negation, triangular norm etc. Zou et al. [31]
presented soft set, fuzzy soft set into the insufficient situation.

In fuzzy mathematics, The utility of fuzzy set theory in handling uncertainty, arising from deficiencies of
information available from a situation in pattern recognition problems have been proposed by many researchers.
Controversy has surrounded the concept of fuzziness since its inception. Some maintains that probability theory
can handle any kind of uncertainty; other think that fuzziness is probability in disguise or that probability is only
sensible way to describe any kind of uncertainty. This theory provide an approximate, effective and more flexible
means of classifying the patterns which are too complex or have to ill-defined features to be handled by the classical
approach. Both fuzzy logic and probability theory are closely related, the key difference is their meaning. Probability
is associated with events and not facts, and those events will either occur or not occur. There is nothing fuzzy about it.
Fuzzy Logic is all about degree of truth.

The merging of interval-valued fuzzy set and soft set are shown here. So we get latest soft set model which is
Interval-valued Fuzzy Soft Set. To make this work easy, Section 2 having detail about standard soft set and fuzzy soft
set. Section 3 having approach about interval-valued fuzzy soft set. We then apply the concept of complement, AND
and OR on interval-valued fuzzy soft sets. Section 4, show that interval-valued fuzzy soft set successfully works on
judgment constructing issue. At last we then give summary and direction for new research.We observed these hotels
by net and saw their websites. First we saw these attributes and got the rating of all these attributes from their websites.

Triangular norms and conorms are operations which generalize the logical conjunction and logical disjunction to
fuzzy logic. They are a natural interpretation of the conjunction and disjunction in the semantics of mathematical
fuzzy logics and they are used to combine criteria in multi-criteria decision making.
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2 Preliminaries
A fuzzy soft relation is defined as soft set over the fuzzy power set of the Cartesian product of two crisp sets.

By this process Molodtsov [22] explained soft set. Suppose M and N indicate universal set, parameter set
respectively. We show soft set by this pair (F,N). In this case F indicates a function of N towards all subsets of
set M.

Now make all subsets of M and indicated by P(M), F mapping shown below [10].

F : N → P(M),

∀n ∈ N, F(n) indicates the family of n-approximate members of soft sets (F,N) [2, 7, 23].
Suppose assemblage of every subsets of M can denote by P(M). So fuzzy soft set for P(M) as reported by (F̃,N).

Here F̃ transformation represented.

F̃ : N → P
(
M

)
.

It indicates the parameterized group of fuzzy subsets of M. It is mapping from parameters to a universe, so this
indicates the particular process of soft set.

In general, fuzzy value set for n is indicated by F̃(n) and it is the subset of M. We can differentiate it from the
classic soft set, suppose (µF̃(n)(HO)) indicate the membership degree of element HO, which holds the parameter n
here. HO ∈ M,n ∈ N. F̃ given below.

F̃(n) =
{
(HO, µF̃(n)(HO)) : HO ∈ M

}
.

Definition 2.1 The AND operation on the two interval-valued fuzzy soft sets (F̃, A), (G̃, B) is defined by

(F̃, A) ∧ (G̃, B) = (H̃, A × B),

where H̃(α, β) = F̃(α) ∩ G̃(β),∀(α, β) ∈ (A × B).

Definition 2.2 The OR operation on the two interval-valued fuzzy soft sets (F̃, A), (G̃, B) is defined by

(F̃, A) ∨ (G̃, B) = (H̃, A × B),

where H̃(α, β) = F̃(α) ∪ G̃(β),∀(α, β) ∈ (A × B).

3 Interval-valued fuzzy soft set
3.1 Approach of interval-valued fuzzy soft set
It can obtained with the help of fuzzy set and soft set theory definitely. Note that we can’t easily settle the membership
degree in some practical application. So it must be much better to describe interval-valued data instead of explaining
membership degree.Due to this approach, Zadeh described this approach. Interval-valued fuzzy soft set model can
be described by joining interval-valued fuzzy set and soft set. Now, we shortly suggest this theory. Mapping of
interval-valued fuzzy set [8, 9, 30] Ŝ on the universe M.

Ŝ : M → Int([0, 1]),

Here, collection of every closest subintervals of [0, 1] is indicated by Int([0, 1]). Group of all interval-valued fuzzy
sets on M is denoted by P(M).

Let Ŝ ∈ P̃(M),∀m ∈ M.
The degree of membership is given by µŜ (HO) = [µ−

Ŝ
(HO), µ+

Ŝ
(HO)] of element HO to Ŝ .

µ−
Ŝ

(HO), µ+

Ŝ
(HO) Indicate the lower and upper membership degree of HO to Ŝ . Here

µ−
Ŝ

(HO), µ+

Ŝ
(HO).

We can describe complement, intersection and other operation of the interval-valued fuzzy set here.
Suppose Ŝ , T̂ ∈ P̃(M)

1. Ŝ C indicates the complement of Ŝ
µŜ C (HO) = 1 − µŜ (HO) = [1 − µ+

Ŝ
(HO), 1 − µ−

Ŝ
(HO)];

2. Ŝ ∩ T̂ Indicates the intersection of Ŝ and T̂
µŜ∩T̂ (HO) = in f [µŜ (HO), µT̂ (HO)]
= [in f (µ−

Ŝ
(HO), µ−

T̂
(HO)), in f (µ+

Ŝ
(HO), µ+

T̂
(HO))];
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Table 3.1: ( ˜Iv f1, Ω1) serve as interval valued fuzzy soft set.

M n1 n2 n3 n4

HO1 [0.6 − 0.8] [0.4 − 0.6] [0.6 − 0.8] [0.7 − 0.9]
HO2 [0.6 − 0.8] [0.5 − 0.7] [0.6 − 0.8] [0.4 − 0.6]
HO3 [0.8 − 1.0] [0.7 − 0.9] [0.8 − 1.0] [0.8 − 1.0]
HO4 [0.8 − 1.0] [0.6 − 0.8] [0.8 − 1.0] [0.8 − 1.0]
HO5 [0.6 − 0.8] [0.5 − 0.7] [0.7 − 0.9] [0.7 − 0.9]
HO6 [0.6 − 0.8] [0.5 − 0.7] [0.6 − 0.8] [0.7 − 0.9]

Table 3.2: ( ˜Iv f2, Ω2) serve as interval valued fuzzy soft set.

M σ1 σ2 σ3

HO1 [0.6 − 0.8] [0.4 − 0.6] [0.6 − 0.8]
HO2 [0.6 − 0.8] [0.4 − 0.6] [0.6 − 0.8]
HO3 [0.8 − 1.0] [0.7 − 0.9] [0.8 − 1.0]
HO4 [0.8 − 1.0] [0.7 − 0.9] [0.8 − 1.0]
HO5 [0.7 − 0.9] [0.6 − 0.8] [0.7 − 0.9]
HO6 [0.6 − 0.8] [0.4 − 0.6] [0.6 − 0.8]

3. Ŝ ∪ T̂ indicates the union of Ŝ and T̂ .
µŜ∪T̂ (HO) = sup[µŜ (HO), µT̂ (HO)] = [sup(µ−

Ŝ
(HO), µ−

T̂
(HO)), sup(µ+

Ŝ
(HO), µ+

T̂
(HO))].

Suppose M and N indicate the universal set, parameters set respectively, an ordered pair ( ˜Iv f1,N) indicates interval-
valued fuzzy soft set for P̃(M), here ˜Iv f1 defined below [3, 4, 5].

˜Iv f1 : N → P̃(M).

By parameterized family of subsets of M we prepare interval-valued fuzzy soft set. Hence, its universe is the set of all
interval-valued fuzzy sets of M, i.e. P̃(M).
∀n ∈ N, the interval fuzzy value set of guideline represented by ˜Iv f1(n), which indicates interval-valued fuzzy set of
M where HO ∈ M and n ∈ N, we write in the form:

˜Iv f1(n) = {〈HO, µ ˜Iv f1(n)(HO)〉 : HO ∈ M},

here, ˜Iv f1(n) is the interval-valued fuzzy membership degree of object HO which holds on guideline n ∀ n ∈ N, ∀
HO ∈ M, µ−˜Iv f1(n)

(HO) = µ+
˜Iv f1(n)

(HO), then ˜Iv f1(n) will degenerated to be a standard fuzzy set and then ( ˜Iv f1,N) will
be degenerated to be a traditional fuzzy soft set. Let us consider,

• M is the collection of hotel according to choice and M={HO1,HO2,HO3,HO4,HO5,HO6}

• Ω1 is the collection of attributes of hotel,
Ω1={n1, n2, n3, n4}={Staff, Value for Money, Facilities, Location}

An interval valued fuzzy soft set ( ˜Iv f1,Ω1) has given in Table 3.1.
3.2 Source of Numerical Data
The lower and upper limits of an evaluation is given. For example, we cannot present the precise degree of how
beautiful hotel HO1 is, yet, hotel HO1 is at least beautiful on the degree of 0.6 and it is at most beautiful on the
degree of 0.8. According to these attributes. By questionnaire to 150 visiters who visites these hotels, we collected
membership value of these attributes. For example: By net we obtained the staff rating of hotel Le Meridien is 8.7.
So 90 percent visiters assign this [0.6-0.8] and 10 percent [0.7-0.9] then we give [0.6-0.8] vale to the staff attribute.
likewise, we make interval valued fuzzy soft sets for all attributes of all hotels.

Let ( ˜Iv f1,N) indicates interval-valued fuzzy soft set for P̃(M), ˜Iv f1(n) indicates interval fuzzy value set for n, then
all interval fuzzy value sets in interval-valued fuzzy soft set ( ˜Iv f1,N) are specify to as the interval fuzzy value class of
( ˜Iv f1,N), G( ˜Iv f1,N) symbolic representation of it and presented as follows [19, 24, 25].

G( ˜Iv f1,N) = { ˜Iv f1(n) : n ∈ N}.
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Table 3.1, we got G( ˜Iv f1 ,Ω1) = { ˜Iv f1(n1), ˜Iv f1(n2), ˜Iv f1(n3), ˜Iv f1(n4)}here :
˜Iv f1(n1) = {(HO1, [0.6 − 0.8]), (HO2, [0.6 − 0.8]), (HO3, [0.8 − 1.0]), (HO4, [0.8 − 1.0]), (HO5, [0.6 − 0.8]), (HO6, [0.6 − 0.8])}
˜Iv f1(n2) = {(HO1, [0.4 − 0.6]), (HO2, [0.5 − 0.7]), (HO3, [0.7 − 0.9]), (HO4, [0.6 − 0.8]), (HO5, [0.5 − 0.7]), (HO6, [0.5 − 0.7])}
˜Iv f1(n3) = {(HO1, [0.6 − 0.8]), (HO2, [0.6 − 0.8]), (HO3, [0.8 − 1.0]), (HO4, [0.8 − 1.0]), (HO5, [0.7 − 0.9]), (HO6, [0.6 − 0.8])}
˜Iv f1(n4) = {(HO1, [0.7 − 0.9]), (HO2, [0.9 − 0.6]), (HO3, [0.8 − 1.0]), (HO4, [0.8 − 1.0]), (HO5, [0.7 − 0.9]), (HO6, [0.7 − 0.9])}

Suppose M and N indicates universal set and parameter set respectively, let Ω1, Ω2 ⊂ N, ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2)
indicates interval-valued fuzzy soft sets, ( ˜Iv f1,Ω1) is an interval-valued fuzzy soft subset of ( ˜Iv f2,Ω2) if

1. Ω1 ⊂ Ω2
2. ∀ n ∈ Ω1, ˜Iv f1(n)

shows interval-valued fuzzy subset of ˜Iv f2(n); shown as follows ( ˜Iv f1,Ω1)⊂̃( ˜Iv f2,Ω2).
( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2) indicates two interval-valued fuzzy soft sets, M = {HO1,HO2,HO3,HO4,
HO5,HO6}. M indicates the collection of hotels, Ω1 = {n1, n2} =

{S ta f f ,Value f orMoney}, Ω2={n1, n2, n3}={S ta f f ,Value f orMoney, Facilities}, and
˜Iv f1(n1) = {(HO1, [0.6 − 0.8]), (HO2, [0.6 − 0.8]), (HO3, [0.8 − 1.0]), (HO4, [0.8 − 1.0]), (HO5, [0.6 − 0.8]), (HO6, [0.6 − 0.8])}
˜Iv f1(n2) = {(HO1, [0.4 − 0.6]), (HO2, [0.5 − 0.7]), (HO3, [0.7 − 0.9]), (HO4, [0.6 − 0.8]), (HO5, [0.5 − 0.7]), (HO6, [0.5 − 0.7])}
˜Iv f2(n1) = {(HO1, [0.8 − 1.0]), (HO2, [0.6 − 0.8]), (HO3, [0.9 − 1.0]), (HO4, [0.8 − 1.0]), (HO5, [0.8 − 1.0]), (HO6, [0.8 − 1.0])}
˜Iv f2(n2) = {(HO1, [0.6 − 0.7]), (HO2, [0.9 − 1.0]), (HO3, [0.8 − 0.9]), (HO4, [0.7 − 0.8]), (HO5, [0.6 − 0.8]), (HO6, [0.9 − 1.0])}
˜Iv f2(n3) = {(HO1, [0.6 − 0.8]), (HO2, [0.6 − 0.8]), (HO3, [0.8 − 1.0]), (HO4, [0.8 − 1.0]), (HO5, [0.6 − 0.8]), (HO6, [0.6 − 0.8])}

Obviously, we can see ( ˜Iv f1,Ω1) ⊂̃ ( ˜Iv f2,Ω2). Suppose ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2) indicates two interval-valued
fuzzy soft sets, These two sets will equal if

1. ( ˜Iv f1,Ω1) is a subset of ( ˜Iv f2,Ω2),
2. ( ˜Iv f2,Ω2) is a subset of ( ˜Iv f1,Ω1).
It is represented as ( ˜Iv f1,Ω1) = ( ˜Iv f2,Ω2).
Operation on interval-valued fuzzy soft sets ( ˜Iv f1,Ω1)C is the complement of ( ˜Iv f1,Ω1) and it is explained as

( ˜Iv f1,Ω1)C=( ˜Iv f1
C
,¬Ω1),

Here ∀ θ1 ∈ Ω1, ¬ θ1=not θ1, not belongs to the parameter θ1, it means it is opposite of θ1;

˜Iv f1
C : ¬Ω1 → P̃(M),

is the function given by ˜Iv f1
C(θ2) = ( ˜Iv f1(¬θ2))C ,∀θ2 ∈ ¬Ω1.

Another interval-valued fuzzy soft set taken into consideration ( ˜Iv f2,Ω2) and given in Table 3.2. Universal set M
is same in both table, i.e M = {HO1,HO2,HO3,HO4,HO5,HO6} it is the collection of hotels; Ω2= {σ1, σ2, σ3} =

{Cleanliness, Free WiFi, Comfort} it is the collection of parameters.
So, with the help 1 of Section 3.1, we get

˜Iv f2
C(¬σ1) = {(HO1, [0.2, 0.4]), (HO2, [0.2, 0.4]), (HO3, [0.0, 0.2]), (HO4, [0.0, 0.2]), (HO5, [0.1, 0.3]), (HO6, [0.2, 0.4])}

˜Iv f2
C(¬σ2) = {(HO1, [0.4, 0.6]), (HO2, [0.4, 0.6]), (HO3, [0.1, 0.3]), (HO4, [0.1, 0.3]), (HO5, [0.2, 0.4]), (HO6, [0.4, 0.6])}

˜Iv f2
C(¬σ3) = {(HO1, [0.2, 0.4]), (HO2, [0.2, 0.4]), (HO3, [0.0, 0.2]), (HO4, [0.0, 0.2]), (HO5, [0.1, 0.3]), (HO6, [0.2, 0.4])}
The “AND” procedure on ( ˜Iv f1,Ω1) ( ˜Iv f2,Ω2) is shown below

( ˜Iv f1,Ω1) ∧ ( ˜Iv f2,Ω2) = ( ˜Iv f3,Ω1 ×Ω2).

Here
˜Iv f3(θ1, θ2) = ˜Iv f1(θ1) ∩ ˜Iv f2(θ2),∀(θ1, θ2) ∈ Ω1 ×Ω2.

We can apply ”AND” procedure on ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2) and can show in tabular form below.
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Table 3.3: ”AND” procedure on Tables 3.1 and 3.2.

M n1σ1 n1σ2 n1σ3 n2σ1 n2σ2 n2σ3

HO1 [0.6, 0.8] [0.4, 0.6] [0.6, 0.8] [0.4, 0.6] [0.4, 0.6] [0.4, 0.6]
HO2 [0.6, 0.8] [0.4, 0.6] [0.6, 0.8] [0.5, 0.7] [0.4, 0.6] [0.5, 0.7]
HO3 [0.8, 1.0] [0.7, 0.9] [0.8, 1.0] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]
HO4 [0.8, 1.0] [0.7, 0.9] [0.8, 1.0] [0.6, 0.8] [0.6, 0.8] [0.6, 0.8]
HO5 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.5, 0.7] [0.5, 0.7] [0.5, 0.7]
HO6 [0.6, 0.8] [0.4, 0.6] [0.6, 0.8] [0.5, 0.7] [0.4, 0.6] [0.5, 0.7]

M n3σ1 n3σ2 n3σ3 n4σ1 n4σ2 n4σ3

HO1 [0.6, 0.8] [0.4, 0.6] [0.6, 0.8] [0.6, 0.8] [0.4, 0.6] [0.6, 0.8]
HO2 [0.6, 0.8] [0.4, 0.6] [0.6, 0.8] [0.4, 0.6] [0.4, 0.6] [0.4, 0.6]
HO3 [0.8, 1.0] [0.7, 0.9] [0.8, 1.0] [0.8, 1.0] [0.7, 0.9] [0.8, 1.0]
HO4 [0.8, 1.0] [0.7, 0.9] [0.8, 1.0] [0.8, 1.0] [0.7, 0.9] [0.8, 1.0]
HO5 [0.7, 0.9] [0.6, 0.8] [0.7, 0.9] [0.7, 0.9] [0.6, 0.8] [0.7, 0.9]
HO6 [0.6, 0.8] [0.4, 0.6] [0.6, 0.8] [0.6, 0.8] [0.4, 0.6] [0.6, 0.8]

Table 3.4: ”OR” procedure on Tables 3.1 and 3.2.

M n1σ1 n1σ2 n1σ3 n2σ1 n2σ2 n2σ3

HO1 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.4, 0.6] [0.6, 0.8]
HO2 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.5, 0.7] [0.6, 0.8]
HO3 [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.7, 0.9] [0.8, 1.0]
HO4 [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.7, 0.9] [0.8, 1.0]
HO5 [0.7, 0.9] [0.6, 0.8] [0.7, 0.9] [0.7, 0.9] [0.6, 0.8] [0.7, 0.9]
HO6 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.5, 0.7] [0.6, 0.8]

M n3σ1 n3σ2 n3σ3 n4σ1 n4σ2 n4σ3

HO1 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]
HO2 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.4, 0.6] [0.6, 0.8]
HO3 [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0]
HO4 [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0] [0.8, 1.0]
HO5 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]
HO6 [0.6, 0.8] [0.6, 0.8] [0.6, 0.8] [0.7, 0.9] [0.7, 0.9] [0.7, 0.9]

By Definition 2.1, we obtain
˜Iv f3(n1, σ2) = ˜Iv f1(n1) ∩ ˜Iv f2(σ2)

={(HO1, [0.4, 0.6]), (HO2, [0.4, 0.6]), (HO3, [0.7, 0.9]), (HO4, [0.7, 0.9]), (HO5, [0.6, 0.8]), (HO6, [0.4, 0.6])}
By Table 3.3 we obtain the value of ( ˜Iv f1,Ω1) ∧ ( ˜Iv f2,Ω2)

The ”OR” procedure on ( ˜Iv f1,Ω1) ( ˜Iv f2,Ω2) is shown below [6, 12].

( ˜Iv f1,Ω1) ∨ ( ˜Iv f2,Ω2) = ( ˜Iv f3,Ω1 ×Ω2),

Here ˜Iv f3(θ1,θ2)= ˜Iv f1(θ1) ∪ ˜Iv f2(θ2), ∀ (θ1,θ2) ∈ Ω1 ×Ω2.
The output of the ”OR” procedure on ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2) in Tables 3.1 and 3.2 is given in Table 3.4.
Let us, we apply DeMorgan’s Laws on two interval-valued fuzzy soft sets ( ˜Iv f1,Ω1), ( ˜Iv f2,Ω2) as shown below.

(( ˜Iv f1,Ω1)∧( ˜Iv f2,Ω2))C = ( ˜Iv f1,Ω1)C ∨ ( ˜Iv f2,Ω2)C

(( ˜Iv f1,Ω1)∨( ˜Iv f2,Ω2))C = ( ˜Iv f1,Ω1)C ∧ ( ˜Iv f2,Ω2)C

Proof. ( ˜Iv f1,Ω1)C ∨ ( ˜Iv f2,Ω2)C = ( ˜Iv f1
C
,¬Ω1) ∨ ( ˜Iv f2

C
,¬Ω2) = ( ˜Iv f4,¬Ω1 × ¬Ω2)

where, ˜Iv f4(¬θ1,¬θ2) = ˜Iv f1
C(¬θ1) ∪ ˜Iv f2

C(¬θ2)
= ( ˜Iv f4,¬(Ω1 ×Ω2)).
Assume ( ˜Iv f1,Ω1)∧( ˜Iv f2,Ω2) = ( ˜Iv f3,Ω1 × Ω2), then we have (( ˜Iv f1,Ω1)∧( ˜Iv f2,Ω2))C = ( ˜Iv f3,Ω1 × Ω2)C =

( ˜Iv f3
C
,¬(Ω1 ×Ω2)).
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Table 3.5: Consequence interval-valued fuzzy soft set ( ˜Iv f3,Ω3)

M n1σ2 n2σ1 n3σ2 n3σ3 n4σ1

HO1 [0.4 − 0.6] [0.4 − 0.6] [0.4 − 0.6] [0.6 − 0.8] [0.6 − 0.8]
HO2 [0.4 − 0.6] [0.5 − 0.7] [0.4 − 0.6] [0.6 − 0.8] [0.4 − 0.6]
HO3 [0.7 − 0.9] [0.7 − 0.9] [0.7 − 0.9] [0.8 − 1.0] [0.8 − 1.0]
HO4 [0.7 − 0.9] [0.6 − 0.8] [0.7 − 0.9] [0.8 − 1.0] [0.8 − 1.0]
HO5 [0.6 − 0.8] [0.5 − 0.7] [0.6 − 0.8] [0.7 − 0.9] [0.7 − 0.9]
HO6 [0.4 − 0.6] [0.5 − 0.7] [0.4 − 0.6] [0.6 − 0.8] [0.6 − 0.8]

∀ (θ1, θ2) ∈ Ω1 ×Ω2, we know
˜Iv f3

C(¬θ1,¬θ2) = ( ˜Iv f3(θ1, θ2))C = ( ˜Iv f1(θ1) ∩ ˜Iv f2(θ2))C = ( ˜Iv f1(θ1))C ∪ ( ˜Iv f2(θ2))C = ( ˜Iv f1
C(¬θ1)) ∪ ( ˜Iv f2

C(¬θ2))
By above analysis,we got (( ˜Iv f1,Ω1) ∧ ( ˜Iv f2,Ω2))C = ( ˜Iv f1,Ω1)C ∨ ( ˜Iv f2,Ω2)C .
In the same way, we can prove that (( ˜Iv f1,Ω1) ∨ ( ˜Iv f2,Ω2))C = ( ˜Iv f1,Ω1)C ∧ ( ˜Iv f2,Ω2)C .
Suppose we have interval-valued fuzzy soft sets, ( ˜Iv f1,Ω1), ( ˜Iv f2,Ω2)and( ˜Iv f3,Ω3).

[Associative law]
( ˜Iv f1,Ω1) ∧ (( ˜Iv f2,Ω2) ∧ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1) ∧ ( ˜Iv f2,Ω2)) ∧ ( ˜Iv f3,Ω3).
( ˜Iv f1,Ω1) ∨ (( ˜Iv f2,Ω2) ∨ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1) ∨ ( ˜Iv f2,Ω2)) ∨ ( ˜Iv f3,Ω3).
[Distributive law]
( ˜Iv f1,Ω1) ∧ (( ˜Iv f2,Ω2) ∨ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1) ∧ ( ˜Iv f2,Ω2)) ∨ (( ˜Iv f1,Ω1) ∧ ( ˜Iv f3,Ω3)).
( ˜Iv f1,Ω1) ∨ (( ˜Iv f2,Ω2) ∧ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1) ∨ ( ˜Iv f2,Ω2)) ∧ (( ˜Iv f1,Ω1) ∨ ( ˜Iv f3,Ω3)).
Proof. ∀ θ1 ∈ Ω1, θ2 ∈ Ω2 and ∀θ3 ∈ Ω3, Now

˜Iv f1(θ1) ∩ ( ˜Iv f2(θ2) ∩ ˜Iv f3(θ3)) = ( ˜Iv f1(θ1) ∩ ˜Iv f2(θ2)) ∩ ˜Iv f3(θ3)
from it, we can say ( ˜Iv f1,Ω1) ∧ (( ˜Iv f2,Ω2) ∧ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1) ∧ ( ˜Iv f2,Ω2)) ∧ ( ˜Iv f3,Ω3).

In the same way, we can say ( ˜Iv f1,Ω1) ∨ (( ˜Iv f2,Ω2) ∨ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1) ∨ ( ˜Iv f2,Ω2)) ∨ ( ˜Iv f3,Ω3).
∀ θ1 ∈ Ω1, θ2 ∈ Ω2 and ∀θ3 ∈ Ω3, we have ˜Iv f1(θ1)∩ ( ˜Iv f2(θ2)∪ ˜Iv f3(θ3)) = ( ˜Iv f1(θ1)∩ ˜Iv f2(θ2))∪ ( ˜Iv f1(θ1)∩ ˜Iv f3(θ3))

In the same way, we can say ( ˜Iv f1,Ω1)∧(( ˜Iv f2,Ω2)∨( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1)∧( ˜Iv f2,Ω2))∨(( ˜Iv f1,Ω1)∧( ˜Iv f3,Ω3)).
Similarity, we also have ( ˜Iv f1,Ω1)∨ (( ˜Iv f2,Ω2)∧ ( ˜Iv f3,Ω3)) = (( ˜Iv f1,Ω1)∨ ( ˜Iv f2,Ω2))∧ (( ˜Iv f1,Ω1)∨ ( ˜Iv f3,Ω3)).

4 Application of interval-valued fuzzy soft set
Object can be identified by using algorithm, given by Roy et al. [27], different objects are compared in it. Kong et al.
[18] said that Roy’s innovation has error, Kong gave correct innovation, in it they compare choice values of different
objects.
Rule 4.1:Take the set of interval-valued fuzzy soft sets.
( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2) demonstrate in Tables 3.1 and 3.2 are under deliberation.
Here, we obtain the value of sets ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2) from Tables 3.1 and 3.2.
Rule 4.2:Input the guideline set X as detected by the viewer.
We take these two sets ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2),Table 3.3 obtained by applying ”AND” procedure on these sets.
Suppose we are taking these values of parameters X such that X={{n1σ2},{n2σ1},
{n3σ2},{n3σ3},{n4σ1}}.
Rule 4.3:We obtain resultant ( ˜Iv f3,Ω3) set from ( ˜Iv f1,Ω1) and ( ˜Iv f2,Ω2).
Table 3.5 the resultant interval-valued fuzzy soft set is obtained from Table 3.3 according to the set of parameters.
Rule 4.4: ∀HOi ∈ M, In this way, we calculate the choice value d for every hotel HO.

di = [d−i , d
+
i ] =

[∑
r∈R µ

−
˜Iv f3(r)

(HOi),
∑

r∈R µ
+

˜Iv f3(r)
(HOi)

]
.

The result is shown in Table 4.1.
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Table 4.1: Choice value.

M n1σ2 n2σ1 n3σ2 n3σ3 n4σ1 di

HO1 [0.4, 0.6] [0.4, 0.6] [0.4, 0.6] [0.6, 0.8] [0.6, 0.8] d1 = [2.4, 3.4]
HO2 [0.4, 0.6] [0.5, 0.7] [0.4, 0.6] [0.6, 0.8] [0.4, 0.6] d2 = [2.3, 3.3]
HO3 [0.7, 0.9] [0.7, 0.9] [0.7, 0.9] [0.8, 1.0] [0.8, 1.0] d3 = [3.7, 4.7]
HO4 [0.7, 0.9] [0.6, 0.8] [0.7, 0.9] [0.8, 1.0] [0.8, 1.0] d4 = [3.6, 4.6]
HO5 [0.6, 0.8] [0.5, 0.7] [0.6, 0.8] [0.7, 0.9] [0.7, 0.9] d5 = [3.1, 4.1]
HO6 [0.4, 0.6] [0.5, 0.7] [0.4, 0.6] [0.6, 0.8] [0.6, 0.8] d6 = [2.5, 3.5]

Rule 4.5:∀HOi ∈ M,calculate the value of ti for each hotel HOi in this way.

ti =
∑

HOi∈M
(
(d−i − d−j ) + (d+

i − d+
j )

)
.

By calculation, we obtained t1 = −6.4, t2 = −7.4, t3 = 9.2, t4 = 8.0, t5 = 2.0, t6 = −5.2.
Rule 4.6:The solution is any one of the elements in Z here Z = maxHOi∈M(ti)
In this problem, hotel HO3 is the best option because maxHOi∈M(ti) = (HO3). This result is reasonable because we can
see that d3>di here i=1,2,3,4,5,6 i.e. HO3 has the highest choice value.

5 Conclusion
Soft set theory solves problems which contain uncertainty, fuzziness or vagueness. At last, an example shows that
interval-valued fuzzy soft set works properly in judgment constructing issue. In previous work Yang at al. [29] took
house problem which can be solved by Fuzzy Soft Maximum Minimum Decision Making Method. In the present
work we took very important daily life problem which can only solved by this method. There are parameterizations
reduction of interval-valued fuzzy soft set which is new topic for further research. In the end, this work also having
the utilization in the field of automobile for buying car, buying laptop according to our desire parameter.
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Abstract

The present investigation is concerned with the estimation of the upper bound to the H4(p) Hankel determinant
for a subclass of p-valent functions in the open unit disc E = {z :| z |< 1}. This work will motivate the researchers
to work in the direction of investigation of fourth Hankel determinant for several other subclasses of univalent and
multivalent functions.
2010 Mathematics Subject Classifications: 30C45, 30C50.
Keywords and phrases: Analytic functions, Univalent functions, Multivalent functions, Hankel determinant,
Coefficient bounds.

1 Introduction
Let P denote the class of analytic functions p(z) of the form

p(z) = 1 +
∑∞

n=1 cnzn,

whose real parts are positive in E.
By Ap, we denote the class of functions of the form

(1.1) f (z) = zp +
∑∞

k=p+1 akzk, (p ∈ N = {1, 2, 3, ...}),

which are analytic in the unit disc E = {z :| z |< 1} and normalized by f (0) = f ′(0) − 1 = 0.
Let S be the class A1 ≡ A consisting of functions of the form (1.1) and which are univalent in E.
Let R represent the class of functions f ∈ A, which satisfy the condition

Re( f ′(z)) > 0.

The class R was introduced by MacGregor [12] and functions in this class are called bounded turning functions.
By R1, we denote the class of functions f ∈ A, with the condition that

Re
(

f (z)
z

)
> 0.

R1 is a subclass of close-to-star functions and was studied by MacGregor [13].
Further, Murugusundramurthi and Magesh [15] introduced the following class:

R(α) =

{
f : f ∈ A,Re

{
(1 − α)

f (z)
z

+ α f ′(z)
}
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

In particular, R(1) ≡ R and R(0) ≡ R1.
Later on, Vamshee Krishna et al. [8] introduced a subclass of p-valent functions as follows:

RTp =

{
f : f ∈ Ap,Re

(
f ′(z)
pzp−1

)
> 0, z ∈ E

}
.

For p = 1, RT1 ≡ R.
Motivated by the above defined classes, Amourah et al. [2] defined the following subclass of p-valent functions:

Rp(α) =

{
f : f ∈ Ap,Re

{
(1 − α)

f (z)
zp + α

f ′(z)
pzp−1

}
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

The following observations are obvious:
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(i) R1(α) ≡ R(α),
(ii) Rp(1) ≡ RTp,
(iii) R1(1) ≡ R,
(iv) R1(0) ≡ R1.
In 1976, Noonan and Thomas [16] stated the qth Hankel determinant for q ≥ 1 and n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣
an an+1 ... an+q+1

an+1 ... ... ...
... ... ... ...

an+q+1 ... ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣ .
In the particular cases, q = 2, n = p, a1 = 1 and q = 2, n = p + 1, the Hankel determinant simplifies respectively to

H2(p) = |ap+2 − a2
p+1| and H2(p + 1) = |ap+1ap+3 − a2

p+2|.
This paper is concerned with the Hankel determinant in the case q = 3 and n = p as

H3(p) =

∣∣∣∣∣∣∣∣
ap ap+1 ap+2

ap+1 ap+2 ap+3
ap+2 ap+3 ap+4

∣∣∣∣∣∣∣∣ ,
which is known as Hankel determinant of order 3.

For f ∈ Ap and ap = 1, we have

H3(p) = ap+2(ap+1ap+3 − a2
p+2) − ap+3(ap+3 − ap+1ap+2) + ap+4(ap+2 − a2

p+1),

and using the triangle inequality, it yields

(1.2) |H3(p)| ≤ |ap+2||ap+1ap+3 − a2
p+2| + |ap+3||ap+3 − ap+1ap+2| + |ap+4||ap+2 − a2

p+1|.

For any f ∈ Ap of the form (1.1), we can represent the fourth Hankel determinant as

(1.3) H4,p( f ) = ap+6H3(p) − ap+5D1 + ap+4D2 − ap+3D3,

where D1,D2 and D3 are determinants of order 3 given by

(1.4) D1 = (ap+2ap+5 − ap+3ap+4) − ap+1(ap+1ap+5 − ap+2ap+4) + ap+3(ap+1ap+3 − a2
p+2),

(1.5) D2 = (ap+3ap+5 − a2
p+4) − ap+1(ap+2ap+5 − ap+3ap+4) + ap+2(ap+2ap+4 − a2

p+3),

(1.6) D3 = ap+1(ap+3ap+5 − a2
p+4) − ap+2(ap+2ap+5 − ap+3ap+4) + ap+3(ap+2ap+4 − a2

p+3).

Hankel determinant has been considered by several authors. For example, Noor [17] determined the rate of growth
of Hq(n) as n → ∞ for the functions given by Eq.(1.1) with bounded boundary. Ehrenborg [5] studied the Hankel
determinant of exponential polynomials and in [10], the Hankel transform of an integer sequence is defined and some
of its properties have been discussed by Layman.

Second Hankel determinant for various classes has been extensively studied by various authors including Mehrok
and Singh [14], Janteng et al.[7] and many others. Third Hankel determinants for various classes were studied by some
of the researchers including Babalola [3], Shanmugam et al.[18], Altinkaya and Yalcin [1] and Singh and Singh [19].
Also the Hankel determinant for various subclasses of p-valent functions were studied by various authors including
Krishna and Ramreddy [8] and Hayami and Owa [6].

In this paper, we seek upper bound for the functional H4,p( f ) for the functions belonging to the class Rp(α). This
paper will motivate the future researchers to investigate the fourth Hankel determinant for some other subclasses of
univalent and multivalent functions.

2 Preliminary results
Lemma 2.1[4,11] If p(z) = 1 +

∑∞
n=1 cnzn ∈ P, then for n, k ∈ N = {1, 2, 3, ...}, we have the following inequalities:

|cn+k − λcnck | ≤ 2, 0 ≤ λ ≤ 1,

and

|cn| ≤ 2.

Lemma 2.2 If p(z) = 1 +
∑∞

n=1 cnzn ∈ P, then for n, k ∈ N = {1, 2, 3, ...}, we have:

|cn+k − λcnck | ≤ 4λ − 2, λ ≥ 1.

Proof. For λ ≥ 1, we have

|cn+k − λcnck | ≤ |cnck − cn+k | + (λ − 1)|cnck |.
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Using Lemma 2.1, the above inequality yields

|cn+k − λcnck | ≤ 4λ − 2.

Lemma 2.3[2] If f ∈ Rp(α), then

|ap+ j| ≤
2p

p + jα
.

Lemma 2.4[2] If f ∈ Rp(α), then

|ap+2 − a2
p+1| ≤

2p
p + 2α

.

Lemma 2.5[9] If f ∈ Rp(α), then

|ap+1ap+3 − a2
p+2| ≤

4p2

(p + 2α)2 .

Lemma 2.6[2] If f ∈ Rp(α), then

|ap+1ap+2 − ap+3| ≤


2 if α = 0,

2p(6α2 + 3pα + p2)
3
2

3
√

6α(p + α)(p + 2α)(p + 3α)
if 0 < α ≤ 1.

Lemma 2.7 If f ∈ Rp(α), then

|H3(p)| ≤


16 for α = 0,

4p2

p + 2α


2p

(p + 2α)2 +
1

p + 4α
+

(6α2 + 3pα + p2)
3
2

3
√

6α(p + α)(p + 3α)2

 for 0 < α ≤ 1.

Proof. From Lemma 2.3, we have

(2.1) |ap+2| ≤
2p

p + 2α
,

(2.2) |ap+3| ≤
2p

p + 3α
,

and

(2.3) |ap+4| ≤
2p

p + 4α
.

Using equations (2.1),(2.2) and (2.3), Lemma 2.4, Lemma 2.5 and Lemma 2.6 in (1.2), the result is obvious.
For p = 1, Lemma 2.7 yields the following result:
Corollary 2.1 If f ∈ R(α), then

|H3(1)| ≤


16 for α = 0,

4
1 + 2α

[
2

(1 + 2α)2 +
1

1 + 4α
+

(6α2 + 3α + 1)3/2

3
√

6α(1 + α)(1 + 3α)2

]
for 0 < α ≤ 1.

For p = 1, α = 1, Lemma 2.7 gives the following result proved by Babalola [3]:
Corollary 2.2 If f ∈ R, then

|H3(1)| ≤ 0.7423.

3 Fourth Hankel determinant for the class Rp(α)
Theorem 3.1 If f ∈ Rp(α), then

(3.1) |H4(p)| ≤


152.0866 for α = 0,

8p3

(p + 2α)(p + 6α)

 2p
(p + 2α)2 +

1
p + 4α

+
(6α2 + 3pα + p2)3/2

3
√

6α(p + α)(p + 3α)2


+

2p
(p + 5α)

u(p, α) +
2p

(p + 4α)
v(p, α) +

2p
(p + 3α)

w(p, α) for 0 < α ≤ 1,

where
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(3.2) u(p, α) = 2p2(4p − 2)
[

1
(p + α)2(p + 5α)

+
1

(p + 3α)(p + 2α)2 +
1

(p + α)(p + 3α)2

]
+

174p2(4p − 2) + 4p2

48(p + α)(p + 2α)(p + 4α)
,

(3.3) v(p, α) =

[
63p2(4p − 2)

25(p + α)(p + 2α)(p + 5α)
+

18p2(4p − 2)
5(p + 4α)(p + 2α)2 +

150p2(4p − 2) + 4p2

75(p + 2α)(p + 3α)2

]
and

(3.4) w(p, α) = 2p2(4p − 2)

×

[
1

(p + 2α)2(p + 5α)
+

1
(p + α)(p + 3α)(p + 5α)

+
2

(p + 3α)3 +
1

(p + α)(p + 4α)2

]
+

34p2(4p − 2)
16(p + 2α)(p + 3α)(p + 4α)

+
p2

(p + α)(p + 2α)2(p + 3α)(p + 4α)2(p + 5α)
.

Proof. Using Lemma 2.3 in (1.4), (1.5) and (1.6), it gives

(3.5) D1 =
p2c2c5

(p + 2α)(p + 5α)
−

p2c3c4

(p + 3α)(p + 4α)
−

p3c2
1c5

(p + α)2(p + 5α)

+
p3c1c2c4

(p + α)(p + 2α)(p + 4α)
+

p3c1c2
3

(p + α)(p + 3α)2 −
p3c3c2

2

(p + 3α)(p + 2α)2 ,

(3.6) D2 =
p2c3c5

(p + 3α)(p + 5α)
−

p2c2
4

(p + 4α)2 −
p3c1c2c5

(p + α)(p + 2α)(p + 5α)

+
p3c1c3c4

(p + α)(p + 3α)(p + 4α)
+

p3c4c2
2

(p + 2α)2(p + 4α)
−

p3c2c2
3

(p + 2α)(p + 3α)2

and

(3.7) D3 =
p3c1c3c5

(p + α)(p + 3α)(p + 5α)
−

p3c1c2
4

(p + α)(p + 4α)2 −
p3c2

2c5

(p + 2α)2(p + 5α)

+
2p3c2c3c4

(p + 2α)(p + 3α)(p + 4α)
−

p3c3
3

(p + 3α)3 .

On rearranging the terms in (3.5), (3.6) and (3.7), it yields

(3.8) D1 =
p2c5(c2 − pc2

1)
(p + α)2(p + 5α)

+
p2c3(c4 − pc2

2)
(p + 3α)(p + 2α)2 −

p2c3(c4 − pc1c3)
(p + α)(p + 3α)2

−
67p2c4(c3 − pc1c2)

48(p + α)(p + 2α)(p + 4α)
+

19p2c2(c5 − pc1c4)
48(p + α)(p + 2α)(p + 4α)

+
p2c2c5

48(p + α)(p + 2α)(p + 4α)
,

(3.9) D2 =
p2c5(c3 − pc1c2)

(p + α)(p + 2α)(p + 5α)
−

p2c4(c4 − pc2
2)

(p + 4α)(p + 2α)2 −
p2c3(c5 − pc2c3)

(p + 2α)(p + 3α)2

−
4p2c4(c4 − pc1c3)

5(p + 4α)(p + 2α)2 −
13p2c3(c5 − pc1c4)

50(p + α)(p + 2α)(p + 5α)
+

p2c3c5

75(p + 2α)(p + 3α)2

and

(3.10) D3 =
p2c5(c4 − pc2

2)
(p + 2α)2(p + 5α)

−
p2c5(c4 − pc1c3)

(p + α)(p + 3α)(p + 5α)
+

p2c3(c6 − pc2
3)

(p + 3α)3 −
p2c3(c6 − pc2c4)

(p + 3α)3

+
p2c4(c5 − pc1c4)
(p + α)(p + 4α)2 −

17p2c4(c5 − pc2c3)
16(p + 2α)(p + 3α)(p + 4α)

+
p2c4c5

4(p + α)(p + 2α)2(p + 3α)(p + 4α)2(p + 5α)
.

Using Lemma 2.2 and applying triangle inequality in (3.8), (3.9) and (3.10), we obtain

(3.11) |D1| ≤ u(p, α),

(3.12) |D2| ≤ v(p, α)
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and
(3.13) |D3| ≤ w(p, α),
where u(p, α), v(p, α) and w(p, α) are defined in (3.2), (3.3) and (3.4) respectively.
Hence using Lemma 2.3, Lemma 2.7 and equations (3.11), (3.12), (3.13) in equation (1.3) and applying triangle
inequality, the result (3.1) is obvious.
On putting p = 1 in Theorem 3.1, we obtain the following result:
Corollary 3.1 If f ∈ R(α), then

|H4(1)| ≤



152.0866 for α = 0,

8
(1 + 2α)(1 + 6α)


2

(1 + 2α)2 +
1

1 + 4α
+

(6α2 + 3α + 1)
3
2

3
√

6α(1 + α)(1 + 3α)2


+

2
(1 + 5α)

p(α) +
2

(1 + 4α)
q(α) +

2
(1 + 3α)

r(α) for 0 < α ≤ 1,

where

p(α) = 4
[

1
(1 + α)2(1 + 5α)

+
1

(1 + 3α)(1 + 2α)2 +
1

(1 + α)(1 + 3α)2

]
+

29
4(1 + α)(1 + 2α)(1 + 4α)

,

q(α) = 4
[

63
50(1 + α)(1 + 2α)(1 + 5α)

+
9

5(1 + 4α)(1 + 2α)2 +
76

75(1 + 2α)(1 + 3α)2

]
and

r(α) = 4
[

1
(1 + 2α)2(1 + 5α)

+
1

(1 + α)(1 + 3α)(1 + 5α)
+

2
(1 + 3α)3 +

1
(1 + α)(1 + 4α)2

]
+

68
16(1 + 2α)(1 + 3α)(1 + 4α)

+
1

(1 + α)(1 + 2α)2(1 + 3α)(1 + 4α)2(1 + 5α)
.

On putting p = 1, α = 1 in Theorem 3.1, the following result is obvious:
Corollary 3.2 If f ∈ R, then

|H4,1( f )| ≤ 0.7973.

4 Conclusion.
In the present work, we estimated the bounds for the fourth Hankel determinant for a subclass of multivalent bounded
turning functions. The estimation of fourth Hankel determinant for the various subclasses of analytic functions is a
new concept in the field of geometric function theory. Till now much work has been done on the study of second and
third Hankel determinants for various subclasses of univalent functions, so this paper will work as a milestone to the
future researchers in this field.
Acknowledgement. The authors are very greatful to the editor and referees for their valuable suggestions to revise the
paper.
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Abstract
This paper presents a computing method and models for optimizing the combination defined in combinatorics.

The optimized combination has been derived from the iterative computation of multiple geometric series and
summability by specialized approach. The optimized combinatorial technique has applications in science, engineering
and management. In this paper, several properties and consequences on the innovative optimized combination has
been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s
challenges.
2010 Mathematics Subject Classifications: 05-xx, 05A10, 05A19.
Keywords and phrases: optimized combination, combinatorics, counting technique, binomial coefficient.

1 Introduction
Combinatorics is a collection of various counting techniques or methods and models and has many applications in
science, technology, and management. In the research paper, optimized combination of combinatorics is introduced
that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.

2 Optimized Combination
The growing complexity of mathematical modelling and its application demands the simplicity of numerical equations
and combinatorial techniques for solving the scientific problems facing today. In view of this idea, the optimized
combination of combinatorics is introduced that is

Vn
r =

(r + 1)(r + 2)(r + 3) · · · (r + n − 1)(r + n)
n!

, (n, r ∈ N, n ≥ 1, r ≥ 0)

where N = {0, 1, 2, 3, 4, 5, ...} is the set of natural numbers including the element 0.
This optimized combination is derived from the iterative computations [1 - 4] of multi-geometric series and

summability as follows
(A)

∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2 · · ·

∑n−1
in=in−1

xin =
∑n−1

i=0 V p
i xi,(p ∈ N, 1 ≤ p ≤ n − 1),

where V p
i is a binomial coefficient and its mathematical expressions are given below:

V p
i =

(i + 1)(i + 2)(i + 3) . . . (i + p)
p!

(1 ≤ p ≤ n − 1).

V p
i−k =

(i − k + 1)(i − k + 2)(i − k + 3) . . . (i − k + p)
p!

.

Let us prove the equation (A) using the multiple geometric series.∑n−1
i1=0

∑n−1
i2=i1 xi2 =

∑n−1
i2=0 xi2 +

∑n−1
i2=1 xi2 +

∑n−1
i2=2 xi2 + · · · +

∑n
i2=n−1 xi2 =

∑n−1
i=0

(i+1)
1! xi =

∑n−1
i=0 V1

i xi,

where∑n−1
i2=0 xi2 +

∑n−1
i2=1 xi2 +

∑n−1
i2=2 xi2 + · · · +

∑n
i2=n−1 xi2 = 1 + 2x + 3x2 + · · · + n

1! xn−1.∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2 xi3 =

∑n−1
i2=0

∑n−1
i3=i2 xi3 +

∑n−1
i2=1

∑n−1
i3=i2 xi3 +

∑n−1
i2=2

∑n−1
i3=i2 xi3 + · · · +

∑n−1
i2=n−1

∑n−1
i3=i2 xi3

= (1 + 2x + 3x2 + · · · + nxn−1) + (x + 2x2 + 3x3 · · · + (n − 1)xn−1) + · · · xn−1

= 1 + 3x + 6x2 + 10x3 + · · · +
n(n + 1)

2!
xn−1 =

∑n−1
i=0

(i+1)(i+2)
2! xi =

∑n−1
i=0 V2

i xi,

where∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2 xi3 = 1 + 3x + 6x2 + 10x3 + 15x4 + 21x5 + · · · +

n(n+1)
2! xn−1.∑n−1

i1=0
∑n−1

i2=i1

∑n−1
i3=i2

∑n−1
i4=i3 xi4 =

∑n−1
i=0

(i+1)(i+2)(x+3)
3! xi =

∑n−1
i=0 V3

i xi

where∑n−1
i1=0

∑n−1
i2=i1

∑n−1
i3=i2

∑n−1
i4=i3 xi4 = 1 + 4x + 10x2 + 20x3 + 35x4 + · · · +

n(n+1)(n+2)
3! xn−1.

If we continue like this, the binomial coefficient of the multisereis is V p
i (1 ≤ p ≤ n − 1).
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3 To convert combinations
3.1 To convert the combination nCr into the optimized combination

nCr =
n!

r!(n − r)!
= (Vr

0)(Vn−1
r ) = Vn−r

r where Vr
0 = 1.

Let us consider n − r = k for easily understood.
Then,

Vn−r
r = Vk

r =
(r + 1)(r + 2)(r + 3) · · · (r + k)

k!
.

3.2 To convert the combination nCn into the optimized combination
nCn =

n!
n!

= Vn
0 = 1.

3.3 To convert the combination (n+r)Cr into the optimized combination
(n+r)Cr =

n!
r!(n + r − r)!

=
n!

r!n!
=

1.2.3 · · · r(r + 1)(r + 2) · · · (r + n)
r!n!

= (Vr
0)(Vn

r ).

(Vr
0)(Vn

r ) = Vn
r , where Vr

0 = 1.
Now Vn

r (n, r ∈ N, n ≥ 1, r ≥ 0) is considered as optimized combination.

4 Some results with proofs on the optimized combination [5,6]
Result 4.1 V1

0 = Vn
0 = 1.

Proof.

(4.1) V1
0 =

(0 + 1)
1!

= 1.

(4.2) Vn
0 =

(0 + 1)(0 + 2)(0 + 3) · · · (0 + n)
n!

=
n!
n!

= 1.

From (4.1) and (4.2), the Result 4.1 is true.

Result 4.2 Vn+1
r − Vn

r = Vn
r−1.

Proof. Vn
r =

(r+1)(r+2)(r+3)···(r+n)
n! ,

Vn+1
r =

(r + 1)(r + 2)(r + 3) · · · (r + n)(r + n + 1)
(n + 1)!

,

Vn+1
r − Vn

r =
(r + 1)(r + 2)(r + 3) · · · (r + n)

n!
[
r + n + 1

n + 1
− 1],

(4.3) Vn+1
r − Vn

r =
r(r + 1)(r + 2(r + 3) + · · · + (r + n)

n!
= Vn

r−1.

It is understood from (4.3) that the Result 4.2 is true.

Result 4.3 1 + V1
1 + V2

1 + V3
1 + · · · + Vn

1 = Vn
2 .

Proof.

(4.4) Vn
2 =

(2 + 1)(2 + 2)(2 + 3) · · · (2 + n − 1)(2 + n)
n!

=
(n + 1)(n + 2)

2!
,

(4.5) 1 + V1
1 + V2

1 + V3
1 + · · · + Vn

1 = 1 + 2 + 3 + · · · + n + 1 =
(n + 1)(n + 2)

2!
.

From (4.4) and (4.5), the Result 4.3 is true.

Result 4.4 Vn
r = Vr

n(n, r ≥ 1n, r ∈ N).
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Proof.

Vn
r = Vr

n implies
(r + 1)(r + 2) · · · (r + n)

n!
=

(n + 1)(n + 2) · · · (n + r)
r!

.

Assume that r = n + m(m ∈ Nm ≥ 1). Let us show that Vn
n+m = Vn+m

n .

(4.6) Vn
n+m =

(n + m + 1)(n + m + 2) · · · (n + m + n)
n!

=
(n + 1)(n + 2) · · · (n + m + n)

(n + m)!

(4.7) Vn+m
n =

(n + 1)(n + 2) · · · (n + n)(n + n + 1)(n + n + 2) · · · (n + n + m)
(n + m)!

From (4.6) and (4.7), Vn
n+m = Vn+m

n is true.
Assume that r = n − m(n > m). Let us show that Vn

n−m = Vn−m
n .

(4.8) Vn
n−m =

(n − m + 1)(n − m + 2) · · · (n − m + n)
n!

=
(n + 1)(n + 2) · · · (n + n − m)

(n − m)!
.

(4.9) Vn−m
n =

(n + 1)(n + 2) · · · (n + n − m)
(n − m)!

,

From (4.8) and (4.9), Vn
n−m = Vn−m

n is true.
If r = n, Vn

r = Vr
n is obivously true for r = n.

Hence, the Result 4.4 is true.

Result 4.5 Vn
n = 2Vn

n−1.

Proof.

Vn
n =

(n + 1)(n + 2) · · · (n + n − 1)2n
(n − 1)!n

=
2(n + 1)(n + 2) · · · (n + n − 1)

(n − 1)!
= 2Vn

n−1.

Hence, the Result 4.5 is true.

Result 4.6 Vn
0 + Vn

1 + Vn
2 + Vn

3 + · · · + Vn
r−1 + Vn

r = Vn+1
r .

Proof. This result is proved by mathematical induction. Basis. Let r = 1.Vn
0 + Vn

1 = Vn+1
1 implies n + 2 = n + 2.

Inductive hypothesis.
Let us assume that Vn

0 + Vn
1 + Vn

2 + · · · + Vn
k−1 = Vn+1

k−1 is true for r = k − 1.
Inductive step. We must show that the inductive hypothesis is true for r = k.

Vn
0 + Vn

1 + · · · + Vn
k−1 + Vn

k = Vn+1
k implies Vn

0 + Vn
1 + · · · + Vn

k−1 = Vn+1
k − Vn

k = Vn+1
k−1 .

Hence, it is proved.
To convert the combination (n+r)Cr into the optimized combination:

(n+r)Cr =
n!

r!(n + r − r)!
=

n!
r!n!

=
1.2.3 · · · r(r + 1)(r + 2) · · · (r + n)

r!n!
= (Vr

0)(Vn
r ).

(Vr
0)(Vn

r ) = Vn
r where Vr

0 = 1.

5 Conclusion
In the research paper, a computing method and models for optimizing the combination defined in combinatorics has
been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s
challenges.
Acknowledgement. The author is thankful to the Editor and Reviewer for their suggestions to bring the paper in its
present form.
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Abstract

Rao and Rao[16] obtained a triple fixed point theorem for a multimap in Hausdorff fuzzy metric space. Extending
this idea we generalize the concept of triple fixed point, we define quadruple fixed point. In this paper we have
established a result regarding it in Hausdorff fuzzy metric space.
2010 Mathematics Subject Classifications: 47H10, 54H25
Keywords and phrases: Quadruple fixed point, Hausdorff fuzzy metric space, multimaps

1 Introduction and Preliminaries
Zadeh [23] introduced the concept of fuzzy sets in 1965. Since then, it was developed extensively by many authors.
Fuzzy metric spaces have been defined by several researchers in several ways (e.g.[6,7]). The concepts of fuzzy
metric space introduced by Kramosil and Michlek [12] have been modified by George and Veeramani [7] and also
induced a Hausdro topology on such fuzzy metric space. The contraction principle in the setting of fuzzy metric
spaces introduced in [7] was later proved by Grabiec[9]. Some interesting references for fixed point theorems in fuzzy
metric spaces are given in [3,4,5,21].

Nadler [14] initiated the study of fixed points for multivalued contraction mappings using the Hausdor metric. In
2004, Rodrguez-Lpez and Romaguera [17] introduced Hausdors fuzzy metric on the set of the nonempty compact
subsets of a given fuzzy metric space. Later some fixed point theorems for multivalued maps in fuzzy metric spaces
(e.g., [1,11,20,22]) were proved by several authors. Many authors studied the existence of fixed points for various
multivalued contractive mappings under dierent conditions, refer to [12-14] and the references therein.

In 2006 coupled fixed point in partially ordered metric spaces was introduced by Gnana Bhaskar and Lakshmikan-
tham [8] and some problems of the uniqueness of a coupled fixed point was discussed and the results were applied
to periodic boundary value problems. In 2011, Samet and Vetro [18] proved the coupled fixed point theorems for a
multivalued mapping. Berinde and Borcut [2] also introduced the concept of triple fixed points and obtained a triple
fixed point theorem for a single valued map in partially ordered metric spaces.

In this paper, we obtain a quadruple fixed point theorem for a multimap in a Hausdor fuzzy metric space and using
it, we obtain a common quadruple fixed point for a multi- and single valued maps.

For this we need the following.

Definition 1.1 [19] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the following
conditions:

1. ∗ is associative and commutative,
2. ∗ is continuous,
3. a ∗ 1 = a for all aε[0, 1],
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b = min {a, b}.
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Definition 1.2 [7] A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an arbitrary (nonempty) set, ∗ is a continuous
t-norm, and is a fuzzy set on X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X and each t and s > 0,
1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,
3. M(x, y, t) = M(y, x, t),
4. M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),
5. M(x, y, ) : (0,∞)→ [0, 1] is continuous.
Let (X,M, ∗) be a fuzzy metric space. For > 0, the open ball B(x, r, t) with centre x ∈ X and radius 0 < r < 1 is

defined by B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}.
A subset A ⊂ X is called open if for each x ∈ A there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Let τ denote

the family of all open subsets of X. Then τ is called the topology on X induced by the fuzzy metric M. This topology
is Hausdorff and first countable. A subset A of X is said to be F-bounded if there exist t > 0 and 0 < r < 1 such that
M(x, y, t) > 1 − r for all x, y ∈ A.

Lemma 1.1 [9] Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is nondecreasing with respect to t for all x, y in
X.

Definition 1.3 [17] Let (X,M, ∗) be a fuzzy metric space. M is said to be continuous on X2 × (0,∞) if

(1.1) lim
n→∞

M(xn, yn, tn) = M(x, y, t),

whenever a sequence {(xn, yn, tn)} in X2 × (0,∞) converges to a point (x, y, t) ∈ X2 × (0,∞), that is, whenever

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = M(x, y, t) = 1,

(1.2) lim
n→∞

(x, y, tn) = M(x, y, t).

Lemma 1.2 [17] Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous function on X2 × (0,∞). Also let us
take the condition:

(1.3) lim
t→∞

M(x, y, t) = 1, ∀ x, y ∈ X.

Lemma 1.3 [13] Let {yn} be a sequence in fuzzy metric space (X,M, ∗) satisfying condition (3). If there exists a positive
number k < 1 such that

(1.4) M(yn, yn+1, kt) ≥ M(yn−1, yn, t), t > 0, n = 1, 2....

Definition 1.4 [17] Let B be a nonempty subset of a fuzzy metric space (X,M, ∗). For a ∈ X and t > 0, define
M(a, B, t) = sup

{
a,b,t

b ∈ B
}
.

In this paper let K(X) denotes the class of all non empty compact subsets of X.

Lemma 1.4 [17] Let (X,M, ∗) be a fuzzy metric space. Then for each a ∈ X, B ∈ K(X) and t > 0, there exists b ∈ B
such that M(a, B, t) = M(a, b, t).

Definition 1.5 [17] Let (X,M, ∗) be a fuzzy metric space. For each A, B ∈ K(X) and t > 0, set

(1.5) HM(A, B, t) = min
{

inf
x∈A

M(x, B, t), inf
y∈B

M(A, y, t)
}
.

The 3-tuple
(
K(X),HM , ∗

)
is called a Hausdorff fuzzy metric space.

Lemma 1.5 [10] Let X be a nonempty set and g : X → X be a mapping. Then there exists a subset E ⊆ X such that
g(E) = g(X) and g : X → X is one one.

