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Jñānābha, Vol. 50(1) (2020), 1-13
(Dedicated to Honor Professor H.M. Srivastava on His 80th Birth Anniversary Celebrations)

This Special Volume of
JÑĀNĀBHA

is Being Dedicated to Honor
PROFESSOR H. M. SRIVASTAVA

on His 80th Birth Anniversary Celebrations

PROFESSOR HARI MOHAN SRIVASTAVA
(Born : July 05, 1940)
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Jñānābha, Vol. 50(1) (2020), 1-13
(Dedicated to Honor Professor H.M. Srivastava on His 80th Birth Anniversary Celebrations)

PROFESSOR HARI MOHAN SRIVASTAVA : A TOWERING AND
TOPMOST LEADING MATHEMATICIAN

By
R.C. Singh Chandel

Executive Editor: Jñānābha , Founder Secretary: Vijñāna Parishad of India
D.V. Postgraduate College, Orai-285001, Uttar Pradesh, India

On behalf of Vijñāna Parishad of India and Jñānābha Family, we ourselve feel great
honored to publish Special Issue of Jñānābha , Vol. 50(1) 2020 (Dedicated to Honor Professor
H.M. Srivastava on His 80th Birth Anniversary Celebrations).

Professor Hari Mohan Srivastava is an amazing man, towering and leading mathematician, well
known topmost eminent figure of Special Functions and Allied Topics Mathematical Analysis. He
is topmost Researcher, Supervisor of several Ph.D. and D.Sc. theses, well reputed University
Teacher, Editor or Member on Editorial Boards of various International Journals, Reviewer of
various Reviews, Elected Fellows of various International Societies, Recipient of International
Prizes, Awards, Honors, Author of various Internationally prescribed Text Books having Special
Dedication Volumes/ Dedication Issues (and/ or Dedication Messages) of International Scientific
Research Journals.

He has credit to be associated initially with Jñānābha , Vol.1, 1971 as an active member on its
Editorial Board with me (as Editor). Since 1972, he is continuously giving his Dedicated Services
as Foreign Secretary of Vijñāna Parishad of India and gracing the Chair of Chief Editor : Jñānābha
with me (as Founder Secretary of VPI and Executive Editor : Jñānābha ).

He was elected and Honored as one of the first two Honorary Fellows of Vijñāna Parishad of
India (FVPI) with Professor J. N. Kanpur during Silver Jubilee Conference of VPI held at Parishad
Head Quarters: D. V. Postgraduate College, Orai-285001, UP, India (May 10-11, 1996).

We published Jñānābha , Vol. 31/32, 2002 Dedicated to Honor Professor H.M. Srivastava on
his 62nd Birthday Celebrations. While Jñānābha , Vol. 45,2015 was Dedicated to Honor Professor
H. M. Srivastava on His Platinum Jubilee Celebrations.

18th Annual Cum 1st International Conference of VPI was Dedicated to Honor Professor H. M.
Srivastava on His Platinum Jubilee Celebrations held at MANIT, Bhopal. MP, India on December
11-14, 2015.

Professor H. M. Srivastava was also Honored by LIFE-LONG ACHIVEMENTS AWARD,
the Highest Prestigious Award of VPI for his Outstanding Contribution to His Subject and Life-
Time Distinguished Services Dedicated to Vijñāna Parishad of India, its Journal JÑĀNĀBHA
and/or to Nation/ World Development at the Occasion of 20th Annual Conference of VPI held at
Manipal University, Jaipur, India on November 24-26, 2017 in his absentia.

The Mathematics community has been very privileged to have Professor Srivastava as its
guiding force, leader and a great mentor. He has been a role model and an inspiration to every
mathematician and countless people, whose life Professor Srivastava has touched. His work has
taken Mathematics to new heights and helped researchers accomplish goals that could have never
been dreamed of before.
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On this great occasion of Professor Srivastava’s Birth Anniversary Celebrations, we wish him a
happy, healthy, and long joyful life. May he continue to guide, encourage, and enlighten the global
Mathematics community for decades to come.