Definition 1.6 Let X be a nonempty set, T : X×X×X×X → 2X (collection of all nonempty subset of X) and f : X → X.
(i) The point (s, x, y, z) ∈ X × X × X × X is called a quadruple fixed point of T if

(1.6) s ∈ T (s, x, y, z),

y ∈ T (y, z, s, x),

z ∈ T (z, s, x, y).

(ii) The point (s, x, y, z) ∈ X × X × X × X is called a quadruple coincident point of T and f if

(1.7) fs ∈ T (s, x, y, z),

133



fx ∈ T (x, y, z, s),

fy ∈ T (y, z, s, x),

fz ∈ T (z, s, x, y).

(iii) The point (s, x, y, z) ∈ X × X × X × X is called a quadruple common fixed point of T and f if

(1.8) s = fs ∈ T (s, x, y, z),

x = fx ∈ T (x, y, z, s),

y = fy ∈ T (y, z, s, x),

z = fz ∈ T (z, s, x, y).

Definition 1.7 Let T : X × X × X × X → 2X be a multivalued map and f be a self map on X. The Hybrid pair {T, f } is
called w-compatible if f

(
T (s, x, y, z)

)
⊆ T ( f s, f x, f y, f z) whenever (s, x, y, z) is quadruple coincident point of T and

f .

2 Main Result
Let us prove a slightly different result from Lemma 1.3 which we will use to prove our main result.

Lemma 2.1 Let {sn}, {xn}, {yn} and {zn} be sequences in fuzzy metric space (X,M, ∗) satisfying condition (1.3). If there
exists a positive number k < 1 such that

(2.1) min
{
M(sn, sn+1, kt)(xn, xn+1, kt)(yn, yn+1, kt)(zn, zn+1, kt)

}
≥ min

{
M(sn−1, sn, t)(xn−1, xn, t)(yn−1, yn, t)(zn−1, zn, t)

}
,

for all t > 0, n = 1, 2, ..., then {sn}, {xn}, {yn} and {zn} are Cauchy sequences in X.

Proof. We have

(2.2) min
{
M(sn, sn+1, kt),M(xn, xn+1, kt),M(yn, yn+1, kt),M(zn, zn+1, kt)

}
≥ min

{
M(sn−1, sn, t),M(xn−1, xn, t),M(yn−1, yn, t),M(zn−1, zn, t)

}
≥ min

{
M

(
sn−2, sn−1,

t
k2

)
,M

(
xn−2, xn−1,

t
k2

)
,M

(
yn−2, yn−1,

t
k2

)
,

M
(
zn−2, zn−1,

t
k2

)}
...

≥ min
{

M
(
s0, s1,

t
kn

)
,M

(
x0, x1,

t
kn

)
,M

(
y0, y1,

t
kn

)
,M

(
z0, z1,

t
kn

)}
.

Hence,

(2.3) M(sn, sn+1, t) ≥ min
{

M
(
s0, s1,

t
kn

)
,M

(
x0, x1,

t
kn

)
,M

(
y0, y1,

t
kn

)
,M

(
z0, z1,

t
kn

)}
.

Now, for any positive integer p,

(2.4) M
(
sn, sn+p, t

)
≥ M

(
sn, sn+1,

t
p

)
∗ M

(
sn+1, sn+2,

t
p

)
∗ ... ∗ M

(
sn+p−1, sn+p,

t
p

)
≥ min

{
M

(
s0, s1,

t
pkn

)
,M

(
x0, x1,

t
pkn

)
,M

(
y0, y1,

t
pkn

)
,M

(
z0, z1,

t
pkn

)}
∗min

{
M

(
s0, s1,

t
pkn+1

)(
x0, x1,

t
pkn+1

)(
y0, y1,

t
pkn+1

)(
z0, z1,

t
pkn+1

)}
∗...∗ ≥ min

{
M

(
s0, s1,

t
pkn+p−1

)
,M

(
x0, x1,

t
pkn+p−1

)
,M

(
y0, y1, tpkn+p−1

)
,M(z0, z1,

t
pkn+p−1 )

}
.
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Letting n→ ∞ and using condition (3), we have

lim
n→∞

M
(
xn, xn+p, t

)
≥ 1 ∗ 1 ∗ ... ∗ 1 = 1.

Hence,

(2.5) lim
n→∞

M
(
xn, xn+p, t

)
= 1.

Thus {sn} is a Cauchy sequence in X. Similarly, we can show that {xn}, {yn} and {zn} are Cauchy sequences in X.
Now, let us prove our first main result.

Theorem 2.1 Let (X,M, ∗) be a complete fuzzy metric space satisfying condition (1.3) and F : X × X × X × X → K(X)
be a set valued mapping satisfying

(2.6) HM

(
F(s, x, y, z), F(h, u, v,w), kt

)
≥ min

{
M(s, h, t),M(x, u, t)M(y, v, t),M(z,w, t)

}
for each s, x, y, z, h, u, v,w ∈ X, t > 0, where 0 < k < 1.

Then F has a quadruple fixed point.

Proof. Let s0, x0, y0, z0 ∈ X.
Choose s1 ∈ F(s0, x0, y0, z0), x1 ∈ F(x0, y0, z0, s0), y1 ∈ (y0, z0, s0, x0), z1 ∈ F(z0, s0, x0, y0).
Since F is compact valued, by Lemma 1.4, there exists s2 ∈ F(s1, x1, y1, z1) such that

(2.7) M(s1, s2, kt) = sup
x∈F(s1,x1,y1,z1)

M(s1, s, kt)

≥ HM

(
F(s0, x0, y0, z0), F(s1, x1, y1, z1), kt

)
≥ min

{
M(s0, s1, t),M(x0, x1, t),M(y0, y1, t),M(z0, z1, t)

}
.

Since F is compact valued, by Lemma 1.4, there exists x2 ∈ F(x1, y1, z1, s1) such that

M(x1, x2, kt) = sup
x∈F(x1,y1,z1,s1)

M(x1, x, kt)(2.8)

≥ HM(F(x0, y0, z0, s0), F(x1, y1, z1, s1), kt)
≥ min{M(x0, x1, t),M(y0, y1, t),M(z0, z1, t),M(s0, s1, t)}
≥ min{M(s0, s1, t),M(x0, x1, t),M(y0, y1, t),M(z0, z1, t)}.

Since F is compact valued, by Lemma 1.4, there exists y2 ∈ F(y1, z1, s1, x1) such that

M(y1, y2, kt) = sup
x∈F(y1,z1,s1,x1)

M(y1, y, kt)(2.9)

≥ HM(F(y0, z0, s0, x0), F(y1, z1, s1, x1), kt)
≥ min{M(y0, y1, t),M(z0, z1, t),M(s0, s1, t),M(x0, x1, t)}.
≥ min{M(s0, s1, t),M(x0, x1, t),M(y0, y1, t),M(z0, z1, t)}.

Since F is compact valued, by Lemma 1.4, there exists z2 ∈ F(z1, s1, x1, y1) such that

(2.10) M(z1, z2, kt) = sup
x∈F(z1,s1,x1,y1)

M(z1, z, kt)

≥ HM(F(z0, s0, x0, y0), F(z1, s1, x1, y1), kt)

≥ min{M(z0, z1, t),M(s0, s1, t),M(x0, x1, t),M(y0, y1, t)}

≥ min{M(s0, s1, t),M(x0, x1, t),M(y0, y1, t),M(z0, z1, t)}.

Thus,

(2.11) min{M(s1, s2, kt),M(x1, x2, kt),M(y1, y2, kt),M(z1, z2, kt)}

≥ min{M(s0, s1, t),M(x0, x1, t),M(y0, y1, t),M(z0, z1, t)}.

Continuing in this way we can find the sequences {sn}, {xn}, {yn} and {zn} in X such that

sn+1 ∈ F(sn, xn, yn, zn), xn+1 ∈ F(xn, yn, zn, sn), yn+1 ∈ F(yn, zn, sn, xn),
zn+1 ∈ F(zn, sn, xn, yn)

135



Such that
(2.12) min{M(sn, sn+1, kt),M(xn, xn+1, kt),M(yn, yn+1, kt),M(zn, zn+1, kt)}

≥ min{M(sn−1, sn, t),M(xn−1, xn, t),M(yn−1, yn, t),M(zn−1, zn, t)}.

Hence, by Lemma 2.1, {sn}, {xn}, {yn} and {zn} are Cauchy sequences in X.
Since X is complete, there exists s, x, y, z ∈ X such that limn→∞{sn} = s, limn→∞{xn} = x, limn→∞{yn} =

y, limn→∞{zn} = z.
Consider

(2.13) HM(F(sn, xn, yn, zn), F(s, x, y, z), kt)
≥ min{M(sn, s, t),M(xn, x, t),M(yn, y, t),M(zn, z, t)}.

Let n→ ∞, we get
(2.14) lim

n→∞
HM(F(sn, xn, yn, zn), F(s, x, y, z), kt) = 1 so that

lim
n→∞

HM(F(sn, xn, yn, zn), F(s, x, y, z), t) = 1.

Similarly we can show that
(2.15) lim

n→∞
HM(F(xn, yn, zn, sn), F(x, y, z, s), t) = 1,

lim
n→∞

HM(F(yn, zn, sn, xn), F(y, z, s, x), t) = 1,

lim
n→∞

HM(F(zn, sn, xn, yn), F(z, s, x, y), t) = 1.

Since
sn+1 ∈ F(sn, xn, yn, zn), xn+1 ∈ F(xn, yn, zn, sn), yn+1 ∈ F(yn, zn, sn, xn),
zn+1 ∈ F(zn, sn, xn, yn),

From (2.12) and (2.13), we have
(2.16) lim

n→∞
sup

a∈F(s,x,y,z)
M(sn+1, a, t) = 1,

lim
n→∞

sup
b∈F(x,y,z,s)

M(xn+1, b, t) = 1,

lim
n→∞

sup
c∈F(y,z,s,x)

M(yn+1, c, t) = 1,

lim
n→∞

sup
d∈F(z,s,x,y)

M(zn+1, d, t) = 1.

Hence there exist sequences ln ∈ F(s, x, y, z), pn ∈ F(x, y, z, s), qn ∈ F(y, z, s, x) and rn ∈ F(z, s, x, y) such that
(2.17) lim

n→∞
M(sn+1, ln, t) = 1,

lim
n→∞

M(xn+1, pn, t) = 1,

lim
n→∞

M(yn+1, qn, t) = 1,

lim
n→∞

M(zn+1, rn, t) = 1.

for each t > 0.
Now for each n ∈ N, we have

(2.18) M(ln, s, t) ≥ M(ln, sn+1, t/2) ∗ M(sn+1, s, t/2).
Letting n→ ∞, we obtain

(2.19) lim
n→∞

M(ln, s, t) = 1 so that lim
n→∞

ln = s.

Similarly, we can show that
(2.20) lim

n→∞
pn = x, lim

n→∞
qn = y, lim

n→∞
rn = z.

Since F(s, x, y, z), F(x, y, z, s), F(y, z, s, x) and F(z, s, x, y) are compact, we have
s ∈ F(s, x, y, z), x ∈ F(x, y, z, s), y ∈ F(y, z, s, x) and z ∈ F(z, s, x, y).
Thus (s, x, y, z) is a quadruple fixed point of F.
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Theorem 2.2 Let (X,M, ∗) be a complete fuzzy metric space satisfying condition (1.3) and F : X × X × X × X → K(X)
and gX → X be a mappings satisfying

(2.21) HM

(
F(s, x, y, z), F(h, u, v,w), kt

)
≥ min

{
M(gs, gh, t),M(gx, gu, t),M(gy, gv, t),M(gz, gw, t)

}
,

for all s, x, y, z, h, u, v,w ∈ X, t > 0 and 0 < k < 1. further assume that F(X × X × X × X) ⊆ g(x), then F and g have
a quadrupled coincidence point. Moreover, F and g have a quadrupled common fixed point if one of the following
conditions holds.
(a) The pair F, g is called w-compatible and there exists µ, α, β, γ ∈ X such that limn→∞ gns = µ limn→∞ gnx =

α, limn→∞ gny = β, limn→∞ gnz = γ, whenever (s, x, y, z) is a quadrupled coincidence point of F and g and g is
continuous at µ, α, β, γ.
(b) There exist µ, α, β, γ ∈ X such that limn→∞ gnµ = s, limn→∞ gnα = x, limn→∞ gnβ = y, limn→∞ gnγ = z, whenever
(s, x, y, z) is a quadrupled coincidence point of F and g and g is continuous at s, x, y, z.

Proof. By Lemma 1.5, there exists E ⊆ X such that g : E → X is one to one and g(E) = g(X).
Now, define G : g(E) × g(E) × g(E) × g(E) → K(X) by G(gs, gx, gy, gz) = F(x, y, z) for all gs, gx, gy, gz ∈ g(E).

Since g is one-one one E,G is well defined.
Now,

(2.22) HM

(
G(gs, gx, gy, gz),G(gh, gu, gv, gw), kt

)
= HM

(
F(s, x, y, z), F(h, u, v,w), kt

)
≥ min

{
M(gs, gh, t),M(gx, gu, t),M(gy, gv, t),M(gz, gw, t)

}
.

Hence G satisfies (2.6) and all the conditions of Theorem 2.1.
By Theorem 2.1, G has a quadruple fixed point (h, u, v,w) ∈ g(E) × g(E) × g(E) × g(E). Thus,

(2.23) h ∈ (h, u, v,w),

u ∈ (u, v,w, h),

v ∈ (v,w, h, u),

w ∈ (w, h, u, v).

Since F(X × X × X × X) ⊆ g(x), there exist h, u, v,w ∈ X × X × X × X such that gh1 = h, gu1 = u, gv1 = v and
gw1 = w. so from (2.23) we have

gh1 ∈ G(gh1, gu1, gv1, gw1) = F(h1, u1, v1,w1)

gu1 ∈ G(gu1, gv1, gw1, gh1) = F(u1, v1,w1, h1)

gv1 ∈ G(gv1, gw1, gh1, gu1) = F(v1,w1, h1, u1)

gw1 ∈ G(gv1, gw1, gh1, gu1) = F(w1, h1, u1, v1).

This implies that h1, u1, v1,w1 ∈ X × X × X × X is a quadruple fixed point of F and g.
Now following as in [15] except from the inequalities satisfied by M we can show that F and g have a quadruple

fixed point.

3 Conclusion
Thus, our paper establishes the results regarding the quadruple fixed point in Hausdorff fuzzy metric space.
Acknowledgement. The authors are very much grateful to the Editors and referees for their helpful suggestions.
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Abstract

In this article, we obtain hypergeometric forms of some composite functions containing arcsine(x) like:
exp(a sin−1 x), exp(a sin−1 x)

√
(1−x2)

, cos(b sin−1 x), sin(b sin−1 x), cosh(d sin−1 x), sinh(d sin−1 x), cos(b sin−1 x)√
(1−x2)

, sin(b sin−1 x)√
(1−x2)

and

arcsinh (x) like: exp(b sinh−1 x), exp(b sinh−1 x)
√

(1+x2)
, cos(g sinh−1 x), sin(g sinh−1 x), cosh(b sinh−1 x), sinh(b sinh−1 x), by

using Leibniz theorem for successive differentiation, Maclaurin’s series expansion and Taylor’s series expansion,
as the proof of the hypergeometric forms of the above functions is not available in the literature.
2010 Mathematics Subject Classifications: 33C05, 34A35, 41A58, 33B10.
Keywords and phrases: Hypergeometric function; Maclaurin’s series; Taylor’s series; Leibniz theorem.

1 Introduction and Preliminaries
In this paper, we shall use the following standard notations:
N : = {1, 2, 3, · · · } ;N0 := N

⋃
{0} ; and Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · }.

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real numbers, natural numbers, integers,
positive and negative real numbers respectively.

The Pochhammer symbol (α)p(α, p ∈ C) is defined by ([10, p.22 Eq.(1), p.32, Q.N.(8) and Q.N.(9)],see also [12,
p.23, Eq.(22) and Eq.(23)]).

A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is accomplished by introducing any
arbitrary number of numerator and denominator parameters[12, p.42, Eq.(1)].

Relation between hyperbolic and trigonometric functions:

(1.1) cos(iθ) = cosh(θ), sin(iθ) = i sinh(θ).

(1.2) sin−1(x) = −i sinh−1(ix), sinh−1(x) = −i sin−1(ix).

The Taylor’s series of a real or complex-valued function y(x) which is infinitely differentiable at a real or complex
number a, is the power series:

(1.3) y(x) = (y)x=a + (x − a)(y1)x=a +
(x − a)2

2!
(y2)x=a +

(x − a)3

3!
(y3)x=a +

(x − a)4

4!
(y4)x=a + · · ·

(1.4) =
∑∞

n=0
(x−a)n

n! (yn)x=a

(1.5) =
∑∞

n=0
(x−a)2n

(2n)! (y2n)x=a +
∑∞

n=0
(x−a)2n+1

(2n+1)! (y2n+1)x=a.

The Maclaurin’s series is a particular case of Taylor’s series expansion of a function, about the origin i.e, when
a = 0 in equation (1.3), the Maclaurin series is given as:

y(x) = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + · · ·

(1.6) =
∑∞

n=0
xn

n! (yn)0

(1.7) =
∑∞

n=0
x2n

(2n)! (y2n)0 +
∑∞

n=0
x2n+1

(2n+1)! (y2n+1)0,

where, (ym)0 =
(

dmy
dxm

)
x=0

.
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The general Leibniz rule, named after Gottfried Wilhelm Leibniz, generalizes the product rule (which is also
known as ”Leibniz’s rule”), which states that if U(x) and T (x) are n-times differentiable functions, then the product
U(x).T (x) is also n-times differentiable and its nth derivative is given by:

Dn[U(x) T (x)] = (nC0)(Dn U)(D0 T ) + (nC1)(Dn−1 U)(D1 T ) + (nC2)(Dn−2 U)(D2 T ) + · · ·+

(1.8) +(nCn−1)(D1 U)(Dn−1 T ) + (nCn)(D0 U)(Dn T )

(1.9) =
∑n

r=0
nCr(DrT )(Dn−rU)

(1.10) =
∑n

r=0
nCr(Dn−rT )(DrU),

where D = d
dx .

Euler’s linear transformation

(1.11) 2F1

 β, λ;
z

µ;

 = (1 − z)µ−β−λ 2F1

 µ − β, µ − λ;
z

µ;

 ,
where µ ∈ C\Z−0 and |arg(1 − z)| < π.

The present article is organized as follows. In section 3 we have given the proof of the hypergeometric forms of
presented functions, because their proofs are not available in the literature[1, 2, 3, 4, 5, 6, 7, 8, 9] see also [11, 13]. So
we are interested to give the proof of hypergeometric forms of some composite functions containing arcsine(x), using
Maclaurin series. In section 4 we have obtained hypergeometric forms of some more functions by using the relations
between inverse trigonometric and inverse hyperbolic functions. In section 5 we have discussed some applications
of hypergeometric forms (2.1),(2.2) and (2.3). In section 6 we discussed some applications of hypergeometric forms
(5.4) and (5.5).

2 Main Hypergeometric Forms of Certain Composite Functions
When the values of numerator, denominator parameters and arguments leading to the results which do not make sense
are tacitly excluded, then each of the following hypergeometric form holds true:

(2.1) exp(a sin−1 x) = 2F1


ia
2 , −

ia
2 ;

x2

1
2 ;

 + ax 2F1


1+ia

2 , 1−ia
2 ;

x2

3
2 ;

 ,
where |x| < 1.

(2.2) exp(b sin−1 x) = exp
(
πb
2

)
2F1

 ib, − ib;
1−x

2
1
2 ;

 ,
where | 1−x

2 | < 1.

(2.3)
exp(a sin−1 x)√

(1 − x2)
= 2F1


1+ia

2 , 1−ia
2 ;

x2

1
2 ;

 + ax 2F1


2+ia

2 , 2−ia
2 ;

x2

3
2 ;

 ,
where |x| < 1.

Note: In the above hypergeometric functions x, a and b can be purely real or purely imaginary or complex numbers.

3 Proof of Hypergeometric Forms
Proof of hypergeometric form (2.1)
Let

(3.1) y = exp(a sin−1 x).

Put x = 0 in equation (3.1), we get

(3.2) (y)0 = 1.

Differentiate equation (3.1) w.r.t. x and put x = 0, we get

(3.3)
√

1 − x2 y1 = ay,

(3.4) (y1)0 = a.
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Differentiate equation (3.3) w.r.t. x and put x = 0, we get

(3.5) (1 − x2)y2 − xy1 − a2y = 0,

(3.6) (y2)0 = a2.

Differentiate equation (3.5) w.r.t. x and put x = 0, we get

(3.7) (1 − x2)y3 − 3xy2 − (1 + a2)y1 = 0,

(3.8) (y3)0 = (1 + a2)a.

Now differentiate equation (3.5) n-times w.r.t. x, and applying Leibnitz theorem we get

Dn
{
(1 − x2)y2

}
− Dn(xy1) − Dn(a2y) = 0 ; n ≥ 2,

(3.9) (1 − x2)yn+2 − (2n + 1)xyn+1 − (n2 + a2)yn = 0 ; n ≥ 2.

Put x = 0 in equation(3.9) we get

(3.10) (yn+2)0 = (n2 + a2)(yn)0 ; n ≥ 2.

Put n = 2, 3, 4, 5, 6, 7, 8... in equations (3.10), we get

(3.11) (y4)0 = (22 + a2)a2,

(3.12) (y5)0 = (32 + a2)(1 + a2)a,

(3.13) (y6)0 = (42 + a2)(22 + a2)a2,

(3.14) (y7)0 = (52 + a2)(32 + a2)(1 + a2)a,

(3.15) (y8)0 = (62 + a2)(42 + a2)(22 + a2)a2,

(3.16) (y9)0 = (72 + a2)(52 + a2)(32 + a2)(1 + a2)a,

(3.17) (y10)0 = (82 + a2)(62 + a2)(42 + a2)(22 + a2)a2,

...
Recurrence Relation

In case of odd

(3.18) (y2n+1)0 = a
∏n

j=1

{
(2 j − 1)2 + a2

}
.

In case of even

(3.19) (y2n)0 =
∏n

j=1

{
(2 j − 2)2 + a2

}
.

We know by Maclaurin series expansion

(3.20) y = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + ...

Substitute the values of (y)0, (y1)0, (y2)0, (y3)0, (y4)0, (y5)0, ... in equation (3.20), we get

y =
∑∞

n=0
x2n

2n!
∏n

j=1

{
(2 j − 2)2 + a2

}
+ a

∑∞
n=0

x2n+1

(2n+1)!
∏n

j=1

{
(2 j − 1)2 + a2

}
,

y =
∑∞

n=0
x2n

2n!

{∏n
j=1

[
(2 j − 2) + ia

]∏n
j=1

[
(2 j − 2) − ia

]}
+

+ ax
∑∞

n=0
x2n

(2n+1)!

{∏n
j=1

[
(2 j − 1) + ia

]∏n
j=1

[
(2 j − 1) − ia

]}
,

y =
∑∞

n=0
x2n22n

2n!

{∏n
j=1

[
( j − 1) + ia

2

]∏n
j=1

[
( j − 1) − ia

2

]}
+

+ ax
∑∞

n=0
x2n22n

(2n+1)!

{∏n
j=1

[
( j − 1) + 1

2 + ia
2

]∏n
j=1

[
( j − 1) + 1

2 −
ia
2

]}
,

y =
∑∞

n=0
x2n( ia

2 )n(− ia
2 )n

( 1
2 )nn!

+ ax
∑∞

n=0
x2n( 1+ia

2 )n( 1−ia
2 )n

( 3
2 )nn!

.

Using definition of generalized hypergeometric function of one variable, we get the required result (2.1).
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Proof of hypergeometric forms (2.2) and (2.3)
The proof of hypergeometric form (2.2) can be given by following same approach and making use of Taylors series
expansion. Similarly the proof of hypergeometric form (2.3) can be given by following same approach and making
use of Maclaurin’s series expansion. So we omit the details here.

4 Some Inverse Hyperbolic Sine Functions as Special Cases
Replacing x by ix in equation (2.1) and putting a = −ib, we get

(4.1) exp(b sinh−1 x) = 2F1

 −
b
2 ,

b
2 ;
−x2

1
2 ;

 + bx 2F1


1+b

2 , 1−b
2 ;

−x2

3
2 ;

 .
Replacing x by ix in equation (2.2), and putting b = −ia, we get

(4.2) exp(a sinh−1 x) = exp
(
−

iπa
2

)
2F1

 a, − a;
1−ix

2
1
2 ;

 .
Replacing x by ix in equation (2.3) and putting a = −ib, we get

(4.3)
exp(b sinh−1 x)√

(1 + x2)
= 2F1


1+b

2 , 1−b
2 ;

−x2

1
2 ;

 + bx 2F1


2+b

2 , 2−b
2 ;

−x2

3
2 ;

 .
5 Some Applications
5.1 Special Cases of Hypergeometric form (2.1)
Suppose x ∈ R and a is purely imaginary in equation (2.1), then put a = ib, where b is purely real, we get

(5.1) exp(ib sin−1 x) = 2F1

 −
b
2 ,

b
2 ;

x2

1
2 ;

 + ibx 2F1


1+b

2 , 1−b
2 ;

x2

3
2 ;

 .
Applying Euler’s formula on left hand side of equation (5.1), then on equating real and imaginary parts, we get

(5.2) cos(b sin−1 x) = 2F1

 −
b
2 ,

b
2 ;

x2

1
2 ;

 ,
(5.3) sin(b sin−1 x) = bx 2F1


1+b

2 , 1−b
2 ;

x2

3
2 ;

 .
Put x = sin(θ) in equation (5.2) and (5.3), we get

(5.4) cos(bθ) = 2F1

 −
b
2 ,

b
2 ;

sin2 θ
1
2 ;

 ,
(5.5) sin(bθ) = b sin(θ)2F1


1+b

2 , 1−b
2 ;

sin2 θ
3
2 ;

 .
Using Euler’s linear transformation (1.11) in the right hand side of equations (5.4) and (5.5), we get

(5.6) cos(bθ) = cos θ2F1


1+b

2 , 1−b
2 ;

sin2 θ
1
2 ;

 ,
(5.7) sin(bθ) = b(sin θ)(cos θ)2F1


2−b

2 , 2+b
2 ;

sin2 θ
3
2 ;

 .
Put b = id in equation (5.2) and (5.3), where d is purely imaginary, we get

(5.8) cosh(d sin−1 x) = 2F1

 −
id
2 ,

id
2 ;

x2

1
2 ;

 ,
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(5.9) sinh(d sin−1 x) = dx 2F1


1+id

2 , 1−id
2 ;

x2

3
2 ;

 .
Putting x = iy in equation (5.2) and (5.3), where y is purely imaginary, we get

(5.10) cosh(b sinh−1 y) = 2F1

 −
b
2 ,

b
2 ;
−y2

1
2 ;

 ,
(5.11) sinh(b sinh−1 y) = by 2F1


1−b

2 , 1+b
2 ;

−y2

3
2 ;

 .
Putting x = iy and b = ig in equation (5.2) and (5.3), where y and g are purely imaginary, we get

(5.12) cos(g sinh−1 y) = 2F1

 −
ig
2 ,

ig
2 ;
−y2

1
2 ;

 ,
(5.13) sin(g sinh−1 y) = gy 2F1


1+ig

2 , 1−ig
2 ;

−y2

3
2 ;

 .
5.2 Special Cases of Hypergeometric form (2.2)
Suppose x ∈ R and b is purely imaginary in equation (2.2), then put b = ia, where a is purely real, we get

(5.14) exp(ia sin−1 x) = exp
( iπa

2

)
2F1

 −a, a;
1−x

2
1
2 ;

 .
Applying Euler’s formula on left hand side of equation (5.14), then on equating real and imaginary parts, we get

(5.15) cos(a sin−1 x) = cos
(
πa
2

)
2F1

 −a, a;
1−x

2
1
2 ;

 ,
(5.16) sin(a sin−1 x) = sin

(
πa
2

)
2F1

 −a, a;
1−x

2
1
2 ;

 .
Put a = id in equation (5.15) and (5.16), where d is purely imaginary, we get

(5.17) cosh(d sin−1 x) = cosh
(
πd
2

)
2F1

 −id, id;
1−x

2
1
2 ;

 ,
(5.18) sinh(d sin−1 x) = sinh

(
πd
2

)
2F1

 −id, id;
1−x

2
1
2 ;

 .
Putting x = iy in equation (5.15) and (5.16), where y is purely imaginary, we get

(5.19) cosh(a sinh−1 y) = cos
(
πa
2

)
2F1


−a, a;

1−iy
2

1
2 ;

 ,
(5.20) sinh(a sinh−1 y) = −i sin

(
πa
2

)
2F1


−a, a;

1−iy
2

1
2 ;

 .
Putting x = iy and a = ig, in equation (5.15) and (5.16), where y and g are purely imaginary, we get

(5.21) cos(g sinh−1 y) = cosh
(
πg
2

)
2F1


−ig, ig;

1−iy
2

1
2 ;

 ,
(5.22) sin(g sinh−1 y) = −i sinh

(
πg
2

)
2F1


−ig, ig;

1−iy
2

1
2 ;

 .
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5.3 Special Cases of Hypergeometric form(2.3)
Suppose x ∈ R and a is purely imaginary in equation (2.3), then put a = ib, where b is purely real, we get

(5.23)
exp(ib sin−1 x)√

(1 − x2)
= 2F1


1−b

2 , 1+b
2 ;

x2

1
2 ;

 + ibx 2F1


2−b

2 , 2+b
2 ;

x2

3
2 ;

 .
Applying Euler’s formula on left hand side of equation (5.23), then on equating real and imaginary parts, we get

(5.24)
cos(b sin−1 x)√

(1 − x2)
= 2F1


1−b

2 , 1+b
2 ;

x2

1
2 ;

 ,
(5.25)

sin(b sin−1 x)√
(1 − x2)

= bx 2F1


2−b

2 , 2+b
2 ;

x2

3
2 ;

 .
Put b = id, in equation (5.24) and (5.25), where d is purely imaginary, we get

(5.26)
cosh(d sin−1 x)√

(1 − x2)
= 2F1


1−id

2 , 1+id
2 ;

x2

1
2 ;

 ,
(5.27)

sinh(d sin−1 x)√
(1 − x2)

= dx 2F1


2−id

2 , 2+id
2 ;

x2

3
2 ;

 .
Putting x = iy in equation (5.24) and (5.25), where y is purely imaginary, we get

(5.28)
cosh(b sinh−1 y)√

(1 + y2)
= 2F1


1−b

2 , 1+b
2 ;

−y2

1
2 ;

 ,
(5.29)

sinh(b sinh−1 y)√
(1 + y2)

= by 2F1


2−b

2 , 2+b
2 ;

−y2

3
2 ;

 .
Putting x = iy and b = ig in equation (5.24) and (5.25) where y and g are purely imaginary, we get

(5.30)
cos(g sinh−1 y)√

(1 + y2)
= 2F1


1−ig

2 , 1+ig
2 ;

−y2

1
2 ;

 ,
(5.31)

sin(g sinh−1 y)√
(1 + y2)

= gy 2F1


2−ig

2 , 2+ig
2 ;

−y2

3
2 ;

 .
6 Some Applications of Hypergeometric Forms (5.4) and (5.5)
Replacing θ by

(
π
2 − θ

)
in equations (5.4) and (5.5), we get

(6.1) cos(bθ) = cos
(

bπ
2

)
2F1

 −
b
2 ,

b
2 ;

cos2 θ
1
2 ;

 + b cos(θ) sin
(

bπ
2

)
2F1


1+b

2 , 1−b
2 ;

cos2 θ
3
2 ;

 .
(6.2) sin(bθ) = sin

(
bπ
2

)
2F1

 −
b
2 ,

b
2 ;

cos2 θ
1
2 ;

 − b cos(θ) cos
(

bπ
2

)
2F1


1+b

2 , 1−b
2 ;

cos2 θ
3
2 ;

 .
7 Conclusion
In this paper, we have obtained hypergeometric forms of some composite functions involving arcsin(x) and arcsinh(x),
by using Maclaurin’s series expansion and Taylor’s series expansion.We conclude our present investigation by
observing that hypergeometric forms of some other functions can be derived in an analogous manner. More over
the results derived are significant. These are expected to find some potential applications in the fields of Mathematics
and Engineering Sciences.
Acknowledgement. We are very much thankful to the Editor and Reviewer for their kind suggestions to improve the
paper in its present form.
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Abstract

In this paper to define a generalized Churchill’s diffusion problem, we first extend the Churchill’s diffusion
problem. Then, we derive some of estimated and computational formulae of its solution. Further, we present a
multidimensional Churchill’s diffusion problem consisting of multidimensional Euler space derivatives and Caputo
time fractional derivative. Then, on imposing certain boundary values, we obtain its solution and derive its many
estimated formulae.
2010 Mathematics Subject Classifications: 26A33, 46A45, 35K58, 33E12.
Keywords and phrases: Multidimensional Euler space derivatives, Caputo time fractional derivative, Laplace
transformation, a generalized Churchill’s diffusion problem, a multidimensional Churchill’s diffusion problem,
estimation formulae.

1 Introduction
Very recently, Pathan and Kumar [17] proved the multivariable Cauchy residue theorem with the help of the Euler
derivatives. On the other hand, Apostol [1] analyzed and discussed the theory of homogeneous functions in respect of
Euler derivatives as if (x1, . . . , xn) ∈ Rn

+, and f (x1, . . . , xn) is a homogeneous function of degree k, then

(1.1)
∑n

i=1 xi
∂
∂xi

f (x1, . . . , xn) = k f (x1, . . . , xn),

while in 1928, for the economists, the favorite homogeneous function in the weighted geometric mean with domain
R+, (R+ being the set of positive real numbers) has presented by the Cobb-Douglas function [6] as

(1.2) f (x1, ..., xn) = xα1
1 .x

α2
2 ...x

αn
n , where each αi > 0, i = 1, . . . , n.

It is homogeneous of degree α = α1 + ... + αn.
In the theory of fractional calculus (see Diethelm [7, p. 148, Eqn. (7.12)]) following fractional differential equation,

consisting of a system of equations, has been studied in the form

(1.3) C
t Dα

0+ y(x) = Λy(x) + q(x),

where, 0 < α < 1, an N × N matrix Λ, a given function q : [0, h] → CN , h > 0, and the unknown solution y : [0, h] →
CN . CN = C × . . . × C (N times).

For any suitable vector u ∈ CN ,the solution of (1.3) is found as

(1.4) y(x) = uEα(λxα),

where, λ ∈ C, an eigenvalue of the matrix Λ, and the Eα(z), a Mittag - Leffler function, is defined by the series [15,
p.80, Eqn. (2.1.1)] as

Eα(z) =
∑∞

n=0
zn

Γ(αn+1) ,<(α) > 0, z ∈ C.
In 2012, Kumar [9] considered following Churchill’s diffusion problem [5]

(1.5) x
∂U
∂x

+
∂U
∂t

+ U = xF(t), x, t ∈ R+,

with the boundary conditions U(x, 0) = 0 = U(0, t) and they analyzed its solution

(1.6) U(x, t) = x
∫ t

0 e−2vF(t − v)dv, x, t ∈ R+.

Again by [9], the solution (1.6) is converted into a general hypergeometric series solution to obtain various results
for known special functions.
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On the other hand, the theory and application of fractional differential equations in the diverse field, for example,
in the dynamics of sphere immersed in an incompressible viscous fluid, oscillatory process with fractional damping,
a study of the tension - deformation relationship of viscoelastic materials, and anomalous diffusion problems have
been described in the literature by various researchers ([7], [8], [11], [14], [15], [16], [18] and others) consisting
of the general fractional differential equations along with some operators or functions in the form of matrices. By
the interacting multispecies, a system of equations in the matrix form also studied by Chandel and Kumar [4] in
the ecosystem. Motivated by this work, in this paper we generalize the Churchill’s diffusion equation in one and
multidimensional space and then obtain their estimated solutions and computational results.

2 A Generalized Churchill type problem and its computational results
In this section on extension of the problem (1.5), we discuss a generalized Churchill type problem and then by its
solution, we evaluate various results to compute the problem as

(2.1) x
∂U(x, t)
∂x

+ C
t Dα

0+ U(x, t) + U(x, t) = x loge F(t) = x ln(F(t)), t > 0, x > 0, F(0) ≥ 1,

0 < α < 1, with following boundary conditions
(2.2) U(x, 0+) = 0, lim

x→0
U(x, t) = 0.

In (1.3) and (2.1), the Caputo derivative, C
t Dα

0+ f (t), of the function f (t), whenever, f (m) ∈ L1[a, b], m − 1 < α ≤
m, ∀m ∈ N, is defined by [7, p. 49]
(2.3) (C

t Dα
0+ f )(t) = (Im−α

a f (m))(t),

where, f (m)(t) = Dm
t f (t), {Dm

t ≡
dm

dtm = d
dt (

dm−1

dtm−1 )}.
In (2.3), the (Im−q

a f )(t), f ∈ L1[a, b] is the Riemann - Liouville fractional integral [18], given by

(2.4) (Im−q
a f )(t) =

 1
Γ(m−q)

∫ t
a (t − τ)m−q−1 f (τ)dτ, ∀t ∈ [a, b],m − 1 < q < m,m ∈ N,

f (t), q = m.
Now, for the Laplace transform of a sufficiently well behaved function v(t), denoted as L{V(t); s, s > 0} = v(s), and

again defined by v(s) =
∫ ∞

0 e−stV(t)dt, then, the Laplace transformation of the Caputo operator (2.3), is presented by
[7, p.134]
(2.5) L{(C

t Dα
0+ V)(t); s} = sαv(s) −

∑m−1
k=0 sα−1−kV (k)(0+) ∀m − 1 < α ≤ m.

Now, we solve the problem {(2.1) - (2.2)} in following manner:

Theorem 2.1 Under the conditions (2.2) given as
U(x, 0+) = 0, lim

x→0
U(x, t) = 0,

then, the solution of the generalized Churchill’s diffusion equation (2.1) exists and find in the form

(2.6) U(x, t) = x
∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(F(τ))dτ, 0 < α < 1, t > 0, x > 0.

Proof. By (2.5) take Laplace transformation of the both sides of (2.1) as considering
L{U(x, t); s, s > 0} = u(x, s), L{log(F(t)); s, s > 0} = F̄(s), for 0 < α < 1,

then, under the given condition U(x, 0+) = 0, we find a linear differential equation as

(2.7)
du(x, s)

dx
+

{
sα + 1

x

}
u(x, s) = F̄(s),

with the initial condition limx→0 u(x, s) = 0.
The solution of Eqn. (2.7) is obtained as

(2.8) u(x, s) = x−sα−1
∫

xsα+1F̄(s)dx = x
{

1
sα+2

}
F̄(s), x > 0.

Taking inverse Laplace transform of both the sides of the Eqn. (2.8), and employing following formula due to
Kilbas, Srivastava and Trujillo [8, p. 50, Eqn. (1.10.9)]

(2.9) tα−1Eα,α(λtα) = L−1
{ 1

sα − λ

}
,<(s) > 0, λ ∈ C, |λs−α| < 1, t > 0,

and thus applying the convolution theorem of Laplace transformation in (2.8) and making an appeal to (2.9) and (2.10),
we derive the solution (2.6).

In the Eqn. (2.9), the Eα,β(z), a generalized Mittag - Leffler function, is defined by the series [15, p. 80, Eqn.
(2.1.2)] as
(2.10) Eα,β(z) =

∑∞
n=0

zn

Γ(αn+β) ,<(α) > 0,<(β) > 0, z, α, β ∈ C.
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Example 2.1 Consider F(t) = exp
[∑∞

n=0 an
tn

n!

]
, ∀t > 0, in the problem {(2.1) - (2.2)}, then, make an appeal to the

Theorem 2.1, following result exists

(2.11) U(x, t) = xtα
∑∞

n=0
∑∞

k=0 an
(−2tα)k

Γ(αk+α+n+1) t
n, 0 < α < 1, t > 0, x > 0.

Again then, the result (2.11) gives various known results.

Solution. In the solution (2.6) of the Theorem 2.1, choose F(t) = exp
[∑∞

n=0 an
tn

n!

]
, we get the result (2.11).

Now in the result (2.11), choosing an =
Γ(αk+α+n+k+1)

Γ(k+1) ∀k = 0, 1, 2, . . . , we obtain a known generating function

(2.12) U(x, t) = xtα
∑∞

n=0
∑∞

k=0

(
αk+k+α+n

k

)
tn, 0 < α < 1, t > 0, x > 0.

By an appeal to the formula
∑∞

k=0

(
αk+k+β

k

)
=

(1+ζ)β+1

1−αζ , ζ(z) = z(1 + ζ(z))α+1, ζ(0) = 0, due to Srivastava and Manocha
[19, p. 234, Eqn. (47, for x = 0)], (see also, Carlitz [2]) in the result (2.12), we derive

(2.13) U(x, t) = xtα
{ (1 + ζ(t∗))α+1

1 − αζ(t∗)

}[ 1
1 − {(1 + ζ(t∗))t}

]
, provided that for |(1 + ζ(t∗))t| < 1.

Here, 0 < α < 1, t > 0, x > 0, ζ(t∗) = t∗(1 + ζ(t∗))α+1, t∗ = (−2tα).
Further by (2.6), we establish

U(x, t) = x
∑∞

n=0
an

Γ(α+n+1) + x
∑∞

n=0
an

Γ(n+1)
∑∞

k=1
(−2)k

Γ(αk+α)

∫ t
0 (t − τ)α+αk−1τndτ.

Hence by (2.4), we get

(2.14) U(x, t) = x
∑∞

n=0
an

Γ(α+n+1) + x
∑∞

n=0
an

Γ(n+1) Hn(α; t).

Here, Hn(α; t) =
∑∞

k=1 (−2)kIα+αk
0 (τn)(t), 0 < α < 1, t > 0, x > 0.

It is noted that some other related generating functions are obtained on application of the results concerning
Laguerre polynomials found in the literature by Chandel [3].

Corollary 2.1 Set α = 1, F(t) = eG(t) ∀t ≥ 0, in Eqn. (2.1) along with the conditions (2.2), then, by the Theorem 2.1,
the solution (2.6) becomes the solution of the Churchill’s diffusion problem (1.5) and is found in the form

(2.15) U(x, t) = xe−2t
∫ t

0 e2τG(τ)dτ, t > 0, x > 0.

Theorem 2.2 If the solution U(x, t) of the problem {(2.1) - (2.2)}, given in (2.6), has separated in variables as

(2.16) U(x, t) = ϕ(x)ψ(t), x > 0, t > 0,

then, there exists two curves in positive axis’s

(2.17) ϕ(x) = ηx, ψ(t) =
1
η

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(F(τ))dτ,

whenever, x > 0, t > 0; and 0 < α < 1, η is constant and η , 0.

Proof. In Eqn. (2.6), consider U(x, t) = ϕ(x)ψ(t) , 0, for 0 < α < 1, x > 0, η , 0, then, it may also be written by

(2.18)
ϕ(x)

x
=

1
ψ(t)

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(F(τ))dτ = η.

By the Eqn. (2.14), the parametric equations of the solution U(x, t) when, 0 < α < 1, t > 0, x > 0,for η , 0, are
found as

(2.19) ϕ(x) = ηx, ψ(t) =
1
η

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(F(τ))dτ.

Again, ϕ(x) and ψ(t)are non-zero, when η , 0, and ∀ t, x > 0.
Hence, the Theorem 2.2 is followed.
Now, we determine various estimation formulae of the solution of the generalized Churchill type diffusion problem

for computational work:

Theorem 2.3 If 0 < α < 1, η , 0, and | ln(F(t))| ≤ M,M > 0,then by the Theorem 2.2, for t > 0 there exists an
estimation formula

(2.20) |U(x, t)| ≤ Mxtα|Eα,α+1(−2tα)|.

148



Proof. Take G(t) = ln(F(t)),then by Theorem 2.2, for t > 0 to get that
ψ(t) = 1

η

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α)G(τ)dτ, and write it in the form

ψ(t) =
∫ t

0

{
1
|η|

(t − τ)α−1
} 1

2
{
Eα,α(−2(t − τ)α)

} 1
2
{

1
|η|

(t − τ)α−1
} 1

2
{
Eα,α(−2(t − τ)α)

} 1
2

G(τ)dτ.

Now, use Schwarz inequality for the integrals to find that

(2.21) |ψ(t)| ≤
1
|η|

[
tαEα,α+1(−2tα)

∫ t
0

1
η
(t − τ)α−1Eα,α(−2(t − τ)α)|G(τ)|2dτ

] 1
2

.

An appeal to the Theorem 2.3, we have |G(τ)| ≤ M, then, in the integral apply the definition (2.10), again, use the
Theorem 2.2, with |U(x, t)| = |ϕ(x)||ψ(t)|, finally, we obtain the estimation formula (2.20).

Theorem 2.4 If Laplace transformation of the function {G(t)}2 is equal to P(s), s > 0, that is L{{G(t)}2 : s} = P(s), s >
0, then by Theorem 2.3, there exists another inequality

(2.22) |U(x, t)| ≤ x
[
L−1

{ P(s)
sα + 2

: t
}] 1

2
[
L−1

{1
s

(
1

sα + 2

)
: t

}] 1
2

.

Proof. Since |G(t)|2 = {G(t)}2, so that by Eqn. (20) of Theorem 2.1, we write

(2.23) |ψ(t)| ≤
1
|η|

[ ∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α)dτ

] 1
2
[ ∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α){G(τ)}2dτ
] 1

2

.

Now, in Eqn. (2.19), use the formula due to Mathai and Haubold [15, p. 86, Eqn. (2.2.21)], with L{{G(t)}2 : s} =

P(s), and L{1 : s} = 1
s , s > 0, we get result (20).

Finally, the Eqn. (2.19), by an appeal to the Theorem 2.2, gives the result (2.18).

Theorem 2.5 If log F(t) ∈ Hµ[a, b], where the Hölder space Hµ[a, b] := {ln F(t) : [a, b] ∈ R;∃K > 0 ∀(t, τ) ∈
[a, b]; | ln F(t) − ln F(τ)| ≤ K|t − τ|µ for some µ ∈ [0, 1]}, and 0 < α < 1. Then, by Theorem 2.2, there exists an
inequality
(2.24) U(x, t) ≤ ln F(0){xtαEα,α+1(−2tα)} + KxΓ(µ + 1)O(tα+µEα,α+µ+1(−2tα)).

Proof. Consider the Eqn. (2.1) and suppose that F(0) ≥ 1, then by our assumption and the Theorem 2.2, we write

(2.25) ψ(t) =
1
η

ln F(0)
∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α)dτ + 1
η

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α){lnF(τ) − ln F(0)}dτ.

Since in Theorem 2.5, ln F(x) ∈ Hµ[a, b], then by an appeal to Diethelm [7, p. 15], we get {lnF(τ) − ln F(0)} =

ln{ F(t)
F(0) } ≤ Ktµ, µ ∈ [0, 1],K is a constant.
Now, making an appeal to the Eqns. (26) and (27), and the conditions of Hölder space, we obtain the inequality

(2.26) ψ(t) ≤
1
η

logF(0)
∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α)dτ + K
η

∫ t
0 (t − τ)α−1τµEα,α(−2(t − τ)α)dτ.

Finally, an appeal to the Eqn. (2.25) and the Theorem 2.2, gives the result (2.22).

3 Churchill’s Multidimensional diffusion problem and its solution
Here, in our investigation, we introduce a general equation consisting of multidimensional Euler space derivatives,
Caputo time fractional derivative and the functions in trace of a given matrix as

(3.1) x1
∂U(x1, . . . , xr, t)

∂x1
+ . . . + xr

∂U(x1, . . . , xr, t)
∂xr

+ C
t Dα

0+ U(x1, . . . , xr, t) +
∑r

i=1 βii(U)

=
∏r

i, j,i=1 V(xi, t) ln
∏r

j=1 (F j(t))x j .

The Eqn. (3.1) can also be written as
(3.2)

∑r
i=1 xi

∂U(x1,...,xr ,t)
∂xi

+ C
t Dα

0+ U(x1, . . . , xr, t) +
∑r

i=1 βii(U) =
∑r

j=1 x j ln F j(t)
∏r

i, j,i=1 V(xi, t).
In the Eqns. (3.1) and (3.2), it is provided that 0 < α < 1,V(xi, t) , 0, xi > ai, t > 0, the function log Fi :

R+ → R, such that Fi(t) ≥ 1; βii(U) = U(x1, . . . , xr, t) ∀i = 1, 2, 3, . . . , r and
∑r

i=1 βii(U) is the Trace of square matrix
U

. . .

U


r×r

. An empty product, when it occurs, is taken as one.

Recently, multidimensional time diffusion problems are solved as separating in space and time variables by the
theory of various authors ([10], [12], [13], [14]). To solve the equation (3.1) or (3.2) by separation in variables, we
impose following initial and boundary conditions:
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Theorem 3.1 If consider that U(x1, . . . , xr, t) =
∏r

i=1 V(xi, t) , (xi, t) , 0 ∀i = 1, 2, . . . , r , in the equation (3.1) or (3.2),
then, for the conditions U(0, x2, . . . , xr, t) = . . . = U(x1, . . . , xr−1, 0, t) = 0; U(x1, . . . , xr, 0+) = 0, there exists a set of
problems

(3.3)
∂V(x j, t)
∂x j

+ C
t Dα

0+ V(x j, t) + V(x j, t) = x j ln(F j(t)), ∀ j = 1, 2, 3, . . . ., r;

with the conditions given as 0 < α < 1, V(0, t) = 0 = V(x j, 0+), ∀ j = 1, 2, . . . , r.

Proof. Set U(x1, . . . , xr, t) =
∏r

i=1 V(xi, t) in Eqn. (3.1) or (3.2), for 0 < α < 1, and then, on operating by the Caputo
fractional time derivative, we find

(3.4)
∑r

j=1
∏r

i, j,i=1 V(xi, t)x j
∂V(x j,t)
∂x j

+
∑r

j=1
∏r

i, j,i=1 V(xi, t)C
t Dα

0+ V(x j, t)

+
∑r

j=1
∏r

i, j,i=1 V(xi, t)V(x j, t) =
∑r

j=1
∏r

i, j,i=1 V(xi, t)x j ln(F j(t)).

Equating both the sides of Eqn. (3.4), we obtain the set of equations (3.3).
Again, in the relation U(x1, . . . , xr, t) =

∏r
i=1 V(xi, t), where, V(xi, t) , 0 ∀i = 1, 2, . . . , r; set U(0, x2, . . . , xr, t) =

. . . = U(x1, . . . , xr−1, 0, t) = 0; we get V(xi, t)
∣∣∣∣∣xi = 0 = 0 ∀xi = 0, i = 1, 2, . . . , r.

By Lagrange’s interpolation formula, we write

(3.5) U(x1, . . . , xr, t)|t = τi, τi → 0+ =
∑r

i=1

{∏r
j=1, j,i (t − τ j)V(x j, t)∏r

j=1, j,i (τi − τ j)

}
V(xi, t)

∣∣∣∣∣t = τi, τi → 0+,

∀i = 1, 2, 3, . . . , r.

Since, in our assumption U(x1, . . . , xr, 0+) = 0, and V(xi, t) , 0 ∀i = 1, 2, . . . , r, thus by (3.5), we find

V(xi, 0+) = 0 ∀i = 1, 2, . . . , r.

Hence, the Theorem 3.1 is proved.

Theorem 3.2 The equation (3.1) or (3.2) under the given conditions U(0, x2, . . . , xr, t) = . . . = U(x1, . . . , xr−1, 0, t) = 0;
U(x1, . . . , xr, 0+) = 0, has the solution

(3.6) U(x1, . . . , xr, t) =
∏r

i=1 V(xi, t) =
∏r

i=1 xi
∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(Fi(τ))dτ,

∀0 < α < 1, t > 0, xi > 0, i = 1, . . . , r.

Proof. An appeal to the Theorem 3.1 in the equation (3.1) or (3.2), we find r-equations
∂V(x j, t)
∂x j

+ C
t Dα

0+ V(x j, t) + V(x j, t) = x j ln(F j(t)), ∀ j = 1, 2, 3, . . . ., r;

with the conditions given by 0 < α < 1, V(0, t) = 0 = V(x j, 0+), ∀ j = 1, 2, . . . , r. Again, apply the Theorem 2.1, we
find

V(x j, t) = x j
∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(F j(τ))dτ, ∀ j = 1, 2, . . . , r.

Finally, use the concept and the theory of the Theorem 3.1 we evaluate the solution (3.6).

Theorem 3.3 For all 0 < α < 1, t > 0, xi > 0, i = 1, . . . , r, if all conditions of the Theorems 3.1 and 3.2 are satisfied,
then, for any η

′

, 0, there exists U(x1, . . . , xr, t) = Φ(x1, . . . , xr)Ψ(t) such that

(3.7) Φ(x1, . . . , xr) = η
′

x1 . . . xr and Ψ(t) =
1
η
′

∏r
i=1

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(Fi(τ))dτ.

Proof. An appeal to the Theorems 3.1 and 3.2, we find that

(3.8) U(x1, . . . , xr, t) = Φ(x1, . . . , xr)Ψ(t) = x1 . . . xr
∏r

i=1

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(Fi(τ))dτ.

By the relation (3.8), we bifurcate in separate variables as

(3.9)
Φ(x1, . . . , xr)

x1 . . . xr
=

∏r
i=1

∫ t
0 (t − τ)α−1Eα,α(−2(t − τ)α) ln(Fi(τ))dτ

Ψ(t)
= η

′

, η
′

, 0.

The relations (3.9) easily give the formulae (3.7).
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Theorem 3.4 For all 0 < α < 1, t > 0, xi > 0, i = 1, . . . , r, if all conditions of the Theorems 3.1 and 3.2 are satisfied,
then, for any η

′

, 0, and for | ln(Fi(t))| ≤ M
′

i , i = 1, 2, . . . , r, then, by the Theorems 3.3, there exists an estimation
formula via multidimensional Churchill’s diffusion problem

(3.10) |U(x1, . . . , xr, t)| ≤ M
′

1x1 . . . M
′

r xr{tα|Eα,α+1(−2tα)|}r.

Proof. Make an appeal to the Theorems 3.1, 3.2 and 3.3, we find

(3.11) |U(x1, . . . , xr, t)| = |x1 . . . xr |
∏r

i=1 |
∫ t

0 (t − τ)α−1Eα,α(−2(t − τ)α)| ln(Fi(τ))|dτ|.

Now, in (3.11) use the techniques of the Theorem 2.3 , and for | ln(Fi(t))| ≤ M
′

i , i = 1, 2, . . . , r, we obtain the
estimation formula

(3.12) |U(x1, . . . , xr, t)| ≤ |x1 . . . xr |
∏r

i=1 M
′

i {t
α|Eα,α+1(−2tα)|}.

The inequality (3.12) gives us the estimation formula (3.10).

Example 3.1 Let in the Theorem 3.2 Fi(t) = exp[yitρi ], yi ∈ R
+, ρi ∈ N0 ∀i = 1, 2, . . . , r;

N0 = {0, 1, 2, . . .}; then, there exists the solution of the multidimensional equation (3.1) or (3.2) with the conditions
given in the Theorem 3.1, as

(3.13) U(x1, . . . , xr, t) = tα
∏r

i=1 xiyi tρi Γ(ρi + 1)Eα,α+ρi+1(−2tα).

Solution. In the Theorem 3.2, introduce Fi(t) = exp[yitρi ], yi ∈ R
+, ρi ∈ N0 ∀i = 1, 2, . . . , r; where, N0 = {0, 1, 2, . . .};

we get

(3.14) U(x1, . . . , xr, t) =
∏r

i=1 xiyi
∑∞

k=0
(−2)k

Γ(αk+α)

∫ t
0 (t − τ)α+αk−1τρi dτ

=
∏r

i=1 xiyi
∑∞

k=0
(−2)k

Γ(αk+α)

∫ t
0 (t − τ)α+αk−1τρi dτ.

By Eqn. (3.14), we easily derive the solution (3.13).

Conclusion
In 1972, Churchill studied diffusion problem and again in 2012, another form of the solution of this problem is
obtained by Kumar [9] and then, converted into known and unknown hypergeometric functions. In this paper, in
the Section 2, we generalize the Churchill’s diffusion problem on introducing Caputo time fractional derivative and
then obtain various estimation formulae and with known and unknown functions and generating relations. Again,
we introduce a multidimensional time fractional diffusion problem to derive its solution on separating it in various
diffusions problems. By the Theorem 3.4, at t = x1 . . . xr, we find Cobb-Douglas [6] type functions given in (1.1).
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Jñānābha, Vol. 50(2) (2020), 153-159
(Dedicated to Honor Dr. R. C. Singh Chandel on His 75th Birth Anniversary Celebrations)

HYPERGEOMETRIC FORMS OF SOME MATHEMATICAL FUNCTIONS VIA DIFFERENTIAL
EQUATION APPROACH

By
M. I. Qureshi, Shakir Hussain Malik? and Jahan Ara

Department of Applied Sciences and Humanities, Faculty of Engineering and Technology
Jamia Millia Islamia (A Central University), New Delhi -110025, India

Email:miqureshi delhi@yahoo.co.in, jahanara.jrf15@gmail.com
?Corresponding author: malikshakir774@gmail.com
(Received : July 02, 2020 ; Revised: August 20, 2020)

Abstract

In this paper, by changing the independent and dependent variables in the suitable ordinary differential equations
of first and second order, and comparing the resulting ordinary differential equations with standard ordinary
differential equations of Leibnitz and Gauss, we obtain the hypergeometric forms of following functions:

−
4
x
`n

1 +
√

1 − x
2

 , tan−1(x), `n(1 + x), sin(b sin−1 x), cos(b sin−1 x).

2010 Mathematics Subject Classifications: 33C20, 34-xx.
Keywords and phrases: Hypergeometric functions, Ordinary differential equation, Pochhammer symbol.

1 Introduction and Preliminaries
In our investigations, we shall use the following standard notations:

N := {1, 2, 3, · · · } ;N0 := N ∪ {0} ;Z−0 := Z− ∪ {0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real numbers, natural numbers, integers,
positive and negative real numbers respectively.
Pochhammer symbol
The Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C)[16, p.22 Eqn.(1), p.32 Q.N.(8) and Q.N.(9)], see also
[18, p.23, Eqn.(22) and Eqn.(23)], is defined by

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=



1 (ν = 0; λ ∈ C\{0}),∏n−1
j=0 (λ + j) (ν = n ∈ N; λ ∈ C),

(−1)kn!
(n−k)! (λ = −n; ν = k; n, k ∈ N0; 0 5 k 5 n),

0 (λ = −n; ν = k; n, k ∈ N0; k > n),
(−1)k

(1−λ)k
(ν = −k; k ∈ N; λ ∈ C\Z),

it being assumed tacitly that the Gamma quotient exists.
Generalized hypergeometric function of one variable
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z], is accomplished by introducing any
arbitrary number of numerator and denominator parameters. Thus, the resulting series

(1.1) pFq

[
(αp);
(βq); z

]
= pFq

[
α1, α2, . . . , αp;
β1, β2, . . . , βq; z

]
=

∑∞
n=0

(α1)n(α2)n...(αp)n

(β1)n(β2)n...(βq)n

zn

n! ,

is known as the generalized hypergeometric series, or simply, the generalized hypergeometric function. Here p and
q are positive integers or zero and we assume that the variable z, the numerator parameters α1, α2, . . . , αp and the
denominator parameters β1, β2, . . . , βq take on complex values, provided that

β j , 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Here, none of the denominator parameters is zero or a negative integer, we note that the pFq series defined by
Eqn.(1.1):

(i) converges for |z| < ∞, if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,
(iii) diverges for all z, z , 0, if p > q + 1,
(iv) converges absolutely for |z| = 1, if p = q + 1 and<(ω) > 0,
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(v) converges conditionally for |z| = 1(z , 1), if p = q + 1 and −1 < <(ω) 5 0,
(vi) diverges for |z| = 1, if p = q + 1 and<(ω) 5 −1,

where by convention, a product over an empty set is interpreted as 1 and

(1.2) ω :=
∑q

j=1 β j −
∑p

j=1 α j,

<(ω) being the real part of complex number ω.
(I) When x2 = −t or x = i

√
t where i =

√
−1, then

(1.3)
dx
dt

=
i

2
√

t
or

dt
dx

= −2i
√

t,

(1.4)
dy
dx

=
dy
dt
×

dt
dx

= − 2i
√

t
dy
dt
,

d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dt

(
−2i
√

t
dy
dt

)
dt
dx

after simplification, we get

(1.5)
d2y
dx2 = −4t

d2y
dt2 − 2

dy
dt
.

(II) When y = i
√

tz, where z is the function of t then

(1.6)
dy
dt

=
iz

2
√

t
+ i
√

t
dz
dt
,

d2y
dt2 =

d
dt

(
dy
dt

)
=

d
dt

(
iz

2
√

t
+ i
√

t
dz
dt

)
after simplification, we get

(1.7)
d2y
dt2 = i

[
√

t
d2z
dt2 +

1
√

t

dz
dt
−

z

4t
3
2

]
.

(III) When x = −t, then

(1.8)
dt
dx

= −1,

(1.9)
dy
dx

=
dy
dt
×

dt
dx

= −
dy
dt
,

(1.10)
d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dt

(
−

dy
dt

)
dt
dx

=
d2y
dt2 .

(IV) When y = −tz, where z is the function of t then

(1.11)
dy
dt

= − z − t
dz
dt
,

(1.12)
d2y
dt2 = −2

dz
dt
− t

d2z
dt2 .

(V) When x2 = t or x =
√

t, then

(1.13)
dx
dt

=
1

2
√

t
or

dt
dx

= 2
√

t,

(1.14)
dy
dx

= 2
√

t
dy
dt
,

(1.15)
d2y
dx2 = 2

dy
dt

+ 4t
d2y
dt2 .

(VI) Gauss’ ordinary differential equation [15, Ch.(6), pp.144-148 and pp.157-158]
When γ , 0,±1,±2,±3, · · · and |t| < 1, then two linearly independent power series solutions of following

Gauss’ordinary homogeneous linear differential equation of second order with variable coefficients

(1.16) t(1 − t)
d2z
dt2 + [γ − (1 + α + β)t]

dz
dt
− αβz = 0,
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are given by

(1.17) z1 = 2F1

[
α, β;

γ; t
]
,

and

(1.18) z2 = t1−γ
2F1

[
α + 1 − γ, β + 1 − γ;

2 − γ; t
]
,

when γ is an integer then one solution may or may not, depending on the values of α and β, become logarithmic.
If any one solution of given differential equation is y(x) then Ay(x) will be the solution of same differential equation,

where A is any suitable constant.
The present article is organized as follows:
In Sections 2, we have derived the hypergeometric forms of some mathematical functions by using differential

equation approach. For hypergeometric forms of other mathematical functions and functions of mathematical physics,
we refer the literature [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],
[11],[12],[13],[14], [15], [17] and [19], where the proof of hypergeometric forms of related functions are not given.
So we are interested to give the proof of hypergeometric forms of the functions mentioned in Section 2.

2 Hypergeometric forms of mathematical functions
Using the theory of ordinary differential equation and changing of independent and dependent variables in suitable
differential equation, we can derive the following hypergeometric forms.

Theorem 2.1 If |x| < 1, then following hypergeometric forms hold true:

(2.1) −
4
x
`n

1 +
√

1 − x
2

 = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
,

(2.2) tan−1(x) = x 2F1

[
1, 1

2 ;
3
2 ;
− x2

]
,

(2.3) `n(1 + x) = x 2F1

[
1, 1;

2; − x
]
,

(2.4) sin(b sin−1 x) = bx 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

(2.5) cos(b sin−1 x) = 2F1

[ b
2 , −

b
2 ;
1
2 ;

x2
]
.

Proof of hypergeometric form of (2.1)
Consider,

(2.1,I) y ≡ y(x) = −
4
x
`n

1 +
√

1 − x
2

 .
For (0/0) indeterminate form, applying L’Hospital’s rule in right hand side of the (2.1,I), the value of y at x = 0,

will be 1. That is

(2.1,II) y(0) = 1,

(2.1,III) xy = −4 `n
1 +

√
1 − x

2

 .
On differentiating result (2.1,III) w.r.t. x and applying product rule, after simplification we get

dy
dx

+
y
x

=
2

x{1 +
√

1 − x}
√

1 − x

=
2{1 −

√
1 − x}

x{1 +
√

1 − x}{1 −
√

1 − x}
√

1 − x
.

Therefore

(2.1,IV)
dy
dx

+
y
x

=
2
x2 {(1 − x)−

1
2 − 1}.

155



The differential equation (2.1,IV) is written in the standard form of Leibnitz linear differential equation ( dy
dx + Py =

Q), therefore integrating factor for differential equation (2.1,IV) will be
(2.1,V) I.F. = exp

{∫
1
x dx

}
= exp{`n(x)} = x .

The general solution of differential equation (2.1,IV) will be

(2.1,VI) y =
1
x

∫
x
[

2
x2

{
(1 − x)−

1
2 − 1

}]
dx + C,

where C is the constant of integration.
Therefore

y =
1
x

∫
2
x

{
1F0

[ 1
2 ;
−; x

]
− 1

}
dx + C =

∑∞
r=0

( 3
2 )r (1)r (1)r xr

(2)r (2)r r! + C

(2.1,VII) y(x) = 1 +
∑∞

r=1
( 3

2 )r (1)r (1)r xr

(2)r (2)r r! + C,

(2.1,VIII) y(x) = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
+ C.

When x = 0 in the equation(2.1,VII), we get C = 0.
Therefore particular solution of the differential equation (2.1,IV) will be

(2.1,IX) y = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
,

therefore

(2.1,X) −
4
x
`n

1 +
√

1 − x
2

 = 3F2

[
1, 1, 3

2 ;
2, 2; x

]
,

which is satisfied by x = 0.

Proof of Hypergeometric Form of (2.2)
Consider,
(2.2,I) y ≡ y(x) = tan−1(x),
(2.2,II) y(0) = 0.

Differentiate the equation (2.2,I) w.r.t. x, we get

(2.2,III) (1 + x2)
dy
dx

= 1.
Again differentiate the equation (2.2,III) w.r.t. x and use product rule, after simplification we have

(2.2,IV) (1 + x2)
d2y
dx2 + 2x

dy
dx

= 0 .

Put x2 = −t or x = i
√

t, then use values of equations (1.4) and (1.5) in above differential equation (2.2,IV), after
simplification we get

(2.2,V) t(1 − t)
d2y
dt2 +

{
1
2
−

3t
2

}
dy
dt

= 0 .

Now substitute y = i
√

tz, where z is the function of t and put the values of equations (1.6) and (1.7) in above
differential equation (2.2,V), after simplification we obtain

(2.2,VI) t(1 − t)
d2z
dt2 +

{
3
2
−

5t
2

}
dz
dt
−

1
2

z = 0 .

Now compare the coefficients of above differential equation (2.2,VI) with Gauss’ standard differential equation
(1.16), we get

γ =
3
2
, α + β + 1 =

5
2
, αβ =

1
2
.

Now solve the above algebraic equations simultaneously, we get

α = 1, β =
1
2
.

Therefore one of the series solution of above differential equation (2.2,VI) will be

z = 2F1

[
1, 1

2 ;
3
2 ;

t
]
,

y = i
√

t 2F1

[
1, 1

2 ;
3
2 ;

t
]
,

tan−1(x) = x 2F1

[
1, 1

2 ;
3
2 ;
− x2

]
,

which is satisfied by x = 0.
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Proof of Hypergeometric Form of (2.3)
Consider,

(2.3,I) y ≡ y(x) = `n(1 + x),

(2.3,II) y(0) = 0.

Differentiate the equation (2.3,I) w.r.t. x, we get

(2.3,III) (1 + x)
dy
dx

= 1.

Again differentiate the equation (2.3,III) w.r.t. x and use product rule, after simplification we have

(2.3,IV) (1 + x)
d2y
dx2 +

dy
dx

= 0 .

Put x = −t, then use values of equations (1.9) and (1.10) in above differential equation (2.3,IV), after simplification
we get

(2.3,V) (1 − t)
d2y
dt2 −

dy
dt

= 0 .

Now substitute y = −tz, where z is the function of t and put the values of equations (1.11) and (1.12) in above
differential equation (2.3,V), after simplification we obtain

(2.3,VI) t(1 − t)
d2z
dt2 + {2 − 3t}

dz
dt
− z = 0 .

Now compare the coefficients of above differential equation (2.3,VI) with Gauss’ standard differential equation
(1.16), we get

γ = 2, α + β + 1 = 3, αβ = 1.

Now solve the above algebraic equations simultaneously, we get

α = 1, β = 1 .

Therefore one of the series solution of above differential equation (2.3,VI) will be

z = 2F1

[
1, 1;

2; t
]
,

y = −t 2F1

[
1, 1;

2; t
]
,

`n(1 + x) = x 2F1

[
1, 1;

2; − x
]
,

which is satisfied by x = 0.

Proof of Hypergeometric Form of (2.4)
Consider,

(2.4,I) y ≡ y(x) = sin(b sin−1 x),

(2.4,II) y(0) = 0.

Differentiate the equation (2.4,I) w.r.t. x, we get

(2.4,III)
√

1 − x2 dy
dx

= b cos(b sin−1 x).

Again differentiate the equation (2.4,III) w.r.t. x and use product rule, after simplification we have

(2.4,IV) (1 − x2)
d2y
dx2 − x

dy
dx

+ b2y = 0 .

Put x2 = t or x =
√

t, then use values of equations (1.14) and (1.15) in above differential equation (2.4,IV), after
simplification we get

(2.4,V) t(1 − t)
d2y
dt2 +

{
1
2
− t

}
dy
dt

+
b2

4
y = 0 .
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Now compare the coefficients of above differential equation (2.4,V) with Gauss’ standard differential equation
(1.16), we get

γ =
1
2
, α + β + 1 = 1, αβ = −

b2

4
.

Now solve the above algebraic equations simultaneously, we get

α =
b
2
, β = −

b
2
.

Therefore one of the suitable power series solution of above differential equation (2.4,V) will be

y = t
1
2 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

t
]
,

sin(b sin−1 x) = x 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
.

More general solution will be

sin(b sin−1 x) = Ax 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

or
sin(b sin−1 x)

Ax
= 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

(2.4,VI)
b
A

(
sin−1 x

x

)
−

b3

3!A

(
sin−1 x

x

)
(sin−1 x)2 +

b5

5!A

(
sin−1 x

x

)
(sin−1 x)4 − · · · = 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
.

Now taking limx→0 in the equation (2.4,VI), we get A = b.
Therefore more general solution will be

sin(b sin−1 x) = bx 2F1

[ 1+b
2 , 1−b

2 ;
3
2 ;

x2
]
,

which is satisfied by x = 0 or b = 0 or both b, x = 0.

Proof of Hypergeometric Form of (2.5)
Consider,
(2.5,I) y ≡ y(x) = cos(b sin−1 x),
(2.5,II) y(0) = 1.

Differentiate the equation (2.5,I) w.r.t. x, we get

(2.5,III)
√

1 − x2 dy
dx

= −b sin(b sin−1 x).

Again differentiate the equation (2.5,III) w.r.t. x and use product rule, after simplification we have

(2.5,IV) (1 − x2)
d2y
dx2 − x

dy
dx

+ b2y = 0 .

Put x2 = t or x =
√

t, then use values of equations (1.14) and (1.15) in above differential equation (2.5,IV), after
simplification we obtain

(2.5,V) t(1 − t)
d2y
dt2 +

{
1
2
− t

}
dy
dt

+
b2

4
y = 0 .

Now compare the coefficients of above differential equation (2.5,V) with Gauss’ standard differential equation
(1.16), we get

γ =
1
2
, α + β + 1 = 1, αβ = −

b2

4
.

Now solve the above algebraic equations simultaneously, we get

α =
b
2
, β = −

b
2
.

Therefore one of the series solution of above differential equation (2.5,V) will be

y = 2F1

[ b
2 , −

b
2 ;
1
2 ;

t
]
,

cos(b sin−1 x) = 2F1

[ b
2 , −

b
2 ;
1
2 ;

x2
]
,

which is satisfied by x = 0 or b = 0 or both b, x = 0.
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3 Conclusion
In our present investigation, we derived the hypergeometric forms of some functions by using differential equation
approach. Moreover, the results derived in this paper are expected to have useful applications in wide range of problems
of Mathematics, Statistics and Physical sciences. Similarly, we can derive the hypergeometric forms of other functions
in an analogous manner.
Acknowledgement. The authors are highly thankful to the referee for suitable corrections and shortened version of
the paper.
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Abstract

In this paper, we prove a uniqueness theorem for derivatives of algebroid functions which improve and generalize
the Navenlinna’s five-value theorem for algebroid functions.
2010 Mathematics Subject Classifications: 30D35.
Keywords and phrases: Value Distribution Theory; Nevanlinna theory; algebroid functions, uniqueness.

1 Introduction
The value distribution theory of meromorphic functions was extended to the corresponding theory of algebroid
functions by Ullarich [27] and Valiron [28] around 1930, and important results on uniqueness for algebroid functions
have been obtained. It is well known that Valiron obtained a famous 4ν + 1-valued theorem. The uniqueness theory
of algebroid functions is an interesting problem in the value distribution theory. Many researchers like Valiron [28],
Baganas [1], He et al.[11, 12] and others have done a lot of work in this area (see [1], [4]-[6], [9]-[26], [30], [31]).
In this paper, we discuss a result of Indrajit Lahiri and Rupa Pal [13] on the Nevanlinna’s value distribution theory of
meromorphic functions for Nevanlinna’s five values theorem to algebroid functions

Let Aν(z), Aν−1(z), ..., A0(z) be analytic functions with no common zeros in the complex plane, then the following
equation

(1.1) Aν(z)Wν + Aν−1(z)Wν−1 + ... + A1(z)W + A0(z) = 0.

Then equation (1.1) defines a ν-valued algebroid function W(z) [29].
It is well known from [12] that on the complex plane with a cutting the projection of the critical points of the

function W, the Nevanlinna characteristic T (r,W) is defined as

T (r,W) = m(r,W) + N(r,W),

where

m(r,W) =
1

2πν
∑ν

j=1

∫ 2π
0 log+ |w j(reiθ)|dθ,

N(r,W) =
1
ν

∫ r
0

n(t,W)−n(0,W)
t dt +

n(0,W)
ν

log r,

where w j(z)( j = 1, 2, 3, ..., ν) is one valued branch W(z) and n(t,W) is the counting function of poles of the function of
W(z) in the whole of the complex plane. Let wi(z) and m j(z) be one valued branches of two algebroid (µ-valued and ν-
valued)functions. It follows from Prokopovich [16] that we consider their quotient in the domain of the complex plane
with cutting through the projection of the critical points of both functions. The one-valued branches of the function
W/M (W.M) will be defined by wi/m j (wi.m j), where 1 ≤ i ≤ m, 1 ≤ j ≤ n. The Nevanlinna characteristic T (r,W/M)
or T (r,W.M) is defined as follows

m(r,W.M) =
1
µν

∑
1≤i≤µ;1≤ j≤ν m(r,wi(z).m j(z))

=
1
µν

∑
1≤i≤µ;1≤ j≤ν

1
2π log+ |wi(z).m j(z)|dθ

=
1
µν

(
ν
∑µ

i=1
1

2π log+ |wi(z)|dθ + µ
∑ν

j=1
1

2π log+ |m j(z)|dθ
)
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=
1
µ

∑µ
i=1

1
2π log+ |wi(z)|dθ + 1

ν

∑ν
j=1

1
2π log+ |m j(z)|dθ

= m(r,W) + m(r,M),

and

N(r,W.M) =
1
µν

∫ r
0

n(t,W.M)
t dt

≤
1
µν

(
ν
∫ r

0
n(t,W.M)

t dt + µ
∫ r

0
n(t,W.M)

t dt
)

=
1
µ

∫ r
0

n(t,W.M)
t dt + 1

ν

∫ r
0

n(t,W.M)
t dt

= N(r,W) + N(r,M).

Therefore T (r,W.M) ≤ T (r,W) + T (r,M).
Similarly T (r,W/M) ≤ T (r,W) + T (r,M).

Let W(z) be a ν-valued algebroid function and a ∈ C be any complex number. Ek)(W = a) denotes the set of zeros
of W(z) − a, whose multiplicities are not greater than k. nk)(W = a) denotes the number of distinct zeros of W(z) − a
in |z| ≤ r, whose multiplicities are not greater than k and are counted only once. Similarly, we define the functions
n(k+1(r,W = a), Nk)(r,W = a) and N(k+1(r,W = a).

Lemma 1.1 [9] Let W(z) be a ν-valued algebroid function and {a j}
q
j=1 ⊂ C be q distinct complex numbers and let

{k j}
q
j=1 ⊂ N be q positive integers. Then

(q − 2ν)T (r,W) ≤
∑q

k=1
k j

k j+1 Nk j)

(
r,W = a j

)
+

∑q
k=1

1
k j+1 N(r,W = a j) + S (r,W),(

q − 2ν −
∑q

k=1
1

k j+1

)
T (r,W) ≤

∑q
k=1

k j

k j+1 Nk j)

(
r,W = a j

)
+ N(r,W = a j) + S (r,W).

In 2006 Zu-Xing Xuan and Zong-Sheng Gao [29] improved the Nevanlinna Five Value Theorem for algebroid
functions in the following manner.

Theorem 1.1 Let W(z) and M(z) be two ν-valued, non-constant algebroid functions, let a j ( j = 1, 2, ..., 4ν+1) be 4ν+1
distinct complex numbers in C. If

E2ν+1)(a j,W) = E2ν+1)(a j,M) ( j = 1, 2, ..., 2ν + 1)

and

E2ν)(a j,W) = E2ν)(a j,M) ( j = 1, 2, ..., 4ν + 1),

then W(z) = M(z).

Definition 1.1 For B ⊂ A and a ∈ C, we denote by NB(r, 1
f−a ) the reduced counting function of those zeros of f − a on

A, which belong to the set B.
In 2018 Rathod [20] proved the following theorem for algebroid functions

Theorem 1.2 Let W1(z) and W2(z) be two ν-valued, non-constant algebroid functions, let a j ( j = 1, 2, ..., q) be q ≥ 4ν+1
distinct complex numbers or ∞. Suppose that k1 ≥ k2 ≥ ... ≥ kq,m are positive integers or ∞; 1 ≤ m ≤ q and
δ j(≥ 0)( j = 1, 2, ..., q) are such that(

1 +
1
km

)∑q
j=m

1
1+k j

+ 3ν +
∑q

j=1 δ j < (q − m − 1)
(
1 + 1

km

)
+ m.

Let B j = Ek j (a j, f )\Ek j (a j, g) for j = 1, 2, ..., q. If

NB j (r,
1

W1 − a j
) ≤ δ jT (r,W1)

and

lim inf
r→∞

∑q
j=1 Nk j (r,

1
W1−a j

)∑q
j=1 Nk j (r,

1
W2−a j

)
>

νkm

(1 + km)
∑q

j=1
k j

k j+1 − 2ν(1 + km) + (m − 2ν −
∑q

j=1 δ j)km

then W1(z) ≡ W2(z).
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2 Main Results
In the paper we wish to further investigate the problem on the Nevanlinna’s five value theorem for algebroid functions.
To state our main Theorem, we wish to introduce the following Lemma 2.1.

Lemma 2.1 Let W(z) be a ν-valued algebroid function and a1, a2, ..., aq be q(≥ 2ν+ 1) distinct complex numbers. If for
a non-negative integer n, E(0; W) ⊆ E(0,W (n)), then

(q − 2ν + o(1))T (r,W) ≤
∑q

j=1 N
(
r, 1

W (n)−a j

)
.

Proof. By Nevanlinna’s first fundamental theorem for algebroid functions, we have

T (r,W) =T
(
r,

1
W

)
+ O(1)(2.1)

≤N
(
r,

1
W

)
+ m

(
r,

W (n)

W

)
+ m

(
r,

1
W (n)

)
+ O(1)

≤N
(
r,

1
W

)
+ T (r,W (n)) − N

(
r,

1
W (n)

)
+ S (r,W).

By the Nevanlinna’s second fundamental theorem for algebroid functions, we get

(q − 1) T (r,W (n)) ≤ N(r,W (n)) +
∑q−1

j=1 N
(
r, 1

W (n)−a j

)
+ N

(
r, 1

W (n)

)
+ S (r,W).

Without loss of generality, we may assume that aq = 0. Otherwise a suitable linear transformation is done. Then
the above inequality reduces to

(2.2) (q − 1) T (r,W (n)) ≤ N(r,W (n)) +
∑q

j=1 N
(
r, 1

W (n)−a j

)
+ S (r,W).

Using (2.2) in (2.1), we obtain

(q − 1)T (r,W) ≤ (q − 1) T
(
r,

1
W

)
+ N(r,W (n)) +

∑q
j=1 N

(
r, 1

W (n)−a j

)
− (q − 1)N

(
r,

1
W (n)

)
+ S (r,W).

Thus

(q − 1)T (r,W) ≤ (q − 1) T
(
r,

1
W

)
+ N(r,W) +

∑q
j=1 N

(
r, 1

W (n)−a j

)
(2.3)

− (q − 1)N
(
r,

1
W (n)

)
+ S (r,W).

Since E(0,W) ⊆ E(0,W (n)), we have from (2.3)

(q − 1)T (r,W) ≤ N(r,W) +
∑q

j=1 N
(
r, 1

W (n)−a j

)
+ S (r,W).

Hence
(q − 2ν + o(1))T (r,W) ≤

∑q
j=1 N

(
r, 1

W (n)−a j

)
.

This completes the proof of the Lemma 2.1.
In this paper we wish to obtain a generalization of Theorem 1.2. Now we state and prove our main result in the

following way.

Theorem 2.1 Let W1(z) and W2(z) be two ν-valued, non-constant algebroid functions, let a j( j = 1, 2, ..., q) be q ≥ 4ν+1
distinct complex numbers or ∞. Suppose that k1 ≥ k2 ≥ ... ≥ kq are positive integers or ∞ and δ j(≥ 0)( j = 1, 2, ..., q)
are such that

1
k1

+

(
1 +

1
km

)∑q
j=2ν

1
1+k j

+ 1 + δ < q−2ν
n+1

(
1 + 1

k1

)
.

for a non-negative integer n. Let B j = Ek j (a j,W1)\Ek j (a j,W2) for j = 1, 2ν, ..., q and E(0,Wi) ⊆ E(0,W (n)
i ) for i = 1, 2.

If

NB j (r,
1

W (n)
1 − a j

) ≤ δ jT (r,W (n)
1 )

and

lim inf
r→∞

∑q
j=1 Nk j) (r,

1
W (n)

1 −a j
)∑q

j=1 Nk j) (r,
1

W (n)
2 −a j

)
>

(n + 1)k1

(p − 2ν)(1 + k1) − (n + 1)(1 + k1)
∑q

j=2ν
1

1+k j
− (n + 1){(1 + δ)k1 + 1}

,

then W (n)
1 (z) ≡ W (n)

2 (z).
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Proof. By Lemma 2.1, we have

(2.4) (q − 2ν + o(1))T (r,W1) ≤
∑q

j=1 N
(
r, 1

W (n)
1 −a j

)
and

(2.5) (q − 2ν + o(1))T (r,W2) ≤
∑q

j=1 N
(
r, 1

W (n)
2 −a j

)
.

From (2.4), we have

(q − 2ν + o(1))T (r,W1) ≤
∑q

j=1

{
Nk j)

(
r, 1

W (n)
1 −a j

)
+ N(k j+1

(
r, 1

W (n)
1 −a j

)}
≤

∑q
j=1

{
Nk j)

(
r, 1

W (n)
1 −a j

)
+ 1

1+k j
N(kq+1

(
r, 1

W (n)
1 −a j

)}
≤

∑q
j=1

{
k j

1+k j
Nk j)

(
r, 1

W (n)
1 −a j

)
+ 1

1+k j
N

(
r, 1

W (n)
1 −a j

)}
≤

∑q
j=1

k j

1+k j
Nk j)

(
r, 1

W (n)
1 −a j

)
+

∑q
j=1

1
1+k j

T
(
r,W (n)

1

)
≤

∑q
j=1

k j

1+k j
Nk j)

(
r, 1

W (n)
1 −a j

)
+ (n + 1)

∑q
j=1

1
1+k j

T
(
r,W (n)

1

)
.

Therefore

(q − 2ν − (n + 1)
∑q

j=1
1

1+k j
+ o(1))T (r,W1) ≤

∑q
j=1

k j

1+k j
Nk j)

(
r, 1

W (n)
1 −a j

)
.

Similarly from (2.5), we get

(q − 2ν − (n + 1)
∑q

j=1
1

1+k j
+ o(1))T (r,W2) ≤

∑ j
j=1

k j

1+k j
Nk j)

(
r, 1

W (n)
2 −a j

)
.

Let B j = Ek j (a j,W
(n)
1 )\A j for j = 1, 2ν, ..., q.

Now∑q
j=1 Nk j)

(
r, 1

W (n)
1 −a j

)
=

∑q
j=1 NA j

(
r, 1

W (n)
1 −a j

)
+

∑q
j=1 NB j

(
r, 1

W (n)
1 −a j

)
≤δT (r,W (n)

1 ) + N

r, 1

W (n)
1 −W (n)

2


≤(1 + δ)(n + 1)T (r,W1) + (n + 1)T (r,W2).

Hence(
q − 2ν − (n + 1)

∑q
j=1

1
1+k j

+ o(1)
)∑q

j=1 Nk j)

(
r, 1

W (n)
1 −a j

)
≤(1 + δ)(n + 1)

∑q
j=1

k j

1+k j
Nk j)

(
r, 1

W (n)
1 −a j

)
+ (n + 1)

∑q
j=1

k j

1+k j
Nk j)

(
r, 1

W (n)
2 −a j

)
.

Since 1 ≥
k1

k1 + 1
≥

k2

k2 + 1
≥ ... ≥

kq

kq + 1
≥

1
2
, we get from the above inequality(

q − 2ν − (n + 1)
∑q

j=1
1

1+k j
+ o(1)

)∑q
j=1 Nk j)

(
r, 1

W (n)
1 −a j

)
≤(1 + δ)(n + 1)

k1

1 + k1

∑q
j=1 Nk j)

(
r, 1

W (n)
1 −a j

)
+ (n + 1) k1

1+k1

∑q
j=1 Nk j)

(
r, 1

W (n)
2 −a j

)
.

Since that implies(
q − 2ν − (n + 1)

∑q
j=1

1
1+k j
− (1 + δ)(n + 1) k1

1+k1
+ o(1)

)∑q
j=1 Nk j)

(
r, 1

W (n)
1 −a j

)
≤(n + 1)

k1

1 + k1

∑q
j=1 Nk j)

(
r, 1

W (n)
2 −a j

)
.

Therefore

lim inf
r→∞

∑q
j=1 Nk j (r,

1
W1−a j

)∑q
j=1 Nk j (r,

1
W2−a j

)

≤
(n + 1)k1

(q − 2ν)(1 + k1) − (n + 1)(1 + k1)
∑q

j=1
1

1+k j
− (n + 1){(1 + δ)k1
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≤
(n + 1)k1

(q − 2ν)(1 + k1) − (n + 1)(1 + k1)
∑q

j=2ν
1

1+k j
− (n + 1){(1 + δ)k1 + 1

.

which is a contradiction.
Thus, we have W (n)

1 (z) . W (n)
2 (z).

Therefore we complete the proof of Theorem 2.1.
From Theorem 2.1, we can get the following consequences.

Corollary 2.1 Let k j = ∞ for j = 1, 2ν, ..., q and

γ = lim inf
r→∞

Nk j)

(
r, 1

W (n)
1 −a j

)
Nk j)

(
r, 1

W (n)
2 −a j

) > n + 1
q − (n + 2ν + 1)

.

If NA j (r,
1

W (n)
1 −a j

) ≤ δ jT (r,W (n)
1 ) where δ(≥ 0) satisfy 0 ≤ δ j <

q−(n+2ν+1)
n+1 − 1

γ
.

If we assume E∞)(a j,W
(n)
1 ) ⊆ E∞)(a j,W

(n)
2 ), then A j = φ for j = 1, 2ν, ..., q and so we can choose δ = 0.

Therefore Theorem 2.1 is an improvement of following theorem.

Theorem 2.2 Let W1(z) and W2(z) be two ν-valued, non-constant algebroid functions, let a j ( j = 1, 2, ..., q) be q ≥ 4ν+1
distinct complex numbers or ∞. and for a non-negative integer n, E∞)(a j,W

(n)
1 ) ⊆ E∞)(a j,W

(n)
2 ) for 1 ≤ j ≤ q,

E∞)(0,W1) ⊆ E∞)(0,W
(n)
1 ), E∞)(0,W2) ⊆ E∞)(0,W

(n)
2 ) and

lim inf
r→∞

∑q
j=1 Nk j) (r,

1
W (n)

1 −a j
)∑q

j=1 Nk j) (r,
1

W (n)
2 −a j

)
>

(n + 1)
q − (n + 2ν + 1)

,

then W (n)
1 (z) ≡ W (n)

2 (z).

Corollary 2.2 Let n = 0, k j = ∞ for j = 1, 2ν, ..., q and

γ = lim inf
r→∞

Nk j)

(
r, 1

W1−a j

)
Nk j)

(
r, 1

W2−a j

) > 1
q − 2ν + 1

.

If NB j (r,
1

W1−a j
) ≤ δ jT (r,W1) where δ(≥ 0) satisfy 0 ≤

∑q
j=1 δ j < k − (2ν + 1) − 1

γ
, then W1(z) ≡ W2(z). If we

take q = 4ν + 1 and E(a j, f ) ⊆ E(a j, f ), then A j = φ for j = 1, 2, ..., 4ν + 1. Therefore, if we choose δ j = 0 for
j = 1, 2, ..., 4ν + 1 and take any constant γ, such that 0 ≤ 2ν − 1

γ
in Corollary 2.2; we can get that W1(z) ≡ W2(z).

Especially, if q = 4ν + 1 and E(a j,W1) = E(a j,W2), then γ = 1 and δ j = 0 for j = 1, 2, ..., 4ν + 1. We can obtain
W1(z) ≡ W2(z). Then Corollary 2.2 is an improvement of Theorem 1.1.

Corollary 2.3 Let W1(z) and W2(z) be two ν-valued, non-constant algebroid functions, let a j ( j = 1, 2, ..., q) be q ≥ 5
distinct complex numbers or ∞. Suppose that k1, k2, ..., kq are positive integers or ∞; with k1 ≥ k2 ≥ ... ≥ kq if
Ek j)(a j,W1) ⊆ Ek j)(a j,W2) and :∑q

j=2ν
k j

k j+1 −
k1

γ(k1+1) − 2ν > 0,
where γ is stated as in Corollary 2.2; then W1(z) ≡ W2(z).

Corollary 2.4 Under the assumptions of Corollary 2.2, Ek j)(a j,W1) = Ek j)(a j,W2) and :∑q
j=2ν

k j

k j+1 −
k1

(k1+1) − 2ν > 0,

Corollary 2.5 Let W1(z) and W2(z) be two ν-valued, non-constant algebroid functions, let a j ( j = 1, 2, ..., q) be q ≥ 5
distinct complex numbers or ∞. Suppose that k1, k2, ..., kq are positive integers or ∞; with k1 ≥ k2 ≥ ... ≥ kq if
Ek j)(a j, f ) ⊆ Ek j)(a j, g) and :∑q

j=2ν
k j

k j+1 − 2ν +
(m−2ν− 1

γ )km

γ(km+1) − 2ν > 0,
where γ is stated as in Corollary 2.2; then W1(z) ≡ W2(z).

In Corollary 2.1 if n = 0 and q = 4ν + 1 then we get the following theorem.

Theorem 2.3 Let W1(z) and W2(z) be two ν-valued, non-constant algebroid functions such that E∞)(a j,W1) ⊆
E∞)(a j,W2) for a1, a2, ..., a5 of C ∪∞. If

lim inf
r→∞

∑4ν+1
j=1 Nk j) (r,

1
W1−a j

)∑4ν+1
j=1 Nk j) (r,

1
W2−a j

)
>

1
2
,

then W1(z) ≡ W2(z).
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3 Conclusion
In this paper, we discussed on the Nevanlinna’s value distribution theory of meromorphic functions to Nevanlinna’s
five values theorem for algebroid functions and we further investigated the problems on the Nevanlinna’s five value
theorem for algebroid functions.
Acknowledgement. Authors are thankful to Editors and Reviewers for their suggestions to improve the paper in its
present form.
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Abstract

In this paper, an existence result for perturbed abstract measure differential equations is proved via hybrid fixed
point theorems of Dhage [4] under the mixed generalized Lipschitz and Carathéodory conditions. The existence of
the extremal solutions is also proved under certain monotonicity conditions and using a hybrid fixed point theorem of
Dhage [4] on ordered Banach spaces. Our existence results include the existence results of Sharma [23], Joshi [19]
and Shendge and Joshi [25] as special cases under weaker continuity condition.
2010 Mathematics Subject Classifications: 34K10, 47H10
Keywords and phrases: Abstract measure differential equation; Dhage fixed point theorem; Existence theorem;
Extremal solutions.

1 Introduction
Sharma [23, 24] introduced the abstract measure differential equations as the generalizations of the ordinary differential
equations in which ordinary derivative is replaced with the Radon-Nykodym derivative of vector measures in abstract
spaces. The basic results concerning the existence and uniqueness of solutions for such equations in the above papers
via fixed point techniques from nonlinear functional analysis. Later, such abstract measure differential equations are
studied by various authors for different aspects of the solutions (see Joshi [19], Shendge and Joshi [25], Dhage [1, 2, 3],
Dhage et al. [13], Dhage and Graef [14], Dhage and Reddy [16] and the references therein).

It is quite familiar that if a nonlinear differential equation is not solvable, but when we perturb it, we obtain
very interesting results along with existence of solution. The classifications of different types of perturbations appear
in Dhage [5]. The perturbed differential equation of any type is called a hybrid differential equations and studied
extensively in the literature for different aspects of the solutions via hybrid fixed point theory initiated by Krasnoseslskii
[20] and Dhage [4, 5, 7]. In the present paper, we consider a nonlinear abstract measure differential equation with linear
perturbation of second type and deal with a variant of Krasnoselskii [20] fixed point theorem due to Dhage [4]. The
results of this paper complement and generalize the results of Sharma [23, 24], Joshi [19], Shendge and Joshi [25],
Dhage [1, 2, 3] on abstract measure differential equations under suitable conditions.

The rest of the paper is organized as follows. Section 2 deals with the statement of the problem of abstract measure
differential equation and Section 3 deals with the auxiliary results needed in the subsequent sections of the paper.
The main existence result is presented in Section 4 and an existence result concerning the extremal solutions is given
in Section 5. Finally, a comparison of our AMDE with the ordinary differential equations along with a couple of
examples are presented in Section 6.

2 Statement of the Problem
Let X be a real Banach space with a convenient norm ‖ · ‖ and let x, y ∈ X be any two elements. Then the line segment
xy in X is defined by
(2.1) xy = {z ∈ X | z = x + r(y − x), 0 ≤ r ≤ 1}.

Let x0 ∈ X be a fixed point and z ∈ X. Then for any x ∈ x0z, we define the sets S x and S x in X by
(2.2) S x = {rx | − ∞ < r < 1},
and
(2.3) S x = {rx | − ∞ < r ≤ 1}.

Let x1, x2 ∈ xy be arbitrary. We say x1 < x2 if S x1 ⊂ S x2 , or equivalently, x0x1 ⊂ x0x2. In this case we also write
x2 > x1.
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Let M denote the σ-algebra of all subsets of X such that (X,M) is a measurable space. Let ca(X,M) be the space
of all vector measures (real signed measures) and define a norm | · | on ca(X,M) by
(2.4) ‖p‖ = |p|(X),
where |p| is a total variation measure of p and is given by
(2.5) |p|(X) = sup

σ

∑∞
i=1 | p(Ei)|, Ei ⊂ X,

where the supremum is taken over all possible partitions σ = {Ei : i ∈ N} of measurable subsets of X. It is known that
ca(X,M) is a Banach space with respect to the norm ‖ · ‖ given by (2.4).

Let µ be a σ-finite positive measure on X, and let p ∈ ca(X,M). We say p is absolutely continuous with respect to
the measure µ if µ(E) = 0 implies p(E) = 0 for E ∈ M. In this case we also write p << µ.

Let x0 ∈ X be fixed and let M0 denote the σ- algebra on S x0 . Let z ∈ X be such that z > x0 and let Mz denote the
σ-algebra of all sets containing M0 and the sets of the form S x, x ∈ x0z.

Given a p ∈ ca(X,M) with p << µ, consider the abstract measure differential equation (AMDE) with a linear
perturbation of second type of the form

(2.6)
d

dµ

[
p(S x) − f (x, p(S x))

]
= g(x, p(S x)) a.e. [µ] on x0z,

and
(2.7) p(E) = q(E), E ∈ M0,

where q is a given known vector measure,
dp
dµ

is a Radon-Nikodym derivative of p with respect to µ, f : S z ×R→ R

is a continuous function with the map E 7→
[
p(E) − f (x, p(E))

]
= λ(E) is an absolutely continuous measure w.r.t. the

measure µ for each x ∈ S z and the function g : S z × R → R is such that the map x 7→ g(x, p(S x)) is µ-integrable for
each p ∈ ca(S z,Mz).

Remark 2.1 Let λ(E) =
[
p(E) − f (x, p(E))

]
for x ∈ S z and E ∈ Mz. If p << µ and λ << µ, then f (x, 0) = 0 for each

x ∈ S z.

Definition 2.1 Given an initial real measure q on M0, a vector p ∈ ca(S z,Mz) (z > x0) is said to be a solution of AMDE
(2.6)-(2.7) if

(i) p(E) = q(E), E ∈ M0,
(ii) p << µ on x0z, and

(iii) p satisfies (2.6) a.e. [µ] on x0z.

The following result from measure theory is often times used for transforming the abstract measure differential
equation into an equivalent abstract measure integral equation.

Theorem 2.1 (Radon-Nikkodym theorem) Let λ and µ be two σ-finite measures defined on a measurable space (X,M)
such that λ << µ. Then there exists a M-measurable function f : X → [0,∞) such that
(2.8) λ(E) =

∫
E f dµ

for any E ∈ M. The function f is unique upto the set of measure zero.

Note that the function f in the expression (2.8) is called the Radon-Nikodym derivative of the measure λ with
respect to the measure µ and in this case we write

(2.9)
dλ
dµ

= f a. e. [µ] on X.

The details of Radon-Nikodym derivative and its integral representation appear in Ruddin [22], Sharma [23, 24],
Dhage [1] and the references therein.

Remark 2.2 By an application of Radon-Nikodym theorem given in Theorem 2.1, the AMDE (2.6)-(2.7) is equivalent
to the abstract measure integral equation (in short AMIE)
(2.10) p(E) = f (x, p(E)) +

∫
E g(x, p(S x)) dµ,

if E ∈ Mz, E ⊂ x0z. and
(2.11) p(E) = q(E) if E ∈ M0.

A solution p of the AMDE (2.6)-(2.7) on x0z will be denoted by p(S x0 , q).
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Note that our AMDE (2.6)-(2.7) includes the abstract measure differential equation considered in the previous
papers as special case. To see this, define f (x, y) = 0 for all x ∈ x0z and y ∈ R, then AMDE (2.6)-(2.7) reduces to

(2.12)
dp
dµ

= g(x, p(S x)) a.e. [µ] on x0z.

and
(2.13) p(E) = q(E) if E ∈ M0.

The AMDE (2.11)-(2.12) has been studied in Joshi [19] and Dhage et. al [13] which further includes the abstract
measure differential equations studied by Sharma [23, 24] and Leela [21] as special cases. Thus our AMDE (2.6)-(2.7)
is more general and we claim that it is a new to the literature on measure differential equations. As a result the results
of the present study are new and original contribution to the theory of nonlinear measure differential equations. In the
following section we shall prove the existence and monotonicity theorems for AMDE (2.6)-(2.7).

3 Auxiliary Results
Definition 3.1 (Dhage [4, 5, 6, 8]) An upper semi-continuous and nondecreasing function
ψ : R+ → R+ is called aD-function if ψ(0) = 0. The class of allD-functions on R+ is denoted by D.

Remark 3.1 It is clear that if φ, ψ are D-functions, then (i) φ + ψ, (ii) λφ, λ > 0, and (iii) φ ◦ ψ are also D-functions,
where “ ◦ ” is the composite operation of two functions on R+.

Definition 3.2 (Dhage [4, 5, 6, 8, 9]) Let X be a Banach space. An operator T : X → X is called D-Lipschitz if there
exists aD-function ψT ∈ D such that
(3.1) ‖T x − T y‖ ≤ ψT

(
‖x − y‖

)
for all elements x, y ∈ X. If ψT (r) = k r, k > 0, T is called a Lipschitz operator on X with the Lipschitz constant
k. Again, if 0 ≤ k < 1, then T is called a contraction on X with contraction constant k. Furthermore, if ψT (r) < r
for r > 0, then T is called a nonlinear D-contraction on X. The class of all D-functions satisfying the condition of
nonlinearD-contraction is denoted by DN.

An operator T : X → X is called compact if T (X) is a compact subset of X. T is called totally bounded if for any
bounded subset S of X, T (S ) is a totally bounded subset of X. T is called completely continuous if T is continuous
and totally bounded on X. Every compact operator is totally bounded, but the converse may not be true, however, two
notions are equivalent on bounded subsets of X. The details of different types of nonlinear contraction, compact and
completely continuous operators appear in Granas and Dugundji [17].

To prove the main existence result of this section, we need the following variant of Krasnoselskii fixed point
theorem proved in Dhage [4, 9, 11, 12] for the sum of two operators in a Banach space X. Also see Dhage [10] for
related results and applications.

Theorem 3.1 Let S be a closed convex and bounded subset of a Banach space X and letA : X→ X and B : S → X be
two operators satisfying the following conditions.

(a)A is nonlinearD-contraction,
(b) B is completely continuous, and
(c)Ax + By = x =⇒ x ∈ S for all y ∈ S .
Then the operator equation

(3.2) Ax + Bx = x
has a solution in S .

An interesting corollary to Theorem 3.1 in the applicable form is

Corollary 3.1 Let S be a closed convex and bounded subset of a Banach space X and let A : X → X and B : S → X
be two operators satisfying the following conditions.

(a) A is linear contraction,
(b) B is compact and continuous, and
(c) Ax + By = x =⇒ x ∈ S for all y ∈ S .

Then the operator equation (3.2) has a solution in S .

In the following section we state our perturbed abstract measure differential equations to be discussed qualitatively
in the subsequent part of this paper.
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4 Existence Theorem
We need the following definition in the sequel.

Definition 4.1 A function β : S z × R→ R is called Carathéodory if
(i) x→ β(x, y) is µ-measurable for each y ∈ R, and
(ii) y→ β(x, y) is continuous almost everywhere [µ] on x0z.
Further a Carathéodory function β(x, y) is called LµR-Carathéodory if
(iii) there exists a µ-integrable function h : S z → R such that

|β(x, y)| ≤ h(x) a. e. [µ], x ∈ x0z

for all y ∈ R.

We consider the following set of assumptions.

(A0) For any z > x0, the σ-algebra Mz is compact with respect to the topology generated by the pseudo-metric d
defined on Mz by

d(E1, E2) = |µ|(E1∆E2)
for all E1, E2 ∈ Mz.

(A1) µ({x0}) = 0.
(A2) There exist real numbers L > 0 and M > 0 such that

| f (x, y1) − f (x, y2)| ≤
L |y1 − y2|

M + |y1 − y2|
a.e. [µ], x ∈ x0z,

for all y1, y2 ∈ R. Moreover, L ≤ M.
(B0) q is continuous on Mz with respect to the pseudo-metric d defined in (A0).
(B1) The function g(x, y) is LµR-Carathéodory.

Theorem 4.1 Suppose that the assumptions (A0) − (A2) and (B0) − (B1) hold. Then the AMDE (2.6) - (2.7) has a
solution on x0z.

Proof. By expressions (2.2) and (2.3), we have a decreasing sequence {rn} of positive real numbers such that rn → 1
as n→ ∞ and S rn x0 ⊃ S x0 . Then, from hypothesis (H1), it follows that⋂

r→1

(
S rx0 − S x0

)
= {x0}

and so,
µ
(
S rx0 − S x0

)
= µ({x0}) = 0 as r → 1.

Therefore, we can choose a real number r∗ > 1 such that S r∗x0 ⊃ S x0 and
µ
(
S r∗x0 − S x0

)
< 1 and

∫
S r∗ x0−S x0

h(x) dµ < 1.

Let z∗ = r∗x0 and consider the measure p0 on Mz∗ which is a continuous extension of the measure q on M0 defined
by

p0(E) =

 q(E) if E ∈ M0,

0 if E < M0.

Now define a subset S (ρ) of ca(S z∗ ,Mz∗ ) by
(4.1) S (ρ) =

{
p ∈ ca(S z∗ ,Mz∗ ) | ‖p − p0‖ ≤ ρ

}
where ρ = F0 + L + 1. Clearly, S (ρ) is a closed convex ball in ca(S z∗ ,Mz∗ ) centred at p0 of radius ρ and q ∈ S (ρ).

Define two operatorsA : ca(S z∗ ,Mz∗ )→ ca(S z∗ ,Mz∗ ) and B : S (ρ)→ ca(S z∗ ,Mz∗ ) by

(4.2) Ap(E) =

 f (x, p(S x)), if E ∈ Mz, E ⊂ x0z∗,

0, if E ∈ M0,

and

(4.3) Bp(E) =


∫

E g(x, p(S x)) dµ if ∈ Mz∗ , if E ⊂ x0z∗,

q(E) if E ∈ M0.
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We shall show that the operatorsA and B satisfy all the conditions of Corollary 2.1 on S .
Step I: First we show that A is a contraction on ca(S z∗ ,Mz∗ ). Let p1, p2 ∈ ca(S z∗ ,Mz∗ ) be arbitrary. Then by

assumption (A2),

|Ap1(E) −Ap2(E)| = | f (x, p1(E)) − f (x, p2(E))|

≤
L |p1(E) − p2(E)|

M + |p1(E) − p2(E)|

≤
L |p1 − p2|(E)

M + |p1 − p2|(E)
for all E ∈ Mz∗ . Hence by definition of the norm in ca(S z∗ ,Mz∗ ) one has

‖Ap1 −Ap2‖ ≤
L ‖p1 − p2‖

M + ‖p1 − p2‖

for all p1, p2 ∈ ca(S z∗ ,Mz∗ ). As a result A is a nonlinear D-contraction on ca(S z∗ ,Mz∗ ) with the D-function ψ given

by ψ(r) =
L r

M + r
.

Step II : We show that B is continuous on S . Let {pn} be a sequence of vector measures in S converging to a
vector measure p. Then by dominated convergence theorem,

lim
n→∞
Bpn(E) = lim

n→∞

∫
E g(x, pn(S x)) dµ

=
∫

E

[
limn→∞ g(x, pn(S x))

]
dµ

=
∫

E g(x, p(S x)) dµ

=Bp(E)

for all E ∈ Mz∗ , E ⊂ x0z. Similarly, if E ∈ Mz∗ , then

lim
n→∞
Bpn(E) = q(E) = Bp(E),

and so B is a pointwise continuous operator on S .
Next we show that {Bpn : n ∈ N} is a equi-continuous sequence in ca(S z∗ ,Mz∗ ). Let E1, E2 ∈ Mz∗ . Then there exist

subsets F1, F2 ∈ M0 and G1,G2 ∈ Mz, G1 ⊂ x0z∗, G2 ⊂ x0z∗ such that

E1 = F1 ∪G1 with F1 ∩G1 = ∅

and

E2 = F2 ∪G2 with F2 ∩G2 = ∅.

We know the identities

(4.4) G1 = (G1 −G2) ∪ (G2 ∩G1),

and

(4.5) G2 = (G2 −G1) ∪ (G1 ∩G2).

Therefore, we have

Bpn(E1) − Bpn(E2) ≤ q(F1) − q(F2) +
∫

G1−G2

g(x, pn(S n))dµ +
∫

G2−G1

g(x, pn(S x))dµ.

Since g(x, y) is Ll
µ- Carathéodory, we have that

|Bpn(E1) − Bpn(E2)| ≤|q(F1) − q(F2)| +
∫

G1∆G2

|g(x, pn(S x))|dµ

≤|q(F1) − q(F2)| +
∫

G1∆G2

h(x) dµ.

Assume that

d(E1, E2) = |µ|(E1∆E2)→ 0.

Then we have that E1 → E2. As a result F1 → F2 and |µ|(G1∆G2) → 0. As q is continuous on compact Mz , it is
uniformly continuous and so

|Bpn(E1) − Bpn(E2)| ≤|q(F1) − q(F2)| +
∫

G1∆G2

hr(x)dµ

171



→0 as E1 → E2

uniformly for all n ∈ N. This shows that {Bpn : n ∈ N} is a equi-continuous set in ca(S z∗ ,Mz∗ ). As a result, {Bpn}

converges to Bp uniformly on Mz∗ and a fortipri B is a continuous operator on S (ρ).
Step III: Next we show that B(S ) is a totally bounded set in ca(S z∗ ,Mz∗ ), where S = S (ρ). We shall show that the

set is uniformly bounded and equi-continuous set in ca(S z∗ ,Mz∗ ). Firstly, we show that B(S ) is a uniformly bounded
set in ca(S z∗ ,Mz∗ ).

Let λ ∈ B(S ) be an arbitrary element. Then, there is a member p ∈ S such that λ(E) = Bp(E) for all E ∈ Mz∗ . Let
E ∈ Mz∗ . Then there exist two subsets F ∈ M0 and G ∈ Mz∗ , G ⊂ x0z∗ such that

E = F ∪G and F ∩G = φ.

Hence by definition of B ,
|λ(E)| = |Bp(E)|(4.6)

≤ |q(F)| +
∫

G |g(x, p(S x))|dµ

≤ ‖q‖ +
∫

G h(x)dµ

≤ ‖q‖ +
∫

E h(x)dµ

= ‖q‖ + ‖h‖Ll
µ

for all E ∈ Mz∗ .
From (4.6) it follows that
‖λ‖ = ‖Bp‖

= |Bp|(E)
= sup

σ

∑∞
i=1 |Bp(Ei)|

= ‖q‖ + ‖h‖Ll
µ

for all λ ∈ B(S ).
Hence the sequence B(S ) is uniformly bounded set in ca(S z∗ ,Mz∗ ).
Next we show that B(S ) is a equi-continuous set of measures in ca(S z∗ ,Mz∗ ). Let E1, E2 ∈ Mz∗ . Then there exist

subsets F1, F2 ∈ M0 and G1,G2 ∈ Mz∗ , G1 ⊂ x0z∗, G2 ⊂ x0z∗ such that
E1 = F1 ∪G1 with F1 ∩G1 = ∅

and
E2 = F2 ∪G2 with F2 ∩G2 = ∅.

We know the identities
(4.7) G1 = (G1 −G2) ∪ (G2 ∩G1),
and
(4.8) G2 = (G2 −G1) ∪ (G1 ∩G2).

Therefore, we have
|λ(E1) − λ(E2)| = |Bp(E1) − Bp(E2)| ≤ |q(F1) − q(F2)| +

∫
G1−G2

|g(x, p(S n))| dµ +
∫

G2−G1

|g(x, p(S x))| dµ.

Since g(x, y) is Ll
µ- Carathéodory, we have that

|λ(E1) − λ(E2)| ≤ |q(F1) − q(F2)| +
∫

G1∆G2

|g(x, p(S x))| dµ

≤ |q(F1) − q(F2)| +
∫

G1∆G2

h(x) dµ.

Assume that
d(E1, E2) = |µ|(E1∆E2)→ 0.

Then we have that E1 → E2. As a result F1 → F2 and |µ|(G1∆G2) → 0. As q is continuous on compact Mz∗ , it is
uniformly continuous and so

|λ(E1) − λ(E2)| ≤ |q(F1) − q(F2)| +
∫

G1∆G2

hr(x)dµ
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→ 0 as E1 → E2

uniformly for all λ ∈ B(S ). This shows that B(S ) is a equi-continuous set in the banach space ca(S z∗ ,Mz∗ ). Now an
application of the Arzela-Ascolli theorem yields that B is a totally bounded operator on S . Now B is continuous and
totally bounded, it is completely continuous operator on S .

Step IV: Finally, we show that the hypothesis (c) of Theorem 3.1 is satisfied. Let p ∈ S be arbitrary and let there
is an element u ∈ ca(S z∗ ,Mz∗ ) such that Au + Bp = u. We show that u ∈ S . Now, by definitions of the operators A
and B,

u(E) =


f
(
x, u(E)) +

∫
E g(x, p(S x)) dµ, if E ∈ Mz, E ⊂ x0z∗

q(E), if E ∈ M0.

for all E ∈ Mz∗ .
If E ∈ Mz∗ , then there exist sets F ∈ M0 and G ∈ Mz∗ ,G ⊂ x0z∗ such that E = F ∪G and F ∩G = ∅. Then we have

u(E) = q(F) + f
(
x, u(G)

)
+

∫
G g(x, p(S x)) dµ.

Hence,

|u(E) − p0(E)| ≤
∣∣∣ f (x, u(G)

)
− f (x, 0)

∣∣∣ +
∫

G |g(x, p(S x))| dµ

≤
L|u(G)|

M + |u(G)|
+

∫
G h(x) dµ

≤L +
∫

x0z∗ h(x) dµ

≤L + 1
=ρ

which further implies that
‖u − p0‖ ≤ L + 1 = ρ.

As a result, we have u ∈ S (ρ) and so hypothesis (c) of Theorem 3.1 is satisfied. In consequence, the operator
equation Ap(E) + Bp(E) = p(E) has a solution p(S x0 , q) in ca(S z∗ ,Mz∗ ). This further implies that the AMDE (2.6)-
(2.7) has a solution on x0z. This completes the proof.

5 Existence of Extremal Solutions
In this section we prove the existence of the extremal solutions for the AMDE (2.6)-(2.7) on x0z under certain
monotonicity conditions. We define an order relation � in ca(S z,Mz) with the help of the cone K in ca(S z,Mz)
given by

(5.1) K = {p ∈ ca(S z,Mz) | p(E) ≥ 0 for all E ∈ Mz}.

Thus for any p1, p2 ∈ ca(S z,Mz), one has

(5.2) p1 � p2 ⇐⇒ p2 − p1 ∈ K

or, equivalently,

p1 � p2 ⇐⇒ p1(E) ≤ p2(E)

for all E ∈ Mz.
A cone K in ca(S z,Mz) is called normal if the norm is semi-monotone on K. The details of different properties of

cones in Banach spaces appear in Heikkilä and Lakshmikantham [18].

The following lemma follows immediately from the definition of the cone K in ca(S z,Mz).

Lemma 5.1 The cone K is normal in the Banach space ca(S z,Mz).

Proof. To finish, it is enough to prove that the norm ‖ · ‖ is semi-monotone on K. Let p1, p2 ∈ K be such that p1 � p2
on Mz . Then we have

0 ≤ p1(E) ≤ p2(E)

for all E ∈ Mz. Now, for a countable partition σ = {En : n ∈ N} of measurable subsets of S z, by definition of the norm
in ca(S z,Mz), one has

‖p1‖ = |p1|(S z) = sup
σ

∑∞
i=1 |p1(Ei)| = supσ

∑∞
i=1 p1(Ei)
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≤ sup
σ

∑∞
i=1 p2(Ei) = supσ

∑∞
i=1 |p2(Ei)| = |p2|(S z) = ‖p2‖.

This shows that ‖ · ‖ is semi-monotone on K and consequently the order cone K is normal in ca(S z,Mz). The proof
of the lemma is complete.

We need the following fixed point theorem of Dhage [5] involving the sum of two operators in a ordered Banach
space.

Theorem 5.1 Let K be a cone in a real Banach space X and let A,B : X → X be two nondecreasing operators such
that

(a)A is linear contraction,
(b) B is completely continuous, and
(c) there exist elements u, v ∈ X such that u ≤ v satisfying u � Au + Bu andAv + Bv � v.
Further if the cone K is normal, then the operator equation Ax + Bx = x has a minimal and a maximal solution

in [u, v].

We need the following definitions in the sequel.

Definition 5.1 A vector measure u ∈ ca(S z,Mz) is called a lower solution of AMDE (2.6)-(2.7) if
d

dµ

[
u(S x) − f (x, u(S x))

]
≤ g(x, u(S x)) a.e. [µ] on x0z,

and

u(E) ≤ q(E), E ∈ M0.

Similarly, a vector measure v ∈ ca(S z,Mz) is called an upper solution to AMDE (2.6)-(2.7) if
d

dµ

[
v(S x) − f (x, v(S x))

]
≥ g(x, v(S x)) a.e. [µ] on x0z,

and

v(E) ≥ q(E), E ∈ M0.

A vector measure p ∈ ca(S z,Mz) is a solution to AMDE (2.6)-(2.7) if it is upper as well as lower solution to AMDE
(2.6)-(2.7) on x0z.

Definition 5.2 A solution pM is called a maximal solution for the AMDE (2.6)-(2.7) if for any other solution p(S x0 , q)
of the AMDE (2.6)-(2.7) we have that

p(E) ≤ pM(E) ∀E ∈ Mz.

Similarly, a minimal solution pm(S x0, q) for the AMDE (2.6)-(2.7) is defined on x0z.

We consider the following assumptions:
(C1) The functions f (x, y) and g(x, y) are nondecreasing in y a.e. [µ] for x ∈ x0z.
(C3) AMDE (2.6)-(2.7) has a lower solution u and an upper solution v such that u � v on Mz.

Theorem 5.2 Suppose that the assumptions (A0) - (A2), (B1)-(B2) and (C1)-(C2) hold. Then the AMDE (2.6)-(2.7) has
a minimal and a maximal solution defined on x0z.

Proof. Now, AMDE (2.6)-(2.7) is equivalent to the abstract measure integral equation (in short AMIE)

(5.3) p(E) = f (x, p(E)) dµ +
∫

E g(x, p(S x)) dµ, E ∈ Mz, E ⊂ x0z,

and

(5.4) p(E) = q(E), E ∈ M0.

Define two operatorsA,B : [u, v]→ ca(S z,Mz) by

(5.5) Ap(E) =

 f (x, p(E)) if E ∈ Mz, E ⊂ x0z,

0 if E ∈ M0.

and

(5.6) Bp(E) =


∫

E g(x, p(S x))dµ, if E ∈ Mz, E ⊂ x0z,

q(E) if E ∈ M0.
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Then the AMIE (2.6)-(2.7) is equivalent to the operator equation

(5.7) Ap(E) + Bp(E) = p(E), E ∈ Mz.

We shall show that the operators A and B satisfy all the conditions of Theorem 5.1 on ca(S z,Mz). Since µ is a
positive measure , from assumption (C1) it follows thatA and B are nondecreasing operators on ca(S z,Mz). To show
this , let p1, p2 ∈ ca(S z,Mz) be such that p1 � p2 on Mz. From hypothesis (C2), it follows that

Ap1(E) = f (x, p1(E) dµ

≤ f (x, p2(E)) dµ

= Ap2(E)

for all E ∈ Mz, E ⊂ x0z and

Ap1(E) = 0 = Ap2(E)

for E ∈ M0. HenceA is nondecreasing on ca(S z,Mz).
Similarly, we have

Bp1(E) =
∫

E g(x, p1(S x)) dµ

≤
∫

E g(x, p2(S x)) dµ

= Bp2(E)

for all E ∈ Mz, E ⊂ x0z. Again if E ∈ M0, then

Bp1(E) = q(E) = Bp2(E).