At a Glance
Professor Hari Mohan Srivastava (H. M. Srivastava)
Ph.D., D.Sc. (h.c), D.Sc. (h.c.)
2006-Present : Professor Emeritus
1974–2006: Full Professor
1969–1974: Associate Professor
Department of Mathematics and Statistics,
University of Victoria,
Victoria, British Columbia, V8W 2Y2 Canada
1959–1969: Assistant Professor/Reader/Lecturer in Universities in India and U.S.A.
E-Mail: harimsri@math.uvic.ca
Date of Birth: July 5, 1940
Place of Birth: Karon (District Ballia), Uttar Pradesh, India
Education:
B.Sc. 1957 University of Allahabad, India
M.Sc. 1959 University of Allahabad, India
Ph.D. 1965 J. N. Vyas University of Jodhpur, India
D.Sc. (Honoris Causa) 2006 Chung Yuan Christian University, Taiwan, Republic of China
D.Sc. (Honoris Causa) 2007 “1 Decembrie 1918” University of Alba Iulia, Romania
Professional Qualifications and Recognitions:
F.R.A.S. 1968 Royal Astronomical Society (London, U.K.)
F.N.A.Sc. 1969 National Academy of Sciences (India)
F.I.M.A. 1975 Institute of Mathematics and Its Applications (U.K.)
F.M.R.A.S. 1991 The Royal Academy of Sciences, Literature and Fine Arts (Belgium)
C.Math. 1991 Institute of Mathematics and Its Applications (U.K.)
F.V.P.I. 1996 Vijñāna Parishad (Science Academy) of India
F.A.A.A.S. 1996 American Association for the Advancement of Science (U.S.A.)
F.A.A.C. 1998 La Academia Canaria de Ciencias (Spain)
F.F.A. 1999 Forum d’Analystes (India)
C.Sc. 2005 Institute of Mathematics and Its Applications (U.K.)
D.Sc. (h.c.) 2006 Chung Yuan Christian University (Taiwan, Republic of China)
F.M.A.S.A. 2007 The Macedonian Academy of Sciences and Arts (Macedonia)
D.Sc. (h.c.) 2007 “1 Decembrie 1918” University of Alba Iulia (Romania)
F.F.R.A.S. 2016 The Royal Academy of Sciences (Spain)

*2004: NSERC 25-Year Award* (Canada)
*2004: Nishiwaki Prize* (Japan)
*2012: Listed in the Second Place among Canada’s Top Researchers in the discipline of
Mathematics and Statistics in Terms of Productivity and Impact Based Upon a Measure
of Citations to Their Published Works (The Globe and Mail, Toronto, March 27, 2012, Page
B7 et seq.)*
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*2020: Obada Prize for Distinguished Researcher* (Egypt)

*2015–Present: Thomson Reuters Highly Cited Researcher*
Special Volumes and Special Issues of (and/or Dedication Messages in) International Scien-
tific Research Journals Dedicated to his 60th, 62nd, 70th, 75th and 80th Birth Anniversaries:
These include (to quote only a few) Fractional Calculus and Applied Analysis (Volume 3,
Number 3, 2000; Volume 13, Number 3, 2010; Volume 13, Number 4, 2010), Applied
Mathematics and Computation (Volume 187, Number 1, 2007; Volume 218, Number 3, 2011),
and so on. Moreover, the following 880-page Springer volume may be cited here:
Analytic Number Theory, Approximation Theory, and Special Functions:
In Honor of Hari M. Srivastava
(xi + 880 pp.; ISBN 978-1-4939-0257-1) (Gradimir V. Milovanović and Michael Th. Rassias,
Editors), Springer, Berlin, Heidelberg and New York, 2014.