Therefore, the operator B is also nondecreasing on ca(S z,Mz). Now it can be shown as in the proof of Theorem
4.1 that the operators A is a nonlinear D-contraction on ca(S z,Mz) with the D-function ψ given by ψ(r) = L r

M+r and
the operator B is completely continuous on S . Since u is a lower solution of AMDE (2.6)-(2.7), we have

(5.8) u(E) ≤ f (x, u(E)) +
∫

E g(x, u(S x))dµ, E ∈ Mz, E ⊂ x0z,

and

(5.9) u(E) ≤ q(E), E ∈ M0.

From (6.8) and (6.9) it follows that

u(E) ≤ Au(E) + Bu(E) if E ∈ Mz

and so, u � Au + Bu. Similarly since v ∈ ca(S z,Mz) is an upper solution of AMDE (2.6)-(2.7), it can be proved that
Av(E) +Bv(E) ≤ v(E) for all E ∈ Mz and consequentlyAv +Bv � v on Mz. Thus hypotheses (a)-(c) of Theorem 5.1
are satisfied.

Thus the operators A and B satisfy all the conditions of Theorem 5.1 and so an application of it yields that the
operator equation Ap + Bp = p has a maximal and a minimal solution in [u, v]. This further implies that AMDE
(2.6)-(2.7) has a maximal and a minimal solution on x0z. This completes the proof.

6 Special Case
In this section it is shown that, in a certain situation, the AMDE (2.6)-(2.7) reduces to an ordinary perturbed differential
equation, viz.,

d
dx

[
y(x) − f (x, y(x))

]
= g(x, y(x)), x ≥ x0,(6.1)

y(x0) = y0,

where f is a continuous real-valued function on [x0, x0 + T ] × R, and the function g satisfies Carathéodory conditions
on [x0, x0 +T ]×R. Note that the hybrid ordinary differential equation (6.1) is discussed first time in Dhage and Jadhav
[15] for some basic results related to its solution.

Let X = R, µ = m, the Lebesgue measure on R, S x = (−∞, x], x ∈ R, and q a given real Borel measure on M0.
Then equations (2.6)-(2.7) take the form

(6.2)
d

dm

[
p((−∞, x]) − f (x, p((−∞, x]))

]
= g(x, p((−∞, x])),

p(E) = q(E), E ∈ M0.

It will now be shown that, the equations (6.1) and (6.2) are equivalent in the sense of the following theorem.
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Theorem 6.1 Let q : M0 → R be a given initial measure such that q(E) = 0 for all E ∈ M0 and q({x0}) = 0. Then

(a) to each solution p = p(S x0 , q) of (6.2) existing on [x0, x1), there corresponds a solution y of (6.1) satisfying
y(x0) = y0.

(b) Conversely, to every solution y(x) of (6.1), there corresponds a solution p(S x0 , q), of (6.2) existing on [x0, x1)
with a suitable initial measure q provided f satisfies the relation f (x0, 0) = 0.

Proof. (a) Let p = p(S x0 , q) be a solution of (6.2), existing on [x0, x1).Define a real Borel measure p1 on R as follows.

(6.3) p1((−∞, x)) =


0, if x ≤ x0,

p((−∞, x]) − p((−∞, x0]), if x0 < x < x1

p((−∞, x1)), if x ≥ x1,

and

p1(−∞, x0]) = p(−∞, x0]).

Define the functions y1(x) and y(x) by

(6.4) y1(x) = p1((−∞, x)), x ∈ R

y(x) = y1(x) + p((−∞, x0]), x ∈ [x0, x1).

The condition q({x0}) = 0, the definition of the solution p, and the definitions of y(x) imply that

p1({x0}) = p({x0}) = 0.

Now for each x ∈ [x0, x1) we obtain from (6.2) and the definition of y(x)

y(x) = y1(x) + p((−∞, x0])(6.5)
= p1((−∞, x)) + p((−∞, x0])

= p(S x).

Since p is a solution of (6.2) we have p << m on [x0, x1). Hence y(x) is absolutely continuous on [x0, x1). The
details concerning these arguments appear in Rudin [22, pages 163-165]. This shows that y′(x) exists a.e. on [x0, x1).
Now for each x ∈ [x0, x1), we have, by virtue of (6.3) and (6.4)

p([x0, x]) − f (x, p([x0, x]) =
∫

[x0,x]

d
dm

[
p((−∞, t]) − f (t, p((−∞, t]))

]
dm.

Therefore,[
p((−∞, x]) − p((−∞, x0]) − f

(
x, p((−∞, x]) − p((−∞, x0])

)
=

∫
[x0,x]

d
dm

[
p((−∞, t]) − f (t, p((−∞, t]))

]
dm.

This further implies that

p(S x) − f (x, p(S x)) = p(S x0 ) +
∫ x

x0
g(t, p(S t)) dm.

That is,

y(x) − f (x, y(x)) = y(x0) +
∫ x

x0
g(t, y(t))dt.

Hence,
d
dx

[
y(x) − f (x, y(x))

]
= g(x, y(x)) a.e on [x0, x1).

This proves that y(x) is a solution of (6.1) on [x0, x1) satisfying

y(x0) = y0.

(b) Conversely, suppose that y(x) be a solution of (6.1) existing on [x0, x1]. Then, y is absolutely continuous on
[x0, x1]. Now, corresponding to the absolutely continuous function y(x) which is a solution of (6.1) on [x0, x1), we can
construct a absolutely continuous real Borel measure p on Mx1 such that,

p(E) = 0, for all E ∈ M0,(6.6)

p(S x) = y(x), if x ∈ [x0, x1).

176



The details concerning these arguments appear in Rudin [22, pages 163-165]. Since y(x) is a solution of (6.1) we
have for x ∈ [x0, x1),

y(x) − f (x, y(x)) = y(x0) + f (x0, y(x0)) + +
∫ x

x0
f (t, y(t)) dt.

Now, y(x0) = p
(
S x0

)
= 0 and so, f (x0, y0) = 0. Hence by (6.6) it follows that[

p(S x) − p(S x0 )
]
− f (x, p(S x) − p(S x0 )) =

∫
[x0,x]

g(t, p(S t)) dm.

That is,
p([x0, x]) = f (x, p([x0, x])) +

∫
[x0,x]

f (t, p(S t)) dm.

In general, if E ∈ Mx1 , E ⊂ x0x1, then
p(E) = f (x, p(E)) +

∫
E g(x, p((−∞, x])) dm.

By definition of Radon-Nykodym derivative, we obtain
d

dm

[
p((−∞, x]) − f (x, p((−∞, x]))

]
= g(x, p((−∞, x])) a.e. [µ] on x0z

p(E) = 0 for E ∈ M0.

This shows that p is a solution of (6.2) on [x0, x1) and the proof of (b) is complete.

Remark 6.1 Theorem 6.1 shows that our results for the equation (6.2) are general in the sense that they include the
corresponding results for the equation (6.1).

Example 6.1 Given a p ∈ ca(X,M) with p << µ, consider the abstract measure differential equation (AMDE) with a
linear perturbation of second type of the form

(6.7)
d

dµ

p(S x) −
|p(S x)|

1 + |p(S x)|

 =
ln(1 + |p(S x)|)

1 + |p(S x)|
a.e. [µ] on x0z.

and
(6.8) p(S x0 )) = 1,

where
dp
dµ

is a Radon-Nikodym derivative of p with respect to µ.

Here, f (x, y) =
|y|

1 + |y|
and g(x, y) =

ln(1 + |y|)
1 + |y|

for all x ∈ x0z and y ∈ R. Clearly, the function (x, y) 7→
|y|

1 + |y|
=

f (x, y) is continuous and bounded on S z × R with ound M f = 1. Also, after simple computation it can be shown that
f satisfies the assumption (A3) with L = 1 and M = 1. Next, the function g is continuous and bounded on S z × R with
bound Mg = 1. Therefore, if the assumptions (A0)-(A1) hold, then the AMDE (6.7) - (6.8) has a solution defined on
x0z.

Example 6.2 Given a p ∈ ca(X,M) with p << µ, consider the abstract measure differential equation (AMDE) with a
linear perturbation of second type of the form

(6.9)
d

dµ

[
p(S x) − γ sin p(S x)

]
=

1 + |p(S x)|

2 + p2(S x)
a.e. [µ] on x0z.

and
(6.10) p(S x0 )) = 1,

where
dp
dµ

is a Radon-Nikodym derivative of p with respect to µ and 0 ≤ γ < 1.

Here, f (x, y) = γ sin y and g(x, y) =
1 + |y|
2 + y2 for all x ∈ x0z and y ∈ R. Clearly, the function (x, y) 7→ γ sin y = f (x, y)

is continuous and bounded on S z × R with bound M f = 1. Also, after simple computation it can be shown that f
satisfies the assumption (A3) with L = γM ≤ M. Next, the function g is continuous and bounded on S z×R with bound
Mg = 1. Therefore, if the assumptions (A0)-(A1) hold, then the AMDE (6.9) - (6.10) has a solution defined on x0z.

Remark 6.2 If we define the initial vector measure q on M0 by
q(S x0 ) = α, and q(E) = 0 if E , S x0 ,

where α is a real number and f ≡ 0 on S z × R, then the equations (2.6)-(2.7) is reduced to the form

(6.11)
dp
dµ

= g(x, p(S x)), p(S x0 ) = α

which is the AMDE studied in Sharma [23, 24]. Thus our existence results of this paper include as particular cases,
the results in Sharma [23, 24] under weaker Carathoédory conditions.

Acknowledgement. We are grateful to the Editor and reviewer for their suggestions to bring the paper in its present
form.
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Abstract

Suppose K be a complete ultrametric algebraically closed field and suppose A(K) be the K-algebra of entire
functions on K. In this paper we study some growth properties of composite p-adic entire functions on the basis of
their relative (p, q)-th order, relative (p, q)-th type and relative (p, q)-th weak type.
2010 Mathematics Subject Classifications: 12J25,30D35,30G06,46S10.
Keywords and phrases: p-adic entire functions, growth, relative (p, q)-th order, relative (p, q)-th type, relative (p, q)-
th weak type, composition.

1 Introduction and Definitions
Let us considerK be an algebraically closed field of characteristic 0, complete with respect to a p-adic absolute value |·|
(exampleCp). For any α ∈ K and R ∈]0,+∞[, the closed disk {x ∈ K : |x−α| ≤ R} and the open disk {x ∈ K : |x−α| < R}
are denoted by d(α,R) and d(α,R−) respectively. Also C(α, r) denotes the circle {x ∈ K : |x − a| = r}. MoreoverA(K)
represent the K-algebra of analytic functions in K i.e. the set of power series with an infinite radius of convergence.
For the most comprehensive study of analytic functions inside a disk or in the whole field K, we refer the reader to
the books [11, 12, 15, 17]. During the last several years the ideas of p-adic analysis have been studied from different
aspects and many important results were gained (see [2] to [10], [13, 14]).

Let f ∈ A(K) and r > 0, then we denote by | f |(r) the number sup{| f (x)| : |x| = r} where | · |(r) is a multiplicative
norm on A(K). Moreover, if f is not a constant, the | f |(r) is strictly increasing function of r and tends to +∞ with r
therefore there exists its inverse function |̂ f | : (| f (0)|,∞)→ (0,∞) with lim

s→∞
|̂ f |(s) = ∞.

For x ∈ [0,∞) and k ∈ N, we define log[k] x = log(log[k−1] x) and exp[k] x = exp(exp[k−1] x) where N be the set of
all positive integers. We also denote log[0] x = x and exp[0] x = x. Throughout the paper, log denotes the Neperian
logarithm. Further we assume that throughout the present paper p, q,m, n and l always denote positive integers. Now
taking this into account the (p, q)-th order and (p, q)-th lower order of an entire function f ∈ A(K) are defined as
follows:

Definition 1.1 [5] Let f ∈ A(K) and p, q ∈ N. Then the (p, q)-th order and (p, q)-th lower order of f are respectively
defined as:

ρ(p,q)( f ) = lim sup
r→∞

log[p] | f |(r)
log[q] r

and λ(p,q)( f ) = lim inf
r→∞

log[p] | f |(r)
log[q] r

.

Definition 1.1 avoids the restriction p ≥ q of the original definition of (p, q)-th order (respectively (p, q)-th lower
order) of entire functions introduced by Juneja et al. [16] in complex context.

When q = 1, we get the definitions of generalized order and generalized lower order of an entire function f ∈ A(K)
which symbolize as ρ(p)( f ) and λ(p)( f ) respectively. If p = 2 and q = 1 then we write ρ(2,1)( f ) = ρ( f ) and λ(2,1)( f ) =

λ( f ) where ρ( f ) and λ( f ) are respectively known as order and lower order of f ∈ A(K) introduced by Boussaf et al.
[2].
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In this connection we just introduce the following definition:

Definition 1.2 An entire function f ∈ A(K) is said to have index-pair (p, q) if b < ρ(p,q)( f ) < ∞ and ρ(p−1,q−1)( f ) is
not a nonzero finite number, where b = 1 if p = q and b = 0 for otherwise. Moreover if 0 < ρ(p,q)( f ) < ∞, then

ρ(p−n,q)( f ) = ∞ for n < p,
ρ(p,q−n)( f ) = 0 for n < q,
ρ(p+n,q+n)( f ) = 1 for n = 1, 2, · · · .

.

Similarly for 0 < λ(p,q)( f ) < ∞, one can easily verify that
λ(p−n,q)( f ) = ∞ for n < p,
λ(p,q−n)( f ) = 0 for n < q,
λ(p+n,q+n)( f ) = 1 for n = 1, 2, · · · .

.

An entire function f ∈ A(K) of index-pair (p, q) is said to be of regular (p, q)-th growth if its (p, q)-th order
coincides with its (p, q)-th lower order, otherwise f is said to be of irregular (p, q)-th growth.

Next, to compare the growth of entire functions on K having the same (p, q)-th order, we give the definitions of
(p, q)-th type and (p, q)-th lower type in the following manner :

Definition 1.3 [5] Let f ∈ A(K). The (p, q)-th type σ(p,q)( f ) and the (p, q)-th lower type σ(p,q)( f ) of f having finite
positive (p, q)-th order ρ(p,q)( f ) (0 < ρ(p,q)( f ) <∞) are defined as:

σ(p,q)( f ) = lim sup
r→∞

log[p−1] | f |(r)
(log[q−1] r)ρ(p,q)( f )

and σ(p,q)( f ) = lim inf
r→∞

log[p−1] | f |(r)
(log[q−1] r)ρ(p,q)( f )

.

Remark 1.1 If p = 2 and q = 1 then we write σ(p,q)( f ) = σ( f ) where σ( f ) is known as type of f ∈ A(K) introduced
by Boussaf et al. [2].

Likewise, to compare the growth of entire functions on K having the same (p, q)-th lower order, one can also
introduce the concepts of (p, q)-th weak type in the following manner :

Definition 1.4 [5] Let f ∈ A(K). The (p, q)-th weak type τ(p,q)( f ) of f having finite positive (p, q)-th lower order
λ(p,q)( f ) (0 < λ(p,q)( f ) <∞) is defined as :

τ(p,q)( f ) = lim inf
r→∞

log[p−1] | f |(r)
(log[q−1] r)λ(p,q)( f )

.

Similarly one may define the growth indicator τ(p,q)( f ) of an entire function f ∈ A(K) in the following way :

τ(p,q)( f ) = lim sup
r→∞

log[p−1] | f |(r)
(log[q−1] r)λ(p,q)( f )

, 0 < λ(p,q)( f ) < ∞.

The notion of relative order was first introduced by Bernal [1]. In order to make some progress in the study of
p-adic analysis, recently Biswas [4] introduce the definition of relative order ρg( f ) and relative lower order λg( f ) of
entire function f ∈ A(K) with respect to another entire function g ∈ A(K) in the following way:

ρg( f ) = lim sup
r→∞

log |̂g|(| f |(r))
log r

and λg( f ) = lim inf
r→∞

log |̂g|(| f |(r))
log r

.

Further the function f ∈ A(K), for which relative order and relative lower order with respect to another function
g ∈ A(K) are the same is called a function of regular relative growth with respect to g otherwise, f is said to be
irregular relative growth.with respect to g.

In the case of relative order, it therefore seems reasonable to define suitably the relative (p, q)-th order of entire
function belonging toA(K). With this in view one may introduce the definition of relative (p, q)-th order ρ(p,q)

g ( f ) and
relative (p, q)-th lower order λ(p,q)

g ( f ) of an entire function f ∈ A(K) with respect to another entire function g ∈ A(K),
in the light of index-pair which are as follows:

Definition 1.5 [5] Let f , g ∈ A(K). Also let the index-pairs of f and g are (m, q) and (m, p), respectively. Then the
relative (p, q)-th order ρ(p,q)

g ( f ) and relative (p, q)-th lower order λ(p,q)
g ( f ) of f with respect to g are defined as

ρ
(p,q)
g ( f ) = lim sup

r→∞

log[p] |̂g|(| f |(r))
log[q] r

and λ(p,q)
g ( f ) = lim inf

r→∞

log[p] |̂g|(| f |(r))
log[q] r

.
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In order to refine the above growth scale, now we introduce the definitions of an another growth indicator, called
relative (p, q)-th type and relative (p, q)-th lower type respectively of entire function belonging to A(K) with respect
to another entire function belonging toA(K) in the light of their index-pair which are as follows:

Definition 1.6 [5] Let f , g ∈ A(K). Also let the index-pairs of f and g are (m, q) and (m, p), respectively. The relative
(p, q)-th type and relative (p, q)-th lower type of f with respect to g having finite positive relative (p, q)-th order
ρ

(p,q)
g ( f ) (0 < ρ(p,q)

g ( f ) < ∞) are defined as:

σ
(p,q)
g ( f ) = lim sup

r→∞

log[p−1] |̂g|(| f |(r))

(log[q−1] r)ρ
(p,q)
g ( f )

and σ(p,q)
g ( f ) = lim inf

r→∞

log[p−1] |̂g|(| f |(r))

(log[q−1] r)ρ
(p,q)
g ( f )

.

Analogously, to determine the relative growth of two entire functions belonging to A(K) and having same non
zero finite relative (p, q)-th lower order with respect to another entire function belonging to A(K) , one can introduce
the definition of relative (p, q)-th weak type of an entire function f ∈ A(K) with respect to another entire function
g ∈ A(K) of finite positive relative (p, q)-th lower order λ(p,q)

g ( f ) in the following way:

Definition 1.7 [5] Let f , g ∈ A(K). Also let the index-pair of f and g are (m, q) and (m, p), respectively. The relative
(p, q)-th weak type τ(p,q)

g ( f ) and the growth indicator τ(p,q)
g ( f ) of f with respect to g having finite positive relative

(p, q)-th lower order λ(p,q)
g ( f ) (0 < λ(p,q)

g ( f ) < ∞) are defined as:

τ(p,q)
g ( f ) = lim sup

r→∞

log[p−1] |̂g|(| f |(r))

(log[q−1] r)λ
(p,q)
g ( f )

and τ(p,q)
g ( f ) = lim inf

r→∞

log[p−1] |̂g|(| f |(r))

(log[q−1] r)λ
(p,q)
g ( f )

.

The main purpose of this paper is to ascertain some results associated to the growth properties of composite p-adic
entire functions on the basis of relative (p, q)-th order, relative (p, q)-th type and relative (p, q)-th weak type.

2 Lemma
In this section we present the following lemma which can be found in [2] or [3] and will be needed in the sequel.
Lemma 2.1. Let f , g ∈ A(K). Then for all sufficiently large positive numbers of r the following equality holds

| f ◦ g|(r) = | f |(|g|(r)).

3 Main Results
In this section we present the main results of the paper.

Theorem 3.1 Let f , g, h ∈ A(K). Also let 0 < λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞, λ(m,n)(g) > 0 and γ be a positive continuous
function defined on [0,+∞) increasing to∞ as r → ∞. Then for any number α ≥ 0,

lim
r→∞

log[p] |̂h|(| f ◦ g|(exp[n−1] r))

{log[p] |̂h|(| f |(exp[q] γ(r)))}1+α
= ∞ when q < m and lim

r→+∞

log γ(r)
log r

= 0,

and

lim
r→∞

log[p] |̂h|(| f ◦ g|(exp[n−1] r))

{log[p] |̂h|(| f |(exp[q] γ(r)))}1+α
= ∞ when q > m and lim

r→+∞

log γ(r)
log[q−m+1] r

= 0.

Proof. From the definition of ρ(p,q)
h ( f ), it follows for all sufficiently large positive numbers of r that

(3.1) log[p] |̂h|(| f |(exp[q] γ(r))) ≤ (ρ(p,q)
h ( f ) + ε)γ(r).

Since |̂h|(r) is an increasing function of r, it follows from Lemma 2.1 and for all sufficiently large positive numbers
of r that

(3.2) log[p] |̂h|(| f ◦ g|(exp[n−1] r)) ≥ (λ(p,q)
h ( f ) − ε) log[q] |g|(exp[n−1] r).

Case I. Let q < m. Then from (3.2) it follows for all sufficiently large positive numbers of r that

(3.3) log[p] |̂h|(| f ◦ g|(exp[n−1] r)) ≥ (λ(p,q)
h ( f ) − ε) exp[m−q−1] log[m−1] |g|(exp[n−1] r)

i.e.,

(3.4) log[p] |̂h|(| f ◦ g|(exp[n−1] r)) ≥ (λ(p,q)
h ( f ) − ε) exp[m−q−1] r(λ(m,n)(g)−ε).

Case II. Let q > m. Then from (3.2) we get for all sufficiently large positive numbers of r that

(3.5) log[p] |̂h|(| f ◦ g|(exp[n−1] r)) ≥ (λ(p,q)
h ( f ) − ε) log[q−m] log[m] |g|(exp[n−1] r)
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i.e.,

log[p] |̂h|(| f ◦ g|(exp[n−1] r)) ≥ (λ(p,q)
h ( f ) − ε) log[q−m+1] r + O(1)

i.e.,

(3.6) log[p−1] |̂h|(| f ◦ g|(exp[n−1] r)) > (log[q−m] r)(λ(p,q)
h ( f )−ε) + O(1).

Now combining (3.1) and (3.4) of Case I it follows for all sufficiently large positive numbers of r that

log[p] |̂h|(| f ◦ g|(exp[n−1] r))

{log[p] |̂h|(| f |(exp[q] γ(r)))}1+α
≥

(λ(p,q)
h ( f ) − ε) exp[m−q−1] r(λ(m,n)(g)−ε)

(ρ(p,q)
h ( f ) + ε)1+α{γ(r)}1+α

.

Since lim
r→+∞

log γ(r)
log r = 0, therefore exp[m−q−1] r(λ(m,n) (g)−ε)

{γ(r)}1+α → +∞ as r → +∞, then from above it follows that

lim
r→∞

log[p] |̂h|(| f ◦ g|(exp[n−1] r))

{log[p] |̂h|(| f |(exp[q] γ(r)))}1+α
= ∞,

from which the first part of Theorem 3.1 follows.
Again combining (3.1) and (3.6) of Case II it follows for all sufficiently large positive numbers of r that

log[p−1] |̂h|(| f ◦ g|(exp[n−1] r))

{log[p] |̂h|(| f |(exp[q] γ(r)))}1+α
≥

(log[q−m] r)(λ(p,q)
h ( f )−ε) + O(1)

(ρ(p,q)
h ( f ) + ε)1+α{γ(r)}1+α

.

As lim
r→+∞

log γ(r)
log[q−m+1] r

= 0, so (log[q−m] r)(λ(p,q)
h ( f )−ε)

{γ(r)}1+α → +∞ as r → +∞. Thus it follows from above that

lim
r→∞

log[p−1] |̂h|(| f ◦ g|(exp[n−1] r))

{log[p] |̂h|(| f |(exp[q] γ(r)))}1+α
= ∞.

This proves the second part of Theorem 3.1.
Thus Theorem 3.1 follows.

Remark 3.1 Theorem 3.1 is still valid with “superior limit” instead of “limit” if we replace the condition “ 0 <
λ

(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞” by “ 0 < λ(p,q)
h ( f ) < ∞”.

In the line of Theorem 3.1 one may state the following theorem without proof:

Theorem 3.2 Let f , g, h, k ∈ A(K). Also let g is of finite (m, n)-th lower order, λ(p,q)
h ( f ) > 0, ρ(l,n)

k (g) < ∞ and γ be a
positive continuous function defined on [0,+∞) increasing to∞ as r → ∞. Then for any number α ≥ 0,

lim
r→∞

log[p] |̂h|(| f ◦ g|(exp[n−1] r))

{log[l] |̂k|(|g|(exp[n] γ(r)))}1+α
= ∞ when q < m and lim

r→+∞

log γ(r)
log r

= 0,

and

lim
r→∞

log[p−1] |̂h|(| f ◦ g|(exp[n−1] r))

{log[l] |̂k|(|g|(exp[n] γ(r)))}1+α
= ∞ when q > m and lim

r→+∞

log γ(r)
log[q−m+1] r

= 0.

Remark 3.2 In Theorem 3.2 if we take the condition λ(l,n)
k (g) < ∞ instead of ρ(l,n)

k (g) < ∞, then also Theorem 3.2
remains true with “superior limit” in place of “ limit ”.

Theorem 3.3 Let f , g, h ∈ A(K). Also let 0 < λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞, ρ(m,n)(g) < ∞ and γ be a positive continuous
function defined on [0,+∞) increasing to∞ as r → ∞. Then for any number α ≥ 0,

lim
r→∞

{log[p] |̂h|(| f ◦ g|(r))}1+α

log[p] |̂h|(| f |(exp[q]{γ(r)}))
= 0 if q > m

and

lim
r→+∞

{log[p+m−q−1] |̂h|(| f ◦ g|(r))}1+α

log[p] |̂h|(| f |(exp[q] γ(r)))
= 0 if q < m,

where

lim
r→∞

log γ(r)
log r

= ∞.
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Proof. Since |̂h|(r) is an increasing function of r, it follows from Lemma 2.1 and for all sufficiently large positive
numbers of r that

(3.7) log[p] |̂h|(| f ◦ g|(r)) 6 (ρ(p,q)
h ( f ) + ε) log[q] |g|(r).

Now the following cases may arise :
Case I. Let q > m. Then we get from (3.7) for all sufficiently large positive numbers of r that

(3.8) log[p] |̂h|(| f ◦ g|(r)) 6 (ρ(p,q)
h ( f ) + ε) log[m−1] |g|(r).

Now from the definition of (m, n)-th order of g, for arbitrary positive ε and for all sufficiently large positive numbers
of r, we have

log[m] |g|(r) 6 (ρ(m,n)(g) + ε) log[n] r

i.e.,

(3.9) log[m] |g|(r) ≤ (ρ(m,n)(g) + ε) log r

and

(3.10) log[m−1] |g|(r) ≤ r(ρ(m,n)(g)+ε).

So from (3.8) and (3.10) it follows for all sufficiently large positive numbers of r that

(3.11) log[p] |̂h|(| f ◦ g|(r)) 6 (ρ(p,q)
h ( f ) + ε)r(ρ(m,n)(g)+ε).

Case II. Let q < m. Then we obtain from (3.7) for all sufficiently large positive numbers of r that

(3.12) log[p] |̂h|(| f ◦ g|(r)) 6 (ρ(p,q)
h ( f ) + ε) exp[m−q] log[m] |g|(r).

Also we get from (3.9) for all sufficiently large positive numbers of r that

exp[m−q] log[m] |g|(r) 6 exp[m−q] log r(ρ(m,n)(g)+ε)

i.e.,

(3.13) exp[m−q] log[m] |g|(r) 6 exp[m−q−1] r(ρ(m,n)(g)+ε).

Now from (3.12) and (3.13) we have for all sufficiently large positive numbers of r that

log[p] |̂h|(| f ◦ g|(r)) 6 (ρ(p,q)
h ( f ) + ε) exp[m−q−1] r(ρ(m,n)(g)+ε)

i.e.,

(3.14) log[p+m−q−1] |̂h|(| f ◦ g|(r)) 6 r(ρ(m,n)(g)+ε) + O(1).

Again for all sufficiently large positive numbers of r that

(3.15) log[p] |̂h|(| f |(exp[q] γ(r))) ≥ (λ(p,q)
h ( f ) − ε)γ(r).

Now if q > m, we obtain from (3.11) and (3.15) for all sufficiently large positive numbers of r that

{log[p] |̂h|(| f ◦ g|(r))}1+α

log[p] |̂h|(| f |(exp[q] γ(r)))
6

(ρ(p,q)
h ( f ) + ε)1+αr(ρ(m,n)(g)+ε)(1+α)

(λ(p,q)
h ( f ) − ε)γ(r)

.

Since lim
r→∞

log γ(r)
log r = ∞, therefore r(ρ(m,n) (g)+ε)(1+α)

γ(r) → 0 as r → ∞, then the first part of Theorem 3.3 follows from above.
Further when q < m, we get from (3.14) and (3.15) for all sufficiently large positive numbers of r that

{log[p+m−q−1] |̂h|(| f ◦ g|(r))}1+α

log[p] |̂h|(| f |(exp[q] γ(r)))
6

r(ρ(m,n)(g)+ε)(1+α)(1 +
O(1)

r(ρ(m,n) (g)+ε)
)1+α

(λ(p,q)
h ( f ) − ε)γ(r)

i.e.,

lim
r→∞

{log[p+m−q−1] |̂h|(| f ◦ g|(r))}1+α

log[p] |̂h|(| f |(exp[q] γ(r)))
= 0,

This proves the second part of Theorem 3.3.

Remark 3.3 In Theorem 3.3 if we take the condition ρ(p,q)
h ( f ) > 0 instead of λ(p,q)

h ( f ) > 0, the theorem remains true
with “inferior limit” in place of “limit ”.
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Theorem 3.4 Let f , g, h, k ∈ A(K). Also let g is of finite (m, n)-th order, ρ(p,q)
h ( f ) < +∞, λ(l,n)

k (g) > 0 and γ be a
positive continuous function defined on [0,+∞) increasing to∞ as r → ∞. Then for any number α ≥ 0,

lim
r→∞

{log[p] |̂h|(| f ◦ g|(r))}1+α

log[l] |̂k|(|g|(exp[n] γ(r)))
= 0 if q > m

and

lim
r→∞

{log[p+m−q−1] |̂h|(| f ◦ g|(r))}1+α

log[l] |̂k|(|g|(exp[n] γ(r)))
= 0 if q < m,

where

lim
r→+∞

log γ(r)
log r

= ∞.

The proof of Theorem 3.4 would run parallel to that of Theorem 3.3. We omit the details.

Remark 3.4 In Theorem 3.4, if we take the condition ρ(l,n)
k (g) > 0 instead of λ(l,n)

k (g) > 0, Theorem 3.4 remains true
with “limit replaced by limit inferior”.

Theorem 3.5 Let f , g, h ∈ A(K). Also let ρ(m,n)(g) < λ(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞. Then

(i) lim
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(exp[q−1] rA))
= 0 if q > m

and

(ii) lim
r→∞

log[p+m−q−1] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(exp[q−1] rA))
= 0 if q < m

where A > 0.

Proof. From the definition of relative (p, q)-th lower order, we get for all sufficiently large positive numbers of r that

(3.16) log[p−1] |̂h|(| f |(exp[q−1] rA)) > rA(λ(p,q)
h ( f )−ε).

As ρ(m,n)(g) < λ(p,q)
h ( f ), we can choose ε(> 0) in such a way that

(3.17) ρ(m,n)(g) + ε < A(λ(p,q)
h ( f ) − ε).

Now if q > m, combining (3.11), (3.16) and in view of (3.17) we obtain for all sufficiently large positive numbers
of r that

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(exp[q−1] rA))
6

(ρ(p,q)
h ( f ) + ε)r(ρ(m,n)(g)+ε)

rA(λ(p,q)
h ( f )−ε)

i.e.,

lim
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(exp[q−1] rA))
= 0.

This proves the first part of Theorem 3.5.
When q < m, combining (3.14) and (3.16) it follows for all sufficiently large positive numbers of r that

log[p+m−q−1] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(exp[q−1] rA))
6

r(ρ(m,n)(g)+ε)(1 +
O(1)

r(ρ(m,n) (g)+ε)
)

rA(λ(p,q)
h ( f )−ε)

.

Since ρ(m,n)(g) < λ(p,q)
h ( f ) and ε(> 0) is arbitrary, we get from above

lim
r→∞

log[p+m−q−1] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(exp[q−1] rA))
= 0,

which is the second part of Theorem 3.5.

Remark 3.5 In Theorem 3.5, if we take the condition λ(m,n)(g) < λ
(p,q)
h ( f ) ≤ ρ

(p,q)
h ( f ) < ∞ instead of ρ(m,n)(g) <

λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞, Theorem 3.5 remains true with “inferior limit” in place of “limit ”.
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Theorem 3.6 Let f , g, h ∈ A(K). Also let 0 < λ(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and ρ(m,q)(g) < ∞. Then

lim sup
r→∞

log[p+m−q] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(r))
≤
ρ(m,q)(g)

λ
(p,q)
h ( f )

,

where m > q.

Proof. Since q < m, we have from (3.7) for all sufficiently large positive numbers of r that

log[p+m−q] |̂h|(| f ◦ g|(r)) 6 log[m] |g|(r) + O(1)

i.e.,

log[p+m−q] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(r))
≤

log[m] |g|(r) + O(1)
log[q] r

·
log[q] r

log[p] |̂h|(| f |(r))
i.e.,

lim sup
r→∞

log[p+m−q] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(r))
≤
ρ(m,q)(g)

λ
(p,q)
h ( f )

.

This proves Theorem 3.6.
In the line of Theorem 3.6 we may state the following theorem without proof.

Theorem 3.7 Let f , g, h, k ∈ A(K). Also let ρ(p,q)
h ( f ) < ∞, λ(l,n)

k (g) > 0 and ρ(m,n)(g) < ∞. Then

lim sup
r→∞

log[p+m−q] |̂h|(| f ◦ g|(r))

log[l] |̂k|(|g|(r))
≤
ρ(m,n)(g)

λ(l,n)
k (g)

,

where m > n.

Theorem 3.8 Let f , g, h ∈ A(K). Also let 0 < λ(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and σ(m,n)(g) < ∞ where q = m − 1. Then

lim sup
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)ρ(m,n)(g)))
≤
σ(m,n)(g) · ρ(p,q)

h ( f )

λ
(p,q)
h ( f )

.

Proof. Since q = m − 1, we obtain from (3.7) for all sufficiently large positive numbers of r that

log[p] |̂h|(| f ◦ g|(r)) 6 (ρ(p,q)
h ( f ) + ε) log[m−1] |g|(r)

i.e.,

(3.18) log[p] |̂h|(| f ◦ g|(r)) ≤ (ρ(p,q)
h ( f ) + ε)(σ(m,n)(g) + ε)(log[n−1](r))ρ

(m,n)(g).

Now from the definition of λ(p,q)
h ( f ), we get for all sufficiently large positive numbers of r that

(3.19) log[p] |̂h|(| f |(exp[q](log[n−1] r)ρ
(m,n)(g))) ≥ (λ(p,q)

h ( f ) − ε)(log[n−1] r)ρ
(m,n)(g).

Therefore from (3.18) and (3.19), it follows for all sufficiently large positive numbers of r that

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)ρ(m,n)(g)))
≤

(ρ(p,q)
h ( f ) + ε)(σ(m,n)(g) + ε)(log[n−1](r))ρ

(m,n)(g)

(λ(p,q)
h ( f ) − ε)(log[n−1] r)ρ(m,n)(g)

.

Since ε(> 0) is arbitrary, we get from above that

lim sup
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)ρ(m,n)(g)))
≤
σ(m,n)(g) · ρ(p,q)

h ( f )

λ
(p,q)
h ( f )

.

Thus Theorem 3.8 is established.

Remark 3.6 In Theorem 3.8, if we will replace “σ(m,n)(g)” by “σ(m,n)(g)”, then Theorem 3.8 remains valid with
“inferior limit” replacing “superior limit”.

Now we state the following theorem without its proof as it can easily be carried out in the line of Theorem 3.8.

Theorem 3.9 Let f , g, h, k ∈ A(K). Also let λ(l,n)
k (g) > 0, ρ(p,q)

h ( f ) < ∞ and σ(m,n)(g) < ∞ where q = m − 1. Then

lim sup
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[l] |̂k|(|g|(exp[n](log[n−1] r)ρ(m,n)(g)))
≤
σ(m,n)(g) · ρ(p,q)

h ( f )

λ(l,n)
k (g)

.
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Remark 3.7 In Theorem 3.9, if we will replace “σ(m,n)(g)” by “σ(m,n)(g)”, then Theorem 3.9 remains valid with
“inferior limit” in place of “superior limit”.

Remark 3.8 We remark that in Theorem 3.9, if we will replace the condition “ ρ
(p,q)
h ( f ) < ∞” by “ λ

(p,q)
h ( f ) < ∞” ,

then

(3.20) lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[l] |̂k|(|g|(exp[n](log[n−1] r)ρ(m,n)(g)))
≤
σ(m,n)(g) · λ(p,q)

h ( f )

λ(l,n)
k (g)

.

Remark 3.9 In Remark 3.8, if we will replace the conditions “ λ(l,n)
k (g) > 0 and λ(p,q)

h ( f ) < ∞” by “ρ(l,n)
k (g) > 0 and

ρ
(p,q)
h ( f ) < ∞” respectively, then is need to go the same replacement in right part of (3.20).

Using the concept of the growth indicator τ(m,n)(g) of a p-adic entire function g, we may state the subsequent two
theorems without their proofs since those can be carried out in the line of Theorem 3.8 and Theorem 3.9 respectively.

Theorem 3.10 Let f , g, h ∈ A(K). Also let 0 < λ(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and τ(m,n)(g) < ∞ where q = m − 1. Then

lim sup
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)λ(m,n)(g)))
≤
τ(m,n)(g) · ρ(p,q)

h ( f )

λ
(p,q)
h ( f )

.

Remark 3.10 We remark that in Theorem 3.10, if we will replace the condition “ 0 < λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and
τ(m,n)(g) < ∞” by “ 0 < λ(p,q)

h ( f ) < ∞ or 0 < ρ(p,q)
h ( f ) < ∞ and σ(m,n)(g) < ∞” , then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)ρ(m,n)(g)))
≤ σ(m,n)(g).

Theorem 3.11 Let f , g, h, k ∈ A(K). Also let λ(l,n)
k (g) > 0, ρ(p,q)

h ( f ) < ∞ and τ(m,n)(g) < ∞ where q = m − 1. Then

lim sup
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[l] |̂k|(|g|(exp[n](log[n−1] r)λ(m,n)(g)))
≤
τ(m,n)(g) · ρ(p,q)

h ( f )

λ(l,n)
k (g)

.

Further using the notion of (p, q)-th weak type we may also state the following two theorems without proof because
it can be carried out in the line of Theorem 3.10 and Theorem 3.11 respectively.

Theorem 3.12 Let f , g, h ∈ A(K). Also let 0 < λ(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and τ(m,n)(g) < ∞ where q = m − 1. Then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)λ(m,n)(g)))
≤
τ(m,n)(g) · ρ(p,q)

h ( f )

λ
(p,q)
h ( f )

.

Remark 3.11 We remark that in Theorem 3.12, if we will replace the condition “ 0 < λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and
τ(m,n)(g) < ∞” by “ 0 < λ(p,q)

h ( f ) < ∞ or 0 < ρ(p,q)
h ( f ) < ∞ and τ(m,n)(g) < ∞” , then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p] |̂h|(| f |(exp[q](log[n−1] r)λ(m,n)(g)))
≤ τ(m,n)(g).

Theorem 3.13 Let f , g, h, k ∈ A(K). Also let λ(l,n)
k (g) > 0, ρ(p,q)

h ( f ) < ∞ and τ(m,n)(g) < ∞ where q = m − 1. Then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[l] |̂k|(|g|(exp[n](log[n−1] r)λ(m,n)(g)))
≤
τ(m,n)(g) · ρ(p,q)

h ( f )

λ(l,n)
k (g)

.

Remark 3.12 We remark that in Theorem 3.13, if we will replace the condition “ ρ(p,q)
h ( f ) < ∞ and τ(m,n)(g) < ∞” by

“ λ(p,q)
h ( f ) < ∞ and τ(m,n)(g) < ∞” , then

(3.21) lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[l] |̂k|(|g|(exp[n](log[n−1] r)λ(m,n)(g)))
≤
τ(m,n)(g) · λ(p,q)

h ( f )

λ(l,n)
k (g)

.

Remark 3.13 In Remark 3.12, if we will replace the conditions “ λ(l,n)
k (g) > 0 and λ(p,q)

h ( f ) < ∞” by “ρ(l,n)
k (g) > 0 and

ρ
(p,q)
h ( f ) < ∞” respectively, then is need to go the same replacement in right part of (3.21).
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Theorem 3.14 Let f , g, h ∈ A(K). Also let 0 < ρ(p,q)
h ( f ) < ∞, ρ(p,q)

h ( f ) = ρ(m,n)(g), σ(m,n)(g) < ∞ and 0 < σ(p,q)
h ( f ) < ∞

where q = n = m − 1. Then

(3.22) lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
ρ

(p,q)
h ( f ) · σ(m,n)(g)

σ
(p,q)
h ( f )

.

Proof. Since ρ(p,q)
h ( f ) = ρ(m,n)(g) and q = m−1, we have from (3.7) for all sufficiently large positive numbers of r that

(3.23) log[p] |̂h|(| f ◦ g|(r)) ≤ (ρ(p,q)
h ( f ) + ε)(σ(m,n)(g) + ε)(log[n−1](r))ρ

(p,q)
h ( f ).

As q = n, then we obtain in view of the definition of σ(p,q)
h ( f ) for a sequence of positive numbers of r tending to

infinity that

(3.24) log[p−1] |̂h|(| f |(r)) ≥ (σ(p,q)
h ( f ) − ε)(log[n−1](r))ρ

(p,q)
h ( f ).

Now from (3.23) and (3.24), it follows for a sequence of positive numbers of r tending to infinity that

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤

(ρ(p,q)
h ( f ) + ε)(σ(m,n)(g) + ε)(log[n−1](r))ρ

(p,q)
h ( f )

(σ(p,q)
h ( f ) − ε)(log[n−1](r))ρ

(p,q)
h ( f )

.

Since ε(> 0) is arbitrary, it follows from above that

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
ρ

(p,q)
h ( f ) · σ(m,n)(g)

σ
(p,q)
h ( f )

.

Remark 3.14 In Theorem 3.14, if we will replace the conditions “ σ(m,n)(g) < ∞” and “0 < σ
(p,q)
h ( f ) < ∞” by

“σ(m,n)(g) < ∞” and “0 < σ
(p,q)
h ( f ) < ∞”, then is need to go the same replacement in right part of (3.22). Also if we

replace the conditions 0 < ρ
(p,q)
h ( f ) < ∞ and 0 < σ

(p,q)
h ( f ) < ∞ of Theorem 3.14 by 0 < λ

(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and
0 < σ(p,q)

h ( f ) < ∞ respectively, then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
λ

(p,q)
h ( f ) · σ(m,n)(g)

σ
(p,q)
h ( f )

.

Further if, in Theorem 3.14, we replace σ(p,q)
h ( f ) by σ(p,q)

h ( f ), then Theorem 3.14 remains valid with “superior
limit” in place of “inferior limit”.

Now we state the following three theorems without their proofs as those can easily be carried out in the line of
Theorem 3.14.

Theorem 3.15 Let f , g, h ∈ A(K). Also let 0 < λ
(p,q)
h ( f ) ≤ ρ

(p,q)
h ( f ) < ∞, λ(p,q)

h ( f ) = λ(m,n)(g), τ(m,n)(g) < ∞ and
0 < τ(p,q)

h ( f ) < ∞ where q = n = m − 1. Then

(3.25) lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
ρ

(p,q)
h ( f ) · τ(m,n)(g)

τ
(p,q)
h ( f )

.

Remark 3.15 In Theorem 3.15, if we will replace the conditions “ τ(m,n)(g) < ∞” and “0 < τ
(p,q)
h ( f ) < ∞” by

“τ(m,n)(g) < ∞” and “0 < τ
(p,q)
h ( f ) < ∞”, then is need to go the same replacement in right part of (3.25). Also if we

replace the conditions 0 < λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and 0 < τ
(p,q)
h ( f ) < ∞ of Theorem 3.15 by 0 < λ

(p,q)
h ( f ) < ∞ and

0 < τ(p,q)
h ( f ) < ∞ respectively, then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
λ

(p,q)
h ( f ) · τ(m,n)(g)

τ
(p,q)
h ( f )

.

Further, in Theorem 3.15, if we replace τ(p,q)
h ( f ) by τ(p,q)

h ( f ), then Theorem 3.15 remains valid with “superior
limit” instead of “inferior limit”.

Theorem 3.16 Let f , g, h ∈ A(K). Also let 0 < λ
(p,q)
h ( f ) ≤ ρ

(p,q)
h ( f ) < ∞, λ(p,q)

h ( f ) = ρ(m,n)(g), σ(m,n)(g) < ∞ and
0 < τ(p,q)

h ( f ) < ∞ where q = n = m − 1. Then

(3.26) lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
ρ

(p,q)
h ( f ) · σ(m,n)(g)

τ
(p,q)
h ( f )

.
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Remark 3.16 In Theorem 3.16, if we will replace the conditions “ σ(m,n)(g) < ∞” and “0 < τ
(p,q)
h ( f ) < ∞” by

“σ(m,n)(g) < ∞” and “0 < τ
(p,q)
h ( f ) < ∞”, then is need to go the same replacement in right part of (3.26). Also if we

replace the conditions 0 < λ
(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and 0 < τ
(p,q)
h ( f ) < ∞ of Theorem 3.16 by 0 < λ

(p,q)
h ( f ) < ∞ and

0 < τ(p,q)
h ( f ) < ∞ respectively, then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
λ

(p,q)
h ( f ) · σ(m,n)(g)

τ
(p,q)
h ( f )

.

Further if, in Theorem 3.16, we replace τ(p,q)
h ( f ) by τ(p,q)

h ( f ), then Theorem 3.16 remains valid with “superior
limit” replacing “inferior limit”.

Theorem 3.17 Theorem 3.17. Let f , g, h ∈ A(K). Also let 0 < ρ
(p,q)
h ( f ) < ∞, ρ(p,q)

h ( f ) = λ(m,n)(g), τ(m,n)(g) < ∞ and
0 < σ(p,q)

h ( f ) < ∞ where q = n = m − 1. Then

(3.27) lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
ρ

(p,q)
h ( f ) · τ(m,n)(g)

σ
(p,q)
h ( f )

.

Remark 3.17 In Theorem 3.17, if we will replace the conditions “ τ(m,n)(g) < ∞” and “0 < σ
(p,q)
h ( f ) < ∞” by

“τ(m,n)(g) < ∞” and “0 < σ
(p,q)
h ( f ) < ∞”, then is need to go the same replacement in right part of (3.27). Also if we

replace the conditions 0 < ρ
(p,q)
h ( f ) < ∞ and 0 < σ

(p,q)
h ( f ) < ∞ of Theorem 3.17 by 0 < λ

(p,q)
h ( f ) ≤ ρ(p,q)

h ( f ) < ∞ and
0 < σ(p,q)

h ( f ) < ∞ respectively, then

lim inf
r→∞

log[p] |̂h|(| f ◦ g|(r))

log[p−1] |̂h|(| f |(r))
≤
λ

(p,q)
h ( f ) · τ(m,n)(g)

σ
(p,q)
h ( f )

.

Further if, in Theorem 3.17, we replace σ(p,q)
h ( f ) by σ(p,q)

h ( f ), then Theorem 3.17 remains valid with “superior
limit” in place of “inferior limit”.
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Abstract

In many problems of quality and reliability engineering processes and designs, fitting of a probability distribution
to the tensile strength or breaking stress data may be helpful in predicting the probability or forecasting the frequency
of occurrence of the breaking stress, and planning beforehand. In this paper, Burr (4P) distribution functions was
fitted to such breaking stress data, and compared with Burr (3P), Dagum (3P) and Dagum (4P) distribution functions.
Goodness of fit has been tested using the Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared distribution tests.
It is observed that the Burr (4P) distribution fits the best among these four distributions.
2010 Mathematics Subject Classifications: 62N02, 62N03, 62-07, 62C12, 62F03.
Keywords and phrases: Goodness of fit, Breaking stress of 6061-T6 aluminum, Probability distribution, Statistical
analysis.

1 Introduction
In order to deal with the random phenomena and data occurring in many applied problems in the fields of actuarial
science, biological sciences, engineering, finance, hydrology, medical sciences, reliability, transportation, etc.,
probability distributions can be applied to make predictions and informed decisions under uncertainty. For example,
according to Birnbaum and Saunders [3], “for the amount of fatigue data which can usually be obtained almost any
two-dimensional parametric family of distributions can be made to fit reasonably well. In fact, in the region of central
tendency the lognormal, the Weibull, the Gamma etc., can all be fitted by parametric estimation and because of the
relatively small sample sizes hardly any can be rejected by, say a Chi-square Goodness of Fit test. However, when
it becomes a question of predicting the “safe life”, say, the one thousandth percentile, there is a wide discrepancy
between these models. For this reason, a family of distributions which is obtained from considerations of the basic
characteristics of the fatigue process should be more persuasive in its implications than any ad hoc family chosen for
extraneous.” As pointed out by Lio and Park [15] “the two-parameter Birnbaum–Saunders distributions have been
shown to provide a better fit to the strength or breaking stress data such as carbon fiber or composite tensile strengths
than the more commonly used Weibull distributions by Durham and Padgett [9], in addition to cycles to failure data,
as was investigated by Birnbaum and Saunders [3, 4].”

The observed frequency distributions of the brittle materials, such as 6061-T6 aluminum, are the results of
many complex parameters such as their tensile strength, among others, and it may not be possible to predict them
exactly. Therefore, the statistical treatment of such data is an important aspect of their analysis and interpretation. As
stated above, different probability models such as Birnbaum–Saunders and Weibull distributions have been applied
to characterize the strength or breaking stress data such as carbon fiber or composite tensile strengths in the past, see
Birnbaum and Saunders [2, 3], and Durham and Padgett [9], among others. However, it appears from the literature
that no such studies have performed for the breaking stress of 6061-T6 aluminum, except the bootstrap control chart
for Birnbaum-Saunders percentiles by Lio and Park [15]. As most of the distributions of the tensile strength or
breaking stress of 6061-T6 aluminum data are continuous and skewed in nature, some of the various continuous skewed
probability distributions, developed recently, seem to be better choices for such studies. Thus, a better selection of the
best fitting probability distribution to the tensile strength or breaking stress of 6061-T6 aluminum data may help us in
extrapolating the observed values to those which are more significant from the point of view of quality and reliability
engineering standards. Motivated by the importance of such studies described above, we have considered the fitting
of Burr (4P) distribution functions was fitted to to the breaking stress of 6061-T6 aluminum data set, which has been
taken from Lio and Park [15] consisting of 200 observations on the breaking stress of 6061-T6 aluminum. Then, Burr
(4P) was compared with Burr (3P), Dagum (3P) and Dagum (4P) distribution functions.
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The organization of this paper is as follows: In Section 2, we briefly provide a review of the Burr and Dagum
type distributions and some of their basic distributional properties. Section 3 contains the data description, parameters
estimation and fitting the distributions to breaking stress data. Some concluding remarks are given in Section 4.

2 Review of the models and distributional properties
In what follows, we shall briefly provide a review of the Burr (4P) and Burr (3P) distribution models and some of their
essential basic distributional properties. For details on these distributions, see, for example, Blischke and Murthy [1],
Burr [5], Dey et al. [8], Johnson et al. [12], Kleiber and Kotz [13], Kleiber [14], and Tadikamalla [18], among others.
2.1 Burr (4P) Distribution:
A continuous non-negative random variable, X, is said to have a Burr (4P) distribution if its probability density function
(pdf), cumulative distribution function (cdf) and hazard function (hf) are respectively given by

(2.1) f (x) =
α k

(
x − γ
β

)α − 1

β
(
1 +

(
x − γ
β

)α)k + 1 ,

(2.2) F (x) = 1 −
(
1 +

(
x − γ

β

)α)− k

,

and

(2.3) h (x) =
α k

(
x − γ
β

)α − 1

β
(
1 +

(
x − γ
β

)α) ,
where k (> 0): shape parameter ; α (> 0): shape parameter ; β (> 0): scale parameter ; −∞ < γ < +∞: location
parameter ; and domain: γ ≤ x < ∞. The possible shapes of the pdf (1) and cdf (2) are given for some selected values
of the parameters in Figures 2.1(a) and 2.1(b) respectively.

Figure 2.1(a): Plots of the Burr (4P) pdf 1 Figure 2.1(b): Plots of the Burr (4P) cdf (2)

The effects of the parameters can easily be seen from these graphs. For example, it is clear from these plots that
the Burr (4P) distribution is positively right skewed with longer and heavier right tails for the selected values of the
parameters.
2.2 Moments:
It is interesting to note that, after thorough search of literature, we did not find any expression for the jth moment of
the Burr (4P) distribution. Therefore, in what follows, we shall first derive the jth moment of the Burr (4P) distribution
independently. Then, various moments of the Burr (4P) distribution will be derived.

jth Moment of the Burr (4P) Distribution: For a positive integer j, the jth moment of the random variable X of
the Burr (4P) distribution is given by

(2.4) E
(
X j

)
=

∫ ∞
γ

x j α k
(

x − γ
β

)α − 1

β
(
1+

(
x − γ
β

)α)k + 1 dx.
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Letting x − γ
β

= u in equation (2.4), we have

(2.5) E
(
X j

)
=

(
α k β j

) ∫ ∞
0 uα − 1

(
u +

γ
β

) j
(1 + uα)− (k + 1) du.

Now, using the binomial expansion for
(
u +

γ
β

) j
in equation (2.5) and simplifying, we obtain

(2.6) E
(
X j

)
=

(
α k β j

) ∑ j
m = 0

(
j
m

) (
γ
β

) j − m ∫ ∞
0 uα + m − 1 (1 + uα)− (k + 1) du.

Thus, using Gradshteyn and Ryzhik [10, page 295] Eq. 3.251.11, of the jth moment of the Burr (4P) distribution is
easily given by

(2.7) E
(
X j

)
=

(
k β j

) ∑ j
m = 0

(
j
m

) (
γ
β

) j − m
B

(
1 + m

α
, k − m

α

)
,

where 0 ≤ m ≤ j < k α, j > 0 (a positive integer), k > 0, α > 0, β > 0, −∞ < γ < +∞, and B () denotes
the complete beta function.
First Moment (or Mean) of the Burr (4P) Distribution: Taking j = 1 in (2.7) and simplifying, the first moment
(or the mean) of the Burr (4P) distribution is easily given by

(2.8) E (X) = γ + (k β) B
(
1 +

1
α
, k −

1
α

)
, 0 <

1
α

< k,

where k > 0, α > 0, β > 0, −∞ < γ < +∞.
jth (Central) Moment: The jth (central) moment of the Burr (4P) distribution can easily be derived as follows:

E [ X − E ( X ) ] j =
∫ ∞

0 [ x − E ( X ) ] j fX(x) dx(2.9)

=
∑ j

m = 0 (− 1) m
(

j
m

)
(E (X)) m E

(
X j−m

)
,

where E
(
X j−m

)
and ( E (X) ) m can be obtained from the equations (2.7) and (2.8) respectively. From the equation

(2.9), one can easily obtain the second, third, and higher central moments.
Variance: Taking j = 2 in equation (2.9), the variance (or the second central moment) is given by
(2.10) Variance = E [ X − E ( X ) ] 2 =

∫ ∞
0 [ x − E ( X ) ] 2 fX(x) dx = E

[
X2

]
− (E [X]) 2 .

Coefficients of Skewness and Kurtosis: By taking j = 3 and j = 4 in the equation (2.9), the third and fourth
central moments are respectively given by

(2.11) E [ X − E ( X ) ] 3 =
∑3

m = 0 (− 1) m
(

3
m

)
( E (X) ) m E

(
X 3−m

)
,

and

(2.12) E [ X − E ( X ) ] 4 =
∑4

m = 0 (− 1) m
(

4
m

)
( E (X) ) m E

(
X 4−m

)
.

Thus, using equations (2.11) and (2.12), the measure of skewness and kurtosis are respectively given by

(2.13) Skewness =

∑3
m = 0 (− 1) m

(
3
m

)
( E (X) ) m E

(
X 3−m

)
(
E

[
X2] − E [X] 2

) 3
2

,

and

(2.14) Kurtosis =

∑4
m = 0 (− 1) m

(
4
m

)
( E (X) ) m E

(
X 4−m

)
(
E

[
X2] − E [X] 2

)2 ,

where E
(
X j−m

)
and ( E (X) ) m can be obtained from the equations (2.7) and (2.8) respectively.

2.3 Burr (3P) Distribution:
It is special case of Burr (4P) distribution, and can be obtained by taking the location parameter γ = 0 in Burr (4P)
distribution, with its probability density function (pdf) and cumulative distribution function (cdf), respectively, given
by

f (x) =
α k

(
x
β

)α − 1

β
(
1 +

(
x
β

)α)k + 1 , and F (x) = 1 −
(
1 +

(
x
β

)α)− k

,

where k (> 0): shape parameter ; α (> 0): shape parameter ; β (> 0): scale parameter ; and domain: 0 ≤ x < ∞.

Remark 2.1 Proceeding in the same manner as in sub-sections 2.1 and 2.2 above, we can draw the graphs of the pdf
and cdf of Burr (3P) distribution for some selected values of the parameters, and also we can derive various moments
of the Burr (3P) distribution.
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3 Data Analysis and Fitting Distributions
To illustrate the performance of the Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) distributions, we have
considered the breaking stress of 6061-T6 aluminum data, consisting of 200 observations, as reported in Lio and
Park [15], and determine their best fit.
3.1 Data Description:
In what follows, the breaking stress of 6061-T6 aluminum data is provided in Table 3.1 below. The descriptive
statistics of the data are computed in Table 3.2. Using the software statdisk (https://www.triolastats.com/statdisk), the
histogram, boxplot and the probability plot of the data are drawn in Figure 3.1, followed by the testing of the normality
of the data by Ryan-Joiner Test (Similar to Shapiro-Wilk Test), which is given in Table 3.3, along with a description
of the methods of parameter estimates and goodness of fit tests, which are given subsequently.

Table 3.1: Breaking Stress of 6061-T6 Aluminum

0.2187, 0.2802, 0.3026, 0.3693, 0.4136, 0.4155, 0.4348, 0.4357, 0.4436,
0.5193, 0.5239, 0.5319, 0.5322, 0.5355, 0.5365, 0.5459, 0.5653, 0.5654,
0.5680, 0.5950, 0.6235, 0.6270, 0.7027, 0.7174, 0.7382, 0.7527, 0.7666,
0.7666, 0.7707, 0.7716, 0.7735, 0.7842, 0.8068, 0.8069, 0.8156, 0.8168,
0.8243, 0.8541, 0.8861, 0.8899, 0.9028, 0.9263, 0.9522, 0.9569, 0.9583,
0.9660, 0.9880, 0.9917, 1.0150, 1.0380, 1.0440, 1.0470, 1.0760, 1.0800,
1.0830, 1.1040, 1.1140, 1.1150, 1.1170, 1.1210, 1.1260, 1.1400, 1.1420,
1.1450, 1.1450, 1.1520, 1.1550, 1.1570, 1.1590, 1.1670, 1.1730, 1.1860,
1.1880, 1.1900, 1.1980, 1.2000, 1.2090, 1.2160, 1.2210, 1.2210, 1.2260,
1.2470, 1.2470, 1.2650, 1.2900, 1.2970, 1.3000, 1.3080, 1.3080, 1.3160,
1.3200, 1.3360, 1.3370, 1.3380, 1.3410, 1.3430, 1.3440, 1.3520, 1.3580,
1.3690, 1.3840, 1.3870, 1.3870, 1.3870, 1.3910, 1.3990, 1.4090, 1.4170,
1.4300, 1.4320, 1.4360, 1.4360, 1.4630, 1.4730, 1.4890, 1.4900, 1.4940,
1.5040, 1.5060, 1.5110, 1.5130, 1.5140, 1.5180, 1.5260, 1.5310, 1.5510,
1.5560, 1.5750, 1.5860, 1.5870, 1.5920, 1.5920, 1.5950, 1.6030, 1.6030,
1.6100, 1.6150, 1.6310, 1.6390, 1.6460, 1.6490, 1.6500, 1.6510, 1.6690,
1.6800, 1.6830, 1.6880, 1.6890, 1.6890, 1.7080, 1.7260, 1.7360, 1.7540,
1.7670, 1.7790, 1.8260, 1.8450, 1.8570, 1.8760, 1.8850, 1.9000, 1.9070,
1.9460, 1.9810, 2.0220, 2.0280, 2.0400, 2.0510, 2.0660, 2.1080, 2.1130,
2.1900, 2.2010, 2.3440, 2.3460, 2.3460, 2.4700, 2.5640, 2.6140, 2.6250,
2.9400, 3.0470, 3.0870, 3.1030, 3.1470, 3.5950, 3.6320, 3.8360, 3.9910,
4.2170, 4.4480, 4.4740, 4.5500, 4.5620, 5.0100, 5.2110, 5.8540, 5.9990,
7.2170, 8.5320

Table 3.2: Descriptive Statistics of the Breaking Stress data

Statistic Value Statistic Value Percentile Value
Sample Size 200 Kurtosis 13.051 Min 0.2187
Range 8.3133 Mode 1.3870 5% 0.5216
Mean 1.6234 Midrange 4.37535 10% 0.60925
Variance 1.3699 25% (Q1) 1.041
Std. Deviation 1.1704 50% (Median) 1.3765
Coef. of Variation 0.72097 75% (Q3) 1.717
Std. Error 0.08276 90% 2.7825
Skewness 2.7615 95% 4.3325
Excess Kurtosis 10.005 Max 8.532
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Table 3.3: Ryan-Joiner Test of Normality Assessment

Ryan-Joiner Test
Test statistic, Rp: 0.849
Critical value for 0.05 significance level: 0.993
Critical value for 0.01 significance level: 0.99
Reject normality with a 0.05 significance level.
Reject normality with a 0.01 significance level.
Number of data values below Q1 by more than 1.5 IQR: 0
Number of data values above Q3 by more than 1.5 IQR: 20

Figure 3.1: Histogram, Boxplot and the Probability Plot of the Breaking Stress Data

From Table 3.3 of Ryan-Joiner Test of Normality Assessment and Figure 3.1 (for the histogram, boxplot and
the probability plot), it is obvious that the shape of the breaking stress of 6061-T6 aluminum data is not normally
distributed, instead of skewed to the right. This is also confirmed from the skewness (2.7615) and kurtosis (13.051) of
the breaking stress of 6061-T6 aluminum data as computed in Table 3.2.
3.2 Estimation of parameters:
In what follows, we provide the estimation of the parameters of the Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P)
distributions by the method of moment and the method of maximum likelihood.
3.2.1 The Method of Moments:
If {Xi}

n
i = 1 be an iid sample from a distribution with a m-dimensional parameter vector ϕ, then, according to the method

of moment (MOM), the estimator
∼
ϕ is the solution of the following system of equations:

(3.1) E∼
ϕ

(
X j

)
=

∑n
i = 1 X j

i

n
, j = 1, 2, 3, . . . , m.
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Thus, using the above-mentioned definition of MOM, we can obtain the respective moments from the equation
(3.1) of the jth moment, E

(
X j

)
, of the Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) distributions by taking

the respective values of j, and evaluating the respective expressions of the respective moments numerically. Then, the
moment estimations of the respective parameters of the Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) distributions
can be determined by solving the system of respective equations thus obtained by Newton-Raphson’s iteration method,
and using some computer packages such as Maple, or Mathematica, or R, or MathCAD, or other software.
3.2.2 The Method of Maximum Likelihood:
Given a sample {xi}, i = 1, 2, 3, . . . , n, the likelihood functions of the respective pdf’s of the Burr (3P), Burr (4P),
Dagum (3P) and Dagum (4P) distributions are given by L =

∏n
i=1 f (xi). The objective of the likelihood function

approach is to determine those values of the parameters that maximize the function L. Suppose R = ln(L) =∑n
i=1 ln[ f (xi)]..Then, upon differentiation, the maximum likelihood estimates (MLE) of the respective parameters of the

Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) distributions can be obtained by solving the respective maximum
likelihood system of equations, applying the Newton-Raphson’s iteration method and using some computer packages
such as Maple, or Mathematica, or R, or MathCAD14, or other software.
3.3 Goodness-of-fit tests:
Since fitting of a probability distribution to of the breaking stress data may be helpful in predicting the probability or
forecasting the frequency of occurrence of the breaking stress, this suggests that the breaking stress could possibly
be modeled by some skewed distributions. As such we have tested the fitting of the Burr (3P), Burr (4P), Dagum
(3P) and Dagum (4P) distributions based on their goodness of fit to the breaking stress of 6061-T6 aluminum
data (Table 3.1). For this, we have used the Easyfit software for estimating the parameters of these distributions
(http://www.mathwave.com/easyfit-distribution-fitting.html), which are provided in the Table 3.4. The goodness of fit
(GOF) tests, namely,

• Chi-Squared test
• Kolmogorov-Smirnov
• Anderson-Darling

are provided in the Tables 3.5, 3.6 and 3.7 respectively. For GOF tests, see, for example, Hogg and Tanis (2006),
among others

Table 3.4: Estimation of the Parameters
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Table 3.4: Estimation of the Parameters 

# Distributions Parameters 

1 Burr (4P), with pdf as in Eq. 

(1). 

k  = 0.7002,  = 4.3802,   = 1.4014, 

  = - 0.22955 

2 Burr (3P), with pdf as given 

in sub-section 2.2. 
k  = 0.88229,   = 3.3412,   = 1.2771 

3 

Dagum (3P), with pdf as 

( )

1

1

1

k

k

x
k

f x

x











−

+

 
 
 =

  
+     

, 

 see Dagum [6, 7]. 

k  = 0.94777,   = 3.2545,   = 1.3825 

4 

Dagum (4P), with pdf as 

( )

1

1

1

k

k

x
k

f x

x















−

+

 −
 
 =

  −
+     

, 

see Dagum [6, 7]. 

k  = 0.77762,   = 3.1754,   = 1.3882,  
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  Anderson-Darling 

# Distribution Test Statistic Critical Value Rank 

1 Burr (4P) 1.2487 2.5018 1 

2 Dagum (3P) 1.3759 2.5018 2 

3 Burr (3P) 1.3852 2.5018 3 

4 Dagum (4P) 1.4157 2.5018 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the parameters estimated in Table 3.4, the probability density functions (pdf’s) of the Burr (3P), Burr (4P),
Dagum (3P) and Dagum (4P) distributions respectively have been superimposed on the histogram of the breaking
stress of 6061-T6 aluminum data, which is provided in Figure 3.2 below. For these distributions, we have also plotted
the cumulative distribution function (cdf’s), and probability difference, in Figures 3.3 and 3.4 respectively.
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Figure 3.2: Plots of the pdf’s of the Fitted Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) Distributions to the Breaking Stress of 6061-T6 Aluminum Data
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Figure 3.3: Plots of the cdf’s of the Fitted Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) 

Distributions to the Breaking Stress of 6061-T6 Aluminum Data 
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Figure 3.5: Probability Difference of the Fitted Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) 

Distributions to the Breaking Stress of 6061-T6 Aluminum Data 

3.4. Results Discussions 

• From Table 3.3 of Ryan-Joiner Test of Normality Assessment and Figure 3.1 (for the histogram, 

boxplot and the probability plot of the data respectively), it is obvious that the shape of the 

breaking stress of 6061-T6 aluminum data is skewed to the right. This is also confirmed from the 

skewness (2.7615) and kurtosis (13.051) as computed in Table 3.2.                                                                   

• Based on the Chi-Squared test for goodness-of-fit, using the P-values and test statistics analysis, as 

provided in Table 3.5, Burr (4P) distribution was found to be the best fit (Rank 1) for the breaking 

stress data, followed by the Dagum (3P) (Rank 2), Burr (4P) (Rank 3) and Dagum (4P)  (Rank 4) 

distributions. 

• From the Kolmogorov-Smirnov and Anderson-Darling GOF tests as provided in Tables 3.6 and 3.7 

respectively, we observed that the Burr (4P) is the best fit amongst the four continuous probability 

distributions to the breaking stress data, since it has the lowest test statistic.    

• The effects of the parameters can also be easily seen from the plots of the pdf’s of the fitted Burr 

(3P), Burr (4P), Dagum (3P) and Dagum (4P) distributions to the breaking stress data in Figure 

3.2. For example, it is clear from these plots that the above-said distributions are positively right 

skewed with longer and heavier right tails for the estimated values of the parameters.  

Figure 3.5: Probability Difference of the Fitted Burr (3P), Burr (4P), Dagum (3P) and Dagum (4P) Distributions to the Breaking Stress of 6061-T6 Aluminum Data
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3.4 Results Discussions
• From Table 3.3 of Ryan-Joiner Test of Normality Assessment and Figure 3.1 (for the histogram, boxplot and the

probability plot of the data respectively), it is obvious that the shape of the breaking stress of 6061-T6 aluminum
data is skewed to the right. This is also confirmed from the skewness (2.7615) and kurtosis (13.051) as computed
in Table 3.2.
• Based on the Chi-Squared test for goodness-of-fit, using the P-values and test statistics analysis, as provided in

Table 3.5, Burr (4P) distribution was found to be the best fit (Rank 1) for the breaking stress data, followed by
the Dagum (3P) (Rank 2), Burr (4P) (Rank 3) and Dagum (4P) (Rank 4) distributions.
• From the Kolmogorov-Smirnov and Anderson-Darling GOF tests as provided in Tables 3.6 and 3.7 respectively,

we observed that the Burr (4P) is the best fit amongst the four continuous probability distributions to the breaking
stress data, since it has the lowest test statistic.
• The effects of the parameters can also be easily seen from the plots of the pdf’s of the fitted Burr (3P), Burr (4P),

Dagum (3P) and Dagum (4P) distributions to the breaking stress data in Figure 3.2. For example, it is clear
from these plots that the above-said distributions are positively right skewed with longer and heavier right tails
for the estimated values of the parameters.
• The Figure 3.4 displays the P-P plot of the empirical cdf values plotted against the theoretical (fitted) cdf values.

It is observed that the graph points fall approximately along on the diagonal line implying that the Burr (3P),
Burr (4P), Dagum (3P) and Dagum (4P) distributions fit reasonably well to the observed data.
• The Figure 3.5 displays the probability difference graph, which is defined as a plot of the difference between the

empirical cumulative distribution function and the fitted cdf. It is well-known that if the value of the maximum
absolute difference is less than 0.05 (or 5%), we may consider the fit to be good. If the maximum absolute
difference value is less than 0.01 (or 1%), then the fitting of the distributions are considered to be very good.
These fact also confirmed from the probability difference plots of the fitted Burr (3P), Burr (4P), Dagum (3P)
and Dagum (4P) distributions to the breaking stress data in Figure 3.5.

4 Some Concluding Remarks
As we pointed out above, the strength or breaking stress data such as 6061-T6 aluminum or carbon fiber or composite
tensile strengths are fundamental issues in many problems of quality and reliability engineering processes and designs.
The statistical treatment of such data is an important aspect of their analysis and interpretation, and is therefore very
crucial, and can play an important role in many studies quality and reliability engineering processes and designs.
Fitting of a probability distribution to the breaking stress of 6061-T6 aluminum data may be helpful in predicting
the probability or forecasting the frequency of occurrence of the breaking stress of 6061-T6 aluminum, and planning
beforehand.

Motivated by the importance of such studies, in this paper, we have investigated the goodness of fit of the Burr (3P),
Burr (4P), Dagum (3P) and Dagum (4P) distributions to a random sample of 200 observations of the breaking stress
of 6061-T6 aluminum data set to determine their applicability and best fit to these data based on the Kolmogorov-
Smirnov, Anderson-Darling, and Chi-Squared Goodness-of-Fit Tests. Based on the Chi-Squared test for goodness-of-
fit, using the P-values and test statistics analysis, Burr (4P) distribution was found to be the best fit (Rank 1) to the
breaking stress of 6061-T6 aluminum data. Moreover, Burr (4P) distribution is the best fit amongst the four continuous
probability distributions to the breaking stress of 6061-T6 aluminum data based on the Kolmogorov-Smirnov and
Anderson-Darling Goodness-of-Fit Tests, since it has the lowest test statistic.

It is hoped that this study will be helpful in many problems of quality and reliability engineering processes and
designs. One can also consider of developing bootstrap control charts for the percentiles of the above-said distributions,
which is an important area of studies in quality and reliability engineering.
Acknowledgement. The authors are thankful to the comments and suggestions of the Editors and reviewers which
considerably improved the presentation of the paper.
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Abstract
In this paper, innovative methods have been devised to generate formulae for Pythagorean’s Triples, Quadruples

and these are finally generalised to generate Pythagorean’s n-tuples. First method utilises formula for solution of a
quadratic equation and generate two sets of Pythagorean’s Triples. Second method determines universal identities
that satisfy Pythagorean’s Triples, Quadruples so on up to n-tuples. These methods are unprecedented, easy to derive
at and hence are comprehensible to students and scholars alike.
2010 Mathematics Subject Classifications: Number Theory 11D09.
Keywords and phrases: Pythagorean Triples, Quadruples, Quintuples, Sextuples, Integers, n-tuples, Rational
Numbers, Universal Identity.

1 Introduction
Integers X,Y and Z are said to be Pythagorean’s Triple if these satisfy the relation
(1.1) X2 + Y2 = Z2.

When X = Y, in that event, Equation (1.1) yields Z equal to
√

2.X which is an irrational quantity and can not be
Pythagorean’s triple. It is amply explained in basic books of number theory [3], [5]. On the other hand, when X and
Y are unequal say X = x,Y = x + a, Z = x + b, a and b are real and rational quantities then algebraic Equation (1.1)
takes the form

(x)2 + (x + a)2 = (x + b)2.

Such algebraic equations have also been used [6] while deriving identities for Pythagorean’s quadruples. On
expansion
(1.2) x2 − 2x(b − a) − (b2 − a2) = 0.

Equation (1.2) being a quadratic has two roots given by
(1.3) x = (b − a) ±

√
(b − a)2 + (b2 − a2).

2 Theory and Concept
Lemma 2.1 Integers x, (x+a) and (x+b) will be unnormalised Pythagorean’s Triples if x = (b−a)±

√
(b − a) + (b2 − a2)

and a and b are rational quantities such that ±
√

(b − a) + (b2 − a2) is real, perfect square and hence rational. If
x, (x + a) and (x + b) so determined are fractions (unnormalised) , then multiplying them with their lowest common
multiplier LCM will give normalised Pythagorean’s Triples in integer form.

Lemma 2.2 If real and rational quantities x, (x + a) and (x + b) have x = (b − a) ±
√

(b − a) + (b2 − a2) = p/q, a =

p1/q1, b = p2/q2 and p, q, p1, q1, p2, q2 are integers then (p.q1.q2), (p.q1.q2 + p1.q.q2)and(p.q1.q2 + p2.q.q1) will be
Pythagorean’s Triple.

2.1 Values of x, a and b Satisfying Equation (1.3)
We will assume different values of a and b so that Equation (1.3) has real and rational solutions. That is term
±

√
(b − a) + (b2 − a2) should be a perfect square. After assumption of different values of a and b, values of x are

calculated by Equation (1.3). Two cases then arise, one when x is found integer, two when x found is a fraction as p/q.
If x is found to be an integer, no further operation is required,
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2.1a. Normalisation: When x Found is a Fraction p/q.
If x is found to be a fraction of form p/q where p, q, a and b are integers then by Equation (1.1)

(p/q)2 + (p/q + a)2 = (p/q + b)2.

On expansion and simplification
(2.1) (p)2 + (p + q.a)2 = (p + q.b)2.

Since p, q, a and b are all integers then p, (p + q.a)and (p + q.b) being sum and product of integers are always
integers. Such explanation can be found in basic books of number theory [3], [5]. Equation (2.1) is obtained on
multiplying(p/q)2 + (p/q + a)2 = (p/q + b)2 with lowest common multiplier LCM. On putting different integer values
of a and b, values of x are calculated from Equation (1.3) and if values of x are found to be fractions, these are
normalised as discussed above. Explanation of LCM and conversion of fraction to integers are given in books on
number theory [3], [5]. If x found is of form p/q , a of form p1/q1 and b of form p2/q2 then

(p/q)2 + (p/q + p1/q1)2 = (p/q + p2/q2)2

or
(2.2) (p.q1.q2)2 + (p.q1.q2 + p1.q.q2)2 = (p.q1.q2 + p2.q.q1)2.

Values of x calculated with different values of a and b are given in Table 1.1 after normalisation. It is also worth
mentioning if value of x is found to be negative and as its square will always be positive, therefore, negative value of
x will not have any effect on Pythagorean’s triple. In the Table 1.1 , at one place, x is calculated negative 11/2, after
normalisation it is taken as positive 11 on account of the fact already discussed.

Table 2.1: Pythagorean’s Triples

x a b Normalised
x

Normalised
y = x + a

Normalised
z = x + b

3 1 2 3 4 5
5/4 7/4 2 5 12 13
8/3 7/3 3 8 15 17
7/6 17/6 3 7 24 25
12/5 23/5 5 12 35 37
9/16 31/16 2 9 40 41
28/5 17/5 5 28 45 53
−11/12 71/12 6 11 60 61
33/8 23/8 4 33 56 65
48/5 7/5 5 48 55 73
13/12 71/12 6 13 84 85
39/10 41/10 5 39 80 89
65/8 7/8 4 65 72 97
88/7 17/7 7 88 105 137
85/12 47/12 6 85 132 157
119/10 1/10 5 119 120 169
133/12 23/12 6 133 156 205
207/14 17/1 7 207 224 305

2.2 Pythagorean’s Quadruples
Pythagorean’s quadruples x, y,w and z are given by equation given below. Studies for derivation of identifies for
Pythagorean’s quadruples from the point of view of area of one face of tetrahedron that equals areas of three opposite
faces has been done and also Wikipedia provides an analytic account of it [1], [9].
(2.3) x2 + y2 + w2 = z2.

Again by putting y = x + a, z = x + b and w = x + c wherex, a, band c are all rational quantities, In this regards,
theory of representation of rational quantities in algebraic is given in basic books on number theory [3], [5]. Equation
(2.3) transforms to (x)2 + (x + a)2 + (x + b)2 = (x + c)2 or

(2.4) x2 − x(c − b − a) −
1
2

(c2 − b2 − a2) = 0.
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Equation (2.4) being quadratic has roots given by

(2.5) x =
1
2

(c − b − a) ±
1
2

{
(c − b − a)2 + 2.(c2 − b2 − a2)

} 1
2

.

Lemma 2.3 Integers x, y, z and w are Pythagorean’s quadruples if

x =
1
2

(c − b − a) ±
1
2

{
(c − b − a)2 + 2.(c2 − b2 − a2)

} 1
2

, y = (x + a),w = (x + b)

and z = (x + c) where x, a, b and c are rational quantities such that quantity ± 1
2

{
(c − b − a)2 + 2(c2 − b2 − a2)

} 1
2

is

rational, in other words quantity ± 1
2

{
(c − b − a)2 + 2(c2 − b2 − a2)

} 1
2

is real and a perfect square. If x, y, z and w so

determined are fractions, then multiplying x, y, z and w with their lowest common multiplier LCM will give normalised
Pythagorean’s quadruples in integer form.

Lemma 2.4 If x, y, z and w are rational quantities and x is is given by

x =
1
2

(c − b − a) ±
1
2

{
(c − b − a)2 + 2(c2 − b2 − a2)

} 1
2

, y = (x + a),w = (x + b)

and z = (x + c) where a, b and c are rational quantities such that quantity ± 1
2

{
(c − b − a)2 + 2.(c2 − b2 − a2)

} 1
2

is

rational, in other words quantity ± 1
2

{
(c − b − a)2 + 2(c2 − b2 − a2)

} 1
2

is real and perfect square and if x is of form

p/q , a of form p1/q1, b of form p2/q2 and c of form p3/q3 then (p.q1.q2.q3), (p.q1.q2.q3 + p1.q.q2.q3), (p.q1.q2.q3 +

p2.q.q1.q3)and(p.q1.q2.q3 + p3.q.q1.q2) will be Pythagorean’s Quadruples..

2.2a. Values of x, a and b Satisfying Equation (2.5)

Different values ofa, band c are assumed so that Equation (2.5) has rational solutions i.e.
{
(c−b−a)2 +2(c2−b2−a2)

} 1
2

is rational and is a perfect square. After assumption of values of a, b and c, values of x are calculated by equations
(2.5). On calculations two cases arise, one when x is found integer, no further operation is required, two if x is found
to be a fraction of the form p/q, it requires normalisation.
2.2b. Normalisation: When x on Calculation is a Fraction of the Form p/q
When x is a fraction say of kind p/q where p, q, a and b are integers then by Equation (2.3),

(p/q)2 + (p/q + a)2 + (p/q + b)2 = (p/q + c)2.

After normalisation by multiplying with LCM,

(2.6) p2 + (p + q.a)2 + (p + q.b)2 = (p + q.c)2.

Sincep, q, a and b are all integers, therefore,p, (p + q.a), (p + q.b) and (p + q.c) being sum and product of integers
are always integers. Such explanation is given in books [3], [5]. On putting different integer values of a, b and c, values
of x are calculated from equation (2.5) and if values of x are found to be fractions, these are normalised as discussed
above. If x calculated is of form p/q , a of form p1/q1, b of form p2/q2and c of the form p3/q3 then

(p/q)2 + (p/q + p1/q1)2 + (p/q + p2/q2)2 = (p/q + p3/q3)2.

After normalisation on multiplying with LCM,

(2.7) (p.q1.q2.q3)2 + (p.q1.q2.q3 + p1.q.q2.q3)2 + (p.q1.q2.q3 + p2.q.q1.q3)2(p.q1.q2.q3 + p3.q.q1.q2)2.

Values of x are calculated by putting different values of a and b in equations (2.5). These values of x, a, band c are
given in Table 2.2. It is is also worth mentioning that if value of x is found to be negative and as its square will always
be positive, therefore, assuming this negative value of x or (x + a) or(x + b) or (x + c) as positive will not have any
effect on Pythagorean’s quadruples. In the Table 2.2, at some places, x is calculated negative, but after normalisation,
it is taken as positive on account of the facts as have already been discussed.
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Table 2.2: Pythagorean’s Quadruples given by equation x2 + y2 + z2 = w2

x a b c Norm.
x

Norm.
y = x + a

Norm.
z = x + b

Norm.
w = x + c

1 1 1 2 1 2 2 3
1/4 7/4 3/4 2 1 8 4 9
1/8 11/8 11/8 2 1 12 12 17
2/3 7/3 4/3 3 2 9 6 11
4 0 −2 2 4 4 2 6
−7/8 11/8 11/8 2 7 4 4 9
−7/6 13/6 −13/6 3 7 6 6 11
7/2 23/2 23/2 3 7 30 30 43
9/4 −17/4 −21/4 2 9 8 12 17
9/8 −21/8 −29/8 2 9 12 20 25
−17/12 23/12 23/12 3 17 6 6 19
21/4 −5/4 −9/4 2 21 16 12 29
29/8 −15/8 −15/8 2 29 14 14 45
31/12 11/12 11/12 3 31 42 42 67
37/4 -17/4 −21/4 2 37 20 16 45
57/8 -21/8 −29/8 2 57 36 28 73

2.2c. Pythagorean Quadruples of the Form x2 + y2 = z2 + w2

Let y = x + a, z = x + b and w = x + c then x2 + (x + a)2 = (x + b)2 + (x + c)2.
Therefore,

(2.8) x =
b2 + c2 − a2

2(a − b − c)
,

wherex, a, band c are rationals. Amongst others, Wikipedia describes the method of generation of Pythagorean’s triples
[8]. Let x is of form p/q , a of form p1/q1 , b of form p2/q2 , c of form p3/q3 where p, q, p1q1, p2, q2, p3andq3 are all
integers then after normalisation,

(2.9) (p.q1.q2.q3)2 + (p.q1.q2.q3 + p1.q.q2.q3)2

= (p.q1.q2.q3 + p2.q.q1.q3)2 + (p.q1.q2.q3 + p3.q.q1.q2)2.

Based on the above said formula, some Pythagorean’s quadruples are given in Table 2.3.

Table 2.3: Pythagorean Quadruples of the Form x2 + y2 = z2 + w2

x a b c Normalised
x

Normalised
y = x + a

Normalised
z = x + b

Normalised
w = x + c

-7/6 1 2 2 7 1 5 5
-17/10 1 3 3 17 7 13 13
-31/4 1 4 4 31 17 25 25
-19/2 1 -2 4 19 17 23 11
-19/14 -1 2 4 19 33 9 7
19/6 1 2 -4 19 25 31 5
1/6 2 1 -2 1 13 7 11
-1/10 -2 1 2 1 21 9 19
7/2 2 3 -3 7 11 13 1
7/8 2 -3 -3 7 23 17 17
-1/3 3 -2 -1 1 8 7 4
-1/10 3 -3 1 1 31 29 11
1/14 3 -3 -1 1 43 41 13
-9/2 1 -1 3 9 7 11 13
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2.2d. Pythagorean Quadruples of the Form x2 +y2 +w2 = v2 where x2 +y2 = z2 and z2 +w2 = v2

Pythagorean’s triples of the formx2 +y2 = z2have already been formulated in paragraphs 1 to 2.1a and are not repeated
here. After finding value of z, value of c and d are to be found so that these may satisfy the equation z2 + w2 = v2.
This equation is same as x2 + y2 = z2and values of z can be found by Equation (1.3). Values of x, y, z and w are given
in Table 2.4.

Table 2.4: Pythagorean Quadruples of the Form x2 + y2 = z2 + w2

x y z =
(
x2 + y2

) 1
2 w v =

(
z2 + w2

) 1
2

3 4 5 12 13
5 12 13 84 85
9 12 15 8 17
13 84 85 132 157
15 36 39 80 89
28 96 100 105 145
33 56 65 420 425
33 56 65 72 97

2.2e. Pythagorean Quintuples of the Form x2 + y2 + z2 + w2 = v2

Let y = (x + a), z = (x + b),w = (x + c) and v = (2x + d) [8] then (x)2 + (x + a)2 + (x + b)2 + (x + c)2 = (2.x + d)2.
Therefore,

(2.10) x =
d2 − a2 − b2 − c2

2(a + b + c − 2.d)
.

On putting different integer values of a, b, c and d, different values of x are obtained. From those values of x,
values ofy, z,w and v are calculated and normalised. Wikipedia describes the method of generation of Pythagorean’s
quintuples [8]. Table 2.5 gives Pythagorean’s Quintuples based on the above said formula.

Table 2.5: Pythagorean Pentagonal Numbers of the Form x2 + y2 + z2 + w2 = v2

a b c d x Norm.x Norm.y = x+

a
Norm.z = x+

b
Norm.w =

x + c
Norm.v =

2x+d = (x2 +

y2 + z2 + w2)
1
2

1 2 3 4 -1/2 1 1 3 5 6
1 3 4 5 1/4 1 5 13 17 22
1 2 3 -\4 1/14 1 15 29 43 54
1 2 -\3 4 -1/8 1 7 15 25 30
-1 2 3 4 -1/4 1 5 7 11 14
-1 -2 3 4 -1/8 1 9 17 23 30
-1 2 -3 4 -1/10 1 11 19 31 38
-1 2 3 -\4 1/12 1 11 25 37 46
1 -3 4 5 1/16 1 17 47 65 82
1 3 -\4 5 1/20 1 21 61 79 102

2.2f. Pythagorean N-Tuples of the Form x2
1 + x2

2 + x2
3 + . . . + x2

n = y2

Let x2 = (x1 + a2), x3 = (x1 + a3), x4 = (x1 + a4), . . . , xn = (x1 + an) and y = (x1 + a1)then putting these values in
equation x2

1 + x2
2 + x2

3 + . . . x2
n = y2 it will take the form

x2
1 + (x1 + a2)2 + (x1 + a3)2 + (x1 + a4)2 + . . . + (x1 + an)2 = (x1 + a1)2.

Methods of generating such generalised Pythagorean’s n-tuples has been described by many mathematicians [4],
[10], [1], [2]. On expansion and rearrangement,

(n − 1)x2
1 + 2x1(a2 + a3 + a4 + . . . + an − a1) + a2

2 + a2
3 + a2

4 + . . . a2
n − a2

1 = 0
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This is a quadratic in x1 and its roots are

x1 =
−Q ±

√
Q2 − 4P.R
2P

,

where P = (n − 1),Q = 2(a2 + a3 + a4 + . . . + an − a1) and R = a2
2 + a2

3 + a2
4 + . . . a2

n − a2
1. Values of a1, a2, a3, . . . an

can be assumed arbitrarily such that part under square root is rational and that determines x1. Once x1 is determined,
a1, a2, a3, . . . , an are known, x2, x3, . . . , xn and y can be calculated. By assuming different set of a1, a2, a3, . . . , an,
different set of x1, x2, x3, . . . , xn can be found out, hence n-tuples are generated.
2.3 Second Method: To Generate Pythagorean’s Numbers
2.3a. Pythagorean’s Triples
Pythagorean’s Triples are given by the equation a2 + b2 = c2. This can also be written as a2 = c2 − b2 or a2 =

(c− b)(c + b)or ( c
a −

b
a )( c

a + b
a ) = 1. Let x = ( c

a + b
a )then from above equation, 1

x = ( c
a −

b
a ). On adding and subtracting,

(2.11) x +
1
x

= 2
c
a

(2.12) x −
1
x

= 2
b
a
.

Since c2/a2 − b2/a2 = 1, therefore using Equations (2.11) and (2.12),

(2.13)
1
4

(x +
1
x

)2 −
1
4

(x −
1
x

)2 = 1,

(2.14) (x −
1
x

)2 + 22 = (x +
1
x

)2,

identity (2.14) generates Pythagorean’s Triples (x − 1/x) , 2 and (x + 1/x) satisfying a2 + b2 = c2.[8].Let x = 3
2 then

( 3
2 −

2
3 ) , 2 and ( 3

2 + 2
3 ) on normalisation are Pythagorean’s triple as 5, 12 and 13. Procedure analogous to this has also

been adopted by some mathematicians and it also makes mention in Wikipedia.[7], [8]. Some Pythagorean’s triples
using Equation (2.14) are given in Table 2.6.

Table 2.6: Pythagorean’s Triples

x (x − 1/x) 2 (x + 1/x) Normalised a Normalised b Normalised c
2 3/2 2 5/2 3 4 5
3/2 5/6 2 13/6 5 12 13
4/3 7/12 2 25/12 7 24 25
5/4 9/20 2 41/20 9 40 41
4 15/4 2 17/4 15 8 17
6 35/6 2 37/6 35 12 37
8/3 55/24 2 73/24 55 48 73
8/5 65/40 2 89/40 65 80 89
8/7 15/56 2 113/56 15 112 113
8 63/8 2 65 63 16 65

2.3b. Pythagorean’s Quadruples of the Form a2+b2+c2 = d2 where a2+b2 = e2and e2+c2 = d2

Let a2 + b2 = e2 then as proved in paragraph 2.3a, x − 1
x = 2 b

a and x + 1
x = 2 e

a . That makes a2 + b2 = e2 as
1
4 (x − 1

x )2 + 1 = 1
4 (x + 1

x )2. On dividing left hand side and right hand side by 1
4 (x + 1

x )2

(2.15) (x −
1
x

)2(x +
1
x

)−2 + 4(x +
1
x

)−2 = 1.

Since a2 +b2 +c2 = d2 and it is assumed a2 +b2 = e2, therefore,e2 +c2 = d2. That makes y− 1
y = 2 c

e and y+ 1
y = 2 d

e
. Therefore,

(2.16) 1 +
1
4

(y −
1
y

)2 =
1
4

(y +
1
y

)2.

On putting value of 1 from equation (2.15) in Equation (2.16),

(2.17) (x −
1
x

)2(x +
1
x

)−2 + 4(x +
1
x

)−2 +
1
4

(y −
1
y

)2 =
1
4

(y +
1
y

)2.
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Equation (2.17) is an equation of Pythagorean’s Quadruples for all real and rational values ofxand y except x =

y = 1. An example where x = 2, y = 3 is taken up below,
(x − 1

x )2(x + 1
x )−2 = ( 9

4 )( 4
25 ) = 9

25 ,

4(x + 1
x )−2 = 4( 4

25 ) = 16
25 ,

4(x + 1
x )−2 = 4( 4

25 ) = 16
25 ,

1
4 (y − 1

y )2 = 1
4 ( 64

9 ) = 16
9 ,

1
4 (y + 1

y )2 = 1
4 ( 100

9 ) = 25
9 .

That makes 9
25 + 16

25 + 16
9 = 25

9 or ( 3
5 )2 + ( 4

5 )2 + ( 4
3 )2 = ( 5

3 )2and after normalisation,
92 + 122 + 202 = 252.
In this way, using equation (2.17), Pythagorean’s Quadruples are generated and are given in Table 2.7.

Table 2.7: Pythagorean’s Quadruples of the Form a2 + b2 + c2 = d2 where a2 + b2 = e2 and e2 + c2 = d2

x y (x− 1
x )

(x+ 1
x )

2(x + 1
x ) 1

2 (y − 1
y ) 1

2 (y + 1
y ) a b e c d

2 3 3/5 4/5 4/3 5/3 9 12 15 20 25
3 4 4/5 3/5 15/8 17/8 32 24 40 75 80
2 5 3/5 4/5 12/5 13/5 3 4 5 12 13
2 7 3/5 4/5 24/7 25/7 21 28 35 120 125
3 2 4/5 3/5 3/4 5/4 16 12 20 15 25
3 8 4/5 3/5 63/16 65/16 64 48 80 315 325
2 9 3/5 4/5 40/9 41/9 27 36 45 200 205
3 11 4/5 3/5 60/11 61/11 44 33 55 300 305
4 5 15/17 8/17 12/5 13/5 75 40 85 204 221
3 3/2 4/5 3/5 5/12 13/12 48 36 60 25 65

2.3c. Pythagorean’s Quintuples of the Form a2 +b2 +c2 +d2 = g2 where a2 +b2 = e2, e2 +c2 = f 2

and f 2 + d2 = g2.
Pythagorean’s Quadruples, generating equation has already been derived at (2.17), we shall proceed further from this
equation which can also be written as

4(x −
1
x

)2(x +
1
x

)−2(y +
1
y

)−2 + 42(x +
1
x

)−2(y +
1
y

)−2 + (y −
1
y

)2(y +
1
y

)−2 = 1

or

(2.18)
{
2(x −

1
x

)(x +
1
x

)−1(y +
1
y

)−1
}2

+

{
4(x +

1
x

)−1(y +
1
y

)−1
}2

+

{
(y −

1
y

)(y +
1
y

)−1
}2

= 1,

since a2 + b2 = e2, e2 + c2 = f 2 and f 2 + d2 = g2.
From discussion made in the paragraph related to generation of Quadruples, f , d and g can be given by relations,

f
d = 1

2 (z− 1
z ) and g

d = 1
2 (z + 1

z ) where z is real rational number. Equation f 2 + d2 = g2 can be written as 1
4 (z− 1

z )2 + 1 =
1
4 (z + 1

z )2and substituting 1 as given by equation (2.18), this equation takes the form

(2.19)
{
2(x −

1
x

)(x +
1
x

)−1(y +
1
y

)−1
}2

+

{
4(x +

1
x

)−1(y +
1
y

)−1
}2

+

{
(y −

1
y

)(y +
1
y

)−1
}2

+

{1
2

(z −
1
z

)
}2

=

{1
2

(z +
1
z

)
}2
.

Equation (2.19) after normalisation generates Pythagorean’s Quintuples for all real rational values ofx, y and z.

Let A =

{
2(x − 1

x )(x + 1
x )−1(y + 1

y )−1
}
, B =

{
4(x + 1

x )−1(y + 1
y )−1

}
, C =

{
(y − 1

y ).(y + 1
y )−1

}
, D =

{
1
2 (z − 1

z )
}

and

G =

{
1
2 .(z + 1

z )
}
. Un-normaised Pythagorean’s Quintuples are generated by equation A2 + B2 + C2 + D2 = G2 and after

normalisation, we get a2 + b2 + c2 + d2 = g2.

Let us take an example where x = 2, y = 3 and z = 4. Then A2 =

{
2( 3

2 )( 2
5 )( 3

10 )
}2

= ( 9
25 )2, B2 =

{
4( 2

5 )( 3
10 )

}2
=

( 12
25 )2,C2 =

{
( 8

3 )( 3
10 )

}2
= ( 4

5 )2,D2 =

{
1
2 ( 15

4 )
}2

= ( 15
8 )2 and G2 =

{
1
2 ( 17

4 )
}2

= ( 17
8 )2. Since A2 + B2 + C2 + D2 = G2,

therefore,( 9
25 )2 +( 12

25 )2 +( 4
5 )2 +( 15

8 )2 = ( 17
8 )2.After normalisation, a2 +b2 +c2 +d2 = g2or 722 +962 +1602 +3752 = 4252.

In this way, using equation (2.19), Pythagorean’s Quintuples are generated and are given in the Table 2.8.
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Table 2.8: Pythagorean’s Quintuples Of The Form a2 + b2 + c2 + d2 = g2

x y z A B C D G a b e c f d g
2 3 4 9/25 12/25 4/5 15/8 17/8 72 96 120 160 200 375 425
2 3 5 9/25 12/25 4/5 12/5 13/5 9 12 15 20 25 60 65
2 3 2 9/25 12/25 4/5 3/4 5/4 36 48 60 80 100 75 125
3 2 4 16/25 12/25 3/5 15/8 17/8 128 96 160 120 200 375 425
2 2 2 12/25 16/25 3/5 3/4 5/4 48 64 80 60 100 75 125
2 2 3 12/25 16/25 3/5 4/3 5/3 36 48 60 45 75 100 125
2 2 3/2 12/25 16/25 3/5 5/12 13/12 144 192 240 180 300 125 325
2 3 3 9/25 12/25 4/5 4/3 5/3 27 36 45 60 75 100 125
3 3 3/2 12/25 9/25 4/5 5/12 13/12 144 108 180 240 300 125 325
2 2 5 12/25 16/25 3/5 12/5 13/5 12 16 20 15 25 60 65
3 3 5/2 12/25 9/25 4/5 21/20 29/20 48 36 60 80 100 105 145

2.3d. Pythagorean’s Sextuples of the Form a2 + b2 + c2 + d2 + g2 = h2 where a2 + b2 = e2,
e2 + c2 = f 2, f 2 + d2 = k2 and k2 + g2 = h2

Equation (2.19) can also be written as

(2.20)
{
23(x +

1
x

)−1(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
22(x −

1
x

)(x +
1
x

)−1(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
2(y −

1
y

)(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
20(z −

1
z

)(z +
1
z

)−1
}2

= 1.

Also k2 + g2 = h2 can be written as
{

1
2 (w − 1

w )
}2

+ 1 =

{
1
2 (w + 1

w )
}2

where w + 1
w = 2 h

k and w − 1
w = 2 g

k from

equations (2.11) and (2.12). On substituting 1 as given in equation (2.20) in the above equation, we get

(2.21)
{
23(x +

1
x

)−1(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
22(x −

1
x

)(x +
1
x

)−1(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
2(y −

1
y

)(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
20(z −

1
z

)(z +
1
z

)−1
}2

+

{
2−1(w −

1
w

)
}2

=

{
2−1(w +

1
w

)
}2
.

Equation (2.21) after normalisation generates Pythagorean’s Sextuples for all real rational values of x, y, z and w.
Let

A2 =

{
23(x + 1

x )−1(y + 1
y )−1(z + 1

z )−1
}2

B2 =

{
22(x − 1

x )(x + 1
x )−1(y + 1

y )−1(z − 1
z )−1

}2

C2 =

{
2(y − 1

y )(y + 1
y )−1(z + 1

z )−1
}2

D2 =

{
(z − 1

z )(z + 1
z )−1

}2

G2 =

{
1
2 (w − 1

w )
}2

H2 =

{
1
2 (w + 1

w )
}2
,

then unnormalised Pythagorean’s Sextuples are generated byA, B,C,D,G and H by the equation (2.21) where
A2 + B2 + C2 + D2 + G2 = H2.
After normalisation, we get
a2 + b2 + c2 + d2 + g2 = h2.
Let us take an example wherex = 2, y = 2, z = 2 and w = 3 then

A2 =

{
23( 2

5 )( 2
5 )( 2

5 )
}2

= ( 64
125 )2,

B2 =

{
22( 3

2 )( 2
5 )( 2

5 )( 2
5 )

}2
= ( 48

125 )2,
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C2 =

{
2( 3

2 )( 2
5 )( 2

5 )
}2

= ( 12
25 )2,

D2 =

{
( 3

2 )( 2
5 )

}2
= ( 3

5 )2,

G2 =

{
( 1

2 )( 8
3 )

}2
= ( 4

3 )2,

H2 =

{
( 1

2 )( 10
3 )

}2
= ( 5

3 )2.

Therefore,
( 64

125 )2 + ( 48
125 )2 + ( 12

25 )2 + ( 3
5 )2 + ( 4

3 )2 = ( 5
3 )2.

After normalisation
1922 + 1442 + 1802 + 2252 + 5002 = 6252.
In this way, using Equation (2.21), Pythagorean’s Sextuples are generated and unnormalised are given in the Table

2.9 A and normalised in Table 2.9 B.

Table 2.9 A: Unnormalised Pythagorean’s Sextuples

x y z w A B C D G H
2 2 2 3 64/125 48/125 12/25 3/5 4/3 5/3
2 2 2 2 64/125 48/125 12/25 3/5 3/4 5/4
2 2 2 4 64/125 48/125 12/25 3/5 15/8 17/8
2 2 2 3/2 64/125 48/125 12/25 3/5 5/12 13/12
2 2 2 5 64/125 48/125 12/25 3/5 12/5 13/5
2 2 2 10 64/125 48/125 12/25 3/5 99/20 101/20
2 2 2 25 64/125 48/125 12/25 3/5 312/25 313/25
2 2 2 5/3 64/125 48/125 12/25 3/5 8/15 17/15

Table 2.9 B: Pythagorean’s Sextuples of the Form a2 + b2 + c2 + d2 + g2 = h2

x y z w a b c d g h
2 2 2 3 192 144 180 225 500 625
2 2 2 2 256 192 240 300 375 625
2 2 2 4 512 384 480 600 1875 2125
2 2 2 3/2 768 576 720 900 625 1625
2 2 2 5 64 48 60 75 300 325
2 2 2 10 256 192 240 300 2475 2525
2 2 2 25 64 48 60 75 1560 1565
2 2 2 5/3 192 144 180 225 200 425

2.3e. Pythagorean’s N-Tuples of the Form x2
1 + x2

2 + x2
3 + . . . + x2

n = y2

Equations 2.17), (2.19) and (2.20) on changing xtox1, ytox2, ztox3 so on can be written in the following way for number
of Pythagorean’s terms n = 4,{

2(x1 +
1
x1

)−1
}2

+

{
20(x1 −

1
x1

)(x1 +
1
x1

)−1
}2

+

{
2−1(x2 −

1
x2

)
}2

=

{
2−1(x2 +

1
x2

)
}2
.

For number of Pythagorean’s terms n = 5,{
22(x1 +

1
x1

)−1(x2 +
1
x2

)−1
}2

+

{
21(x1 −

1
x1

)(x1 +
1
x1

)−1(x2 +
1
x2

)−1
}2

+

{
20(x2 −

1
x2

)(x2 +
1
x2

)−1
}2

+

{
2−1(x3 −

1
x3

)
}2

=

{
2−1(x3 +

1
x3

)
}2
.

For number of Pythagorean’s terms n = 6,{
23(x1 +

1
x1

)−1(x2 +
1
x2

)−1(x3 +
1
x3

)−1
}2

+

{
22(x1 −

1
x1

)(x1 +
1
x1

)−1(x2 +
1
x2

)−1(x3 +
1
x3

)−1
}2
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+

{
21(x2 −

1
x2

)(x2 +
1
x2

)−1(x3 +
1
x3

)−1
}2

+

{
20(x3 −

1
x3

).(x3 +
1
x3

)−1
}2

+

{
2−1(x4 −

1
x4

)
}2

=

{
2−1(x4 +

1
x4

)
}2
.

By mathematical induction for Pythagorean’s terms n,

(2.22)
{
2−1(xn−2 +

1
xn−2

)
}2

=

{
2n−3(x1 +

1
x1

)−1(x2 +
1
x2

)−1.(x3 +
1
x3

)−1 . . . (xn−3 +
1

xn−3
)−1

}2

+

{
2n−4(x1 −

1
x1

)(x1 +
1
x1

)−1(x2 +
1
x2

)−1. . . . (xn−3 +
1

xn−3
)−1

}2

+

{
2n−5(x2 −

1
x2

)(x2 +
1
x2

)−1(x3 +
1
x3

)−1 . . . (xn−3 +
1

xn−3
)−1

}2

+

{
2n−6(x3 −

1
x3

)(x3 +
1
x3

)−1(x4 +
1
x4

)−1 . . . (xn−3 +
1

xn−3
)−1

}2

+ . . . +
{
20(xn−3 −

1
xn−3

).(xn−3 +
1

xn−3
)−1

}2
+

{
2−1(xn−2 −

1
xn−2

)
}2
.

This can also be written in mathematical notation,{
22(n−3) ∏n−3

k=1 (xk + 1
xk

)−2
}

+

{
22(n−4)(x1 −

1
x1

)2 ∏n−3
k=1 (xk + 1

xk
)−2

}
+

{
22(n−5)(x2 −

1
x2

)2 ∏n−3
k=2 (xk + 1

xk
)−2

}
+

{
22(n−6)(x3 −

1
x3

)2 ∏n−3
k=3 (xk + 1

xk
)−2

}
+ . . . +

{
22(xn−4 −

1
xn−4

)2 ∏n−3
k=n−4 (xk + 1

xk
)−2

}
+

{
20(xn−3 −

1
xn−3

)2(xn−3 +
1

xn−3
)−2

}
+

{
2−2(xn−2 −

1
xn−2

)2
}

=

{
2−2(xn−2 +

1
xn−2

)2
}
.

Symbol
∏n−3

k=1 (xk + 1
xk

)−2 denotes product of terms (xk + 1
xk

)−2 when k varies from 1 to n−3. Let us take an example
of generation of Pythagorean’s numbers when its terms n equals to 9 and x1 = 2, x2 = 2, x3 = 2, x4 = 2, x5 = 3, x6 =

2 and x7 = 3. Identity (2.22) for n = 9, transforms to

22(6) ∏6
k=1 (xk + 1

xk
)−2 + 22(5)(x1 −

1
x1

)2 ∏6
k=1 (xk + 1

xk
)−2 + 22(4)(x2 −

1
x2

)2 ∏6
k=2 (xk + 1

xk
)−2

+22(3)(x3 −
1
x3

)2 ∏6
k=3 (xk + 1

xk
)−2 + . . . + 22(x5 −

1
x5

)2 ∏6
k=5 (xk + 1

xk
)−2

+20(x6 −
1
x6

)2(x6 +
1
x6

)−2 + 2−2(x7 −
1
x7

)2 = 2−2(x7 +
1
x7

)2.

Let us denote above terms as A2, B2,C2,D2, E2, F2,G2,H2andI2 respectively so that A2 + B2 + C2 + D2 + E2 +

F2 + G2 + H2 = I2. Values of A2, B2,C2,D2, E2, F2,G2,H2 and I2 are calculated by putting values of say x1 = 2, x2 =

2, x3 = 2, x4 = 2, x5 = 3, x6 = 2 and x7 = 3 in above identity as solved below.

A2 =

{
26(

2
5

)6
}2

= (
212

56 )2, B2 =

{
25(

3
2

)(
2
5

)6
}2

=

{
3(

210

56 )
}2
,C2 =

{
24(

3
2

)(
2
5

)5
}2

=

{
3(

28

55 )
}2
,

D2 =

{
23(

3
2

)(
2
5

)4
}2

=

{
3(

26

54 )
}2
, E2 =

{
22(

3
2

)(
2
5

)3
}2

=

{
3(

24

53 )
}2
, F2 =

{
2(

3
2

)(
2
5

)2
}2

=

{
3(

2
5

)2
}2
,

G2 =

{
(
3
2

)(
2
5

)
}2

= (
3
5

)2,H2 =

{
(
1
2

)(
8
3

)
}2

= (
4
3

)2, I2 =

{
(
1
2

)(
10
3

)
}2

= (
5
3

)2.

Therefore, above identity can be written as{212

56

}2
+

{
3(

210

56 )
}2

+

{
3(

28

55 )
}2

+

{
3(

26

54 )
}2

+

{
3(

24

53 )
}2

+

{
3(

2
5

)2
}2

+

{3
5

}2
+

{4
3

}2
=

{5
3

}2
.

On normalisation,{
3(212)

}2
+

{
32(210)

}2
+

{
5(32)(28)

}2
+

{
(52)(32)(26)

}2
+

{
(53)(32)(24)

}2
+

{
(54)(32)(22)

}2
+

{
(55)(32)

}2
+

{
(56)(22)

}2

=

{
57

}2
, or 122882 + 92162 + 115202 + 144002 + 180002 + 225002 + 281252 + 625002 = 781252.
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3 Results And Conclusions
Pythagorean’s triples x, yand z satisfying equation x2 + y2 = z2 can be given by equation
(x)2 + (x + a)2 = (x + b)2 or x2 − 2x(b− a) + (b2 − a2) = 0 where y = (x + a) and z = (x + b). Above quadratic equation

has two roots as x = (b − a) ±
{
(b − a)2 + (b2 − a2)

} 1
2

wherex, a and b are real and rational quantities. Values of a and

b are so assumed that roots are real and rationals. If the roots found are real but fractions or a or b or both a and b are
real and rationals but fractions, then quantities x, (x + a) and (x + b) are normalised by multiplying with LCM to make
these integers. Since different values of a and b can be chosen, therefore, a number of values of x can be generated,
hence a number of Pythagorean’s triples.

Pythagorean’s quadruples x, y, z and w satisfying equation x2 + y2 + w2 = z2 can be found by equation (x)2 +

(x + a)2 + (x + b)2 = (x + c)2 where y = (x + a), z = (x + b) and w = (x + c). This quadratic has roots as x =

1
2 (c−b−a)± 1

2

{
(c−b−a)2 +2(c2−b2−a2)

} 1
2

where x, a, b and c are real and rational quantities. In assuming values of

a, band c care should be taken that roots are real and rationals. If the roots found are real but fractions or a or b or c or
all are real and rationals but fractions, then quantities x, (x + a), (x + b) and (x + c)are normalised by multiplying these
with LCM to make these integers. Since different values of a, band c can be chosen, therefore, a number of values of
x can be generated, hence a number of Pythagorean’s quadruples.

Pythagorean quadruples x, y, z and w satisfying equation x2 + y2 = z2 + w2 can be written as (x)2 + (x + a)2 =

(x + b)2 + (x + c)2 where y = (x + a), z = (x + b) and w = (x + c). This equation on simplification, reduces to

x =
b2 + c2 − a2

2(a − b − c)
.

Assigning different real and rational values of a, band c will yield different values of x and hence different
quadruples after normalisation.

Pythagorean Quintuples of form x2 + y2 + z2 + w2 = v2can also be reduced to linear equation (x)2 + (x + a)2 +

(x + b)2 + (x + c)2 = (2.x + d)2 where y = (x + a), z = (x + b), w = (x + c) and v = (2.x + d). The above equation on
simplification reduces to

x =
d2 − a2 − b2 − c2

2(a + b + c − 2d)
.

Different real rational values are assigned to a, b, c and d so that real rational values of x are obtained. After
normalisation, Pythagorean’s Quintuples are generated.

Pythagorean n-tuples of form x2
1 + x2

2 + x2
3 + . . . x2

n = y2can be reduced to quadratic equation (n − 1)x2
1 + 2x1(a2 +

a3 +a4 + . . .+an−a1)+a2
2 +a2

3 +a2
4 + . . . a2

n−a2
1 = 0 where x2 = (x1 +a2), x3 = (x1 +a3), x4 = (x1 +a4) . . . xn = (x1 +an)

and y = (x1 + a1). Different real rational values of a1, a2, a3, . . . anare assumed so that real rational values of x1are
obtained as

x1 =
−Q ±

√
Q2 − 4P.R
2P

,

where P = (n − 1),Q = 2(a2 + a3 + a4 + . . . + an − a1) and R = a2
2 + a2

3 + a2
4 + . . . a2

n − a2
1.

Apart from this, there is a second method to generate Pythagorean’s n-tuples. In this method, an identity is
derived satisfying Pythagorean’s n-tuples and then assigning different real rational values to variables in the identity,
Pythagorean’s numbers are generated.

Pythagorean’s triples a, b and c given by the equation a2 + b2 = c2 can be generated from identity{1
2

(x −
1
x

)
}2

+ 12 =

{1
2

(x +
1
x

)
}2
,

where 1
2 (x − 1

x ) = b
a , and 1

2 (x + 1
x ) = c

a and xis real rational quantity. It may be integer or fraction of the form p/q
where p and q are integers.

Pythagorean’s Quadruples of the form a2 + b2 + c2 = d2 can be generated after normalisation, from the identity

(x −
1
x

)2(x +
1
x

)−2 + 4(x +
1
x

)−2 +
1
4

(y −
1
y

)2 =
1
4

(y +
1
y

)2,

where x and y are real rational quantities and these may be integers or fractions of kind p/q.
Pythagorean’s Quintuples can be generated by the identity{

2(x−
1
x

)(x +
1
x

)−1(y +
1
y

)−1
}2

+

{
22(x +

1
x

)−1(y +
1
y

)−1
}2

+

{
20(y−

1
y

)(y +
1
y

)−1
}2

+

{
2−1(z−

1
z

)
}2

=

{
2−1(z +

1
z

)
}2
,
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after normalisation where x, y and z are real rational quantities and these may be integers or fractions of kind p/q .
Pythagorean’s Sextuples can be generated by the identity{

23(x +
1
x

)−1(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
22(x −

1
x

)(x +
1
x

)−1(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
2(y −

1
y

)(y +
1
y

)−1(z +
1
z

)−1
}2

+

{
20(z −

1
z

)(z +
1
z

)−1
}2

+

{
2−1(w −

1
w

)
}2

=

{
2−1(w +

1
w

)
}2
,

after normalisation where x, y, zand w are real rational quantities and these may be integers or fractions of kind p/q.
Pythagorean’s n-tuples can be generated by the identity{

2−1(xn−2 +
1

xn−2
)
}2

=

{
2n−3(x1 +

1
x1

)−1(x2 +
1
x2

)−1(x3 +
1
x3

)−1 . . . (xn−3 +
1

xn−3
)−1

}2

+

{
2n−4(x1 −

1
x1

)(x1 +
1
x1

)−1(x2 +
1
x2

)−1. . . . (xn−3 +
1

xn−3
)−1

}2

+

{
2n−5(x2 −

1
x2

)(x2 +
1
x2

)−1(x3 +
1
x3

)−1 . . . (xn−3 +
1

xn−3
)−1

}2

+

{
2n−6(x3 −

1
x3

)(x3 +
1
x3

)−1(x4 +
1
x4

)−1 . . . (xn−3 +
1

xn−3
)−1

}2

+ . . . +
{
20(xn−3 −

1
xn−3

)(xn−3 +
1

xn−3
)−1

}2
+

{
2−1(xn−2 −

1
xn−2

)
}2

after normalisation where x1, x2, x3, . . . xn−2 are real rational quantities and these may be integers or fractions of kind
p/q.
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Abstract

In this paper, the cumulative effect of ecological conditions in the habitat on the spread of TB in human population
is modeled and analyzed. The total human population is divided into two classes, susceptibles and infectives where
the infective class is further subdivided into latent and actively infected subclasses. It is assumed that TB is spread by
direct contact between members of the population as well as indirectly by bacteria which are emitted by infectives in
the environment, survive and get accumulated due to favorable ecological conditions in the habitat. The cumulative
density of ecological factors determining conditions in the habitat is assumed to follow a population density dependent
logistic model. The analysis of the model shows that as parameters governing the ecological factors in the habitat
increase, the spread of TB increases. The same result is also found with the increase in the parameter defining the
accumulation of bacteria in the habitat. It is further found that due to immigration of the population TB becomes
more endemic. A numerical study of the model is also carried out to see the role of key parameters on the spread of
tuberculosis and to support the analytical results.
2010 Mathematics Subject Classifications: 37C75, 92B05.
Keywords and phrases: Mycobacterium tuberculosis; Ecological status in the habitat; latently-infected; actively-
infected.

1 Introduction
Tuberculosis (TB) is an infectious disease which has world-wide prevalence been declining due to vaccination and
other preventive strategies [5, 19, 22], but its recent reappearance in developing countries with high burden of infection
in regions of Southeast Asia have sparked renewed research in TB. Mycobacterium tuberculosis is the bacterium that
causes most cases of tuberculosis. It is an obligate aerobe mycobacterium that divides every 16-20 hrs, extremely slow
as compared to other bacteria which tend to have division times measured in minutes (for example, E. Coli can divide
roughly every 20 min.) [13]. It is small rod like bacillus which can withstand weak disinfectants and can survive in a
dry state for weeks but can only grow within a host organism [13].

Recent quantitative monitoring estimates are that over 30% of the population in developing countries is infected
with TB, which results in approximately 2-3 million deaths each year [1, 2, 6]. Every year, 8 to 10 million new cases
of tuberculosis occur and this figure is growing with the advent of HIV infection [21]. Socio-economic status, family
size, crowding, malnutrition and limited access to health care or effective treatment also play important roles in the
transmission [3, 14]. The reason for the increase in such cases in developed countries is principally immigration,
poverty, living conditions, food security, etc. [12]. It is reported that eight million people develop active TB every
year, each of which can infect between 10 and 15 people in one year just by breathing [2, 4, 20]. Overall, the mortality
from tuberculosis is approximately 8%, being over 30% in the elderly cases but less than 1% in the young’s [20, 23].

Humans are the natural reservoir of TB, which spreads from person to person by direct contact via airborne droplets
[18] and indirectly from environment, by inhalation of small (1-10µm) droplets containing only tubercle bacilli, which
are expelled during coughing, sneezing, talking or singing by a TB infected person [10]. TB also spreads indirectly by
the use of contaminated utensils, contaminated dust, flowers, etc.

Mathematical models for the spread of infectious diseases have played a major role in providing deeper insight
into the understanding of the transmission as well as control strategies [7, 8, 9, 11,12, 16, 17], including HIV-TB
co-infection [15]. For example, Feng et al. [7] formulated a two strain TB model with an arbitrary distributed delay in
the latent stage of individual infected with the drug-sensitive strain and investigated the effects of variable periods of
latency on the disease dynamics. Naresh and Tripathi [15] have also modeled and studied the co-infection of HIV and
TB in a variable size population.