Professor Srivastava began his university-level teaching career in 1959 itself at the age of 19 years.
Currently, Professor Srivastava holds the position of a Professor Emeritus in the Department of
Mathematics and Statistics at the University of Victoria in Canada. He joined the faculty there in
1969 [first as Associate Professor (1969–1974) and then as Full Professor (1974–2006)]. Professor
Srivastava has held (and/or currently holding) numerous positions of Visiting Professor and Chair
Professor including (for example) those at West Virginia University in U. S. A. (1967–1969),
Université Laval in Canada (1975), and the University of Glasgow in U. K. (1975–1976), and
indeed also at many other universities and research institutes in different parts of the world.
Professor Srivastava has published 33 books, monographs and edited volumes, 36 book (and
encyclopedia) chapters, 48 papers in international conference proceedings, and more than 1,300
scientific research journal articles on various topics of mathematical analysis and applicable
mathematics. In addition, he has written Forewords to several books by other authors and to
several special issues of scientific journals. He has also edited (and contributed to) many volumes
which are dedicated to the memories of famous mathematical scientists. Citations of his research
contributions can be found in many books and monographs, Ph.D. and D.Sc. theses, and scientific
journal articles, much too numerous to be recorded here. Currently, he is actively associated
editorially (that is, as an Editor, Honorary Editor, Editor-in-Chief, Senior Editor, Associate
Editor or Editorial Board Member) with over 200 international scientific research journals. His
biographical sketches (many of which are illustrated with his photograph) have appeared in various
issues of more than 50 international biographies, directories, and Who’s Who’s.
Professor Srivastava’s over 60-year career as a university-level teacher and as a remarkably
prolific researcher in many different areas of the mathematical, physical, and statistical sciences
is highlighted by (among other things) the fact that he has collaborated and published joint
papers with as many as 650 mathematicians, physicists, statisticians, chemists, astrophysicists,
geochemists, as well as information and business management scientists, who are scattered
throughout the world, thereby qualifying for his Erdös number 2, implying that at least one of
Professor Srivastava’s co-authors is a co-author of the famous Hungarian mathematician, Paul
Erdös (1913–1996). Professor Srivastava’s collaboration distances with other famous scientists
include his Einstein number 3, Pólya number 3, von Neumann number 3, Wiles number 3,
and so on.
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Outline of Research Contributions:
Many mathematical entities and objects are attributed to (and named after) him. These entities and
objects include (among other items) Srivastava’s polynomials and functions, Carlitz-Srivastava
polynomials, Srivastava-Buschman polynomials, Srivastava-Singhal polynomials, Chan-Chyan-
Srivastava polynomials, Erkuş-Srivastava polynomials, Srivastava-Daoust multivariable hyper-
geometric function, Srivastava-Panda multivariable H-function, Singhal-Srivastava generating
function, Srivastava-Agarwal basic (or q-) generating function, and Wu-Srivastava inequality in
the field of Higher Transcendental Functions; Srivastava-Owa, Choi-Saigo-Srivastava, Jung-Kim-
Srivastava, Liu-Srivastava, Cho-Kwon-Srivastava, Dziok-Srivastava, Srivastava-Attiya, Srivastava-
Wright and Srivastava-Gaboury operators in the field of Geometric Function Theory in Complex
Analysis; Srivastava-Gupta operator in the field of Approximation Theory; Srivastava, Adamchik-
Srivastava and Choi-Srivastava constants and methods in the field of Analytic Number Theory;
and so on.
Professor Srivastava has supervised (and is currently supervising) a number of post-graduate
students working toward their Master’s, Ph.D. and/or D.Sc. degrees in different parts of the world.
Besides, many post-doctoral fellows and research associates have worked with him at West Virginia
University in U.S.A. and at the University of Victoria in Canada.
Some of the significant and remarkable contributions by Professor Srivastava are being listed below
under each of the main topics of his current research interests:

(i) Real and Complex Analysis: A unified theory of numerous potentially useful function classes,
and of various integral and convolution operators using hypergeometric functions, especially in
Geometric Function Theory in Complex Analysis, and several classes of analytic and geometric
inequalities in the field of Real Analysis.
(ii) Fractional Calculus and Its Applications: Generalizations of such classical fractional-
calculus operators as the Riemann-Liouville and Weyl operators together with their fruitful
applications to numerous families of differential, integral, and integro-differential equations,
especially some general classes of fractional kinetic equations and also to some Volterra-type
integro-differential equations which emerge from the unsaturated behavior of the free electron
laser.
(iii) Integral Equations and Transforms: Explicit solutions of several general families of
dual series and integral equations occurring in Potential Theory; Unified theory of many known
generalizations of the classical Laplace transform (such as the Meijer and Varma transforms) and
of other multiple integral transforms by means of the Whittaker Wκ,µ-function and the (Srivastava-
Panda) multivariable H-function in their kernels.
(iv) Higher Transcendental Functions and Their Applications: Discovery, introduction, and
systematic (and unified) investigation of a set of 205 triple Gaussian hypergeometric series,
especially the triple hypergeometric functions HA, HB and HC added to the 14-member set
conjectured and defined in 1893 by Giuseppe Lauricella (1867–1913). Unified theory and
applications of the multivariable extensions of the celebrated higher transcendental (Ψ- and H-)
functions of Charles Fox (1897–1977) and Edward Maitland Wright (1906–2005), and also of the
Mittag-Leffler E-functions which are named after Gustav Mittag-Leffler (1846–1927). Mention
should be made also of his applications of some of these Higher Transcendental Functions in
Quantum and Fluid Mechanics, Astrophysics, Probability Distribution Theory, Queuing Theory
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and other related Stochastic Processes, and so on.
(v) q-Series and q-Polynomials: Basic theory of general q-polynomial expansions for functions
of several complex variables, extensions of several celebrated q-identities of Srinivasa Ramanujan
(1887–1920), and systematic introduction and investigation of multivariable basic (or q-) hyperge-
ometric series.
(vi) Analytic Number Theory: Presentation of several computationally-friendly and rapidly-
converging series representations for Riemann’s Zeta function, Dirichlet’s L-series, introduction
and application of some novel techniques for closed-form evaluations of series involving a wide
variety of sequences and functions of analytic number theory, and so on. His applications of
(especially) the Hurwitz-Lerch Zeta function in Geometric Function Theory in Complex Analysis
and in Probability Distribution Theory and related topics of Statistical Sciences deserve to be
recorded here.
(vii) Analytic and Geometric Inequalities: Unified presentations and generalizations of a number
of analytic and geometric inequalities.
(viii) Probability and Statistics: Probabilistic derivations of generating functions and statistical
applications of various special functions and orthogonal polynomials.
(ix) Inventory Modelling and Optimization: Systematic analytical investigation of many
potentially useful problems in supply chain management.

Professor Srivastava’s publications have been reviewed by (among others) Mathematical Re-
views (U.S.A.), Referativnyi Zhurnal Matematika (Russia), Zentralblatt für Mathematik
(Germany), and Applied Mechanics Reviews (U.S.A.) under various 2010 Mathematical Subject
Classifications (MathSciNet) including (for example) the following general classifications:

00 General
01 History and Biography
05 Combinatorics
11 Number Theory
15 Linear and Multilinear Algebra; Matrix Theory
26 Real Functions
30 Functions of a Complex Variable
31 Potential Theory
33 Special Functions
34 Ordinary Differential Equations
35 Partial Differential Equations
39 Difference and Functional Equations
40 Sequences, Series, Summability
41 Approximations and Expansions
42 Fourier Analysis
44 Integral Transforms, Operational Calculus
45 Integral Equations
46 Functional Analysis
47 Operator Theory
51 Geometry
58 General Global Analysis, Analysis on Manifolds
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60 Probability Theory and Stochastic Processes
62 Statistics
65 Numerical Analysis
70 Mechanics of Particles and Systems
76 Fluid Mechanics
81 Quantum Theory
85 Astronomy and Astrophysics
90 Operations Research, Mathematical Programming
91 Game Theory, Economics, Social and Behavioral Sciences