It is noted here that in recent years the spread of infectious diseases have been modeled and analyzed by considering
environmental and ecological conditions in the habitat [8, 9, 16, 17]. In particular, Singh et al. [16] have studied the
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spread of carrier dependent infectious diseases by considering the effect of environmental factors which are conducive
to the growth of carrier population. They have shown that the spread of the disease increases due to conducive
environmental factors. They [17] have also studied the spread of malaria by taking into account environmental and
ecological factors which are conducive to the growth of mosquito population. Ghosh et al. [8, 9] have studied the
spread of bacteria infected diseases such as TB by considering environmental effect as well as by considering the
effect of migration. As pointed out earlier, that in the case of TB the bacteria emitted from the infected persons get
accumulated in the habitat as these settle down on fomites or remain suspended in the air. These bacteria then affect
the suceptibles indirectly and the rate of infection depends upon the ecological conditions in the habitat. Our aim in
this paper is to model and analyze the effect of accumulation of bacteria which survive due to conducive ecological
factors in the habitat acting as a reservoir, on the spread of TB.

2 Mathematical Model
In the model presented here, the total human population, N(t), is divided into three sub-populations: susceptibles,
latently infected individuals and actively infected individuals with densities S (t), L(t), and T (t) respectively. It is
assumed that all susceptibles are infected by both the direct and indirect contacts with bacteria. The following system
of nonlinear, ordinary differential equations is assumed to model the dynamics of the spread of TB,

(2.1)
dS
dt

= A − βS T − λS B − dS + α1T + α2L,

dL
dt

= (1 − p)βS T + (1 − q)λS B − (σ + d + α2)L,

dT
dt

= pβS T + qλS B + σL − (d + α + α1)T,

dN
dt

= A − dN − αT,

dB
dt

= sT − s0B + s1BE,

dE
dt

= γE − γ0E2 + γ1NE.

Here A is the immigration rate of susceptible β and λ are the transmission coefficients for susceptibles due to
person to person contact with infectives and by inhalation of bacteria from environment respectively; p > 0 and q > 0
are the fraction of infected individuals who develop active TB soon after initial infection; σ is the rate of progression
of latently infected individuals to active TB; d is the natural death rate and is the death rate due to TB infection. The
parameters and are the therapeutic treatment rate of actively infected and latently infected individuals respectively.
The second last differential equation represents change in bacterial population B(t) in the environment. Since bacteria
of TB grows only in the host (human) body and it only survives in the environment, therefore, no growth term is taken
into consideration. In the environment, growth in the density of bacterial population is all due to number of bacteria
released from actively infected TB patients and also because of accumulation due to conducive ecological conditions
in the habitat. The parameter s is the rate of release of bacteria from the actively infected individuals, s0 is their decay
coefficient due to natural factors or control measures and s1 is the rate of accumulation of bacteria population due to
conducive ecological factors in the habitat; E(t) is the cumulative density of ecological factors governing the condition
in the habitat which is conducive to the accumulation of bacteria population; γ is the growth rate of cumulative density
of ecological factors in the habitat, γ

γ0
is the carrying capacity of the habitat, γ1 is the interaction coefficient with

respect to total human population.
In the following lines, we analyze the model (2.1) using stability theory of differential equations. We need the

bounds of dependent variables involved in the model. For this, we give the region of attraction in the form of following
lemma, stated without proof.

Lemma 2.1 The region of attraction for the system (2.1) is given by,

(2.2) Ω = {(L,T,N, B, E) : 0 ≤ A/d, 0 ≤ T ≤ N ≤ A/d, 0 ≤ B ≤ Bm, 0 ≤ E ≤ Em}

which attracts all solutions initiating in the positive octant,

(2.3) where, Bm =

[
sγ0A/d

s0γ0 − s1(γ + γ1A/d)

]
and Em =

γ + γ1A/d
γ0

.
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3 Equilibrium Analysis
It is sufficient to consider the reduced system of model system (2.1) (since S + L + T = N), as follows,

(3.1)
dL
dt

= (1 − p)β(N − L − T )T + (1 − q)λ(N − L − T )B − (σ + d + α2)L,

dT
dt

= pβ(N − L − T )T + qλ(N − L − T )B − σL − (d + α + α1)T,

dN
dt

= A − dN − αT,

dB
dt

= sT − s0B + s1BE,

dE
dt

= γE − γ0E2 + γ1NE.

The equilibrium analysis of the model system (3.1) has been carried out and the results are given as follows:
There exist following four nonnegative equilibria of the model system (3.1),

(I) Disease free equilibrium W0

(
0, 0,

A
d
, 0, 0

)
.

This equilibrium exists without any condition. It explains that if the bacterial population is absent, due to non-
conducive ecological conditions in the habitat and the T B infected individuals are not present, the disease would not
persist and population remains at its equilibrium A/d.

(II) The equilibrium W1

(
0, 0,

A
d
, 0, Em

)
.

This equilibrium also exists without any condition in the absence of disease and bacterial population. However,
in that case the population remains at its equilibrium A/d and the ecological status of the habitat is maintained at the
level Em.
(III) The equilibrium W2(L̄, T̄ , N̄, B̄, 0)

In this case the disease would still persist due to release of bacteria from the infected individuals even if the bacteria
population is not accumulated further as it does not depend on the ecological conditions in the habitat. The explicit
equilibrium values of different variables are given as follows,

(3.2) T̄ =
{βs0[σ + p(d + α2)] + sλ[σ + q(d + α2)]}A − (d + α + α1)(σ + d + α2)s0d

(α + d){βs0[σ + p(d + α2)] + sλ[σ + q(d + α2)]} + d(d + α + α1)[βs0(1 − p) + λs(1 − q)]
,

(3.3) L̄ =
[(1 − p)s0β + (1 − q)λs][A − (α + d)T ]T

d[(1 − p)s0βT̄ + (1 − q)λsT̄ + s0(σ + d + α2)]
,

(3.4) N̄ =
A − αT̄

d
, B̄ =

sT̄
s0
, as T̄ <

A
α
,

provided that pβ A
d > (d + α + α1).

(IV) The endemic equilibrium, W3(L∗,T ∗,N∗, B∗, E∗, )
The endemic equilibrium W3 is given by the solution of following algebraic equations and a quadratic equation,

obtained from (3.1),

(3.5) N =
A − αT

d
,

(3.6) E =
γd + γ1(A − αT )

dγ0
,

(3.7) B =
dsγ0T

ds0γ0 − s1[γd + γ1(A − αT )]
,

(3.8) L =
[(1 − p)βT + (1 − q)λB][A − (α + d)T ]

d[(1 − p)βT + (1 − q)λB + (σ + d + α2)]
,

(3.9) aT 2 + bT − c = 0,
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where
a = βs1γ1α{(1 − p)[d2(d + α + α1) + σ(α + d)] + (α + d)(σ + d + α2)},
b = α2(α + d)pβ[ds0γ0 − s1(γd + γ1A)] + (α + d)(α2 + d){dsqλγ0 − βs1γ1αA[σ + p(α2 + d)]}

+σ(α + d){β[ds0γ0 − s1(γd + γ1A)] + dsλγ0} + α1d(1 − p)β[ds0γ0 − s1(γd + γ1A)]
+d(d + α + α1)[(1 − q)sλγ0 + s1γ1α(σ + d + α2)],

c = [ds0γ0 − s1(γd + γ1A)]{βA[σ + p(α2 + d)] − d(d + α + α1)(σ + d + α2)} + dsλγ0A[σ + q(α2 + d)].

There exists unique positive root of eq.(3.9) is given as T ∗ = −b+
√

b2+4ac
2a if pβ A

d > (d + α + α1)and s0 > s1Em .
Substituting the value of T ∗ in eqs. (3.5-3.8), we can compute the value of L∗, N∗, B∗ and E∗.

4 Stability Analysis
Now, we analyze the stability of each of the equilibrium W0, W1, W2 and W3.

Theorem 4.1 The equilibrium W0, W1 and W2 are unstable and the endemic equilibrium W3 is locally asymptotically
stable provided the following conditions are satisfied,

(4.1) αγ2
1E∗ <

2
3

d(pβT ∗ + qλB∗),

(4.2) q2λ2(N∗ − L∗ − T ∗)2 <
1
5

(s0 − s1E∗)2ξ1 min .

 γ2
0E∗

2s2
1B∗2

,
ξ1

5s2

 ,
(4.3) (pβT ∗ + qλB∗ − σ)2 < ξ1ξ

2
2 min .

 ξ1

5ξ2
3

,
d(pβT ∗ + qλB∗)

3α[(1 − p)βT ∗ + (1 − q)λB∗]2 ,
k3(s0 − s1E∗)

4(1 − q)2λ2(N∗ − L∗ − T ∗)2


where,

ξ1 =
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
, ξ2 =

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
,

ξ3 =
[
(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT ∗ − (1 − q)λB∗

]
.

Proof. See Appendix-I

Theorem 4.2 The endemic equilibrium W3 is nonlinearly asymptotically stable in the region Ω provided the following
inequalities are satisfied:

(4.4) α q2λ2B2
m <

1
3

d p2β2T ∗2,

(4.5) s qλ(N∗ − L∗)2 <
1
3

pβ(s0 − s1E∗)T ∗2,

(4.6) α qλ γ2
1 s2

1B2
m <

4
9
γ2

0 s pβ d(s0 − s1E∗),

(4.7) (pβT ∗ + qλBmax − σ)2 <
1
4

pβ(σ + d + α2)2T ∗2,

min .

 pβ
4ξ2

4

,
pβ d

3α
[
(1 − p)βA/d + (1 − q)λBmax

]2 ,
qλ(s0 − s1E∗)

3s(1 − q)2λ2(N∗ − L∗ − T ∗)2

 ,
where ξ4 =

[
(1 − p)β A

d + (1 − q)λBmax − (1 − p)β(N∗ − L∗ − T ∗)
]
.

Proof. See Appendix-II.

Remark 4.1 As the growth rate of cumulative density of ecological factors conducive to the accumulation of bacterial
population due to human population activities tends to zero i.e., γ1 → 0, inequalities (4.1) and (4.4) are automatically
satisfied. This implies that the ecological factors conducive to the accumulation of bacterial population have a
destabilizing effect on the system. If the rate of accumulation of bacteria due to conducive ecological conditions
is very small i.e., s→ 0 then inequalities (4.2) and (4.5) are satisfied.

The above theorems imply that under appropriate conditions, if the density of bacteria due to conducive ecological
conditions increases, then the number of latently-infected and actively-infected individuals increases leading to fast
spread of TB. However, the effect of immigration is to make TB more endemic.
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5 Numerical Simulation
In this section, we conduct simulation analysis of the model (3.1) to study its dynamical behavior and to prove the
feasibility of local and nonlinear stability conditions of the model system. The numerical simulation of the system
(3.1) is done by MAPLE 7.0 using the parameters values [8, 9, 11, 15] given below:

Table 5.1: Parameter values

Parameters Symbol Parameter value
recruitment rate of susceptible A 500
transmission coefficient (by infectives) β 0.0005
transmission coefficient (through bacteria) λ 0.0003
recovery rate of latently-infected TB patient α1 0.012
recovery rate of actively-infected TB class α2 0.01
natural death rate d 0.15
disease-induced death rate α 0.2
rate with which latently-infected goes to actively-infected TB class σ 0.02
rate of release of bacteria from TB patients s 1
accumulation of bacteria due to ecology s1 0.0001
decay rate of bacteria in the environment s0 0.3
growth rate of ecological status in the habitat γ 25
growth rate of ecological status due to human activities γ1 0.002
depletion rate of ecological status γ0 0.1
fraction of infected individuals (by infectives) who develop active TB
soon after initial infection

p 0.45

fraction of infected individuals (by bacteria population) who develop
active TB soon after initial infection

q 0.6

The equilibrium values for the model system (3.1) are computed as follows:
N* =2300.799543, L* = 1153.414779, T* = 774.4003430, B* =2863.923531, E* = 296.0159909.
The eigen values of variational matrix corresponding to the endemic equilibrium for the model system (3.1) are

−1.353015784,−0.1854221833,−0.3408624139,−0.2455538488,−29.601599.

Since all the eigen values are negative which implies that the endemic equilibrium W3 is locally asymptotically
stable.

The results of numerical simulation are displayed graphically in Figs. 5.1-5.11. Fig. 5.1 shows that the system
(3.1) is nonlinearly asymptotically stable in T-N plane. All the trajectories starting from different initial starts reaches
to equilibrium point.

(i) L(0) = 1500, T(0) = 600, N(0) = 3000, B(0) = 2863, E(0) = 296.
(ii) L(0) = 1000, T(0) = 1000, N(0) = 3000, B(0) = 2863, E(0) = 296.
(iii) L(0) = 400, T(0) = 400, N(0) = 1000, B(0) = 2863, E(0) = 296.
(iv) L(0) = 200, T(0) = 1000, N(0) = 1400, B(0) = 2863, E(0) = 296.
In Figs. 5.2 - 5.3, the variation of density of bacteria population and the actively-infected TB population with

time is shown respectively for different values of accumulation rates (s1) of bacteria due to conducive ecological
status of the habitat. It is found that as the accumulation rate of bacteria increases, bacteria population also increases
which results in increasing the spread of tuberculosis. Thus ecological conditions conducive to the accumulation
of bacterial population help in spreading the tuberculosis infection. In Figs. 5.4 - 5.5, we show the variation of
bacterial population density and actively-infected TB population with time for different values of rate of release of
bacteria from actively-infected population. From these figures, we infer that as the rate of emission of bacteria,
(s) from actively-infected TB population increases, the accumulation of the bacterial population in the habitat also
increases due to conducive ecological conditions. These bacteria when comes in contact with susceptibles through
contaminated clothes, utensils, etc., further increases the spread of tuberculosis which ultimately results in rise in
the actively infected TB population. Figs. 5.6 and 5.7 depict the role of decay coefficients (s0) of bacteria on
the variation of bacteria population density and actively-infected TB population. When there is a rise in the decay
coefficient due to natural factors or control measures, the density of bacteria population decreases significantly and
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consequently the actively infected TB population declines. This decline in actively-infected population does not seem
to be much significant. It seems, it is due to the fact that disease spreads not only through bacteria but also through
direct interaction of susceptibles with actively-infected TB individuals. It is, therefore, speculated that not only the
accumulation of bacteria be curbed using effective control mechanism but the direct interaction of susceptibles with
actively-infected TB population be also restricted.

Figs. 5.8 - 5.9, show that as the growth rate of cumulative density of ecological factors in the habitat (γ) conducive
to the accumulation of bacteria increases, there is a significant increase in the density of bacteria population. This, in
turn, increases the number of actively-infected TB individuals. Thus, if the density of ecological factors is higher, the
spread of tuberculosis is faster due to significant increase in bacterial population in a conducive environment. Also,
as the growth of ecological status making the environment conducive to bacteria population due to human population
activities (γ1) increases, the density of bacteria population increases resulting in the spread of tuberculosis, see Figs.
5.10 - 5.11. Thus, the human population related factors responsible for making the ecological conditions favourable
for the accumulation of bacterial population further increases the load of tuberculosis.

Finally, from the above discussion, we infer that the spread of tuberculosis not only depends upon the
interaction of susceptibles with actively-infected population but also depends upon the interaction of susceptibles
with bacteria population. Moreover, the ecological status of the surroundings plays a vital role in the accumulation
of Mycobacterium Tuberculosis. It may be possible to curb the spread of tuberculosis if the bacterial population is
diminished by way of providing hyegenic environment in the habitat and restricting the interaction of TB patients with
the susceptible population.

Figure 5.1: Variation of total human population with actively-infected population

Figure 5.2: Variation of bacterial population density with time for different
values of s1

Figure 5.3: Variation of actively-infected population with time for different
values of s1
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Figure 5.4: Variation of bacterial population density with time for different
values of s

Figure 5.5: Variation of actively-infected population with time for different
values of s

Figure 5.6: Variation of bacterial population density with time for different
values of s0

Figure 5.7: Variation of actively-infected population with time for different
values of s0

Figure 5.8: Variation of ecological density with time for different values of γ Figure 5.9: Variation of bacterial population density with time for different
values of γ

Figure 5.10: Variation of bacterial population density with time for different
values of γ1

Figure 5.11: Variation of actively-infected population with time for different
values of γ1

6 Conclusion
In this paper, a two stage SIS model for Tuberculosis, caused by Mycobacterium Tuberculosis is proposed and analyzed
with constant migration of human population. The cumulative density of ecological factors in the habitat is assumed
to be governed by a logistic model which is population density dependent. The endemic equilibrium is shown to be
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locally and nonlinearly stable under certain conditions. Our analysis shows that the spread of tuberculosis not only
depends upon the interaction of susceptibles with actively-infected population but also depends upon the interaction of
susceptibles with bacteria population accumulated in the habitat. The ecological status of the habitat plays a vital role
in the accumulation of Mycobacterium Tuberculosis. It is shown that the cumulative effect of ecological factors is to
increase the spread of the disease. Thus, an effective control mechanism must be undertaken to curb the accumulation
of bacteria in the environment and the direct interaction of susceptibles with actively-infected population be restricted.
Acknowledgements. We are very much grateful to Editor and Reviewers for their fruitful suggestion to bring the
paper in its present form.
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Appendix – I

Proof of Theorem 4.1.
The variational matrix M0 of model (3.1) corresponding to equilibrium W0 is given by,

M0 =



−(σ + d + α2) (1−p)βA
d 0 (1−q)λA

d 0
σ pβA

d − (d + α + α1) 0 qλA
d 0

0 −α −d 0 0
0 s 0 −

(
s0 −

s1(γ+γ1A/d)
γ0

)
s1

0 0 0 0
(
γ +

γ1A
d

)


.

The fifth eigenvalue of M0 is positive, as all the model parameters are nonnegative. Therefore, disease free equilibrium
W0 is unstable.
The variational matrix M1 of model (3.1) corresponding to equilibrium W1 is given by,

M1 =



−(σ + d + α2) (1−p)βA
d 0 (1−q)λA

d 0
σ pβA

d 0 qλA
d 0

0 −α −d 0 0
0 s 0 −

(
s0 −

s1(γ+γ1A/d)
γ0

)
s1

0 0 γ1(γ+γ1A/d)
γ0

0 −
(
γ +

γ1A
d

)


.

The characteristic polynomial corresponding to above matrix is given by,

(d + ψ)(σ + d + α2 + ψ)(γ + γ1A/d + ψ)(ψ2 + h1ψ + h2) = 0,

where h1 =
(
s0 −

s1(γ+γ1A/d)
γ0

−
pβA

d

)
,

h2 = − spqβλ
A2

d2 < 0..

Using Routh-Hurwitz criteria as h2 < 0, therefore, disease free equilibrium W1 is unstable.
The variational matrix M2 of model (3.1) corresponding to equilibrium W2 is given by,

M2 =


m11 m12 (1 − p)βT̄ + (1 − q)λB̄ (1 − q)λ(N̄ − L̄ − T̄ ) 0

σ − pβT̄ − qλB̄ m22 pβT̄ + qλB̄ qλ(N̄ − L̄ − T̄ ) 0
0 −α −d 0 0
0 s 0 −s0 s1
0 0 0 0 (γ + γ1N̄)

 .
where, m11 = −(1 − p)β(N̄ − T̄ ) T̄

L̄ − (1 − q)λ(N̄ − T̄ ) B̄
L̄ ,

m12 = (1 − p)β(N̄ − L̄ − T̄ ) − (1 − p)βT̄ − (1 − q)λB̄ and m22 = −pβT̄ − qλ(N̄ − L̄) B̄
T̄ − σ

L̄
T̄ .

This equilibrium is also unstable as fifth eigen value is always positive.
To establish the local stability of endemic equilibrium W3, we consider the following positive definite function,
U1 = 1

2 (k0l2 + k1t2 + k2n2 + k3b2 + k4e2),
where ki(i = 0, 1, 2, 3, 4) are positive constants to be chosen appropriately and l, t, n, b and e are small perturbations
about W3, defined as follows
L = L*+ l, T= T*+ t, N = N*+ n, B = B*+ b and E = E*+ e.
Differentiating above equation, with respect to ‘t’ and using the linearized system of model equations (3.1)
corresponding to W3, we get,
dU1
dt = −k0

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
l2 − k1

[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
t2 − k2dn2 − k3(s0 −

s1E∗)b2 − k4γ0E∗e2 + k0[(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT ∗ − (1 − q)λB∗] lt
+k0[(1 − p)βT ∗ + (1 − q)λB∗] ln +k0(1 − q)λ(N∗ − L∗ − T ∗) lb + k1(σ − pβT ∗ − qλB∗) lt
+[k1(pβT ∗ + qλB∗) − k2α ]nt + k1qλ(N∗ − L∗ − T ∗)bt + k3s tb + k3s1B∗be + k4γE∗ne
For dU1

dt to be negative definite, the following conditions must be satisfied,

(i)
k0[(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT ∗ − (1 − q)λB∗]2 <

1
5 k1

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

] [
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(ii) k1(σ − pβT ∗qλB∗)2 < 1

5 k0

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

] [
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(iii) k0[(1 − p)βT ∗ + (1 − q)λB∗]2 < 1

3 k2d
[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
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(iv) k0(1 − q)2λ2(N∗ − L∗ − T ∗)2 < 1
4 k3(s0 − s1E∗)

[
(1 − p)β(N∗ − T ∗) T ∗

L∗ + (1 − q)λ(N∗ − T ∗) B∗
L∗

]
(v) [k1(pβT ∗ + qλB∗) − k2α]2 < 4

15 k1k2d
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(vi) k1q2λ2(N∗ − L∗ − T ∗)2 < 1

5 k3(s0 − s1E∗)
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(vii) k3s2 < 1

5 k1(s0 − s1E∗)
[
pβT ∗ + qλ(N∗ − L∗) B∗

T ∗ + σ L∗
T ∗

]
(viii) k3s2

1B∗2 < 1
2 k4γ0E∗(s0 − s1E∗)

(ix) k4γ
2
1E∗2 < 2

3 k2dγ0E∗

After choosing k1 = 1, k2 =
pβT ∗+qλB∗

α
and k4 = γ0, we can choose k0 and k3 such that

q2λ2(N∗ − L∗ − T ∗)2

(s0 − s1E∗)ξ1
< k3 <

1
5

(s0 − s1E∗) min .

 γ2
0E∗

2s2
1B∗2

,
ξ1

5s2


(pβT ∗+qλB∗−σ)2

ξ1ξ2
< k0 < ξ2 min .

{
ξ1

5ξ2
3
, d(pβT ∗+qλB∗)

3α[(1−p)βT ∗+(1−q)λB∗]2 ,
k3(s0−s1E∗)

4(1−q)2λ2(N∗−L∗−T ∗)2

}
αγ2

1E∗ < 2
3 d(pβT ∗ + qλB∗)

Hence, we obtain the conditions as stated in the Theorem 4.1.
Thus, dU1/dt is a negative definite under the conditions (4.1), (4.2) and (4.3) as stated in the Theorem 4.1, showing
that W3 is locally asymptotically stable.

Appendix – II

Proof of Theorem 4.2
Consider the following positive definite function, corresponding to the model system (3.1) about W3,

U2 =
k0

2
(L − L∗)2 +

k1

2

(
T − T ∗ − T ∗ ln

T
T ∗

)
+

k2

2
(N − N∗)2 +

k3

2
(B − B∗)2 +

k4

2

(
E − E∗ − E∗ ln

E
E∗

)
,

where the coefficients k0, k1, k2, k3 and k4 can be chosen appropriately.
Differentiating the above equation with respect to ‘t’ and using (3.1), we get,
dU2
dt = −k0[(1 − p) βT + (1 − q)λ B] (L − L∗)2 − k1

[
q λ B (N−L)+σL

TT ∗

]
(T − T ∗)2

−k0(σ+ d +α2)(L− L∗)2 − k1 pβ(T − T ∗)2 − k2d(N −N∗)2 − k3(s0 − s1E∗)(B− B∗)2 − k4γ0(E − E∗)2 + k0{(1− p)β(N∗ −
L∗−T ∗)− (1− p)βT − (1−q)λB}(L−L∗)(T −T ∗) + k1

(
σ
T ∗ −

qλB
T ∗ − pβ

)
(L−L∗)(T −T ∗) + k0[(1− p)βT + (1−q)λB](L−

L∗)(N − N∗) + k0(1 − q)λ(N∗ − L∗ − T ∗)(L − L∗)(B − B∗)
+

[
k1

(
pβ +

qλB
T ∗

)
− k2α

]
(T − T ∗)(N − N∗) + k1

qλ(N∗−L∗−T ∗)
T ∗ (T − T ∗)(B− B∗) + k3s(T − T ∗)(B− B∗) + k3s1B(B− B∗)(E −

E∗) + k4γ1(E − E∗)(N − N∗).
Assuming k1 = 1, k2 =

pβ
α

and k3 =
qλ
s , the above equation reduces to the form,

dU2
dt = −k0[(1 − p) βT + (1 − q)λ B] (L − L∗)2 −

[
q λ B (N−L)+σL

TT ∗

]
(T − T ∗)2

−k0(σ + d + α2)(L − L∗)2 − pβ(T − T ∗)2 −
pβd
α

(N − N∗)2 −
qλ(s0−s1E∗)

s (B − B∗)2 − k4γ0(E − E∗)2

+k0{(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT − (1 − q)λB}(L − L∗)(T − T ∗) +
(
σ
T ∗ −

qλB
T ∗ − pβ

)
(L − L∗)(T − T ∗)

+k0[(1 − p)βT + (1 − q)λB](L − L∗)(N − N∗) + k0(1 − q)λ(N∗ − L∗ − T ∗)(L − L∗)(B − B∗)
+

qλB
T ∗ (T − T ∗)(N − N∗) +

qλ(N∗−L∗)
T ∗ (T − T ∗)(B − B∗) +

qs1λB
s (B − B∗)(E − E∗) + k4γ1(E − E∗)(N − N∗).

For dU2/dt

to be negative definite, the following conditions must be satisfied,
(i) k0[(1 − p)β(N∗ − L∗ − T ∗) − (1 − p)βT − (1 − q)λB]2 < 1

4 pβ(σ + d + α2),

(ii)
(
σ−pβT ∗−qλB

T ∗

)2
< 1

4 k0 pβ(σ + d + α2),

(iii) k0[(1 − p)βT + (1 − q)λB]2 < 1
3

pβ d
α

(σ + d + α2),
(iv) k0(1 − q)2λ2(N∗ − L∗ − T ∗)2 < qλ (s0−s1E∗)(σ+d+α2)

3 s ,

(v) q2λ2B2

T ∗2 < p2β2d
3α ,

(vi) q2λ2(N∗−L∗)2

T ∗2 < p q β λ(s0−s1E∗)
3 s ,

(vii) q λ s2
1B2

s < 2
3 k4γ0(s0 − s1E∗),

(ix) k4γ
2
1 <

2
3

pβ dγ0
α

.
Now choosing k0 and k4 such that,

4(pβT ∗ + qλBmax − σ)2

pβ(σ + d + α2)T ∗2
< k0 < (σ + d + α2, )
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min .

 pβ
4ξ2

4

,
pβ d

3α
[
(1 − p)βA/d + (1 − q)λBmax

]2 ,
qλ(s0 − s1E∗)

3s(1 − q)2λ2(N∗ − L∗ − T ∗)2


3qλ s2

1B2
m

2 s γ0(s0 − s1E∗)
< k4 <

2γ0 pβ d
3αγ2

1

,

α q2λ2B2
m <

1
3

d p2β2T ∗2,

s qλ(N∗ − L∗)2 <
1
3

pβ(s0 − s1E∗)T ∗2.

Hence, we obtain the conditions as stated in the Theorem 4.2. Thus, dU2
dt is a negative definite under the conditions

(4.4 - 4.7) as given in the statement of the theorem, showing that W3 is nonlinearly asymptotically stable inside the
region Ω.
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Abstract

In this paper we constructed a Mathematical Model of food management for animal species interacting with
natural environment. The mathematical framework has been generated with generations as the time scale. Efforts
have been made to mathematically formalize the environmental changes dependent food availability and consequent
changes. The aim to develop a mathematical perspective to understand the environmental impact on wild life
population and its food management. The carrying capacity of environment in terms of primary food has been
assumed to be limited. The environmental changes lead to changes in availability of vegetation for animal species. A
Mathematical model is constructed in terms of a system of nonlinear difference equations. The solutions have been
worked out for some special cases. These solutions can be expressed as finite polynomials. Graphical patterns have
been worked out as examples

1 Introduction
The environment is the source of the primary food production in the nature and therefore it has strong bearing upon
the interplay of animal population along the food chain [6]. The environmental changes have led to drastic changes
in food production and natural habitats of wildlife species which have given rise to the changes in the interactional
patterns among the various trophic levels of the food chain ([4], [5]). Despite the inherent complexity of interactions
between animal species and environment. Mathematical Models of single species interacting with natural environment
has been a subject matter of interest for the mathematicians. The single species models have been primarily inspired
by their simplicity of mathematical treatment and scope for further development [11]. We consider the growth of
animal population is dependent on limited carrying capacity of the environment like water, vegetation and temperature.
A mathematical model is constructed in terms of a system of nonlinear difference equations incorporating all the
significant parameters. The mathematical framework has been generated with generations as the time scale ([7],
[3]). It has been observed that the interactions between the species in various generation does not remain confined to
those specific generations but decides the population patterns in all the successive generation in the form of a series
([12],[14], [17]).

Sustainable Development Goals (SDG) of United Nations has raised several challenges for development planners
particularly in developing countries where the policy planners are not adequately capacitated to plan the strategies
and monitor the outcomes. As SDGs are time bound their effective implementation will requires predictive methods
([15], [16], [18], [19]). The Mathematical Tools can prove handy to adequately plan the developmental interventions
and project the outcomes ([8], [9], [10]). There has been a growing realization that Mathematical Modelling can be a
viable tool for Sustainable Development Planning [11].

Earlier researchers ([1], [2], [10]) have developed and employed single species finite animal population models to
understand patterns have growth of populations.

2 Mathematical Framework for Food Availability
Following factors will attend the growth of animal population surviving on the limited carrying capacity of the
environment

1. The food availability per animal of single species for a specific generation,
2. the competition with other community member to access the food is avoided.
3. the migration of the species from the ecosystem,
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4. the rate of supply of food availability and
5. the food competition will enhance the growth of species whereas it will tend to refer the growth of vegetative.
We assume that Fn denotes the food availability per animal for the nth generation of the species. It has also

been presumed that the food requirements are the same across the age groups which means that infants adults and
elder species have same requirements and food accessing behaviour from the environment. The food availability
for different generation will be different primarily because of the climate change, consumption of food by earlier
generation and requirement of the food by environment. Hence change in food availability at nth generation can be
written as below:

∆Fn = αnFn−1 − βnFn−1 − ∆En,

where
αn = Rate of growth of food availability i.e. because the food availability gets continuously regeneration in the
environment. The growth has been calculated over unit area.
βn = rate of consumption for the food per unite area.
∆En = change in environmental conditions per unite area.

∆Fn = Fn − Fn−1.

Then

Fn = (αnFn−1 − βnFn−1 − ∆En) + Fn−1,

Fn = (1 + αn − βn)Fn−1 − ∆En.

Let

1 + αn − βn = gn (effective growth rate).

Then

(2.1) Fn = gnFn−1 − ∆En.

The solution of the equation (2.1) can be given as

Fn = gngn−1gn−2 . . . g2g1F0 − gngn−1gn−2 . . . g4g3g2∆E1 − gngn−1gn−2 · · · g5g4g3∆E2 − . . .

− gngn−1gn−2∆En−3 − gngn−1∆En−2 − gn∆En−1 − ∆En

or

(2.2) Fn =
∏n

i=1 giF0 − (
∑n−1

j=1
∏n

i= j+1 gi∆E j) − ∆En.

Assuming that the effective growth rate is uniform i.e.
If

g1 = g2 = g3 = g4 = . . . gn = g.

Then

Fn = gnF0 − (∆En + g∆En−1 + g2∆En−2 + g3∆En−3 + . . . + gn−1∆E1)

Fn = gnF0 −
∑n−1

r=0 (∆E)n−rgr

(2.3) Fn = gnF0 −
∑n−1

r=0 Mn−rgr,

where

Mn−r = (∆E)n−r, r , n,

Mn−r = E0, r = n.

The right hand side is a polynomial in g, which gives a very important conclusion that the production and
consumption has cumulative impact across the generation. Any displacement in the pattern of production and
consumption get magnified many times across the generation. Saxena, V. P. ([13]) has introduced classical polynomials
for the study of finite animal population. We extend this concept in our problem and give some specific polynomials
applications as given below
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2.1 Hermite Polynomials
Hn(x) =

∑[ n
2 ]

m=0
(−1)mn!(2x)n−2m

m!(n−2m)! .

Assuming that the environmental effect will follow the pattern of this polynomial.
Accordingly from the equation (2.3) we get,

(2.4)
∑[n−1]

r=0 Mn−rgr =
∑[ n

2 ]
m=0

(−1)mn!(2x)n−2m

m!(n−2m)! ,

where

n =
n
2

+ 1.

After comparing the coefficients of equation (2.4) we derive,

(2.5) Mn−r =
(−1)mn!(2x)n−2m

m!(n − 2m)!
.

2.2 Laguerre Polynomials
Ln(x) =

∑[n]
r=0

(−1)rn!(x)r

(n−r)!(r!)2 .

Comparing with equation (2.3) we get,

(2.6)
∑[n−1]

r=0 Mn−rgr =
∑[n]

r=0
(−1)rn!

(n−r)!(r!)2 ,

where n = n + 1.
After comparing the coefficients of the equation (2.6), we get

(2.7) Mn−r =
(−1)rn!

(n − r)!(r!)2 .

2.3 Jacobi Polynomials
P(α,δ)

n (1 − α) =
∑n

k=0
(−n)k(1+γ+δ+n)k(1+γ)nα

k

n!(1+γ)k2k .

From equation (2.3) we get,

(2.8)
∑[n−1]

r=0 Mn−rgr =
∑n

k=0
(−n)k(1+γ+δ+n)k(1+γ)nα

k

n!(1+γ)k2k ,

where n = n + 1.
After comparing the coefficients of equation (2.8) we get,

(2.9) Mn−r =
(−n)k(1 + γ + δ + n)k(1 + γ)n

n!(1 + γ)k2k .

2.4 Gauss Hypergeometric Function
(2.10) 2F1 [−n, b; c; y] =

∑n
r=0

(−n)r(b)ryr

(c)rr! .

Comparing with the equation (2.3) we get,

(2.11)
∑[n−1]

r=0 Mn−rgr =
∑n

r=0
(−n)r(b)ryr

(c)rr! ,

where n = n + 1.
After comparing the coefficients of equation (2.11) we get,

(2.12) Mn−r =
(−n)r(b)r

(c)rr!
.

The evolution of species will be given as following equation

∆Pn = BnFnPn−1 − DnPn−1 − Mn,

where
Bn = Birth rate of species which should be further proportional to food availability,
Dn = Natural Death rate of the species,
Mn = Migration of the species.
Therefore,

∆Pn = Bn
(
gnFn−1 − ∆En

)
Pn−1 − DnPn−1 − Mn

∆Pn = BngnFn−1Pn−1 − BngnPn−1(∆En) − DnPn−1 − Mn

∆Pn = Pn − Pn−1.
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Hence

Pn =
[
BngnFn−1 − Bngn(∆En) − Dn

]
Pn−1 − Mn + Pn−1,

Pn =
[
BngnFn−1 − Bngn(∆En) − Dn + 1

]
Pn−1 − Mn.

Let BngnFn−1 − Bngn(∆En) − Dn + 1 = Zn.
Then

(2.13) Pn = ZnPn−1 − Mn

The Solution of the equation (2.13) can be given as

Pn = znzn−1zn−2 . . . z3z2z1P0 − znzn−1zn−2 . . . z4z3z2M1 − znzn−1zn−2 . . .

z5z4z3M2 − . . . − znzn−1zn−2Mn−3 − znzn−1Mn−2 − znMn−1 − Mn,

or

(2.14) Pn =
∏n

i=1 ziP0 −
(∑n−1

j=1
∏n

i= j+1 ziM j

)
− Mn.

Let us further assume that Zn is uniform across the generation i.e.
If z1 = z2 = z3 = z4 = . . . zn = z
Then

Pn = znP0 −
(
Mn + zMn−1 + z2Mn−2 + z3Mn−3 + . . . + zn−1M1

)
,

Pn = znP0 −
∑n−1

r=0 Mn−rzr.

Hence

(2.15) Pn = znP0 −
∑n−1

r=0 Mn−rzr.

The right hand side is a polynomial n in z.

3 Numerical Examples
If

α1 = α2 = α = 0.3
β1 = β2 = β = 0.001
M1 = M2 = M = 10

The calculation of population have been shown in Figures 3.1, 3.2 and 3.3 excluding the hunting or natural death
of the species. This factor will significantly bring down the values of population figures as depicted in the figures. The
inclusion of this factor will help us to fine-tune the population figures to acceptable values.

Figure 3.1: Graph between food and generation for α = 0.3, β = 0.001 and M = 10

.
Figure 3.2: Graph between food and generation for α = 0.2, β = 0.002 and M = 10

.
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Figure 3.3: Graph between food and generation for α = 0.1, β = 0.003 and M = 10

.

4 Conclusion and Way Forward
The study of animal species living in natural environment is quite useful to develop more realistic mathematical models
in future. In this context this study is quite useful. The production of primary food, its consumption by animal species
and likely impact of climatic change has been included in a realistic way in this model. There is however ample scope
for further development of this mathematical model. Pursuits for Sustainable Development Goals require a better
understanding of ecological dynamics and enhanced predictive capacity of ecological evolution. It will help us to take
timely measures to mitigate the undesirable impact in ecological dynamics. This paper tries to develop a perspective
to comprehend the impact of environment on evolution of wildlife species. Prey Predator Model has been revisited
and the changing environmental factors have been included in the mathematical formalism.

Some of the important points which make the study useful for further studies are given below
4.1 The impact of adverse environmental impact on wild life evolution is a new trend. Our study is quite general
and broad based which includes the impact of environmental impacts on population growth. Future studies can use
different trends of environmental change and calculate the figures. The results will help in the food management of
animal species under observation.
4.2 The study is unique in the sense that the time scale has been chosen in the terms of generation of species.
4.3 The traditional studies on ecological modelling have not used the application of polynomials. The properties of
polynomials can be utilized to calculate the figures easily. It gives rise to new perspectives in population modelling.
The future studies can enlarge these Mathematical treatments to make the model more realistic.
4.4 The study highlights the fact that effective growth rate of primary food in the environment will depend upon
comparative rate of consumption, regeneration and environmental degradation. The population will undergo sharp
decline if the rates of consumption are persistently higher than its regeneration. The rate of decline will increase over
the generation.
4.5 The population of the species which survives on the primary food will ultimately depend upon a mix of
the parameters consumption, regeneration, environmental degradation, natural birth/death rate of species and its
consumption habits. Over the generations these parameters will have a complex dependence on these parameters
which will be governed by a polynomial.

The future studies can employ different trends of environmental degradation to work out the evolution of the
primary food production. These figures will help to calculate the trends of animal population. The studies can also
explore the impact of more number of species in the evolution of primary food and animal population. Such efforts
will help to proceed step by step towards more realistic models in ecology.
Acknowledgement. Authors are very much thankful to the Editors and Reviewers for their valuable comments to
bring the paper in its present form.
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Abstract

This numerical study investigates the MHD boundary layer flow and heat transfer of the Williamson fluid over
a permeable nonlinearly stretching sheet. The partial differential equations corresponding to the momentum and
energy are converted into ordinary differential equations with the help of similarity transformations. The numerical
solution is computed by Runge-Kutta fourth order method with shooting technique. The effects of various parameters
such as viscosity variation parameter, thermal conductivity variation parameter, magnetic field parameter, suction
parameter, Williamson fluid parameter , radiation parameter and Eckert number on velocity and temperature profiles
are discussed through graphs.
2010 Mathematics Subject Classifications: 76D05, 76D10, 76W05, 80A05.
Keywords and phrases: Williamson fluid, MHD, Viscous dissipation, Thermal radiation, Non-linearly permeable
stretching sheet.

1 Introduction
The heat transfer of boundary layer flow over a stretching sheet has been attracted many researchers in last two decades
due to its wide range of applications in many standard manufacturing and chemical engineering processes such as
polymer manufacturing, crystal manufacturing, petroleum filtering operation,paper production and food preserving
processes. Williamson [21] represented the model of the flow of pseudoplastic materials. Chen and Char [1] discussed
the effects of suction or blowing on the heat transfer of a continuous stretching surface. Free convection on a vertical
stretching surface with suction or blowing has been studied by Gorla and Sidawi [2]. Rapits [15] described the
effects of radiation on the flow of a micropolar fluid past a continuously moving plate. Raptis [16] described the
radiation and viscoelastic flow. Mohammadein and Gorla [10] studied the heat transfer in a micropolar fluid over a
stretching sheet with viscous dissipation and internal heat generation. Mukhopadhyay et al. [11] studied of the effects
of variable viscosity on MHD boundary layer flow over a heated stretching sheet. Vajravelu et al. [20] analyzed the
peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls. Jat and Chand [4] presented
the MHD flow and heat transfer over an exponentially stretching sheet with viscous dissipation and radiation effects.
Mukhopadhyay [12] investigated the slip effect on MHD boundary layer flow over an exponentially stretching sheet
with suction/blowing and thermal radiation. Nadeem et al. [13] studied the flow of a Williamson fluid over a stretching
sheet. Hayat et al. [3] investigated the effects of joule heating and thermal radiation in flow of third-grade fluid over
radiative surface. Nadeem and Hussain [14] discussed the flow and heat transfer analysis of Williamson nanofluid.
Rashidi et al. [17] studied the mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge
with thermal radiation. Yadav and Sharma [22] analyzed the effects of radiation and viscous dissipation on MHD
boundary layer flow due to an exponentially moving stretching sheet in porous medium. Megahed [8] examined the
effects of heat flux and thermal radiation on heat transfer of a non-Newtonian power-law fluid over a non-linearly
stretching vertical surface.Reddy et al. [18] presented the MHD flow and heat transfer characteristics of Williamson
nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Shafiq and Sindhu [19]
discussed the statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface.
Kumar et al. [5] investigated the Slip effect on MHD stagnation point flow and heat transfer of cross fluid with heat
generation in a porous medium. Lund et al. [6] analyzed the dual solution for MHD flow of Williamson fluid with
slippage. Williamson fluid flow over a nonlinearly stretching sheet with viscous dissipation and thermal radiation by
Megahed [9].
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In this paper we use the Williamson fluid flow model which was given by Williamson [21]. The objective of
present paper is to analyze the MHD Williamson fluid flow over a nonlinearly permeable stretching sheet with thermal
radiation, viscous dissipation and variable fluid properties.

2 Formulation of the Problem
We assume moving fluid as a Williamson fluid with a time constant Γ. The fluid is flowing on nonlinearly permeable
stretching sheet in the presence of radiation, viscous dissipation phenomena and magnetic field. Here x-axis is along
the sheet whereas y-axis is taken perpendicular to stretching sheet. The stretching may create the velocity Uw = cxm

for the fluid, where c is a constant and m is a exponent. Here it is assumed that both thermal conductivity and the fluid
viscosity are varying with temperature while remaining properties are constant.

Figure 2.1: Sketch of problem.

The governing equations of present fluid flow can be introduced in the following form [13]:

(2.1)
∂u
∂x

+
∂v
∂y

= 0,

(2.2) u
∂u
∂x

+ v
∂v
∂y

=
1
ρ∞

∂

∂y

µ(T )
∂u
∂y

+ µ(T )
Γ
√

2

(
∂u
∂y

)2 − σB2
0

ρ∞
u,

(2.3) u
∂T
∂x

+ v
∂T
∂y

=
1

ρ∞cp

∂

∂y

(
κ(T )

∂T
∂y

)
+
µ(T )
ρ∞cp

(
1 +

Γ
√

2

∂u
∂y

) (
∂u
∂y

)2

−
1

ρ∞cp

∂qr

∂y
,

with boundary conditions

(2.4) u = cxm, v = −Vw, Tw(x) = T∞ + Axr at y = 0,

(2.5) u→ 0, Tw(x)→ T∞ at y→ 0,

where u and v are the components of velocity in the x and y directions, respectively. Also, T is the temperature for the
Williamson fluid, ρ∞ refers to the fluid density at the ambient, qr is the radiation heat flux and cp is the specific heat at
constant pressure. T∞ is the constant ambient temperature, A and r are constants.

By taking Rosseland approximation [15], qr can be described in the following form:

(2.6) qr = −
4σ∗

3k∗
∂T 4

∂y
,

where the constant σ∗ is the Stefan-Boltzmann and k∗ is the absorption coefficient.The term T 4 can be simplified by
using Taylor expansion about the constant value T∞ as T 4 � 4T 3

∞T − 3T 4
∞, after neglecting all higher order terms [16].

Using the similarties transformation

(2.7) η =

(
cxm−1

ν∞

)1/2

y, ψ(x, y) =
(
cxm+1ν∞

)1/2
f (η), θ(η) =

T − T∞
Tw − T∞

,
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(2.8) u =
∂ψ

∂y
, v = −

∂ψ

∂x
,

where ν∞ is the kinematic viscosity at the ambient and ψ(x, y) is the stream function.
The important assumptions in this research is that the viscosity is altering exponentially with the temperature and

the thermal conductivity is changing linearly with temperature for these equations [7]:

(2.9) µ = µ∞e−αθ, κ = κ∞ (1 + εθ) ,

where µ∞ is the viscosity at the ambient, κ∞ represents the thermal conductivity at the ambient, α is the viscosity
variation parameter and ε is the thermal conductivity variation parameter.

Equations (2.2)-(2.3) converted into

(2.10) e−αθ
((

1 + δ f
′′
)

f
′′′

− αθ
′

f
′′
(
1 +

δ

2

))
− M f

′

+

(
m + 1

2

)
f f

′′

− m f
′2 = 0,

(2.11)
1
Pr

(
εθ
′2 + (1 + R + εθ) θ

′′
)

+

(
m + 1

2

)
f θ
′

− r f
′

θ + Ec
(
1 +

δ

2

)
f
′′2e−αθ = 0,

and reduced boundary conditions are

(2.12) f (0) = S , f
′

(0) = 1, θ(0) = 1,

(2.13) f
′

→ 0, θ → 0, at η→ ∞,

where δ =

( √
2c3/2 x

3m−1
2

√
ν∞

)
Γ is the local Williamson fluid parameter, M is magnetic field parameter, S is the suction

parameter, R is the radiation paramter, Ec =
U2

w
cp(Tw−T∞) = c2 x2m−r

Acp
is the Eckert number, Pr =

µ∞cp

κ∞
is the Prandtl

number. Here we take r = 2m = 2
3 , so,these parameters take the form δ =

( √
2c3/2

ν∞

)
Γ and Ec = c2

Acp
.

The local skin - friction coefficient C fx and the local Nusselt number Nux are given as

(2.14) C fx = −2Re−1/2
x

(
1 +

δ

2
f
′′

(0)
)

f
′′

(0)e−αθ(0),

(2.15) Nux = −Re−1/2
x (1 + R + εθ(0)) θ

′

(0),

where Rex =
Uw x
ν∞

is the local Reynolds number.

3 Method of Solution
Numerical shooting technique with Runge-Kutta fourth order method was adopted to solve the problem. Equations
(2.10)-(2.11) subject to the boundary conditions (2.12)-(2.13) are transformed into the following system of first-order
differential equations:

(3.1) f
′

1 = f2,

(3.2) f
′

2 = f3,

(3.3) f
′

3 =
eα f4

(1 + δ f3)

(
m f 2

2 −

(
m + 1

2

)
f1 f3 + M f2

)
+

α f5 f3
(1 + δ f3)

(
1 +

δ

2
f3
)
,

(3.4) f
′

4 = f5,

(3.5) f
′

5 =
1

(1 + R + ε f4)

(
Pr

(
r f2 f4 −

(
m + 1

2

)
f1 f5 − Ec

(
1 +

δ

2
f3
)

f 2
3 e−α f4

)
− ε f 2

5

)
,

where f = f1, f
′

= f2, f
′′

= f3, θ = f4 and θ
′

= f5
and initial conditions are f1(0) = S , f2(0) = 1, f4(0) = 1.

This system can not be solved with the infinite conditions which appear in eq.(2.13). So, these conditions are
replaced by appropriate finite guessing values f

′′

(0) and θ
′

(0).

231



4 Results and Discussion
The influence of viscosity variation parameter α on velocity and temperature profile is shown in Fig. 4.1 and Fig. 4.2.
From Fig. 4.1 and Fig. 4.2, it is clear that velocity decrease with respect to increasing value of α and temperature
profile increase with respect to increasing value of α.

Figure 4.1: Velocity profiles for different values of viscosity variation
parameter α.

Figure 4.2: Temperature profiles for different values of viscosity variation
parameter α.

The varaition of local Williamson fluid parameter δ on velocity and temperature distributions is shown in Fig. 4.3
and Fig. 4.4. From Fig. 4.3, it is noticed that increase in δ leads to decrease in velocity. From Fig. 4.4, it is observed
that increase in δ tends to increase in temperature.

Figure 4.3: Velocity profiles for different values of Williamson fluid parame-
ter δ.

Figure 4.4: Temperature profiles for different values of Williamson fluid
parameter δ.

The influence of magnetic field parameter M on both velocity and temperature profiles are shown in Fig. 4.5 and
Fig. 4.6. From Fig. 4.5, it is observed that velocity of fluid decreases with increase in M. The magnetic field causes
a amount of resistance to its motion due to Lorentz force, which reduces the fluid velocity. From Fig. 4.6, it is clear
that increase in M leads to increase in temperature. Fig. 4.7 and Fig. 4.8 depict the variation of suction parameter S
on velocity and temperature profile. From Fig. 4.7 and Fig. 4.8, it is observed that velocity and temperature decrease
with increase in S .

Figure 4.5: Velocity profiles for different values of magnetic field parameter
M.

Figure 4.6: Temperature profiles for different values of magnetic field
parameter M.
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Figure 4.7: Velocity profiles for different values of suction parameter S . Figure 4.8: Temperature profiles for different values of suction parameter S .

The effect of thermal conductivity parameter ε and radiation parameter R on temperature profile are given in Fig.
4.9 and Fig. 4.10 respectively, it is observed that increase in ε and R, leads to increase in temperature. Because
increase in radiation parameter R provides more heat to fluid that leads increase in temperature profile.

Figure 4.9: Temperature profiles for different values of thermal conductivity
parameter ε.

Figure 4.10: Temperature profiles for different values of radiation parameter
R.

The effect of Eckert number Ec on temperature profile is shown in Fig. 4.11. From Fig. 4.11, it is clear that
increase in Ec leads to increase in temperature profile because viscosity of fluid converts the energy from motion into
the internal energy of fluid which results in increasing of temperature.

Figure 4.11: Temperature profiles for different values of Eckert number Ec.

233



Table 4.1: Comparison of Nusselt number Re−1/2
x Nux for various values of Pr when δ = α = ε = R = Ec = M = S = r = 0 and m = 1

Pr Gorla and Sidawi (1994) Megahed (2019) Present study
2.0 0.91142 0.911358 0.911355

7.0 1.89046 1.895453 1.894460

20.0 3.35391 3.353902 3.353904

The comparison of present problem with previous research works done by Megahed[9] and Gorla and Sidawi[2]
are shown in Table 4.1. The present problem can be transformed into the previous published work when δ = α = ε =

R = Ec = M = S = r = 0 and m = 1.
Table 4.2 presents the numerical values of both the local Nusselt number and the local skin friction parameter for

various values of Eckert number Ec, magnetic field parameter M, suction parameter S , Williamson fluid parameterδ,
radiation parameter R, viscosity variation parameter α and thermal conductivity parameter ε. Analysis of table shows
that the Eckert number, the Williamson fluid parameter, the viscosity parameter lead to decresing behaviour for both the
local Nusselt number and the local skin friction coefficent and the suction parameter leads to a increasing behaviour for
both. Magnetic field parameter leads a diminishing behaviour for the local Nusselt number and increasing behaviour
for the the local skin friction.

Table 4.2: Values of 1/2Re1/2
x C fx and Re−1/2

x Nux for various values of α, δ, ε , M, S, R, Ec with m = 1/3, r = 2/3, Pr = 2.0

α δ ε M S R Ec 1
2 Re1/2

x C fx Re−1/2
x Nux

0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.8541 1.3875
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7168 1.3122
1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.5862 1.2173
0.5 0.0 0.2 0.2 0.2 0.2 0.2 0.7491 1.3298
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7168 1.3122
0.5 0.4 0.2 0.2 0.2 0.2 0.2 0.6744 1.2789
0.5 0.2 0.0 0.2 0.2 0.2 0.2 0.7201 1.2639
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7168 1.3122
0.5 0.2 0.4 0.2 0.2 0.2 0.2 0.7128 1.3738
0.5 0.2 0.2 0.0 0.2 0.2 0.2 0.6195 1.3881
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7168 1.3122
0.5 0.2 0.2 0.4 0.2 0.2 0.2 0.7981 1.2415
0.5 0.2 0.2 0.2 0.0 0.2 0.2 0.6443 1.1907
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7168 1.3122
0.5 0.2 0.2 0.2 0.4 0.2 0.2 0.7952 1.4412
0.5 0.2 0.2 0.2 0.2 0.0 0.2 0.7208 1.2412
0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.7123 1.3981
0.5 0.2 0.2 0.2 0.2 1.0 0.2 0.7068 1.5092
0.5 0.2 0.2 0.2 0.2 0.2 0.0 0.7189 1.4377
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.7168 1.3122
0.5 0.2 0.2 0.2 0.2 0.2 0.5 0.7156 1.1139

5 Conclusions
In this paper we have studied the boundary layer flow and heat transfer of Williamson fluid over a permeable
nonlinearly stretching sheet in the presence of magnetic field. We draw the following conclusions from our study

(1) Both the thermal radiation parameter and Eckert number enhance the temperature distribution, thicken thermal
region.

(2) An increase in both the viscosity parameter and the Williamson parameter results in a rise in the temperature
distribution.

(3) Thermal conductivity leads to an increasing behaviour for the local Nusselt number.
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(4) Magnetic field parameter leads to decreasing behaviour for the local Nusselt number and increasing behaviour
for the local skin-friction coefficient.

(5) Velocity and temperature profiles are decreasing as the value of suction parameter is increasing

Acknowledgements. The authors are grateful to the Editor and Reviewer for the suggestions which led to the paper
in the present form.
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Abstract

This paper presents a three dimensional analysis of the properties of magneto hydrodynamic waves. A quantitative
formulation of magneto hydrodynamic Alfvén waves is studied. On considering the motion in ordinary fluid, it is
observed that the propagation of low frequency waves is only in the form of pressure waves. We have focused on
such modes of propagation of incompressible fluid or plasma in magnetic field for which, the speed does not surpass
the speed of sound. The value of conductivity is taken to be infinity and viscosity negligible. In such a case, the
sum of the pressures of the field induced and the pressure of the plasma is independent of all the coordinates. The
kinetic energy density of wave motion and the energy density of the field induced by the perturbation come out to be
equal in both phase and amplitude. The study of the effect of large but finite conductivity for small “Joule losses”
reveal that the waves remain periodic, but it is observed that the amplitude of the waves decreases continuously and
exponentially at a slow pace.
2010 Mathematics Subject Classifications: 76W05.
Keywords and phrases: MHD, Alfvén waves, plasma pressure, magnetic field.

1 Introduction
Most of the physical phenomena that take place in our Sun can be described in terms of waves or oscillations. The
behavior of plasma and magnetic fields of Sun is described by solar magneto hydrodynamics (MHD). Solar MHD deals
with the propagation of MHD waves in the solar atmosphere. It is the study of the magnetic properties of electrically
conducting fluids. Some of such magneto fluids include plasmas, liquid metals and salt water or electrolytes.It is a
macroscopic theory that is valid when the smallest length-scale, namely, the width of the diffusion region, is larger
than the mean-free path for collisions([10]). The basic concept behind the theory of MHD is that the magnetic fields
are able to induce currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally changes
the magnetic field itself. Hence, the conductive fluids can support magnetic fields. The main concern for a particular
conducting fluid is the relative strength of the advecting motions in the fluid, compared to the diffusive effects caused
by the electrical resistivity. Different solar activities are due to the interaction of the plasma of both solar interior and
atmosphere with the magnetic field of the Sun as well as the convection and differential rotation of the Sun. These
interactions are studied by taking into consideration the plasma physics and how it deals with the magnetic field. The
interactions play a main role in the physical properties of the medium.

The main aim of the paper is to study and analyze three dimensionally the properties of magneto hydrodynamic
waves. A quantitative formulation of magneto hydrodynamic Alfvén waves is studied. An attempt is made to study
the Sun from magneto hydrodynamic point of view.

2 Basic MHD equations and Alfvén waves
MHD is a combination of the equations of hydrodynamics, electrodynamics and associated equations (see,[8,11,6,3]).The
study of MHD combines the Eulers equation describing fluid dynamics with Maxwells equations of electromagnetism.
These differential equations are resolved together, either in an analytical or numerical manner. From above equations
we obtain a set of four equations, referred as ideal or basic MHD equations ( see,[9]). These consist of two vector and
two scalar partial differential equations. The equations are:

(2.1)
∂ρ

∂t
+ ∇.(ρ~V) = 0,

(2.2)
∂(ρ~(V))
∂t

+ ∇.(ρ~V) = −∇P + ~J × ~B,
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(2.3)
∂ρ

∂t
+ ~V .∇P + γP∇.~V = 0,

(2.4)
∂~B
∂t

= −∇ × ~E = ∇ × (~V × ~B) + η∇2~B,

where ρ is the mass density, ~V the fluid velocity, ~(B) the magnetic field or magnetic flux density, γ is the adiabatic
coefficient (generally taken as 5/3), ~J is the current density and η is the magnetic diffusivity or the electrical resistivity.
Here P is the plasma pressure which is given as,

(2.5) P = 2(ρ/mi)kT,

where mi is the ionic mass, k is the Boltzmann constant and T is the temperature. The magnetic diffusivity or the
electrical resistivity is usually taken as zero; hence equation (2.4) takes the form,

(2.6)
∂~B
∂t
− ∇ × (~V × ~B) = 0.

In the above equation, as η = 0, it indicates the presence of frozen field, i.e., the magnetic field remains tightly
coupled to the fluid. Here, the relative strength of resistivity is calculated with the help of a dimensionless number
known as the magnetic Reynolds number, Rme given as:

(2.7) Rme =
VL
η
,

where V is the amplitude of the plasma velocity and L is the global length scale.
In solar magneto hydrodynamics, Reynolds number attains a large value as the length scales are large enough.
The magnetic pressure is given as B2

2µo
. The ratio of plasma pressure P to magnetic pressure B2

2µo
is known as the

plasma beta β,

(2.8) β =
P

B2/2µo
,

where µois the magnetic permeability in vacuum.
In the above equation if β = 1, it implies that gas pressure is equal to the magnetic pressure. If β >> 1, the

magnetic field is weak and it spins along the plasma fluid. On the contrary if β << 1, the magnetic field dominates
and forces the plasma to move along with it. Both Reynolds number and plasma beta are dimensionless numbers.

Alfvén waves are the magneto hydrodynamic waves described by frequencies which are below the gyro frequency
and their wavelength is much larger than the inter-particle distance1. The Lorentz force in magnetic field ~B is

(2.9) ~J × ~B =

( 1
4π

)
( ~B.∇)~B − ∇(B)2/8π,

where ~J is the current density,( ~B.∇) represents tension due to curvature of field lines and ∇(B)2/8π pressure transverse
to the field lines. This magnetic tension is responsible for the generation of transverse waves propagating along ~B in
the x-direction. The equation of motion is given as,

(2.10)
(
∂2~B
∂t2

)
= (VA)2

(
∂2~B
∂x2

)
,

where, VA is the Alfvén speed given by the equation,

(2.11) (VA) =
B√
4πρ

2.2 ×
(1011B
√

ne

)
,

It represents the speed of propagation of all the magnetic disturbances and controls the growth rate of magnetic
instabilities.