Publications (Selected and the Most Recent):
• H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their
applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A:
Sci. 44 (2020), 327–344.
•H. Tang, H. M. Srivastava, H.-S. Li and G.-T. Deng, Majorization results for subclasses of starlike
functions based on the sine and cosine functions, Bull. Iranian Math. Soc. 46 (2020), 381-388;
see also Correction, Bull. Iranian Math. Soc. 46 (2020), 389–391.
• H. M. Srivastava, H. I. Abdel-Gawad and K. M. Saad, Stability of traveling waves based upon
the Evans function and Legendre polynomials, Appl. Sci. 10 (2020), Article ID 846, 1–16.
•H. M. Srivastava, M. P. Chaudhary and S. Chaudhary, A family of theta-function identities related
to Jacobi’s triple-product identity, Russian J. Math. Phys. 27 (2020), 139–144.
• H. M. Srivastava, S. Khan, S. Araci, M. Acikgoz and M. Riyasat, A general class of the three-
variable unified Apostol-type q-polynomials and multiple power q-sums, Bull. Iranian Math. Soc.
46 (2020), 519–542.
• H. Ozden, F. E. Zihni, F. O. Erdogan, I. N. Cangul, G. Srivastava and H. M. Srivastava,
Independence number of graphs and line graphs of trees by means of omega invariant, Rev. Real
Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat. (RACSAM) 114 (2020), Article ID 91, 1–14. •
M. Masjed-Jamei, Z. Moalemi, H. M. Srivastava and I. Area, Some modified Adams-Bashforth
methods based upon the weighted Hermite quadrature rules, Math. Methods Appl. Sci. 43 (2020),
1380–1398.
• H. M. Srivastava, M. I. Qureshi and S. Jabee, Some general series identities and summation
theorems for the Gauss hypergeometric function with negative integer numerator and denominator
parameters, J. Nonlinear Convex Anal. 21 (2020), 463–478.
• H. M. Srivastava, M. S. Chauhan and S. K. Upadhyay, Lp-boundedness of the pseudo-differential
operators associated with the Kontorovich-Lebedev transform, Rev. Real Acad. Cienc. Exactas
Fı́s. Natur. Ser. A Mat. (RACSAM) 114 (2020), Article ID 80, 1–18.
• K.-J. Chung, J.-J. Liao, S.-D. Lin, S.-T. Chuang and H. M. Srivastava, Manufacturer’s optimal
pricing and lot-sizing policies under trade-credit financing, Math. Methods Appl. Sci. 43 (2020),
3099–3116.
• H. M. Srivastava and K. M. Saad, New approximate solution of the time-fractional Nagumo
equation involving fractional integrals without singular kernel, Appl. Math. Inform. Sci. 14
(2020), 1–8.
• H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates
for bi-univalent functions defined by using differential subordination and a certain fractional
derivative operator, Mathematics 8 (2020), Article ID 172, 1–12.
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• Y. J. Sim, O. S. Kwon, N. E. Cho and H. M. Srivastava, Bounds for the real parts and arguments
of normalized analytic functions defined by the Srivastava-Attiya operator, J. Comput. Anal. Appl.
28 (2020), 628–645.
• H. M. Srivastava, M. Riyasat, S. Khan, S. Araci and M. Acikgoz, A new approach to Legendre-
truncated-exponential-based Sheffer sequences via Riordan arrays, Appl. Math. Comput. 369
(2020), Article ID 124683, 1–22.
• J.-J. Liao, K.-N. Huang, K.-J. Chung, S.-D. Lin, S.-T. Chuang and H. M. Srivastava, Optimal
ordering policy in an economic order quantity (EOQ) model for non-instantaneous deteriorating
items with defective quality and permissible delay in payments, Rev. Real Acad. Cienc. Exactas
Fı́s. Natur. Ser. A Mat. (RACSAM) 114 (2020), Article ID 41, 1–26.
• H. Singh, D. Baleanu, H. M. Srivastava, H. Dutta and N. K. Jha, Solution of multi-dimensional
Fredholm equations using Legendre scaling functions, Appl. Numer. Math. 150 (2020), 313–324.
•M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan and N. Khan, Partial sums of
generalized q-Mittag-Leffler functions, AIMS Mathematics, 5 (2020), 408–420.
• K.-J. Chung, J.-J. Liao, S.-D. Lin, S.-T. Chuang and H. M. Srivastava, Mathematical analytic
techniques and the complete squares method for solving an inventory modelling problem with a
mixture of backorders and lost sales, Rev. Real Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat.
(RACSAM) 114 (2020), Article ID 28, 1-10.
• K. M. Saad, H. M. Srivastava and J. F. Gómez-Aguilar, A fractional quadratic autocatalysis
associated with chemical clock reactions involving linear inhibition, Chaos Solitons Fractals 132
(2020), Article ID 109557, 1–9.
• H. M. Srivastava, Some general families of the Hurwitz-Lerch Zeta functions and their
applications: Recent developments and directions for further researches, Proc. Inst. Math. Mech.
Nat. Acad. Sci. Azerbaijan 45 (2019), 234–269.
•W. Kumam, H. M. Srivastava, S. A. Wani, S. Araci and P. Kumam, Truncated-exponential-based
Frobenius-Euler polynomials, Adv. Differ. Equ. 2019 (2019), Article ID 530, 1–12.
• H. M. Srivastava and C. KizilateÅ, A parametric kind of the Fubini-type polynomials, Rev. Real
Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat. (RACSAM) 113 (2019), 3253–3267.
• S. S. Bhoosnurmath, B. Chakraborty and H. M. Srivastava, A note on the value distribution of
differential polynomials, Commun. Korean Math. Soc. 34 (2019), 1145–1155.
• H. M. Srivastava, M.Tahir, B. Khan, Q. Z. Ahmad and N. Khan, Some general families of q-
starlike functions associated with the Janowski functions, Filomat 33 (2019), 2613–2626.
• H. M. Srivastava, G. Yasmin and A. Muhyi, Lie algebra representations and 2-index 4-variable
1-parameter Hermite polynomials, Note di Mat. 39 (1) (2019), 65–87.
• H. M. Srivastava and P. Baliarsingh, The Leibniz and chain rules for fractional derivatives, Appl.
Anal. Optim. 3 (2019), 343–357.
• H. M. Srivastava, G. Ícoz and B. Çekim, Approximation properties of an extended family of the
Szász-Mirakjan Beta-type operators, Axioms 8 (2019), Article ID 111, 1–13.
•V. Kumar, N. E. Cho, V. Ravichandran and H. M. Srivastava, Sharp coefficient bounds for starlike
functions associated with the Bell numbers, Math. Slovaca 69 (2019), 1053–1064.
• H. M. Srivastava, B. Y. YaÅar and M. A. Özarslan, A class of big (p, q)-Appell polynomials and
their associated difference equations, Filomat 33 (2019), 3085–3121.
• C.-L. Shiue, H.-H. Chiang, M.-M. Wong and H. M. Srivastava, Optimal t-pebbling in cycles,
Utilitas Math. 111 (2019), 49–66.
• H. M. Srivastava, M. K. Aouf and A. O. Mostafa, Some properties of analytic functions
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associated with fractional q-calculus operators, Miskolc Math. Notes 20 (2019), 1245–1260.
• H. M. Srivastava, H. Günerhan and B. Ghanbari, Exact traveling wave solutions for resonance
nonlinear Schrdinger equation with intermodal dispersions and the Kerr law nonlinearity, Math.
Methods Appl. Sci. 42 (2019), 7210–7221.
• A. Das, B. Hazarika, H. M. Srivastava, M. Rabbani and R. Arab, Solvability of infinite systems
of nonlinear integral equations in two variables by using semi-analytic method, Filomat 33 (2019),
5377–5388.
•H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad and M. Tahir, A generalized conic domain and
its applications to certain subclasses of analytic functions, Rocky Mountain J. Math. 49 (2019),
2325–2346.
• H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman and H. H. Shah, Upper
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Abstract