When a magnetic disturbance travels at a speed greater than the Alfvén speed, it leads to the production of an MHD
shock wave. It results in an increase in magnetic field behind the waves. Shock waves are non-linear waves whose
character is determined and defined by the conservation laws of mass, total energy and momentum. Such an MHD
shock exists at the periphery of terrestrial magnetosphere. At this boundary, the solar wind travelling with a velocity of
400 km/s carries charged particles emanating from the Sun. This shock displays a stationary mode with the boundary
of the magnetosphere. Alfvén waves provide an exact solution of the non-linear MHD equations.

237



3 Study of Alfvén waves using magneto hydrodynamic equations in solar atmosphere
The properties of Alfvén waves are found to vary in magnetic field. Many studies in the past have been done using
magneto hydro dynamical equations (see [7, 15, 5]). Let us consider an incompressible fluid with infinite conductivity,
lying in a homogeneous magnetic field (Bo). Any plasma or gas acts as an incompressible fluid till the speed of the
mode does not surpass the speed of sound.Quantitatively, on considering the motion in the ordinary fluid, it is observed
that the propagation of low frequency waves is only in the form of pressure waves.

Our focus lies on such modes only, and hence the viscosity is considered negligible and conductivity infinite
([1,2]). Initially, let the Alfvén wave propagate in a uniform magnetic field along the z-direction, from z = −∞ to
+∞(independent of x and y directions), it satisfies the following differential equations

(3.1)
∂ρ

∂t
+ ∇.(ρ~V) = 0,

(3.2)
∂~B
∂t

= Curl(~V × ~B) + ν∇2B,

(3.3)
∂~V
∂t

+ (~V .∇)~V =
~F
ρ

+
1

4πρ
Curl~B × ~B −

1
ρ
∇P.

From equation (3.2), it follows that ∂Vz
∂z , suggesting Vz to be a constant w.r.t to height. It indicates that the Alfvén

wave propagates with constant speed along the z-direction (height). Let us consider a small variation in magnetic field
( ~Bo) as (~b). On resolving b and V in component form we get equations (3.4) and (3.5).

(3.4)
∂bx

∂t
= Bo

∂Vx

∂z
,

∂by

∂t
= Bo

∂Vy

∂z
,

bz = 0 .

(3.5)
∂Vx

∂t
=

Bo

4πρ
∂bx

∂z
,

∂Vy

∂t
=

Bo

4πρ
∂by

∂z
,

∂Vz

∂t
= 0 .

Using equations (3.4) and (3.5), we solve equations (3.2) and (3.3) and get the resultant equation as

(3.6) −
by

4πρ
∂by

∂z
−

bx

4πρ
∂bx

∂z
−

1
ρ

∂ρ

∂z
= −

1
ρ

∂

∂z

(bx2

8π
+

by2

8π
+ P

)
= 0.

Since the magnetic field is perpendicular to the direction of propagation, the variation in the field is only along x
and y direction and hence the z component of magnetic field is zero (equation 3.5).

From the equation (3.6) it follows that:-

(3.7)
b2

x

8π
+

b2
y

8π
+ P = Const.

Equation (3.7) depicts that the sum of the pressures of the field induced (bx and by) and the plasma pressure (P)
is independent of the coordinates. From the above equation, it is clear that the sum of plasma pressure and magnetic
pressure in solar atmosphere is constant. The pressure is independent of coordinates (Fig. 3.1) indicating that the total
plasma pressure is uniformly distributed in solar atmosphere while the plasma pressure is dependent on the magnetic
field or magnetic pressure in solar atmosphere. This three dimensional variation of plasma pressure P with magnetic
field components (bx and by) can be seen in (Fig. 3.2) Arregui et al. (2004) ([2]), studied the potential magnetic
arcades under the condition when the magnetic pressure is dominant over the plasma pressure.
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Figure 3.1: Plot depicting that plasma pressure P is independent of coordinates

Figure 3.2: Variation of plasma pressure P with magnetic field

The three dimensional variation of plasma pressure with components of magnetic field is parabolic in nature along
x-axis and y-axis. A two dimensional plot of plasma pressure with different components of magnetic field is shown in
Figs. 3.3(a) and 3.3(b).

Figure 3.3: Two dimensional plot between plasma pressure and different components of magnetic field (a) Plasma pressure and x-component of magnetic field (b)
Plasma pressure and y-component of magnetic field.

Hence, if we consider a reference point in solar atmosphere (photosphere, chromosphere etc.)the plasma pressure

239



will show an increase with increase of magnetic pressure along a particular direction. Fig. 3.2 and Fig. 3.3 indicate
that the propagating Alfvén wavefollows a parabolic trajectory with magnetic field.

On differentiating equations (3.4) and (3.5) further w.r.t. t and z, we obtain two wave equations for by and Vy. In

order to obtain solutions from equation (3.4), we have eliminated the terms ∂2Vy

∂z∂t and ∂2by

∂z∂t . The resultant equations are

(3.8)
∂2By

∂t2 −
B2

o

4πρ
∂2by

∂z2 ,

∂2Vy

∂t2 −
B2

o

4πρ
∂2Vy

∂z2 = 0.

Equations (3.8) satisfies functions of argument, t+ z
VA

, where VA = Bo√
4πρ

, Since the plasma particles are moving

with a velocity V along the direction of magnetic field, hence they vibrate due to the magnetic pressure while the Alfvén
wave propagating with velocity VAvaries with respect to height z. Therefore, these two velocities are independent of
each other.

Due to a small perturbation in magnetic field, Alfvén wave and magnetic plane wave(generated due to the vibration
of plasma particles) propagate in solar atmosphere. Hence the solutions of equation(3.8) are sinusoidal periodic waves
given by the equation (3.9) and equation (3.10) as below:

(3.9) by = a sinω
(
t −

z
VA

)
,

(3.10) Vy = −
a√
4πρ

sinω
(
t −

z
VA

)
.

Soler et al. [13], studied the three dimensional propagation of MHD waves in solar coronal arcades and concluded
that the measure of trapped wave energy depends on the wavelength of perturbations in the perpendicular direction.
From equation (3.9) and (3.10), amplitude of magnetic plane wave is equal to a. Therefore, plasma pressure = 1

8πby2 =
1

8πa2.
Also, amplitude of particle wave is equal to a√

4πρ
; hence, kinetic energy of plasma particle

(3.11) =
1
2
ρV2

y =
1
2
ρ

a2

4πρ
=

1
8π

a2.

It indicates, = 1
2ρV2

y = 1
8πb2

y . Hence, we conclude that the kinetic energy density of wave motion and the energy
density of the field induced by the perturbation come out to be equal in both phase and amplitude.

Further, on using the equations (3.9) and (3.10), the expressions for the terms P, Jx and Ex are as follow:

(3.12) P = Po −
b2

y

8π
,

(3.13) Jx =
c

4π
∇ × ~B = −

c
4π

∂By

∂z
=

acω
4πVA

cosω
(
t −

z
VA

)
,

(3.14) EX = −
1
c

(~V × ~B) =
aVA

c
= sinω

(
t −

z
VA

)
.

Initially, if the disturbances emerge in a manner such that the plasma in a layer orthogonal to Bo starts moving on
its own with the velocity equal to 2~V , then it emanates two waves travelling with velocity ~Vand field ~b. Hence, the
total energy (comprising of kinetic and magnetic energy) is equal to the energy imparted to the initial perturbation.

On determining VA, we conclude that 1
2ρV2

A = 1
8πB2

o.
If we compare it with the analogous equality for V and b, we find that V

VA
= b

bo
. In case V is sufficiently large,

then b >> Bo. This clearly indicates that if the Alfvén wave is suitably large, the perturbation in the field surpasses the
original field Bo.

We have dealt with three velocities i.e., fluid motion velocity V , Alfvén wave velocity VA and the velocity of sound
c. Alfvén waves are responsible for the perturbation of uniform magnetic field Bo to b and carry it to some good
distance. Hence Alfvén waves need not to be strictly transverse. Thus, any state of motion within the acceptable limits
of compressibility is found to travel along ( ~Bo) with velocity (VA). Moreover, Alfvén waves satisfy the condition of
frozen field([3]). This is made clear by the equation (3.15)

(3.15)
dy
dz

=
By
Bz

=
a
Bo

sinω
(
t −

z
VA

)
.
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The solution of the above equation is given as

(3.16) y = yo +
a

ω
√
πρ

cosω
(
t −

z
VA

)
.

Each point on the line of force progress alongy-axis in direction parallel to velocity:-

(3.17)
dy
dt

= −
a

4πρ
sinω

(
t −

z
VA

)
,

which comes out to be same as (Vy) in equation (3.10).
The waves are undamped so the amplitude of the wave a has been taken as constant with respect to time. Here, the

Joule dissipation is ignored taking (λ = ∞), and viscosity is neglected. Due to this fact, phases of Jx and Ex exhibit a
phase difference of π/2. Therefore, the work done is
(3.18)

∫ 2π/ω
0 JxExdt = 0.

If we consider large and infinite conductivity and small Joule losses, the average energy density of the waves
becomes
(3.19) UW =

ω

2π

∫ 2π/ω
0 ω

(
1

8πb2 + 1
2ρV2

)
dt = a2

8π ,

and the average rate of decrease of the energy density is:-

(3.20)
dUW

dt
= −

ω

2π

∫ 2π/ω
0

J2

λ
dt = ω

2π
a2

λ
c2ω2

B2
o

ρ
4π

∫ 2π/ω
0 cos2 ωt dt.

Here, the total time derivative is considered, suggesting that the point at which Uw is calculated, moves with the
wave and not with the fluid. Moreover, UW is the average over a wavelength.

The magnitude of the integral is equal to π
ω

. Solving with respect to z(dt = V−1
A dz) and replacing a2

8π with UW , we
obtain:

(3.21)
dlnUW

dz
= −2α,

α =

√
πc2ω2ρ8/2

B8
oλ

=
c2ω2

8πV8
Aλ
.

From this we get:
(3.22) UW = UWo e−2αz,

by = ae−2αz sinω
(
t −

z
VA

)
.

In the solar atmosphere, plasma pressure rises due to the loss of magnetic energy. As a result, damping in the
amplitude of magnetic field takes place with respect to height. This damping is shown by equation (3.23).

(3.23) by = ae−2αz sinω
(
t −

z
VA

)
.

Magnetic field varies as a sinusoidal wave in 3-D with respect to height z and time t which is shown in Fig. 3.4. It
is evident that the waves remain periodic but the amplitude of the waves decreases continuously at a slow pace.

Figure 3.4: Plot showing the variation of magnetic field with height z and time t
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Figure 3.5: Plot showing the variation of amplitude of magnetic field with height z.

Terradas et al. [14], have studied the properties of low-β MHD waves and successfully explained the effect of a
physical dissipation on Alfvén modes leading to the damping of oscillations. Ryu et al. [12], studied the propagation
and damping of Alfvén waves using a 2D MHD simulation code and observed effective damping. Carbonell et al. [4],
observed time and spatial damping of linear non-adiabatic MHD waves in flowing partially ionized plasma.To analyze
the variation of amplitude of magnetic field with height, we have plotted Fig. 3.5 which reveals that the amplitude of
magnetic field (ae−αz decreases exponentially with height.

From damped amplitude of magnetic field ae−αz we define damping factor α in terms of height.
If

(3.24) α = 1/z,

then, by = ae
−1×z

z = a/e.
Hence α factor is defined as the reciprocal of that height at which the amplitude of magnetic field becomes 1

e times
its initial value and the time taken in this process is called the characteristic time to.

Now as to = z
A and z = 1

α
[equation (3.24)]; therefore,

(3.25) to =
1
αVA

.

The characteristic time for change in b and V is given by

(3.26) to =
1
αVA

=
8πλV2

A

c2ω2 =
4πλRme2

c2 =
Rme2

ν
.

It is evident that for oscillations of higher frequency, the characteristic time is smaller and thus damping is found
to be larger.

4 Results and Discussions
The manifestation of different solar activities is due to the interaction of solar plasma with the magnetic field of the Sun
as well as its convective motion and differential rotation. These interactions are studied by taking into consideration
the dynamics of the plasma and its variation with the magnetic field. For analyzing this, aquantitative formulation of
magneto hydrodynamic Alfvén waves has been attempted in this paper. On considering the motion in ordinary fluid,
it is observed that the propagation of low frequency waves is only in the form of pressure waves. Here, viscosity is
considered negligible, conductivity infinite and the fluid is assumed to be at rest initially. The sum of the pressures of
the field induced (bx by) and the plasma pressure (P) is found to be independent of the coordinates.

We have considered plane motion of the fluid wherein the plasma particles travel along ( ~Bo with velocity V . It
is independent of Alfvén wave velocity ( ~VA) as the dependence of ( ~VA) on z does not change the fluid velocity V . A
small perturbation in magnetic field led to the propagation of Alfvén wave and magnetic plane wave. We conclude
that the kinetic energy density of wave motion and the energy density of the field induced by the perturbation come
out to be equal in both phase and amplitude. Hence, the total energy (comprising of kinetic and magnetic energy) is
equal to the energy imparted to the initial perturbation.
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In case V is sufficiently large, then b >> Bo(Bo denotes uniform magnetic field and b is a small change in the value
of magnetic field). It clearly indicates that, if the Alfvén wave is suitably large, the perturbation in the field surpasses
the original field Bo.

The waves under consideration are undamped so the amplitude of wave “a” has been taken to be constant with
respect to time. When we have ignored Joule dissipation and neglected viscosity, a phase difference of π/2 appeared
between Jx and Ex. With theintroduction of large and finite conductivity with small Joule losses , the waves still
remainedperiodic; however, the amplitude of the waves decreased exponentially with height. The damping factor α
and the characteristic time to were obtained as α = 1

z and to =
Rme2

ν
. Thus, we have concluded that larger damping

exists for oscillations of higher frequency.
Acknowledgement. Authors are very much grateful to the Editor and Reviewers for their fruitful suggestions to bring
the paper in its present form.
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Abstract
Demand plays an important role for smooth running of any type of business. Most of the inventory modelers

considered steady demand rate in their models. While in actual practice demand rate is in fluctuating state. In this
study, a purchasing EOQ models for non-deteriorating and deteriorating items with stock-linked and exponential
demand is considered. Three models are measured. In Model I, a purchasing EOQ model for non-deteriorating
item with stock-dependent demand is assumed. In the second model an EOQ model for deteriorating item with
stock-sensitive demand is considered. In the third model an EOQ model for decay item with exponential demand is
considered. The mathematical models are established of all these three cases. Optimality conditions are also taken
in account. Numerical examples and sensitivity analysis is also conversed. Taylor’s series approximation is used for
finding numerical results.
2010 Mathematics Subject Classifications: 90B05.
Keywords and phrases: Inventory, Stock-linked and exponential demand, Deterioration, Optimality.

1 Introduction
Inventory is an essential part for running profitable business. Demand plays a crucial and important role in making
EOQ strategy. Several research papers published by researchers considering variable demand. Large pile of goods
in the warehouse is also attracting customers to purchase more items. Dave and Patel [7] developed an EOQ for
liner demand changeable demand with deterioration. Xu and Wang [28] designed an inventory model for decaying
commodities with time changeable demand and limited shortage cost. Guchhait et al. [11] presented an EPQ
(Economic Production Quantity) models for breakable items with variable demand, being dependent on time or on-
hand stock. Tripathi and Pandey [21] analyzed an EOQ model for decaying products with Weibull distribution time-
sensitive demand under trade credits. Some notable research papers with stock-sensitive and variable demand are
published by Tripathi [22], Baker and Urban [2], Pal et al. [16], Teng and Chang [23], Soni and Shah [18], Musa and
Sani [14], Tripathi et al. [24].

The problem of framing EOQ models for deteriorating items has received considerable attention in recent years.
Most of the researchers assumed constant deterioration rate. Mandal and Phujdar [15] established an economic
production quantity (EPQ) model for decaying commodities with steady production rate and stock-associated demand.
Ghiami and Williams [17] presented EPQ model when a manufacturer delivered a deteriorating products to retailers.
Sicilia et al. [19] designed a deterministic EOQ system for commodities with constant decay rate .Lee and Kim [12]
developed the optimal ordering strategy considering both deteriorating and defecting items in an integrated production
distribution model for a single –vendor, single – buyer supply chain. Tripathi [25] considered an EOQ model of
deteriorating products with stock – sensitive demand under inflation. Dye [8] presented an EOQ model over a finite
time for non-instantaneous deteriorating items using preservation technology. Researchers including Benkherouf and
Balkhi [3], Chakrabarty et al. [5], Dye [9], Sarkar [20], Taleizadeh [26]. Wu and Sarkar [28], Yang et al. [29], Wang
et al. [27], Liao [13], Chang et al. [6], Dye and Hsieh [10], Atici et al. [1], Bakker et al. [4] developed EOQ models
that focused on deterioration rate.

The remainder of the study is prepared as follows. Section 2 covers notations and assumptions of the model. In
Section 3, the models are formulated with optimal solution, numerical examples and sensitivity studies are conversed.
In this section the condition of total cost is minimized is obtained. Section 4 , provides the comparative study of
models I, II and III. Finally, some conclusions and future research lines are given in Section 5.
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2 Notations and Assumptions
2.1 Notations:
The following notations are used in this study:

D Demand rate
Q Order quantity
Ch Carrying cost / unit time
C0 Ordering cost/ order
T Cycle time
θ Deterioration rate, 0 ≤ θ < 1
OC and HC Ordering cost and holding cost
Z Total cost
OC∗, HC∗ and Z∗ Optimal OC, HC, and Z(T ) respectively.

2.2 Assumptions
The following assumptions are used to build up the model:
(i).The demand rate is stock- dependent for models I and II (i.e. D = α + βI(t), α > 0, 0 < β < 1) , and exponential
demand for model III ( i.e. D = αeβt ).
(ii).Models are considered for non- deteriorating in model I and deteriorating items in models II and III.
(iii). Shortages are not allowed.
(iv).There is no renovate or replenishment of the deteriorating commodities.
(v).The replenishment takes place immediately at an endless rate.

3 Mathematical Formulation
In this study three models are considered. In the first model demand rate is considered stock dependent. In the
second model deterioration and stock- dependent demand both are considered. In the third model deterioration and
exponential demand is considered.
3.1 Model I: Stock- dependent demand
In this model, it is assumed that demand rate for the item is stock- dependent. The inventory of commodities, decreases
due to purchases and stock- linked demand during [0,T ]. Therefore, the differential equation of the state is given by:

(3.1)
dI(t)

dt
= −{α + βI(t)}, 0 ≤ t ≤ T,

with

(3.2) I(0) = Q and I(T ) = 0.

Solution of (3.1) using (3.2) is:

(3.3) I(t) =
α

β
{e(T−t)β − 1}

and

(3.4) Q = I(0) =
α

β
(eβT − 1) = αT

(
1 +

βT
2

)
(approx.).

The Total cost consists of OC and HC:

(3.5) OC =
C0

T

(3.6) HC =
Ch

T

∫ T
0 I (t) dt = ChαT

2

(
1 +

βT
3

)
, (approx.).

Therefore

(3.7) Z =
C0

T
+

ChαT
2

(
1 +

βT
3

)
.
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Optimality Condition
Differentiating (3.7) w.r.t. T , we get

dZ
dT

= −
C0

T 2 +
Chα

2

(
1 +

2βT
3

)
and

d2Z
dT 2 =

2C0

T 3 +
αβCh

3
> 0.

It is seen that Z is a convex function in T . We can also the condition of minimization by graph shown below:

Figure 3.1: Between T (0.00 – 2.00) and Z

T ∗ is calculated by solving

(3.8)
dZ
dT

= 0⇒ αCh (2βT + 3) T 2 − 6C0 = 0.

Example 3.1 Let us consider the cost parameters: α = 4500, β = 0.4, Ch = 10, C0 = 100 in appropriate units.
Substituting theses values in (3.8), and solving for T , we get, T ∗ = 0.0660869 yrs, corresponding Q∗ = 301.322 units,
OC∗ = 1513.159, HC∗ = 1500.061 and Z∗ = $3013.22.

Sensitivity Analysis
It is reasonable to study the sensitivity study with respect to constraints over a known optimum solution. It is imperative
to get the belongings on dissimilar scheme parameters, such as holding cost, ordering cost, etc. In the following
Table 1, keeping all parameters same, discussed in numerical Example 3.1, varying one parameter at a time.
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Table 3.1: The effect of parameters on T ∗, Q∗ and OC∗, HC∗ and Z∗

Parameters Optimal values
T ∗ Q∗ OC∗ HC∗ Z∗

C0

80
90
110
120
130

0.0591636
0.0627232
0.0692835
0.0723354
0.0752602

269.386
285.795
316.090
330.218
343.768

1352.183
1434.876
1587.680
1658.939
1727.341

1341.677
1423.074
1573.280
1643.241
1710.349

2693.86
2857.95
3160.96
3302.18
3437.69

Ch

12
14
16
18
20

0.0603740
0.0559281
0.0523406
0.0493665
0.0468487

274.964
254.492
237.998
224.343
212.794

1659.342
1788.010
1910.563
2025.665
2134.531

1643.218
1774.870
1897.407
2012.505
2121.359

3299.56
3562.88
3807.97
4038.17
4255.89

α 4600
4700
4800
4900
5000

0.0653707
0.0646774
0.0640058
0.0633547
0.0627232

304.637
307.916
311.161
314.372
317.550

1529.737
1546.135
1562.358
1578.415
1594.306

1516.633
1533.025
1555.632
1565.305
1581.194

3046.37
3079.16
3117.99
3143.72
3175.50

β 0.45
0.50
0.55
0.60
0.65

0.0660162
0.0659458
0.0658758
0.0658062
0.0657369

300.995
300.670
300.347
300.025
299.705

1514.780
1516.397
1518.008
1519.614
1521.216

1500.070
1500.093
1500.102
1500.126
1500.144

3014.85
3016.49
3018.11
3019.74
3021.36

3.2 Model II: Stock linked Demand under deterioration
In this model stock- dependent demand and deterioration both are measured. The majority of items in the universe
deteriorate over time. Daily usable products like, bread, milk, green vegetable etc. deteriorate over time. The
differential equation of this situation is

(3.9)
d
dt

I(t) + θI(t) = −{α + βI(t)}; 0 < t < T,

with I(0) = Q and I(T ) = 0.
The solution of (3.9) with above condition is:

(3.10) I (t) =
α

θ + β

{
e(T−t)(θ+β)

− 1
}

and

(3.11) Q = I (0) =
α

θ + β

{
e(θ+β)T − 1

}
= αT

{
1 +

(θ + β) T
2

}
(approx.).

Total Cost
Total cost is given as follows:

(3.12) OC =
C0

T

(3.13) HC =
Ch

T

∫ T
0 I (t) dt = αChT

2

{
1 +

(θ+β)T
3

}
,

and

(3.14) Z =
C0

T
+
αChT

2

{
1 +

(θ + β)T
3

}
.

Optimality Condition
Differentiating (3.14) w.r.t. ‘T ’, we get

dZ
dT

= −
C0

T 2 +
αCh

2

{
1 +

2(θ + β)T
3

}
,
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and

(3.15)
d2Z
dT 2 =

2C0

T 3 +
αCh(θ + β)

3
> 0.

It can be easily seen that Z is a convex function in T . We can also the condition of minimization by graph shown
below:

Figure 3.2: Between T (0.00 − −0.20) and Z

Hence, Optimal cycle time T can be calculated by solving

(3.16)
dZ
dT

= 0⇒ αCh {2(θ + β)T + 3}T 2 − 6C0 = 0.

Example 3.2 Let us consider the cost parameters: α = 4500, β = 0.4, Ch = 10, C0 = 100, θ = 0.05, in appropriate
units. Substituting theses values in (3.16), and solving for T , we get, T ∗ = 0.0660162 yrs, Q∗ = 301.486 units,
OC∗ = 1514.780, HC∗ = 1500.07 and Z∗ = $3014.85.

Sensitivity Analysis
It is reasonable to study the sensitivity with respect to constraints over an agreed best possible solution. It is important
to obtain the belongings on unlike structure parameters, such as holding cost, ordering cost, etc. In the following Table
3.2, keeping all parameters same, discussed in numerical Example 3.1, varying one parameter at a time.
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Table 3.2: The effect of parameters on T ∗, Q∗ and OC∗, HC∗ and Z∗

Parameters Optimal values
T ∗ Q∗ OC∗ HC∗ Z∗

C0

80
90
110
120
130

0.0591067
0.0626594
0.0692059
0.0722508
0.0751689

269.517
285.943
316.276
330.414
343.981

1353.484
1436.337
1589.460
1660.881
1729.439

1341.696
1423.083
1573.300
1643.259
1710.371

2695.18
2859.42
3162.76
3304.14
3439.81

Ch

12
14
16
18
20

0.0603148
0.0558772
0.0522960
0.0493268
0.0468129

275.099
254.609
238.101
224.434
212.877

1657.768
1769.639
1912.192
2027.296
2136.163

1643.432
1774.881
1897.428
2012.514
2121.377

3301.20
3564.52
3809.62
4039.81
4257.54

α 4600
4700
4800
4900
5000

0.0653015
0.0646097
0.0639394
0.0632894
0.0626594

304.800
308.080
311.324
314.535
317.140

1531.358
1547.755
1563.981
1580.038
1595.930

1516.642
1533.045
1549.259
1565.312
1581.210

3048.00
3080.80
3113.24
3145.35
3177.14

β 0.45
0.50
0.55
0.60
0.65

0.0659458
0.0658758
0.0658062
0.0657369
0.0656681

301.649
301.811
301.974
302.136
302.298

1516.397
1518.008
1519.614
1521.216
1522.809

1500.093
1500.102
1500.126
1500.144
1500.171

3016.49
3018.11
3019.74
3021.36
3022.98

θ 0.06
0.07
0.08
0.09
0.10

0.0660021
0.0659880
0.0659739
0.0659598
0.0659458

301.518
301.551
301.583
301.616
301.686

1515.103
1515.427
1515.751
1516.075
1516.397

1500.077
1500.083
1500.079
1500.085
1500.093

3015.18
3015.51
3015.83
3016.16
3016.49

3.3 Model III: Exponential demand under deterioration
In most of EOQ model demand is considered invariable. While in real situation demand is always in dynamic state.
The model developed for deteriorating inventory in which demand is a exponential function of time. The differential
equation is:

(3.17)
dI (t)

dt
+ θI (t) = −αeβt,

with, I (0) = Q and I (T ) = 0.
Solution of (3.17) with the above condition is

(3.18) I (t) =
α

θ + β

{
eβT eθ(T−t) − eβt

}
.

also,

Q = I (0) =
α

θ + β

{
e(θ+β)T − 1

}
= αT

{
1 +

(θ + β)T
2

}
, (approx.).

Total Cost
Total cost consists of ordering cost and holding cost.

(3.19) OC =
C0

T
,

(3.20) HC =
Ch

T

∫ T
0 I (t) dt = Ch

T

∫ T
0

α
θ+β

{
eβT eθ(T−t) − eβt

}
dt

=
αCh

(θ + β)T

{
e(θ+β)T − eβT

θ
−

eβT − 1
β

}
=
αChT

2

{
1 +

(θ + 2β)T
3

}
, (approx.),

and

(3.21) Z =
C0

T
+ =

αChT
2

{
1 +

(θ + 2β)T
3

}
.
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Optimal Condition
Differentiating (3.21) w.r.t. ‘T ’, we get

(3.22)
dZ
dT

= −
C0

T 2 +
αCh

2

{
1 +

2(θ + 2β)T
3

}
and

d2Z
dT 2 =

2C0

T 3 +
αCh(θ + 2β)

3
> 0.

Since the second derivative of Z is positive. This shows that Z gives the minimum value at T ∗. We can also the
condition of minimization by graph shown below:

Figure 3.3: Between T (0.00 − −0.20) and Z

Thus, an Optimal cycle time T is obtained by putting

(3.23)
dZ
dT

= 0⇒ αCh {2(θ + 2β)T + 3}T 2 − 6C0 = 0.

Equations (3.8), (3.16) and (3.23) are cubic in T . The solution of these equations provides three roots. It is seen
that these equations having only one change in sign. By Descartes’ rule there exists only one positive root.

Example 3.3 Let us consider the cost parameters: α = 4500, β = 0.4, Ch = 10, C0 = 100, θ = 0.05, in appropriate
units. Substituting theses values in (3.23), and solving for T , we get, T ∗ = 0.0654635 yrs, corresponding Q∗ = 298.925
units, OC∗ = 1527.569, HC∗ = 1500.251 and Z∗ = 3027.82.

Sensitivity Analysis
It is reasonable to study the sensitivity study with respect to model parameters over a given optimum solution. It is
important to get the effects on different system parameters, such as holding cost, ordering cost, etc. In the following
Table 3.3, keeping all parameters same, discussed in numerical Example 1, varying one parameter at a time.
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Table 3.3: Effect of several parameters on optimal values

Parameters Optimal values
T ∗ Q∗ OC∗ HC∗ Z∗

C0

80
90
110
120
130

0.0586615
0.0621603
0.0685999
0.0715919
0.0744572

267.461
283.634
313.464
327.353
340.671

1363.756
1447.869
1603.501
1676.167
1745.969

1341.824
1423.241
1573.499
1643.493
1710.631

2705.58
2871.11
3177.00
3319.66
3456.60

Ch

12
14
16
18
20

0.0598516
0.0554783
0.0519456
0.0490144
0.0465310

272.959
252.769
236.487
222.997
211.582

1670.799
1802.506
1925.091
2040.217
2149.105

1643.401
1775.034
1897.569
2012.653
2121.506

3314.20
3577.54
3822.66
4052.87
4270.61

A 4600
4700
4800
4900
5000

0.0647605
0.0640798
0.0634202
0.0627807
0.0621603

302.239
305.517
308.761
311.971
315.148

1544.151
1560.554
1576.785
1592.846
1608.744

1516.819
1533.216
1549.435
1565.484
1581.376

3060.97
3093.77
3126.22
3158.33
3190.12

β 0.45
0.50
0.55
0.60
0.65

0.0653289
0.0651956
0.0650637
0.0649330
0.0648037

298.781
298.640
298.502
298.365
298.231

1530.716
1533.846
1536.955
1540.049
1543.122

1500.304
1500.374
1500.445
1500.521
1500.608

3031.02
3034.22
3037.40
3040.57
3043.73

θ 0.06
0.07
0.08
0.09
0.10

0.0654500
0.0654365
0.0654230
0.0654095
0.0653960

298.959
298.992
299.026
299.060
300.056

1527.884
1528.199
1528.514
1528.830
1529.146

1500.256
1500.261
1500.266
1500.270
1500.274

3028.14
3028.46
3028.78
3029.10
3029.42

On comparing all the three models, the sensitivity outcomes show that
(i). On increasing C0, T ∗, Q∗, OC∗, HC∗ and Z∗ increases. It shows that all optimal values move in the same track
with ordering cost/ order.
(ii).On raising Ch; T ∗ and Q∗ diminishes, while OC∗, HC∗ and Z∗ increases. It means that T ∗ and Q∗ moves in the
opposite direction with Ch, while OC∗, HC∗ and Z∗ moves in the same direction with inventory carrying cost/ unit
time.
(iii).On improving ‘α’; T ∗ decreases, while Q∗, OC∗, HC∗ and Z∗ increases.
(iv).On raising ‘θ’ and ‘β’, all the optimal values varies insignificantly (approximately).

4 Comparisons of Optimal Lot- Size and Costs

Table 4.1: A comparative study is conversed between Models I, II and III.

Q∗ OC∗ HC∗ Z∗

Model I 301.322 1513.159 1500.061 3013.22
Model II 301.486 1514.780 1500.070 3014.85
Model III 298.925 1527.569 1500.251 3027.82

From the above Table 4.1, it is easily seen that the order quantity obtained from Model II is superior to Models I and
III. It is also seen that optimal setup cost, holding cost and total cost rises from Model I to III. It means that all optimal
cost (OC j, HC j, and Z j) in Model III is better to compare to the OC j, HC j and Z j in Models I and II.

5 Conclusion
In this study, a purchasing EOQ models is established to obtain cycle time using second order and third order
approximation in exponential terms. Three dissimilar models are established. In Model I, purchasing EOQ Model
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with stock- linked demand, in Model II an EOQ model with inventory- sensitive demand under deterioration and in
Model III an EOQ model with exponential demand under decay have been discussed. Mathematical models have been
developed for all three models and optimal cycle times are obtained which minimize the total cost. It has been also
shown that the conditions of minimization are satisfied in all models. Numerical examples and sensitivity analyses
have been conversed to validate the projected model. On comparing all three models, it is easily seen that variations
are quite sensitive except ‘θ’ and ‘β’.

Some possible extensions of the model that can be future research topics are: (i) variable deterioration and Weibull
deterioration (ii) to suppose a non- linear holding cost (iii) to incorporate discounts in the purchasing cost/ unit; and
(iv) to study the case of inflation and time value of money.
Acknowledgement. We would like to express our thanks to Editors and anonymous Reviewers for their positive and
constructive comments and suggestions in improving the manuscript.
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Abstract

An analysis has been carried out to study the MHD flow and heat transfer of a non-Newtonian power-law fluid
over a porous sheet in the presence of partial slip and Joule heating. Here, thermal conductivity is assumed as a
function of temperature. An external heat source is also applied. The governing equations are reduced into the
system of non-linear ordinary differential equations by using similarity transformations. This system along with
appropriate boundary conditions are solved numerically using the shooting technique with Runge-Kutta fourth order
iteration scheme. The effects of suction/injection parameter, Eckert number and heat source parameter on the velocity
and temperature profiles are studied. It is observed that the temperature profile increases with decreasing value of
heat source parameter, Eckert number and suction/injection parameter. The influence of different parameters on the
velocity and temperature profile is presented through graphs. The effect of all physical parameters on skin friction
and local Nusselt number is displayed through tables.
2010 Mathematics Subject Classifications: 76A05, 76S05, 76W05, 65L06.
Keywords and phrases: Power law fluid, joule heating effects, MHD, porous sheet, porous medium, partial slip,
heat source/sink, thermal radiation.

1 Introduction
The power-law fluids are used in a wide range of industrial applications. The power-law model is useful from chemical
and petrochemical processes to food industries and biotechnology. Some examples include blood flow simulation,
polymer solutions, bio colloids, etc. The power-law model is one of the models which has been used by researchers
for simulating the non-Newtonian fluids. One reason for this popularity is the ability to simulate a wide range of
non-Newtonian fluids by this model. In the pioneering work of Schowalter [21], the applicability of boundary layer
theory to the two and three-dimensional flow of pseudoplastic power-law fluids was provided. In his work, particular
emphasis has been given to the formulation of boundary-layer equations which provide similar solutions. Sarpkaya
[19] carried out a study on the flow of non-Newtonian fluids under the effect of a magnetic field. Sarpkaya studied
the laminar flow of Bingham plastics and dilatant substances between two parallel planes under the influence of a
constant pressure gradient and a steady magnetic field perpendicular to the direction of motion. Throughout this
study the generalized magnetic Reynolds number has been assumed to be sufficiently small. Non-Newtonian flow
through porous media has been described by Savins [20]. Gupta and Gupta [13] investigated heat and mass transfer
on a stretching sheet with suction or blowing. Numerical solution of the laminar boundary layer equation for power-
law fluids was described by Andersson and Toften [3]. Alberta et al. [8] investigated some similarity solutions to
shear flows of non-Newtonian power-law fluids. They described the flow resistance to the vertical motion of a slender
circular body in an unbounded power law fluid, which constitutes a Stokes’ first problem for a circular rod. Sharma and
Mathur [18] have analyzed steady laminar free convection flow of an electrically conducting fluid along a porous hot
vertical plate in the presence of heat source/sink. MHD flow of a power-law fluid over a rotating disk was discussed by
Andersson and Korte [4]. Andersson et al. [5] carried out a study on slip flow past a stretching surface. Free convection
flow with thermal radiation and mass transfer past a moving vertical porous plate has been investigated by Makinde
[16]. Yurusoy [22] considered unsteady boundary layer flow of power-law fluid on stretching sheet surface. Effects
of magnetic field and suction/injection on convection heat transfer of non-Newtonian power-law fluids past a power-
law stretched sheet with surface heat flux was investigated by Chen [10]. Abel et al. [2] has analysed flow and heat
transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source.
Mahmoud [15] studied slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with
heat generation. Mukhopadhyay [17] presented heat transfer analysis of the unsteady flow of a Maxwell fluid over a
stretching surface in the presence of a heat source/sink. Abdel-Rahman [1] analyzed effect of variable viscosity and
thermal conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet. Steady boundary
layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium was discussed
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by Aziz et al. [7]. Heat transfer analysis for stationary boundary layer slip flow of a power-law fluid in a Darcy porous
medium with plate suction/injection was done by Aziz et al. [6]. In their studies, they extended the work to steady
boundary layer slip flow and heat transfer over a flat plate embedded in a porous media and investigated the slip effect
on boundary layer flow of a power-law fluid including heat transfer over a porous flat sheet embedded in a porous
medium. Kiyasatfar and Pourmahmoud [14] considered laminar MHD flow and heat transfer of power-law fluids in
square micro channels.

The present study focuses on the Joule heating effect with non-Newtonian power law fluid over a porous sheet
in the presence of heat source/sink. The governing system of partial differential equations has been adapted using
appropriate similarity transformation to nonlinear ordinary differential equations which are then solved using fourth-
order Runge kutta method with the shooting technique. The effect of various physical parameters on the dimensionless
velocity and temperature profiles are plotted and discussed in the result section.

2 Mathematical Formulation
Consider the steady 2-D laminar flow of an incompressible power-law fluid under the influence of magnetic field
and thermal radiation, over a semi-infinite porous sheet in a porous medium. The applied magnetic field (B) is acting
normal to the sheet and induced magnetic field is considered negligible as compared to applied magnetic field, because
the Reynolds number for the flow is taken to be small. The surface of the sheet is insulated and admits partial slip
condition. The origin of the coordinates is at the leading edge of the sheet, the x-axis along with the sheet and y-axis
normal to it. The temperature of the sheet is Tw. The velocity and temperature far away from the sheet are U∞ and
T∞, respectively. Using boundary layer approximation the governing equations for the problem along with the slip
boundary conditions are as follows

(2.1)
∂u
∂x

+
∂v
∂y

= 0,

(2.2) u
∂u
∂x

+ v
∂u
∂y

=
1
ρ

∂τxy

∂y
−

1
ρA

(u − U∞) −
σB2

ρ
(u − U∞),

(2.3) u
∂T
∂x

+ v
∂T
∂y

=
1
ρCp

{
∂

∂y

[
κ(T )

∂T
∂y

]
−
∂qr

∂y

}
+
σB2

ρCp
u2 +

Q
ρCp

(T − T∞),

(2.4)

 u = L1
∂u
∂y , v = vw,T = Tw + D1

∂T
∂y , at y = 0,

u→ U∞,T → T∞ as y→ ∞,

where u and v are the velocity components in x and y directions, ρ is the fluid density, τxy is the shear stress tensor,
A is the permeability, σ is the electrical conductivity, B is the applied magnetic field, T is the temperature, Cp is the
specific heat, κ is the variable thermal conductivity, qr is the radiative heat flux, L1 is the velocity slip factor, D1 is the
thermal slip factor, Q is the heat source parameter and vw describes suction/blowing through the porous sheet.

The shear stress component τxy for the power-law fluid model, as derived by Bird et al. [9] is

(2.5) τxy = K|
∂u
∂y
|n−1 ∂u

∂y
,

where K is the consistency coefficient and n is the power-law index. In equation (5) n = 1 represents the Newtonian
behaviour of the fluid. In the case of n < 1 behaviour of the fluid is known as shear-thinning, which is categorized
by an apparent viscosity which decreases with increase in shear rate. In the case of n > 1 fluid behaviour is called
shear-thickening and characterized by an apparent viscosity which increases with an increase in shear rate Chhabra
et al. [11]. Therefore, a single parameter n describes the nature of fluid behaviour. Substitution of equation (2.5) in
equation (2.2) gives

(2.6) u
∂u
∂x

+ v
∂u
∂y

=
1
ρ

∂

∂y

(
K
∣∣∣∣∣∂u
∂y

∣∣∣∣∣n−1 ∂u
∂y

)
−

1
ρA

(u − U∞) −
σB2

ρ
(u − U∞).

Following Das [12], we consider the temperature dependent thermal conductivity and radiative heat flux of the
form

(2.7) κT = κ∞

(
1 + ε

T − T∞
∆T

)
, qr = −

16T 3
∞σ

3k
∂T
∂y
,

where ε is the thermal conductivity parameter, κ∞ is the thermal conductivity at ambient temperature and ∆T =

Tw − T∞, σ is the Stefan-Boltzmann constant and k is the mean absorption coefficient. Substitution of equation (2.7)
into equation (2.3) gives

(2.8) u
∂T
∂x

+ v
∂T
∂y

=
1
ρCp

{
∂

∂y

[
k∞

(
1 + ε

T − T∞
∆T

)
∂T
∂y

]
+

16T 3
∞σ

3k
∂2T
∂y2

}
+
σB2

ρCp
u2 +

Q
ρCp

(T − T∞).
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3 Method of solution
Now we will transform the system of equations (2.1), (2.6) and (2.8) along with the boundary conditions (2.4) into a
dimensionless form. For this purpose, we choose a stream function Ψ(x, y) such that

(3.1) u =
∂Ψ

∂y
, v = −

∂Ψ

∂x
.

Equation (3.1) identically satisfies the continuity equation (2.1). Using equation (3.1), equation (2.6) and (2.8)
become

(3.2)
∂Ψ

∂y
∂2Ψ

∂x∂y
−
∂Ψ

∂x
∂2Ψ

∂y2 =
1
ρ

{
∂

∂y

[
K|
∂2Ψ

∂y2 |
n−1 ∂

2Ψ

∂y2

]}
−

(
1
ρ̄A

+
σB2

ρ

) (
∂Ψ

∂y
− U∞

)
,

(3.3)
∂Ψ

∂y
∂T
∂x
−
∂Ψ

∂x
∂T
∂y

=
1
ρCp

{
∂

∂y

[
κ∞

(
1 + ε

T − T∞
∆T

)
∂T
∂y

]
+

16T 3
∞σ

3κ
∂2T
∂y2

}
+
σB2

ρCp

(
∂Ψ

∂y

)2

+
Q
ρCp

(T − T∞).

The boundary conditions are transformed into

(3.4)

 ∂Ψ
∂y = L1

∂2Ψ
∂y2 ,

∂Ψ
∂x = −vw,T = Tw + D1

∂T
∂y at y = 0,

∂Ψ
∂y → U∞,T → T∞ as y→ ∞,

where

L1 = L
U∞ρ

K

(
Kx

ρU2−n
∞

) 1
n+1

is the velocity slip factor and

D1 = D
U∞ρ

K

(
Kx

ρU2−n
∞

) 1
n+1

is the thermal slip factor. Here L and D are the initial values of velocity and thermal slip parameters, respectively.
We introduce the following dimensionless similarity variable (η), dimensionless stream function Ψ(η) and

dimensionless temperature θ(η) of the form

(3.5) η = (
Re

x
L

)
1

n+1
y
L

, Ψ(x, y) = LU∞(
x
L

Re )
1

n+1 f (η), θ(η) = T−T∞
∆T ,

where Re =
ρU2−n
∞ Ln

K is the generalized Reynolds number. Using equation (3.5) into equation (3.2) and (3.3), we obtain
the following system of ODE

(3.6) n| f ′′|n−1 f
′′′

+
1

n + 1
f f ′′ − (k + M)( f ′ − 1) = 0,

(3.7) θ′′ +
Pr∞

(n + 1)(1 + εθ + Nr)
f θ′ +

ε

(1 + εθ + Nr)
θ′2 +

MPr∞Ec
(1 + εθ + Nr)

f ′2 +
Pr∞Q

(1 + εθ + Nr)
θ = 0.

The corresponding boundary conditions are

(3.8)

 f (η) = S , f ′(η) = δ f ′′(η), θ(η) = 1 + βθ′(η) at η = 0,
f ′(η)→ 1, θ(η)→ 0, as η→ ∞,

where k is the permeability parameter, M is the magnetic parameter, Pr∞ is the local Prandtl number, Nr is the thermal
radiation parameter, S is the suction/blowing parameter, which corresponds to suction when S > 0, and corresponds
to blowing when S < 0, Ec is Eckert number, Q is heat source parameter. In boundary conditions δ and β are the
dimensionless velocity and thermal slip parameters, respectively. These parameters are further defined as

(3.9) k =
µx

U∞ρA
,M =

xσB2

U∞ρ
, S = −vw

x(n + 1)
U∞

(
ρU2−n
∞

K
)

1
n+1 , δ = L

U∞ρ
K

, β = D
U∞ρ

K
,

Pr∞ =
Cp

κ∞
K

2
n+1 (

U3
∞ρ

x
)

n−1
n+1 = (1 + εθ)Pr, Ec =

U2
∞

Cp∆T
,

where Pr =
Cp

κ
K

2
n+1 ( U3

∞ρ

x )
n−1
n+1 is the Prandtl number.
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4 Relevant physical measures
The shear stress is given by

(4.1) τxy = [K|
∂u
∂y
|n−1 ∂u

∂y
]y=0 = ρU2

∞Re
− 1

(n+1)
x | f ′′(0)|n−1 f ′′(0).

The skin-friction coefficient is defined as

(4.2) C f =
τxy

ρu2
∞/2

= 2Re
− 1

(n+1)
x | f ′′(0)|n−1 f ′′(0).

The local Nusselt number is given by
Nux = −

q(x)x
κ(T−T∞) ,

where q(x) = −κ( ∂T
∂y )y=0is the heat flux at the surface.

(4.3) Nux = −
λ

Tw − T∞
(
∂T
∂y

)y=0 = −Re
1

(n+1)
x θ′(0),

where λ is characteristic length.
The nonlinear coupled boundary-layer equations (3.6) and (3.7) together with the boundary conditions (3.8)

are solved numerically using Runge-kutta method along with shooting technique. At first, higher-order nonlinear
differential equations (3.6) and (3.7) are converted into the simultaneous nonlinear differential equations of first order
and they are further transformed into initial value problem by applying the shooting technique.

Let f = f1, f ′ = f2, f ′′ = f3, θ = f4 , θ′ = f5 then we get following system of first order differential equations:
f ′1 = f2,
f ′2 = f3,

(4.4) f ′3 =
(K + M)

n
( f2 − 1)

f (n−1)
3

−
f1 f (2−n)

3

n(n + 1)
, f ′4 = f5,

(4.5) − f ′5 =
Pr

(n + 1)
(1 + ε f4)

(1 + ε f4 + Nr)
f1 f5 +

ε

(1 + ε f4 + Nr)
f 2
5 +

MPrEc(1 + ε f4)
(1 + ε f4 + Nr)

f 2
2 +

PrQ(1 + ε f4)
(1 + ε f4 + Nr)

f4

subject to the following boundary conditions

(4.6)

 f1 = S , f2 = δ f3 f4 = 1 + β f5 at η = 0,
f2 = 1, f4 = 0 at η = ∞,

Now, to convert above system into initial value problems, we take initial guesses of f3 and f5 at η = 0. The resultant
initial value problems are solved by employing Runge-kutta fourth order method. The step size ∆η = 0.016 is used to
obtain the numerical solution with five decimal place accuracy as the criterion of convergence.

5 Results and discussion
Now, we shall analyse the results obtained through numerical computation for variables like power law index
(n), velocity slip parameter (δ), magnetic parameter (M), permeability parameter (k), suction/injection (S ), thermal
radiation (Nr), variable thermal conductivity (ε), thermal slip parameter (β), Prandtl number (Pr), Eckert number (Ec)
and heat source parameter (Q). The default values of the parameters are set as M = 0.2, S = 0.3, Nr = 0.3, Pr = 1.2,
Ec = 0.01, k = 0.3, δ = 0.4, β = 0.4, unless otherwise specified. Their results are presented through graphs.

Figure.5.1 shows the effect of velocity slip parameter on the velocity profile of shear thinning and shear thickening
fluids. The comparison of curves with same power-law index shows that velocity slip at boundary and the fluid velocity
within the boundary are proportionally related due to positive value of the fluid viscosity adjacent to the surface.
Moreover, increase in slip parameter leads to increased flow through the boundary layer. Figure 5.2(a) and Figure
5.2(b) elucidate the effect of slip parameter on the temperature profile for n = 0.8 and n = 1.3, respectively.
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Figure 5.1: Velocity profiles for different values of velocity slip parameter. Figure 5.2(a): Velocity profiles for different values of velocity slip parameter.

Figure 5.2(b): Temperature profiles for different values of velocity slip parameter
for n = 1.3. Figure 5.3: Velocity profiles for different values of permeability parameter.

It is evident from Figure 5.2(a) and Figure 5.2(b) that an increase in the velocity slip parameter leads to a decrease
in the temperature profile. The effect of permeability parameter on fluid velocity profile is shown in Figure 5.3. It
is noticed that an increase in porosity, the magnitude of Darcian body force reduces, which increases the velocity of
the fluid in the boundary layer. It is clear from the Figure 5.3. that initially, shear-thinning fluid increases faster than
shear-thickening fluid. This is due to the smallest effective viscosity of shear-thinning fluids. While the opposite trend
is seen in later time as the viscosity of the shear thickening fluid will reduce.

Figure 5.4(a): Temperature profiles for different values of permeability parameter
for n= 0.8.

Figure 5.4(b): Temperature profiles for different values of permeability parame-
ter for n = 1.3.

Figure 5.4(a) and Figure 5.4(b) elucidate the effect of permeability parameter on the temperature profile for
n = 0.8 and n = 1.3, respectively. It is observed that the increase in permeability parameter leads to an increase in
the heat transfer rate and a decrease in the thickness of the thermal boundary layer. Figure 5.5 exhibits the effect of
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magnetic parameter on the velocity profile. It is clear from the figure that the increase in magnetic field causes an
increase in the velocity profile. Figure 5.6(a) and Figure 5.6(b) display the influence of magnetic parameter on the
temperature profile for n = 0.8 and n = 1.3, respectively. In the case of heat source, the temperature profile decreases
with increasing value of magnetic parameter.

Figure 5.5: Velocity profiles for different values of Magnetic parameter. Figure 5.6(a): Temperature profiles for different values of Magnetic parameter
for n= 0.8.

Figure 5.6(b): Temperature profiles for different values of Magnetic parameter
for n = 1.3. Figure 5.7: Velocity profiles for different values of suction/injection parameter.

Figure 5.8(a): Temperature profiles for different values of suction/injection
parameter for n = 0.8.

Figure 5.8(b): Temperature profiles for different values of suction/injection
parameter for n = 1.3.

It is clear from Figure 5.6(a) that in the case of the heat sink, initially, temperature profile decreases with increasing
value of magnetic parameter but far from the plate for η > 3.6, the temperature profile increase with increasing value
of the magnetic parameter. The same effect in the temperature profile is seen in Figure 5.6(b) for η > 3.12. Figure
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5.7 presents the effect of the suction/injection parameter on the velocity profile for porous sheet in the presence of slip
conditions and magnetic fields in a porous medium. It is evident from the Figure 5.7, that velocity profile increases
with the increasing value of suction/injection parameter. Figure 5.8(a) and Figure 5.8(b) are drawn to discuss the
effect of suction/injection parameter on the temperature profile for n = 0.8 and n = 1.3, respectively. From Figure
5.8(a) and Figure 5.8(b), it is seen that temperature profile decreases as the value of S increases which results in the
increased rate of heat transfer through the boundary layer. Figure 5.9(a) and Figure 5.9(b) describe the impact of
Prandtl number on the temperature profile for n = 0.8 and n = 1.3, respectively. The thermal conductivity of the fluid
declines by enhancing the Prandtl number. Thus transfer of the heat slows which fall down the temperature of flow
distribution. Figure 5.9(a) and Figure 5.9(b) validates the above results i.e. the temperature of the flow distribution
falls when Prandtl number increases. In the case of heat source, near the plate temperature profile increases due to slip
effect and far from the plate the temperature profile decreases with increasing value of Prandtl number. In the case of
the heat sink, the temperature profile decreases with the increasing value of the Prandtl number.

Figure 5.9(a): Temperature profiles for different values of Prandtl number for
n = 0.8.

Figure 5.9(b): Temperature profiles for different values of Prandtl number for
n = 1.3.

Figure 5.10(a): Temperature profiles for different values of thermal conductivity
parameter for n = 0.8.

Figure 5.10(b): Temperature profiles for different values of thermal conductivity
parameter for n = 1.3.

Figure 5.10(a) and Figure 5.10(b) depict the effect of the thermal conductivity parameter on the temperature
profile for n = 0.8 and n = 1.3, respectively. The results show that with the increase in the thermal conductivity
parameter, the temperature profile increases Figure 5.11(a) and Figure 5.11(b) reveals the usual effect of the thermal
slip parameter on the temperature profile for n = 0.8 and n = 1.3, respectively. It is evident from the Fig.5.11(a) and
Figure 5.11(b) that in the case of Q > 0, the temperature increases with increasing values of thermal slip parameter.
The reverse happens in the case of the Q < 0. Figure 5.12(a) and Figure 5.12(b) show the effect of the thermal
radiation parameter on the temperature profile for n = 0.8 and n = 1.3, respectively.
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Figure 5.11(a): Temperature profiles for different values of thermal slip parameter
for n = 0.8.

Figure 5.11(b): Temperature profiles for different values of thermal slip
parameter for n = 1.3.

Figure 5.12(a): Temperature profiles for different values of thermal radiation
parameter for n = 0.8.

Figure 5.12(b): Temperature profiles for different values of thermal radiation
parameter for n = 1.3.

It is depicted from the Figure 5.12(a) and Figure 5.12(b) that in the case of heat source, near the plate temperature
profile decrease with increasing value of thermal radiation parameter and far from the plate the temperature profile
increases with increasing value of thermal radiation parameter. In the case of the heat sink, the temperature profile
increases with the increasing value of the thermal radiation parameter.

Figure 5.13(a) and Figure 5.13(b) demonstrate the temperature distribution for the different values of Eckert
number for n = 0.8 and n = 1.3, respectively. Eckert number expresses the relationship between flow kinetic energy
to the boundry layer enthalpy difference. So an increase in Eckert number causes an enlargement in kinetic energy,
hence temprature of the fluid rises. It is observed from Figure 5.13(a) and Figure 5.13(b) that temperature profile
increases with the increasing values of Eckert number.

Figure 5.13(a): TTemperature profiles for different values of Eckert number for
n = 0.8.

Figure 5.13(b): Temperature profiles for different values of Eckert number for
n = 1.3.
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Figure 5.14: Temperature profiles for different values of heat source/sink parameter.

Figure 5.14 depicts the effect of heat source/sink parameter on temperature profile. It is observed that the
temperature profile increases with the increasing values of heat source/sink parameter.

Table 5.1 shows the nature of the skin friction coefficient for various physical parameters. It is observed that the
shear-thinning fluid has greater values of skin friction coefficient as compared to shear thickening fluid. The skin
friction coefficient increases with an increase in magnetic parameter, permeability parameter and suction/injection
parameter and the skin friction coefficient decreasing with an increase in slip parameter.

Table 5.1: Comparison of f ′′(0) for the different values of parameters k, M, δ and S for n= 0.8 (Shear thinning) and n=1.3 (Shear thickening).

2*Corresponding Author Page 12 
 

an increase in magnetic parameter, permeability parameter and suction/injection parameter and 
the skin friction coefficient decreasing with an increase in slip parameter.  

Table 5.2 shows the values of Nusselt number for different physical parameters 
concerning power law index 0.8 and 1.3 respectively. It is observed that the Nusselt number 
decreases with an increase in power law index. It is noticed from the table that the Nusselt 
number increases with an increase in suction/injection parameter, permeability parameter, 
magnetic parameter and slip parameter while the reverse effect is seen in the case of thermal 
slip parameter, Eckert number, thermal conductivity parameter and heat source/sink parameter. 
In the case of the heat source, the Nusselt number decreases with the increasing values of the 
Prandtl number. In the case of the heat sink, the Nusselt number increases with the increasing 
values of the Prandtl number: in the case of heat source, the Nusselt number increases with the 
increasing values of the thermal radiation parameter while Nusselt number decreases with the 
increasing values of the thermal radiation parameter in the case of heat sink.  

Table 5.1. Comparison of 𝑓𝑓′′(0) for the different values of parameters 𝑘𝑘, 𝑀𝑀, 𝛿𝛿 and S for n= 
0.8 (Shear thinning) and n=1.3 (Shear thickening). 

    𝑛𝑛             𝑘𝑘 𝑀𝑀        S 𝛿𝛿 𝑓𝑓′′(0) 
         0.8 
         1.3 

        0.3         0.2       0.3         0.4    0.672091 
   0.650778 

         0.8 
         1.3 

        0.6           0.2         0.3         0.4    0.76586 
   0.729205 

         0.8 
         1.3 

        0.3         0.6       0.3         0.4    0.79212 
   0.751132 

         0.8 
         1.3 

        0.3         0.2       0.3         0.6    0.59158 
   0.586712 

         0.8 
 
         1.3 

        0.3 
 
       

        0.2 
 
        

     -0.2 
      0.4 
     -0.2 
      0.4 

        0.4    0.575742 
   0.691872 
   0.580588 
   0.66491 

 

Table 5.2. Comparison of −𝜃𝜃′(0) for the different values of parameters 𝑘𝑘, 𝑀𝑀, 𝛿𝛿, 𝑆𝑆, 𝛽𝛽, 𝑃𝑃𝑃𝑃, 𝑁𝑁𝑃𝑃, 
𝐸𝐸𝐸𝐸, 𝑄𝑄 and 𝜀𝜀 for n= 0.8 (Shear thinning) and n=1.3 (Shear thickening). 

𝑆𝑆 𝑘𝑘 𝑀𝑀 𝛿𝛿 𝛽𝛽 𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃 𝐸𝐸𝐸𝐸 𝜀𝜀 𝑄𝑄 −𝜃𝜃′(0) for 
n= 0.8 

−𝜃𝜃′(0) for 
n= 1.3 

-0.2 
 
 0.4 

 0.3     0.2   0.4   0.4   1.2  0.3  0.01  0.2   0.5 
 -0.1 
  0.5 
 -0.1 

-0.24471 
 0.299094 
-0.01121 
 0.376295 

-0.53755 
 0.286279 
-0.2007 
 0.34617 

 0.3  0.6  0.2        0.4   0.4    1.2  0.3  0.01  0.2   0.5 
 -0.1 

-0.01863 
 0.369373 

-0.20963 
 0.340504 

 0.3  0.3 
 

 0.2 
 
 0.6 

  0.4   0.4   1.2  0.3  0.01  0.2   0.5 
 -0.1 
 0.5 
-0.1 

-0.044945 
 0.36323 
-0.02397 
 0.367622 

-0.24344 
 0.336027 
-0.21995 
 0.338097 

 0.3  0.3  0.2   0.2 
 
  0.6 

  0.4   1.2   0.3  0.01  0.2  0.5 
-0.1 
 0.5 
-0.1 

-0.07463 
 0.355587 
-0.02416 
 0.368908 

-0.29373 
 0.329055 
-0.2089 
 0.34139 

Table 5.2 shows the values of Nusselt number for different physical parameters concerning power law index 0.8
and 1.3 respectively. It is observed that the Nusselt number decreases with an increase in power law index. It is
noticed from the table that the Nusselt number increases with an increase in suction/injection parameter, permeability
parameter, magnetic parameter and slip parameter while the reverse effect is seen in the case of thermal slip parameter,
Eckert number, thermal conductivity parameter and heat source/sink parameter. In the case of the heat source, the
Nusselt number decreases with the increasing values of the Prandtl number. In the case of the heat sink, the Nusselt
number increases with the increasing values of the Prandtl number: in the case of heat source, the Nusselt number
increases with the increasing values of the thermal radiation parameter while Nusselt number decreases with the
increasing values of the thermal radiation parameter in the case of heat sink.
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Table 5.2: Comparison of −θ′(0) for the different values of parameters k, M, δ, S , β, Pr, Nr, Ec, Q and ε for n = 0.8 (Shear thinning) and n = 1.3 (Shear thickening).
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Table 5.2. Comparison of −𝜃𝜃′(0) for the different values of parameters 𝑘𝑘, 𝑀𝑀, 𝛿𝛿, 𝑆𝑆, 𝛽𝛽, 𝑃𝑃𝑃𝑃, 𝑁𝑁𝑃𝑃, 
𝐸𝐸𝐸𝐸, 𝑄𝑄 and 𝜀𝜀 for n= 0.8 (Shear thinning) and n=1.3 (Shear thickening). 