Let R be a commutative ring and PG(R) is a graph whose vertices are all the elements
of ring R and two vertices are adjacent if their product is zero. In this article, we study the
energy of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring Zp and also find the energy of
PG1(Zp) and PG2(Zp), p prime. A General SCILAB Software code for our calculation is also
presented.
2010 Mathematics Subject Classifications: 05C25, 05C15, 13E15.
Keywords and phrases: Ring, Prime graph of a Ring PG(R), Quasi-total graph, Energy.

1 Introduction
The study of graph theory for a commutative ring began when Beck in [3] introduced the notion
of zero divisor of the graph. The graphs Γ1(R) and Γ2(R) are defined by R. Sen Gupta et al. in [4].
Another graph structure associated to a ring called prime graph was introduced by Satyanarayana
et al. [2]. Prime graph is defined as a graph whose vertices are all elements of the ring and any
two distinct vertices x, y ∈ R are adjacent if and only if xRy = 0 or yRx = 0. This graph is denoted
by PG(R). Pawar and Joshi in [10] gave a simple formulation for finding the degrees of vertices of
prime graph PG(R) as well as it’s complement (PG(R))c. Also the number of triangles in PG(R)
and (PG(R))c have been calculated using simple combinatorial approach. We have introduced the
prime graphs PG1(R) in [9] and PG2(R) in [8] of a ring and discussed all the results related to
degree of vertices, Eulerianity, planarity and girth.

In third section of this paper we give definition and some examples of 1-Quasitotal and 2-
Quasitotal Prime Graph of a Ring Zn. In last four sections we find the energy of 1-Quasitotal and
2-Quasitotal Prime Graph of a Ring Zp and also find the energy of PG1(Zp) and PG2(Zp), where p
is prime and give a general SCILAB software code for finding the energy of any Graph.

2 Preliminary Definitions
Here we are listing some preliminary definitions. For basic terminology and definitions the reader
is referred to [2], [5].
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Definition 2.1. [4] For a ring R, a simple undirected graph G = (V, E) is said to be a graph Γ1(R)
if all the nonzero elements of R as vertices, and two distinct vertices a and b are adjacent if and
only if either a · b = 0 or b · a = 0 or a + b is a unit.

Definition 2.2. [4] For a ring R, a simple undirected graph G = (V, E) is said to be a graph Γ2(R)
if all the nonzero elements of R as vertices, and two distinct vertices a and b are adjacent if and
only if either a · b = 0 or b · a = 0 or a + b is a zero divisor (including zero).

Definition 2.3. [9] The prime graph PG1(R) is a graph with all the elements of a ring R as vertices,
and any two distinct vertices x, y are adjacent if and only if x · y = 0 or y · x = 0 or x + y ∈ U(R),
the set of all units of R.

Definition 2.4. [8] The prime graph PG2(R) is a graph with all the elements of a ring R as vertices,
and any two distinct vertices x, y are adjacent if and only if x · y = 0 or y · x = 0 or x + y ∈ Z(R),
the set of all zero divisors of R.

Definition 2.5. [6] The Energy of the prime graph of a ring PG(Zn) is defined as the sum of the
absolute values of all the eigen values of its adjacency matrix M(PG(R)). i.e. if λ1, λ2, ..., λn are n
eigen values of M(PG(R)), then the energy of PG(Zn) is -

E(PG(R)) =

n∑
i=1

|λi| .

3 1-Quasitotal and 2-Quasitotal Prime graph of a Ring
From the definitions of satyanarayana Bhavanari and his co-authors in [1], we have define here
Quasitotal graphs of prime graph of a ring.

Definition 3.1. Let PG(R) be a prime graph of a ring with vertex set V(PG(R)) and edge set
E(PG(R)). The 1-Quasitotal graph of prime graph of a ring, (denoted by Q1(PG(R))) and is
defined as follows:

The vertex set of Q1(PG(R)), that is V(Q1(PG(R))) = V(PG(R))
⋃

E(PG(R)). Two vertices a, b
in V(Q1(PG(R))) are adjacent if they satisfy one of the following conditions:

1. a, b are in V(PG(R)) and ab ∈ E(PG(R))
2. a, b are in E(PG(R)) and a, b are incident in PG(R).

Example 3.1. Consider Zn, the ring of integers modulo n.