𝑆𝑆 𝑘𝑘 𝑀𝑀 𝛿𝛿 𝛽𝛽 𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃 𝐸𝐸𝐸𝐸 𝜀𝜀 𝑄𝑄 −𝜃𝜃′(0) for 
n= 0.8 

−𝜃𝜃′(0) for 
n= 1.3 

-0.2 
 
 0.4 

 0.3     0.2   0.4   0.4   1.2  0.3  0.01  0.2   0.5 
 -0.1 
  0.5 
 -0.1 

-0.24471 
 0.299094 
-0.01121 
 0.376295 

-0.53755 
 0.286279 
-0.2007 
 0.34617 

 0.3  0.6  0.2        0.4   0.4    1.2  0.3  0.01  0.2   0.5 
 -0.1 

-0.01863 
 0.369373 

-0.20963 
 0.340504 

 0.3  0.3 
 

 0.2 
 
 0.6 

  0.4   0.4   1.2  0.3  0.01  0.2   0.5 
 -0.1 
 0.5 
-0.1 

-0.044945 
 0.36323 
-0.02397 
 0.367622 

-0.24344 
 0.336027 
-0.21995 
 0.338097 

 0.3  0.3  0.2   0.2 
 
  0.6 

  0.4   1.2   0.3  0.01  0.2  0.5 
-0.1 
 0.5 
-0.1 

-0.07463 
 0.355587 
-0.02416 
 0.368908 

-0.29373 
 0.329055 
-0.2089 
 0.34139 

 0.3  0.3  0.2   0.4   0.4 
 
  1.5 
 

  1.2  0.3     0.01     0.2  0.5 
-0.1 
 0.5 
-0.1 

-0.044928 
 0.363236 
-0.048414 
 0.260026 

-0.24344 
 0.336027 
-0.37053 
 0.245742 

 0.3  0.3   0.2   0.4   0.4   0.7 
 
  1.5 
 

 0.3  0.01  0.2  0.5 
-0.1 
 0.5 
-0.1 

-0.012404 
 0.28659 
-0.058841 
 0.400579 

-0.11564 
 0.265737 
-0.30329 
 0.370406 

 0.3  0.3  0.2   0.4   0.4   1.2   1 
 

 0.01  0.2  0.5 
-0.1 

-0.02521 
 0.305735 

-0.15452 
 0.283336 

 0.3  0.3  0.2   0.4   0.4   1.2  0.3  0.05 
 
  0.1 
 

 0.2  0.5 
-0.1 
 0.5 
-0.1 

-0.0688 
 0.35695 
-0.099 
 0.34911 

-0.282 
 0.32923 
-0.3318 
 0.32075 

 0.3  0.3  0.2   0.4   0.4   1.2  0.3  0.01   1  0.5 
-0.1 

-0.12761 
 0.347678 

-0.47219 
 0.321791 

 0.3  0.3  0.2   0.4   0.4   1.2  0.3  0.01  0.2  0.5 
  0 
-0.5 

-0.045 
 0.32373 
 0.4833 

-0.2435 
 0.2915 
 0.46618 

6. Conclusions 
In this paper, we have discussed the MHD flow and heat transfer of a non-Newtonian 

power-law fluid over a porous sheet in the presence of heat source/sink, joule heating and 
partial slip conditions. The magnetic parameter, Prandtl number, Eckert number, heat 
source/sink parameter are varied in the ranges 0.2 to 0.6, 0.7 to 1.5, 0.05 to 0.1, and -0.5 to 0.5, 
respectively. According to the study the following conclusions are made: 

i. The increase in magnetic field causes to increase in the velocity profile and decrease in 
the temperature profile. 

ii. The temperature profile decreases with increasing values of the Prandtl number under 
slip condition. 

iii. The temperature profile increases with increasing values of Eckert number under slip 
condition.  

6 Conclusions
In this paper, we have discussed the MHD flow and heat transfer of a non-Newtonian power-law fluid over a porous
sheet in the presence of heat source/sink, joule heating and partial slip conditions. The magnetic parameter, Prandtl
number, Eckert number, heat source/sink parameter are varied in the ranges 0.2 to 0.6, 0.7 to 1.5, 0.05 to 0.1, and -0.5
to 0.5, respectively. According to the study the following conclusions are made:

1. The increase in magnetic field causes to increase in the velocity profile and decrease in the temperature profile.
2. The temperature profile decreases with increasing values of the Prandtl number under slip condition.
3. The temperature profile increases with increasing values of Eckert number under slip condition.
4. The temperature profile increases with increasing values of heat source/sink parameter under slip condition.
5. The skin friction coefficient increases with an increase in section/injection.
6. The Nusselt number increses with an increase in sectiom/injection parameter, permeability parameter or thermal

radiation parameter when Q > 0.
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Abstract

This article deals with a pseudo Fibonacci sequence and its properties. Some well known identities are obtained
in terms of the identities of generalised Fibonacci sequence. Modular properties different from those of Fibonacci
sequence are reported.
2010 Mathematics Subject Classifications: 11B39, 11B50.
Keywords and phrases: Pseudo Fibonacci Sequence, Generalised Fibonacci sequence, modulo properties, period of
the sequence.

1 Introduction
The Fibonacci sequence {Fn} is defined by the recurrence relation

(1.1) Fn+2 = Fn+1 + Fn, n ≥ 0,

with F0 = 0 and F1 = 1 [3, 10]. This sequence has been extended in many ways [ See [2, 8] and references therein ].
In [1], generalised Fibonacci sequence called B- Fibonacci sequence, defined by

(1.2) f Bn+2 = a f Bn+1 + b f Bn,

with f B0 = 0, f B1 = 1, is discussed. In [4], Phadte - Pethe has introduced pseudo Fibonacci sequence {gn}, defined
by the non-homogeneous recurrence relation,

(1.3) gn+2 = gn+1 + gn + Atn, n ≥ 0

with g0 = 0 and g1 = 1. Here A , 0 is a constant and t is a real number such that t , 0, λ1, λ2 where λ1, λ2 are roots
of the equation λ2 − λ− 1 = 0. gn is called the nth pseudo Fibonacci number. First few pseudo Fibonacci numbers are:

g0 = 0, g1 = 1, g2 = 1 + A, g3 = 2 + A + At and g4 = 3 + 2A + At + At2.
Observe that each pseudo Fibonacci number is such that its first term is a Fibonacci number and the remaining

terms form a polynomial in t whose coefficients are A times Fibonacci numbers. More literature on pseudo Fibonacci
sequence and its extensions can be seen in [5, 6, 7].

In this paper we shall consider pseudo Fibonacci sequence {Gn} defined by the non-homogeneous recurrence
relation

(1.4) Gn+2 = aGn+1 + b Gn + A(−1)n, n ≥ 0,

with G0 = ω, G1 = 1 − ω and study its properties. We assume that a, b ∈ Z and A be a constant such that

ω =
A

1 + a − b
∈ Z. Following is immediate.

Theorem 1.1 The nth term Gn of (1.4) is given by

(1.5) Gn = f Bn + ω(−1)n,

where f Bn is defined by (1.2).

We list below some identities for the sequence Gn. These idenetities can be obtained by using corresponding
identities for f Bn.[1]

Theorem 1.2 Gn satisfies following identities

i) Gn+1Gn−1 −G2
n = (−1)n bn−1 − ω(−1)n(Gn−1 + 2Gn + Gn+1)
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ii)
∑n

r=0 Gr =
bGn + Gn+1 − ω(−1)n(b − 1) − 1

a + b − 1
+ ωεn

where

εn =

 0, i f n is odd,
1, i f n is even.

iii) Gn+1Gm −GnGm+1
= (−b)nGm−n + ω {(Gn+1 + Gn)(−1)m + (Gm+1 −Gm)(−1)n − ((−b)n + 2(−1)m+n)} .

iv) G2
n −Gn+rGn−r = (−b)n−rG2

r + ω[2Gn − (−1)−rGn+r − (−1)rGn−r](−1)n +

(−b)n−rω2 − 2ω(−b)n−r(−1)rGr.

2 Modulo Properties
In this section we study some modulo properties of the sequence {Gn} . We have the following result.

Theorem 2.1 Let π(m) be the period of Gn modulo m. Let e ≥ 1 be given. Then

i) For odd prime p, π(pe) = pe−e
′

π(p), where 1 ≤ e
′

≤ e is maximal so that
π(pe

′

) = π(p).
ii) For p = 2 and e ≥ 2, π(2e) = 2e−e

′

π(4), where 2 ≤ e
′

≤ e is maximal so that
π(2e

′

) = π(4).

Proof. Let π
′

(m) be the period of { f Bn} modulo m. π
′

(m) is always even.
Now G0 = f B0 + ω = ω and G1 = f B1 − ω = 1 − ω.
Hence Gπ

′ (m) = f Bπ′ (m) + ω(−1)π
′
(m) ≡ ω( mod m) and

Gπ
′ (m)+1 = f Bπ′ (m)+1 + ω(−1)π

′
(m)+1 ≡ 1 − ω( mod m) so that the period

π
′

(m) of f Bn and π(m) of Gn are same. Now the result follows from Theorem 2 of [9].

Remark 2.1 Note that if three consecutive values of Gn modulo m are same, then the remaining values repeat. This is
different from Fibonacci sequence where two consecutive values of Fn modulo m are same then the remaining values
repeat.

We now consider a particular case of {Gn} with a = 1, b = 2, and A = 1. For this, Table 2.1 below gives
Gn(mod n).

Using Table 2.1, we can state the following results.

Proposition 2.1

G(n) =


0 mod 3 i f n ≡ 0, 5, 6 mod 8,
1 mod 3 i f n ≡ 1 mod 8,
2 mod 3 i f n ≡ 2, 3, 4, 7 mod 8.

Proposition 2.2
G(n) = n mod 4.

Proposition 2.3

G(n) =



0 mod 5 i f n ≡ 0, 8, 17, 21, 22 mod 24,
1 mod 5 i f n ≡ 1, 4, 6, 7, 13, 14, 19 mod 24,
2 mod 5 i f n ≡ 2, 5, 9, 16, 18 mod 24,
3 mod 5 i f n ≡ 10, 11, 12, 15, 20 mod 24,
4 mod 5 i f n ≡ 3, 23 mod 24.

Proposition 2.4

G(n) =



0 mod 6 i f n ≡ 0, 6 mod 8,
1 mod 6 i f n ≡ 1 mod 8,
2 mod 6 i f n ≡ 2, 4 mod 8,
3 mod 6 i f n ≡ 5 mod 8,
5 mod 6 i f n ≡ 3, 7 mod 8.
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Table 2.1: Gn(mod n) for a = 1, b = 2 and A = 1

n Gn mod 3 mod 4 mod 5 mod 6 mod 7 mod 8 mod 9 mod10 mod15
0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 -1 2 3 4 5 6 7 8 9 14
4 -4 2 0 1 2 3 4 5 6 11
5 -3 0 1 2 3 4 5 6 74 12
6 6 0 2 1 0 6 6 6 6 6
7 11 2 3 1 5 4 3 2 1 11
8 0 0 0 0 0 0 0 0 0 0
9 -23 1 1 2 1 5 1 4 7 7
10 -22 2 2 3 2 6 2 5 8 8
11 23 2 3 3 5 2 7 5 3 8
12 68 2 0 3 2 5 4 5 8 8
13 21 0 1 1 3 2 5 3 1 6
14 -114 0 2 1 0 5 6 3 6 6
15 -157 2 3 3 5 4 3 5 3 8
16 72 0 0 2 0 2 0 0 2 12
17 385 1 1 0 1 0 1 7 5 10
18 242 2 2 2 2 4 2 8 2 2
19 -529 2 3 1 5 3 7 2 1 11
20 -1012 2 0 3 2 3 4 5 8 8
21 45 0 1 0 3 3 5 5 0 0
22 2070 0 2 0 0 5 6 0 0 0
23 1979 2 3 4 5 5 3 8 9 14
24 -2160 0 0 0 0 3 0 0 0 0
25 -6119 1 1 1 1 6 1 1 1 1

Proposition 2.5

G(n) =


n mod 8 i f n . 3, 7 mod 8,
3 mod 8 i f n ≡ 7 mod 8,
7 mod 8 i f n ≡ 3 mod 8.

Proposition 2.6

G(n) =



0 mod 9 i f n ≡ 0, 8, 16 mod 24,
1 mod 9 i f n ≡ 1 mod 24,
2 mod 9 i f n ≡ 2, 7, 19 mod 24,
3 mod 9 i f n ≡ 13, 14 mod 24,
4 mod 9 i f n ≡ 9 mod 24,
5 mod 9 i f n ≡ 4, 10, 11, 12, 15, 20 mod 24,
6 mod 9 i f n ≡ 5, 6 mod 24,
7 mod 9 i f n ≡ 17 mod 24,
8 mod 9 i f n ≡ 3, 18, 23 mod 24.
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Proposition 2.7

G(n) =



0 mod 10 i f n ≡ 0, 8, 22 mod 24,
1 mod 10 i f n ≡ 1, 7, 13, 19 mod 24,
2 mod 10 i f n ≡ 2, 16, 18 mod 24,
3 mod 10 i f n ≡ 11, 15 mod 24,
5 mod 10 i f n ≡ 17, 21 mod 24,
6 mod 10 i f n ≡ 4, 6, 14 mod 24,
7 mod 10 i f n ≡ 5, 9 mod 24,
8 mod 10 i f n ≡ 10, 12, 20 mod 24,
9 mod 10 i f n ≡ 3, 23 mod 24.

Proposition 2.8

G(n) =



0 mod 15 i f n ≡ 0, 8, 21, 22 mod 24,
1 mod 15 i f n ≡ 1 mod 24,
2 mod 15 i f n ≡ 2, 18 mod 24,
6 mod 15 i f n ≡ 6, 13, 14 mod 24,
7 mod 15 i f n ≡ 9 mod 24,
8 mod 15 i f n ≡ 10, 11, 12, 15, 20 mod 24,
10 mod 15 i f n ≡ 17 mod 24,
11 mod 15 i f n ≡ 4, 7, 19 mod 24,
12 mod 15 i f n ≡ 5, 16 mod 24,
14 mod 15 i f n ≡ 3, 23 mod 24.

3 Conclusion
A new pseudo Fibonacci sequence is studied whose modular properties are different from those of Fibonacci sequence.
Acknowledgements. The authors are very much grateful to the Editor and Reviewers for their valuable suggestions
for the improvement of the paper in its present form.

References
[1] S. Arolkar and Y. S. Valaulikar , On an extension of Fibonacci sequence, Bull. Marathawada Math. Soc., 17(1)

(2016), 1-8.
[2] D.Kalman and R. Mena, The Fibonacci numbers- Exposed , Math. Mag., 76(3), DOI: 10.2307/3219318, (2003),

167-181.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[4] C.N. Phadte and S.P. Pethe, On Second Order Non-Homogeneous Recurrence Relation, Annales Mathematicae

et Informaticae, 41 (2013), 205-210.
[5] C.N.Phadte, Extended Pseudo Fibonacci Sequence, Bull. Marathwada Math. Soc.,15(2) (2014), 54-67.
[6] C.N. Phadte and Y.S. Valaulikar, Pseudo Fibonacci Polynomials and Some Properties, Bull. Marathwada Math.

Soc., 16(2) (2015), 13-18.
[7] C.N. Phadte and Y.S. Valaulikar, On Pseudo Tribonacci Sequence, International Journal of Mathematics Trends

and Technology, 31(3)(2016) , 195-200.
[8] J. L. Ramı́rez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese J. of Math., Article ID 107145, DOI:

10.1155/2013/107145, (2013),7 pages.
[9] M. Renault, The Period, Rank, and Order of the (a, b)-Fibonacci sequence mod m, Math.Mag. 86(5), DOI:

10.4169 math.mag.86.5.372, (2013), 372-380.
[10] S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover Publications

Inc, Mineola, New York, 2008.

268
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Abstract

Srivastava ([13], [15]) has solved dual series equations involving Bateman-k functions and Jacobi polynomials.
Srivastava [16] has obtained more results for the Konhauser-biorhogonal set. Lowndes ([3], [4]), Srivastava [12],
Lowndes and Srivastava [5], Srivastava[14], Srivastava and Panda [17] have obtained the solution of dual series
equations involving Jacobi and Laguerre polynomials and also solved triple series equations involving Laguerre
polynomials. Singh, Rokne and Dhaliwal [10] have find out the solution of triple series equations involving Laguerre
polynomials in a closed form. Kuldeep Narain ([7], [8]), Rajnesh Krishnan Mudaliar and Kuldeep Narain [6]
have solved Certain dual and quadruple series equations involving generalized Laguerre polynomials and Jacobi
polynomials as kernels. In the present paper, an exact solution has been obtained for the quadruple series equations
involving Laguerre polynomials by Noble [9] modified multiplying factor technique.
2010 Mathematics Subject Classifications: 45XX, 33C45, 33D45, 34BXX
Keywords and phrases: Laguerre polynomials, Basic orthogonal polynomials and functions, Boundary value
problems.

1 Introduction
Earlier Srivastava ([13], [15]) has solved dual series equations involving Bateman-k functions and Jacobi polynomials.
Srivastava [16] has obtained more results like generating functions, bilinear generating functions, recurrence relations,
some expansions of functions for the Konhauser-biorhogonal set and general result for the dual series equations
involving generalized Laguerre polynomials by putting k = 1 in (3.10) and (3.11) in [15,p.645]. Lowndes ([3],
[4]), Srivastava [12], Lowndes and Srivastava [5], Srivastava[14], Srivastava and Panda [17] have obtained the solution
of dual series equations involving Jacobi and Laguerre polynomials and also solved triple series equations involving
Laguerre polynomials. Singh, Rokne and Dhaliwal [10] have find out the solution of triple series equations involving
Laguerre polynomials in a closed form. Kuldeep Narain ([7], [8]), Rajnesh Krishnan Mudaliar and Kuldeep Narain
[6] have solved Certain dual and quadruple series equations involving generalized Laguerre polynomials and Jacobi
polynomials as kernels. In this paper, we have obtained the solution of the following quadruple series equations:

(1.1)
∑∞

n=0
An

Γ(α+n+p+1) Lαn+p(x) = φ1(x), 0 ≤ x < a,

(1.2)
∑∞

n=0
An

Γ(α+β+n+p) Lαn+p(x) = φ2(x), a < x < b,

(1.3)
∑∞

n=0
An

Γ(α+n+p+1) Lαn+p(x) = φ3(x), b < x < c,

(1.4)
∑∞

n=0
An

Γ(α+β+n+p) Lαn+p(x) = φ4(x), c < x < ∞,

where 0 < β + m, 0 < α + β < α + 1, p and m are non-negative integer.

(1.5) Lαn+p(x) =

(
α + n + p

n + p

)
, F1[−n − p; α + 1; x]

is the Laguerre Polynomial, φ1(x), φ2(x), φ3 and φ4(x) are prescribed functions.
The solution presented in this paper is obtained by employing a multiplying factor technique similar to that used

by Noble [9] or Lowndes ([3],[ 4]).
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2 Preliminaries
The results, which will be required in the course of analysis, are given below for ready reference. From Erdélyi [2], it
can be deduced that

(2.1)
∫ y

0 xα(y − x)β+m−1Lαn+p(x)dx =
Γ(β+m)Γ(α+n+p+1)
Γ(α+β+m+n+p+2) yα+β+mLα+β+m

n+p (y)

where 0 < y < d, − 1 < k, 0 < β + m, and

(2.2)
∫ ∞

y e−x(x − y)−βLαn+p(x)dx = Γ(1 − β)e−yLα+β−1
n+p (x)

where d < y < ∞, α + 1 > α + β > 0.
From Erdélyi [2], we derive the following orthogonality relation for the Laguerre polynomial:

(2.3)
∫ ∞

y e−xxαLαm(x)L(α)
n (x)dx =

Γ(α+n+1)
n! δm,n

where α > −1 and δm,n is the Kronecker delta.
The differentiation formula:

(2.4)
dm+1

dxm+1 {x
α+m+1Lα+m+1

n (x)} =
Γ(α + m + n + 2)

Γ(α + n + 1)
xαLαn (x)

follows from Erdélyi [1].
The analysis here is formal and no attempt has been made to justify the various limiting process.
Making an appeal to the results due to Lowndes ([3], p.123, p.126 eqns (5), (20)), he easily derived ([4], p.168,

eqn. (10))

(2.5) S (r, x) = (r, x)α
∑∞

n=0
Γ(n+1)Γ(α+β+n)
{Γ(α+1+n)}2 Ln(α, x)Ln(α, r),

(2.6) =
1

{Γ(1 − β)}2
∫ l

0 n(y)(r − y)−β(x − y)−βdy,

(2.7) = −
1

{Γ(1 − β)}2
S t(r, x),

where β < 1, α + β > 0, n(y) = ey yα+β−1 and t = min(r, x) of f (x) and f ′(x) are continuous in a ≤ x ≤ b and if
0 < σ < 1, then the solutions of the Abel integral equations

(2.8) f (x) =
∫ x

0
F(y)

(x−y)σ dy,

(2.9) f (x) =
∫ b

x
F(y)

(y−x)σ dy,

are given by

(2.10) F(y) =
sinσπ
π

d
dy

∫ y
a

f (x)
(x−y)1−σ dx

and

(2.11) F(y) =
sinσπ
π

d
dy

∫ b
y

f (x)
(x−y)1−σ dx

respectively.

3 Solution of the problem
Multiply equation (1.1) by xα(y − x)β+m−1, integrate with respect to x over (0, y) and then use (2.1) to obtain

(3.1)
∑∞

n=0
An

Γ(α+β+m+n+p+2) y
α+β+mLα+β+m

n+p = 1
Γ(β+m)

∫ y
0 xα(y − x)β+m−1φ1(x)dx,

where 0 < y < a, − 1 < α, 0 < β + m and m is a non-negative integer.
Differentiate (3.1) (m + 1) times with respect to y and use (2.4) to find

(3.2)
∑∞

n=0
An

Γ(α+β+n+p) Lα+β−1
n+p (y) =

y1−n−β

Γ(β+m)
dm+1

dym+1

∫ y
0 xα(y − x)β+m−1φ1(x)dx,

where 0 < y < a, − 1 < α, 0 < β + m and m is a non-negative integer. Again multiply (1.2) by e−x(x − y)−β, integrate
with respect to x over (y,∞), then use (2.2) to find

(3.3)
∑∞

n=0
An

Γ(α+β+n+p) Lα+β−1
n+p (y) = e−y

Γ(1−β)

∫ b
y (x − y)−βe−xφ2(x)dx,

where a < y < b, β < 1 and 0 < α + β.
Now, multiply equation (1.3) by xα(y − x)β+m−1, integrate with respect to x over (a, y), then use (2.1) to get

(3.4)
∑∞

n=0
An

Γ(α+β+m+n+p+2) y
α+β+mLα+β+m

n+p (y) = 1
Γ(beta+m)

∫ y
b xα(y − x)β+m−1φ3(x)dx,
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where b < y < c, − 1 < α, 0 < β + m and m is a non-negative integer.
Differentiate (3.4), (m + 1) times with respect to y and use (2.4) to find

(3.5)
∑∞

n=0
An

Γ(α+β+n+p) Lα+β−1
n+p (y) =

y1−α−β

Γ(beta+m)
dm+1

dym+1

∫ y
b xα(y − x)β+m−1φ3(x)dx,

where b < y < c, − 1 < α, 0 < β + m and m is a non-negative integer.
Now multiply (1.4) by e−x(x − y)−β, integrate with respect to x over (y,∞), then use (2.2 ) to get

(3.6)
∑∞

n=0
An

Γ(α+β+n+p) Lα+β−1
n+p (y) = e−y

Γ(1−β)

∫ ∞
y (x − y)−βe−xφ4(x),

where c < y < ∞, β < 1 and 0 < α + β.
The left hand sides of equations (3.2), (3.3), (3.5), (3.6) are now identical and hence on using orthogonality relation

(2.3), we obtain the solution of equations (1.1), (1.2), (1.3) and (1.4) in the form:

(3.7) An =
(n + p)!
Γ(β + m)

[∫ a
0 e−yLα+β−1

n+p (y)F1(y)dy +
∫ c

b e−yLα+β−1
n+p (y)F3(y)dy

]
+

(n + p)!
Γ(1 − β)

[∫ b
a yα+β−1Lα+β−1

n+p (y)F2(y)dy +
∫ ∞

c e−yLα+β−1
n+p (y)F4(y)dy

]
,

where

(3.8) F1(y) =
dm+1

dym+1

∫ y
0 xα(y − x)β+m−1φ1(x)dx,

(3.9) F2(y) =
∫ b

y (x − y)−βe−xφ2(x)dx,

(3.10) F3(y) =
dm=1

dym+1

∫ y
b xα(y − x)β+m−1φ3(x)dx,

(3.11) F4(y) =
∫ ∞

y (x − y)−βe−xφ4(x)dx.

The solution of Lowndes equations

(3.12)
∑∞

n=0 CnΓ(α + β + n)Lαn (x) = φ1(x), 0 ≤ x < a,

(3.13)
∑∞

n=0 CnΓ(α + 1 + n)Lαn (x) = φ2(x), a < x < b,

(3.14)
∑∞

n=0 CnΓ(α + β + n)Lαn (x) = φ3(x), b < x < c,

(3.15)
∑∞

n=0 CnΓ(α + 1 + n)Lαn (x) = φ4(x), c < x < ∞,

can be obtained by putting An = CnΓ(α + n + 1)Γ(α + β + n) and p = 0 in the solution (3.7).

4 Conclusion
The Laguerre polynomials have been applied by many authors like Lowndes ([3],[4]), Srivastava [12], Srivastava
and Panda [17], Lowndes and Srivastava [5], Singh, Rokne and Dhaliwal [10], Kuldeep Narain ([7], [8]), Mudaliar
and Kuldeep Narain [6] to solve dual, triple and quadruple series equations. The solution presented in this paper is
obtained by employing a multiplying factor technique similar to that used by Noble [9] or Lowndes ([3], [4]).Thus
we have obtained an exact solution for the quadruple series equations involving Laguerre polynomials by modified
multiplying factor technique Noble [9] .
Acknowledgement. The authors are very much thankful to the Editors and Reviewers for their valuable suggestions
to bring this paper in its present form.
Dedication This paper is dedicated to Prof. R. C. Singh Chandel on his 75thBirth Anniversary Celebrations for his
noteworthy contribution to Mathematical Sciences, Jñānābha and VPI continuously since 1971.
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[2] A. Erdélyi, Tables of Integrals Transforms, Vol. 2, Mc Graw Hill, 1954.
[3] J. S. Lowndes, Some dual series equations involving Laguerre polynomials, Pacific J. Math, 25(1) (1968), 123-

127.
[4] J. S. Lowndes, Triple series equations involving Laguerre polynomials, Pacific J. Math, 29(1) (1969), 167-173.
[5] J. S. Lowndes and H. M. Srivastava, Some Triple Series and Triple Integral Equations, Journal of Mathematical

Analysis and Applications, 150 (1990), 181-187

271



[6] Rajnesh Krishnan Mudaliar and Kuldeep Narain, Certain Quadruple Integral equations, Global journal of pure
and Applied Mathematics ,12(3) (2016), 2867- 2875.

[7] Kuldeep Narain, Certain Quadruple series equations, Scientific Research Journal (SCRIJ), 1(2) (2013), 26 -30.
[8] Kuldeep Narain, Certain Quadruple Series equations with Jacobi polynomials as Kernels, International Journal

of Mathematics Research, 11(1) (2019), 55-58.
[9] B. Noble, Some dual series equations involving Jacobi Polynomials, Proc. Camb. Phil. Soc., 59 (1963), 363-371.

[10] B. M. Singh, J. Rokne and R. S. Dhaliwal, On closed form solution of triple series equations involving Laguerre
polynomials, Ukrainian Mathematical Journal, 62(2) (2010), 259-267.

[11] J.N. Sneddon and R.P. Srivastava, Dual series relations involving Fourier-Bessel Series, Proc. Roy. Soc. Edin, A
66 (1914), 150-160.

[12] H. M. Srivastava, A Note on Certain Dual Series Equations Involving Laguerre Polynomials, Pacific J. Math.,
30(2) (1969),525-527.

[13] H. M. Srivastava,A pair of dual series equations involving generalized Bateman k-functions, Nederl. Akad.
Wetensch. Proc. Ser. A 75 = Indag. Math., 34 (1972), 53-61.

[14] H. M. Srivastava, Certain dual series equations involving Jacobi polynomials. I and II, Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. (Ser. 8) 67 (1979), 395-401; ibid., 68 (1980), 34-41.

[15] H. M. Srivastava,Remarks on certain dual series equations involving the Konhauser biorthogonal polynomials, J.
Math. Phys., 23 (1982), 357-357.

[16] H. M. Srivastava,Some families of dual and triple series equations involving the Konhauser biorthogonal
polynomials, Ganita (Professor R. P. Agarwal Dedication Volume), 43 (1992), 75-84.

[17] H. M. Srivastava and R. Panda,A certain class of dual equations involving series of Jacobi and Laguerre
polynomials, Nederl. Akad. Wetensch. Proc.Ser. A 81 =$ Indag. Math., 40 (1978), 502-514.

272
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Abstract

Monte Carlo method is a powerful method for computing the value of complex integrals using probabilistic
techniques and estimates the integrals or other quantities that can be expressed as an expectation by averaging the
results of a high number of statistical trials.Its convergence rateO(

√
N), is independent of dimension and hence it

is preferred for a wide range of high dimensional problems. In this article efficiency of random numbers is being
analysed by comparing the error in the evaluation of bi-variate integral corresponding to different size of random
numbers, and equi-spaced points by Monte Carlo method. Also analysed and discussed the propagation of error in
every case.
2010 Mathematics Subject Classifications: 65C05, 65D30.
Keywords and phrases: Monte Carlo Method, Numerical Integration, Random Numbers, efficiency of random
numbers.

1 Introduction
1.1 Need for study
The Monte Carlo method for numerical integration is believed to rely absolutely on the pseudo random numbers in the
context of their randomness. So far great analysis has been done to establish the fact that by assuring the randomness
of pseudo random numbers we may have more accurate results i.e. the computational error may be minimized but
does this error also depends upon the size of random numbers. Such analysis takes an attention towards the size of
random numbers and will always play a key role to get the value of the integral more accurately.
1.2 Pseudo random numbers
Randomness generated by any deterministic pattern with the help of the system is called Pseudo- randomness and
the numbers attaining such type of randomness are known as pseudo random numbers. A process that appears to be
random but is not is said to be pseudorandom process. Statistical randomness is a typical exhibition of pseudorandom
sequences while it is generated by an entirely deterministic process. Most computer programming languages include
functions or library routines that purport to be random number generators. They are often designed to provide a
random byte or word, or a floating point number uniformly distributed between 0 and 1. Such library functions often
have poor statistical properties and some will repeat patterns after only tens of thousands of trials. They all fall in the
category of pseudo random numbers.
1.3 Monte Carlo method for numerical integration
The Monte Carlo method is a method for solving problems using random variables. This method was first introduced
by Stanislaw Ulam for simulations in physics and other fields that require solutions for problems that are impractical
or impossible to solve by traditional analytical or numerical methods. Monte Carlo method has become very popular
in recent years, especially in those cases where the number of factors included in the problem are large in numbers
and an analytical solution is impossible (for example numerical integration for higher orders).

The central idea behind the Monte Carlo method is either to construct a stochastic model which is in agreement
with the actual problem analytically or to simulate the whole problem directly. In both the cases the element of
randomness has to be introduced according to well defined rules. After that a large number of trials are performed and
the results are observed and finally a statistical analysis is undertaken in the usual way. The advantages of the method
are, above everything is that even very difficult problems can often be treated quite easily and desired modifications
can be applied without too much trouble.
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For a bi-variate integral like

(1.1) I =
∫ d

c

∫ b
a f (x, y)dxdy.

The Monte Carlo method consists of the following steps.
1.3.1 (Using Random Numbers)
Step 1. Pick up n randomly generated points

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn) in the rectangle [a, b] × [c, d].
Step 2. Determine the average value of the function which is given by

(1.2) f̂ =
1
n

∑n
i=1 f (xi, yi).

Step 3. Compute the approximation to the integral

(1.3)
∫ d

c

∫ b
a f (x, y)dxdy ≈ (b − a) × (d − c) f̂ .

The error for this estimation is given by

(1.4) Error = (b − a) × (d − c)

√
f 2 − ( f̂ )2

n
,

where

(1.5) f̂ 2 =
1
n

∑n
i=1 f 2(xi, yi).

1.3.2 (Using Equispaced Points)
Step 1. Divide the x-range and y-range in n equal parts to get

xi = a + ih where i = 1, 2, 3, . . . , n
y j = c + jk where j = 1, 2, 3, . . . , n
where h = 1

n (b − a) and k = 1
n (d − c).

Our equispaced nodes are (xi, yi) ∀i, j in the rectangle [a, b] × [c, d].
Step 2. Determine the average value of the function which is given by

(1.6) f̂ =
1

n × n
∑n

i=1
∑n

j=1 f (xi, y j).

Step 3. Compute the approximation to the integral

(1.7)
∫ d

c

∫ b
a f (x, y)dxdy ≈ (b − a) × (d − c) f̂ .

The error for this estimation is given by

(1.8) Error = (b − a) × (d − c)

√
f 2 − ( f̂ )2

n × n
,

where

(1.9) f̂ 2 =
1

n × n
∑n

i=1, j=1 f 2(xi, y j).

2 Objective
The focal point of this investigation is primarily to analyze the error obtained in the evaluation of a bi-variate integral
by Monte Carlo method using different size of random numbers and equi-spaced points. The basic objective of this
investigation is to explore and analyze the error propagation and the efficiency of random numbers for Monte Carlo
integration with reference to the error produced as the size of numbers is increased.

3 Review of literature
The detailed study regarding the beginning of Monte Carlo method and its origination is discussed in a scholarly
article by Metropolis[11] then after Eckhardt[4] in his scholarly article mentioned the problem, as a solution of which
this technique was discovered. In this article the letters showing the personal conversation of Stan Ulam and John
Von Neumann regarding Monte Carlo method were also published. A comprehensive review of literature concerning
Monte Carlo method may be found in the book by Kalos et al. [10]. A chapter in encyclopedia of Biostatistics by
Smyth[14] throws light on all the techniques available to solve one or two dimensional integration including Monte
Carlo technique. In 2001 Gould, Tobochnik and Christian[8] in their book studied all the techniques of numerical
integration and mentioned their error analysis. In 2002 Yang[15] discussed all other methods and techniques of
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numerical integration and stated the benefits of Monte Carlo integration over the other methods available in an extended
essay in mathematics during his IB diploma program. In parallel to the same we can also find the practical limitations
of numerical integration discussed by Evans[6].

Since Monte Carlo Integration was based on random numbers therefore equal attention of scientists were attracted
towards the random numbers. In early times a great work has accomplished regarding random numbers, randomness
and their use in which a great role was played by Chaitin[3] to discuss the same. A detailed study of random
numbers and various techniques (Random Number Generators) to produce random numbers may be found in the
book by Gentle[7]. The types of random numbers and randomness are clearly defined and illustrated in an article by
Eddelbuettel[5]. In a research paper by Hellekalek[9] he mentioned that what should be the properties of good random
number generators.

Early studies on Monte Carlo integration were mainly concerned with the problem of improving the randomness
of numbers used. The non-parametric tests to check the randomness of numbers may be referred from Bhar[1]. Just
to avoid the inherent errors of random numbers Park and Miller[12] suggested to follow the minimal standards for
random number generators. To get rid of this situation of ambiguity that whether the numbers in use are true random
or not, concept of quasi random numbers was coined and discussed by Caflisch[2]. The question on the reliability of
random numbers with respect to one dimensional Monte Carlo Integration was raised by Saxena and Saxena[13].

4 Methodology
For the proposed objective first random numbers were collected and tested for their randomness in the sense of their
independence and uniformity. Two bi-variate integrals are evaluated by Monte Carlo Method using the different size
of these random numbers and equi-spaced points. Error in every case was recorded and analyzed to state the findings
and conclusion.

The random number’s data files of different size numbers of 1000, 2000, 3000, 4000, 5000through two different
sources, online and computer generated, are collected and saved with following nomenclature

Table 4.1: Online generated random numbers

File Name Online Source Size
olrr1.dat Research Randomizer 1000
olrr1.dat Research Randomizer 2000
olrr1.dat Research Randomizer 3000
olrr1.dat Research Randomizer 4000
olrr1.dat Research Randomizer 5000
olrorg1.dat Random.Org 1000
olrorg2.dat Random.Org 2000
olrorg3.dat Random.Org 3000
olrorg4.dat Random.Org 4000
olrorg5.dat Random.Org 5000
olgp1.dat Graph Pad 1000
olgp2.dat Graph Pad 2000
olgp3.dat Graph Pad 3000
olgp4.dat Graph Pad 4000
olgp5.dat Graph Pad 5000

Table 4.2: Computer generated random numbers

File Name Source Size
Int 1 1 Computer generated(RNG) 1000
Int 1 2 Computer generated (RNG) 2000
Int 1 3 Computer generated (RNG) 3000
Int 1 4 Computer generated (RNG) 4000
Int 1 5 Computer generated (RNG) 5000
Int 2 1 Computer generated (RNG) 1000
Int 2 2 Computer generated (RNG) 2000
Int 2 3 Computer generated (RNG) 3000
Int 2 4 Computer generated (RNG) 4000
Int 2 5 Computer generated (RNG) 5000
Int 3 1 Computer generated (RNG) 1000
Int 3 2 Computer generated (RNG) 2000
Int 3 3 Computer generated (RNG) 3000
Int 3 4 Computer generated (RNG) 4000
Int 3 5 Computer generated (RNG) 5000

Then to assure the randomness of these numbers with reference to their independence and uniformity these
numbers have been tested by four of the important statistical tests namely Poker Test, Run Test, Frequency Test
and Frequency Monobit Test. The detailed study of the tests applied may be obtained from the web address*:
https://drive.google.com/file/d/1ja22gYjVOxliXDI3vmaqiGFsyeC6wJ4A/view?usp=sharing
4.1 Error Evaluation
Although many bi-variate integrals were evaluated but in the present work, only two bi-variate integral is considered
to justify the efficiency of random numbers and to discuss the error analysis, generated by Monte Carlo method using
random points (computer generated & online generated) as well as equispaced points.
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4.1.1 First Integral
The first integral under investigation is following of which the exact value is 1.71828

I1 =
∫ 1

0

∫ π
2

0 (ey cos x)dxdy
.

4.1.1.1 (Using Random Nodes)
Out of the six data files for 1000 data size there can be 15 different combinations and 15 more combinations when data
files for x-series and y-series are interchanged. These 30 pairs of codes for 30 file combinations are

(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6) (4,5), (4,6), (5,6), (2,1), (3,1), (4,1), (5,1),
(6,1), (3,2), (4,2), (5,2), (6,2), (4,3), (5,3), (6,3), (5,4), (6,4), (6,5)

The same number of combinations may be obtained for 2000, 3000,4000 and 5000 data size.
We shall now use the following program to get the error in the evaluation of the above integral corresponding to

all the 30 combinations in each case of different data size of 1000, 2000, 3000, 4000 and 5000.

10      CLS:KEY OFF:DIM F$(30) 
20      LOCATE 10,5: INPUT "Give drive letter of data 

files";D$:CLS 
30      FOR I = 1 TO 30 :READ F$(I) :NEXT I 
40      DATA "INT_1_1.DAT", 

"INT_2_1.DAT","INT_3_1.DAT","olrr1.DAT",
"olrorg1.DAT","olgp1.DAT" 

50      DATA "INT_1_2.DAT", 
"INT_2_2.DAT","INT_3_2.DAT","olrr2.DAT", 
"olrorg2.DAT", "olgp2.DAT" 

60      DATA "INT_1_3.DAT", 
"INT_2_3.DAT","INT_3_3.DAT","olrr3.DAT", 
"olrorg3.DAT", "olgp3.DAT" 

70      DATA "INT_1_4.DAT", 
"INT_2_4.DAT","INT_3_4.DAT","olrr4.DAT", 
"olrorg4.DAT","olgp4.DAT" 

80      DATA "INT_1_5.DAT", 
"INT_2_5.DAT","INT_3_5.DAT", 
"olrr5.DAT","olrorg5.DAT","olgp5.DAT" 

90      FOR I = 1 TO 30: F$(I)= D$ +":"+ F$(I): NEXT 
I 

100    LOCATE 10,2:PRINT "Choose your DATA 
FILE  size": LOCATE 16,1 

110    FOR I=1 TO 5: PRINT I;".  "; I*1000,:NEXT I 
120    LOCATE 18,2: INPUT "Select choice 

Number";C :CLS 
130    IF C = 1 THEN LOI = 1:IF C =1 THEN UPI = 6 
140    IF C= 2 THEN LOI =7:IF C = 2 THEN UPI =12 
150    IF C= 3 THEN LOI =13:IF C=3 THEN UPI =18 
160    IF C= 4 THEN LOI =19:IF C=4 THEN UPI =24 
170    IF C= 5 THEN LOI =25:IF C=5 THEN UPI =30 
180    DS = C*1000 
190    LOCATE 10,5: PRINT "Select the Data 

file":LOCATE 12,1 
200    FOR I= LOI TO UPI : PRINT K+1;". 

"+F$(I),:K=K+1:NEXT I 
210    LOCATE 15,1: INPUT "For x-range type your 

File Number";C1 
220    IF C1 =< 0 OR C1 > 6 THEN 230 ELSE 240 

230    LOCATE 15,1:PRINT"   " : GOTO 210 
240    LOCATE 17,1: INPUT "For y-range type your 

File Number";C2 
250    IF C2 =< 0 OR C2 > 6 THEN 260 ELSE 270 
260    LOCATE 17,1:PRINT "   " : GOTO 240 
270    IF C1 = C2 THEN 280 ELSE 330 
280    LOCATE 18,1: PRINT"choose distinct files" 
290    ANS$=INKEY$:IF ANS$="" THEN 290 ELSE 

300 
300    LOCATE 18,1:PRINT "   " : GOTO 210 
310    IF C=1 THEN C1=C1 :IF C=1 THEN C2 = C2 
320    IF C=2 THEN C1=C1+6 :IF C=2 THEN 

C2=C2+6 
330    IF C=3 THEN C1=C1+12 :IF C=3 THEN 

C2=C2+12 
340    IF C=4 THEN C1=C1+18 : IF C=4 THEN 

C2=C2+18 
350    IF C=5 THEN C1=C1+24 : IF C=5 THEN 

C2=C2+24 
360    F1$=F$(C1):F2$=F$(C2):CLS 
370    DEF FNI(A,B)=  EXP(B)*(COS(A)) 
380    XLO = 0: XUP = 1.57: YLO = 0: YUP = 1:CLS 
390    H=(XUP-XLO)/DS : K=(YUP-YLO)/DS 
400    OPEN F1$ FOR INPUT AS #1 
410    OPEN F2$ FOR INPUT AS #2 
420    INPUT #1,X : X=X*(XUP-XLO) 
430    INPUT #2,Y : Y=Y*(YUP-YLO) 
440    Y = YLO +Y:X = XLO+X:SUM = SUM + 

FNI(X,Y) 
450    IF NOT EOF(1) THEN 470 
460    SUM=SUM/DS :SUM=SUM*(XUP-

XLO)*(YUP-YLO) 
470    LOCATE 8,10:PRINT "By Monte-Carlo 

Integration :-" 
480    LOCATE 10,10 :  PRINT "Using  Random data 

files: ";F1$; " and ";F2$ 
490    LOCATE 12,10:PRINT"Value of integral       

";SUM 
500 LOSE:END

  
By repeated execution of the program to evaluate the integral for the above 30 combinations of files for x and y

series for different data size, each time we get the different values of the integral given in the following Table 4.3
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Table 4.3: Error in the evaluation of the first integral corresponding to different data size of random numbers

S.No. File Combination No of Random Points 
1000 2000 3000 4000 5000 

1 (1,2) 0.067408 0.048285 0.017989 0.003063 0.00491 
2 (1,3) 0.041154 -0.062 -0.00728 0.00838 -0.00991 
3 (1,4) 0.032333 0.034495 -0.00917 -0.00541 -0.0055 
4 (1,5) 0.039267 0.021702 0.01348 -0.00322 -0.00505 
5 (1,6) 0.057623 0.034826 0.002838 0.01335 -0.00996 
6 (2,1) -0.05087 -0.05682 -0.02459 0.000674 0.00351 
7 (2,3) -0.05254 -0.03479 -0.02618 0.001821 -0.0156 
8 (2,4) -0.04025 -0.03009 -0.02576 -0.00819 -0.00431 
9 (2,5) -0.01698 -0.04166 -0.00776 0.001848 -0.007 
10 (2,6) -0.01698 -0.03773 -0.01538 0.01783 -0.01571 
11 (3,1) -0.00833 -0.02658 0.012672 0.002917 0.020358 
12 (3,2) 0.018618 0.005832 0.033779 -0.00075 0.015812 
13 (3,4) -0.01177 0.003089 0.011078 -0.00438 0.012958 
14 (3,5) 0.00941 -0.01308 0.019395 -0.00127 0.025447 
15 (3,6) 0.037444 -0.00405 0.023443 0.004379 0.011069 
16 (4,1) -0.0157 -0.04233 -0.00815 0.014344 0.00533 
17 (4,2) 0.032217 -0.00112 0.017967 0.013179 0.00734 
18 (4,3) -0.01004 -0.01062 -0.00607 0.020466 -0.00116 
19 (4,5) 0.012551 -0.02935 0.015483 0.017253 0.004658 
20 (4,6) 0.030893 -0.01538 0.015429 0.019 -0.00493 
21 (5,1) -0.04 -0.01764 -0.00935 -0.00618 -0.00655 
22 (5,2) 0.004684 0.022436 0.010774 0.000235 -0.00731 
23 (5,3) -0.0211 0.010683 -0.02219 0.00123 -0.0064 
24 (5,4) -0.0203 0.008032 -0.00927 -0.00472 -0.00734 
25 (5,6) 0.000663 0.011038 0.001451 0.020623 -0.01201 
26 (6,1) -0.04784 -0.0254 -0.01884 -0.01361 0.011057 
27 (6,2) -0.00151 0.006768 0.005076 -0.00695 0.007871 
28 (6,3) -0.02007 -0.00191 -0.01608 -0.01724 0.002574 
29 (6,4) -0.02801 0.001943 -0.00855 -0.0275 0.006288 
30 (6,5) -0.02269 -0.01021 0.003333 -0.00292 0.009838 

The following Figure 4.1 displays the values of our first integral corresponding to the same combination using
different size of random numbers.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1000 2000 3000 4000 5000

Er
ro

r 
in

 t
h

e
 v

al
u

e
 o

f 
in

te
gr

al

Size of Random Numbers

Error Propagation with respect to size of random Numbers

(1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,5) (4,6)

(5,2) (5,3) (5,4) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (5,1)

Figure 4.1: Value of first Integral corresponding to different combination of random numbers
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4.1.1.2 (Using Equispaced Nodes)
In order to evaluate the integral using equispaced nodes, we now present a tiny program

10 REM "First Integral (2-D)-Equi-spaced Nodes" 
20 DEF FNI(A,B)=  EXP(B)*(COS(A)) 
30 CLS:XLO = 0:XUP = 1.57:YLO = 0:YUP = 1 
40 LOCATE 10,10: INPUT "No of Equi-spaced 

Nodes ";N 
50 DIM A(N): DIM B(N) 
60 A(0)= XLO :B(0)= YLO 
70 H=(XUP - XLO)/N:K =(YUP - YLO)/N 
80 FOR I= 1 TO N 
90 A(I)= A(I-1)+H:B(I)= B(I-1)+K 

100      NEXT I 
110      FOR I = 1 TO N 
120      FOR J = 1 TO N 
130      ESUM = ESUM + FNI(A(I),B(J)) 
140      NEXT J 
150      NEXT I 
160      ESUM = ESUM*H*K 
170 LOCATE 15,10: PRINT "Divisions = "; N, 

"Value = ";ESUM 
180 END

  
Here we are making equal numbers of divisions in x & y range. Corresponding to different numbers of division

from 20 up to 400 with step size of 20 we get the following observations.

Table 4.4: Error in the evaluation of the first integral corresponding to equi-spaced points

S. No. No. of Equi-spaced Nodes Error
1 20 -0.02668
2 40 -0.01277
3 60 -0.00839
4 80 -0.00625
5 100 -0.00497
6 120 -0.00414
7 140 -0.00353
8 160 -0.00308
9 180 -0.00274
10 200 -0.00247
11 220 -0.00225
12 240 -0.00206
13 260 -0.00189
14 280 -0.00176
15 300 -0.00164
16 320 -0.00153
17 340 -0.00145
18 360 -0.00137
19 380 -0.00129
20 400 -0.00124

The following Fig 4.2 displays the values of first integral using different no. of equi-spaced points

10 REM "First Integral (2-D)-Equi-spaced Nodes" 

20 DEF FNI(A,B)=  EXP(B)*(COS(A)) 

30 CLS:XLO = 0:XUP = 1.57:YLO = 0:YUP = 1 

40 LOCATE 10,10: INPUT "No of Equi-spaced 

Nodes ";N 

50 DIM A(N): DIM B(N) 

60 A(0)= XLO :B(0)= YLO 

70 H=(XUP - XLO)/N:K =(YUP - YLO)/N 

80 FOR I= 1 TO N 

90 A(I)= A(I-1)+H:B(I)= B(I-1)+K 

100      NEXT I 

110      FOR I = 1 TO N 

120      FOR J = 1 TO N 

130      ESUM = ESUM + FNI(A(I),B(J)) 

140      NEXT J 

150      NEXT I 

160      ESUM = ESUM*H*K 

170 LOCATE 15,10: PRINT "Divisions = "; N, 

"Value = ";ESUM 

180 END

Here we are making equal numbers of divisions in x & y range. Corresponding to different 

numbers of division from 20 up to 400 with step size of 20 we get the following observations. 

Table 4.4 Error in the evaluation of the first integral corresponding to equi-spaced points 

S. No. No. of Equi-spaced Nodes Error 
1 20 -0.02668 

2 40 -0.01277 

3 60 -0.00839 

4 80 -0.00625 

5 100 -0.00497 

6 120 -0.00414 

7 140 -0.00353 

8 160 -0.00308 

9 180 -0.00274 

10 200 -0.00247 

11 220 -0.00225 

12 240 -0.00206 

13 260 -0.00189 

14 280 -0.00176 

15 300 -0.00164 

16 320 -0.00153 

17 340 -0.00145 

18 360 -0.00137 

19 380 -0.00129 

20 400 -0.00124 

The following Fig 4.2 displays the values of first integral using different no. of equi-spaced 

points. 
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4.1.2 Second Integral
The second integral under investigation is following, of which the exact value is 30.75

I2 =
∫ 3

0

∫ 2
1 xy(1 + x + y)dydx

4.1.2.1 (Using Random Nodes)
For the evaluation of our second integral with random nodes, we shall make use of the same program as in case of first
integral with a change in line 390 which is corresponding to the integrand and limit of our integral. The modified form
of this line should be

370 DEF FNI(A,B)= A*B *(1 + A + B).
By repeated execution of the program to evaluate the integral for the above 30 combinations of files for x and y

series for different data size, each time we get the different values of the integral given in the following Table 4.5

Table 4.5: Error in the evaluation of the first integral corresponding to different data size of random numbers 

S.No. File Combination No of Random Points 
1000 2000 3000 4000 5000 

1 (1,2) 0.68739 0.8731 0.50389 -0.21843 0.17533 
2 (1,3) -0.38242 0.17063 -0.48562 -0.26221 -0.23931 
3 (1,4) -0.22649 0.51525 0.06432 -0.55092 0.08877 
4 (1,5) 0.33795 -0.10327 0.1723 -0.04857 0.37194 
5 (1,6) 0.71704 0.12801 0.35889 0.14425 -0.05125 
6 (2,1) -0.57884 -0.25659 0.05084 -0.24966 0.16622 
7 (2,3) 0.56632 0.89652 -0.35583 -0.14421 -0.14014 
8 (2,4) 0.22057 1.05289 0.08923 -0.50922 0.05638 
9 (2,5) 0.85234 0.44431 0.34344 -0.17728 0.40211 

10 (2,6) 1.21182 0.877 0.41709 0.0478 0.01805 
11 (3,1) -0.93095 -0.52355 -0.27571 -0.32399 0.08473 
12 (3,2) 1.33098 1.31994 0.27125 -0.17266 0.19092 
13 (3,4) 0.20432 0.73865 -0.28985 -0.6144 -0.08092 
14 (3,5) 0.50104 0.18175 0.16808 -0.13837 -0.03861 
15 (3,6) 0.63055 0.51737 -0.02228 0.30537 -0.28115 
16 (4,1) -0.74456 -0.31848 0.07094 -0.33188 0.20884 
17 (4,2) 0.98992 1.34504 0.56246 -0.27532 0.17807 
18 (4,3) 0.23626 0.58867 -0.45599 -0.33575 -0.29005 
19 (4,5) 0.42065 0.33956 0.1582 -0.33416 0.21872 
20 (4,6) 0.80417 0.58671 0.12106 0.20341 -0.1379 
21 (5,1) -0.51242 -0.51602 -0.06132 -0.07299 0.35125 
22 (5,2) 1.2658 1.1318 0.54243 -0.18941 0.39019 
23 (5,3) 0.1884 0.44252 -0.26213 -0.10559 -0.38221 
24 (5,4) 0.07553 0.75337 -0.0983 -0.56874 0.09071 
25 (5,6) 1.08072 0.34093 0.24161 -0.01607 -0.06091 
26 (6,1) -0.41571 -0.52064 0.12649 -0.1454 0.17736 
27 (6,2) 1.392 1.35566 0.63354 -0.21886 0.27853 
28 (6,3) 0.02216 0.53968 -0.43079 0.0716 -0.3643 
29 (6,4) 0.1783 0.78782 -0.13822 -0.30138 -0.00375 
30 (6,5) 0.85284 0.10392 0.25903 -0.26995 0.17493 

 
  

The following Fig 4.3 displays the values of our first integral corresponding to the same combination using different
size of random numbers.
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Figure 4.3: Value of second Integral corresponding to different combination of random numbers

4.1.2.2 (Using Equi-spaced Nodes)
In order to evaluate the value of the second integral by using equi-spaced nodes, we will make use of the same program
with following modification in line 20 and 30

20 DEF FNI(A, B) = A ∗ B ∗ (1 + A + B).
30 CLS : XLO = 1 : XUP = 2 : YLO = 0 : YUP = 3.
Here we are making equal numbers of divisions in x and y range. Corresponding to different numbers of division

starting from 20 up to 400 with step size of 20, we get the following observations.
The following Fig 4.4 displays the values of second integral using different size of equi-

spaced points. 

 

Fig 4.4 Value of second Integral using Equi-spaced points 

5 Observations 

In the evaluation of the integrals we observe that whatever the combination of files we take 

the length of the interval of the error decreases as we increase the size of the random numbers 

[see Tables 4.3 & 4.5].The supporting results are shown in the following table 

Table 4.6 Length of the interval of error corresponding to different size of random numbers 

Integral 
Size of the random numbers 

1000 2000 3000 4000 5000 

First .119945 .110287 .059540 .048118 .041154 

Second 2.32295 1.87921 1.06433 .92013 .766410 

.Also the path of error corresponding to each combination while increasing the random 

numbers seems to be zigzag i.e. the error in the value of both the double integrals corresponding 

to different size of random numbers, don't follow any pattern and also seems to be random in 

natural though as per the theory of interpolation a fourth degree polynomial (since the number of 

data points are five in this case) may be obtained as a trend line to analyze the path of error but it 

will not be giving satisfactory results as we are dealing with random numbers. 

In case of equi-spaced points if we take n points then we are actually dealing with 𝑛 × 𝑛 

points i.e. by taking only 𝑛 = 100 function needs to be evaluated for 100 × 100 = 10,000 

points. Although error follows a smooth pattern and accuracy is assured [see Figs. 4.2 and 4.4] 

but here we observe that whatever the accuracy in the value of the integral we obtained 

corresponding to (say) 400 × 400 = 1,60,000 points, same or better accuracy may be achieved 

by using only 5000 or less random numbers. 

6 Conclusion 

If the randomness of random numbers is justified with reference to their uniformity and 

independence then convergence of approximations of a bi-variate integral by Monte Carlo 

method is assured with the increment in the size of random numbers i.e. if we increase the 

random numbers used in this process error gets decreased and the propagation of error will be 

random in nature. 
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Table 4.6: Error in the evaluation of the first integral corresponding to equi-spaced points

S. No. No. of Equi-spaced Nodes Error
1 20 2.60849
2 40 1.2896
3 60 0.85644
4 80 0.64122
5 100 0.51226
6 120 0.42656
7 140 0.36555
8 160 0.31975
9 180 0.28382
10 200 0.25549
11 220 0.2323
12 240 0.21317
13 260 0.1966
14 280 0.18232
15 300 0.17027
16 320 0.15947
17 340 0.14991
18 360 0.14209
19 380 0.13413
20 400 0.12804

The following Fig 4.4 displays the values of second integral using different size of equi-spaced points.

5 Observations
In the evaluation of the integrals we observe that whatever the combination of files we take the length of the interval
of the error decreases as we increase the size of the random numbers [see Tables 4.3 and 4.5].The supporting results
are shown in the following table.

Table 5.1: Length of the interval of error corresponding to different size of random numbers
 

Integral Size of the random numbers 
1000 2000 3000 4000 5000 

First .119945 .110287 .059540 .048118 .041154 
Second 2.32295 1.87921 1.06433 .92013 .766410 

 
  

Also the path of error corresponding to each combination while increasing the random numbers seems to be zigzag
i.e. the error in the value of both the double integrals corresponding to different size of random numbers, don’t follow
any pattern and also seems to be random in natural though as per the theory of interpolation a fourth degree polynomial
(since the number of data points are five in this case) may be obtained as a trend line to analyze the path of error but it
will not be giving satisfactory results as we are dealing with random numbers.

In case of equi-spaced points if we take n points then we are actually dealing with n × n points i.e. by taking only
n = 100 function needs to be evaluated for 100 × 100 = 10, 000 points. Although error follows a smooth pattern and
accuracy is assured [see Figs. 4.2 and 4.4] but here we observe that whatever the accuracy in the value of the integral
we obtained corresponding to (say) 400 × 400 = 1, 60, 000 points, same or better accuracy may be achieved by using
only 5000 or less random numbers.

6 Conclusion
If the randomness of random numbers is justified with reference to their uniformity and independence then convergence
of approximations of a bi-variate integral by Monte Carlo method is assured with the increment in the size of random
numbers i.e. if we increase the random numbers used in this process error gets decreased and the propagation of error
will be random in nature.
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Also we conclude that random numbers plays a better role in comparison to equi-spaced points with reference to
the accuracy and computational work involved in the evaluation of the integral and as a result Monte Carlo integration
is considered to be time efficient as well. Hence by assuring the randomness of numbers and increment in the size of
the numbers,
” Efficiency of random numbers may be accepted in case of bi-variate Monte Carlo integration.”
Acknowledgement. We want to thank the editor of the journal and reviewer of my paper for their valuable suggestions
and reviews for my paper.
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