Let R = Z3. The vertex set V(PG(R)) = {0, 1, 2}. Since, 0R1 = 0, 0R2 = 0 and edge
set E(PG(R)) = {01, 02}. So, the vertex set V(Q1(PG(R))) = {v1, v2, v3, e1, e2} and edge set
E(Q1(PG(R))) = {v1v2, v1v3, e1e2} and the graph is as shown in figure below-

v2 e1

v3v1

e2

Figure 3.1: Q1(PG(Z3))
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1. Q1(PG(R)) is a graph without loops and multiple edges, i.e. the graph is simple.
2. The graph of Q1(PG(Zp)), p prime, is a disconnected graph containing two components - the

first component is itself PG(Zp) and the other component is a complete graph Kp−1 on p − 1
vertices.

Definition 3.2. Let PG(R) be a prime graph of a ring with vertex set V(PG(R)) and edge set
E(PG(R)). The 2-Quasitotal graph of prime graph of a ring, (denoted by Q2(PG(R))) and is
defined as follows:

The vertex set of Q2(PG(R)), that is V(Q2(PG(R))) = V(PG(R))
⋃

E(PG(R)). Two vertices a, b
in V(Q2(PG(R))) are adjacent in Q2(PG(R)) in case one of the following holds:

1. a, b are in V(PG(R)) and ab ∈ E(PG(R))
2. a is in V(PG(R)); b is in E(PG(R)); and a, b are incident in PG(R).

Example 3.2. Consider Zn, the ring of integers modulo n.

Let R = Z3. So, the vertex set V(Q2(PG(R))) = {v1, v2, v3, e1, e2} and edge set E(Q2(PG(R))) =

{v1v2, v1v3, v1e1, v1e2, v2e1, v3e2} and the graph is as shown in figure below-

v1

v2

e1 e2

v3

Figure 3.2: Q2(PG(Z3))

1. Q2(PG(R)) is a simple graph, i.e without multiple edges and loops.
2. The graph of Q2(PG(Zp)), p prime, is a connected graph containing p−1 number of triangles

having the vertex zero is a common vertex.

4 Energy of Q1(PG(Zp))
Example 4.1. For p = 2, the adjacency matrix of Q1(PG(Z2)) is

M(Q1(PG(Z2))) =

0 1 0
1 0 0
0 0 0

.
The eigen values are −1, 0, 1. Therefore, E(Q1(PG(Z2))) = 2.

Example 4.2. For p = 3, the adjacency matrix of Q1(PG(Z3)) is

M(Q1(PG(Z3))) =


0 1 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

Therefore, E(Q1(PG(Z3))) = 4.8284.
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From the SCILAB Software we found here some values of Energy of Q1(PG(Zp)) given in

Table 4.1

Sr.No. n Graph Energy

1 2 Q1(PG(Z2)) 2
2 3 Q1(PG(Z3)) 4.8284
3 5 Q1(PG(Z5)) 10
4 7 Q1(PG(Z7)) 14.8989
5 11 Q1(PG(Z11)) 24.3245
6 13 Q1(PG(Z13)) 28.9282

.

As per the above discussion we conclude the following Theorem -

Theorem 4.1. If p is a prime number then energy of Q1(PG(Zp)) is (2p − 4) + 2
√

p − 1.

5 Energy of Q2(PG(Zp))
Example 5.1. For p = 2, the adjacency matrix of Q2(PG(Z2)) is

M(Q2(PG(Z2))) =

0 1 1
1 0 1
1 1 0

.
The eigen values are −1,−1, 2. Therefore, E(Q2(PG(Z2))) = 4.

Example 5.2. For p = 3, the adjacency matrix of Q2(PG(Z3)) is

M(Q2(PG(Z3))) =


0 1 1 1 1
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0

.
Therefore, E(Q2(PG(Z3))) = 7.1231.

From the SCILAB Software we found here some values of Energy of Q2(PG(Zp)) given in the

Table 5.1

Sr.No. n Graph Energy

1 2 Q2(PG(Z2)) 4
2 3 Q2(PG(Z3)) 7.1231
3 5 Q2(PG(Z5)) 12.7445
4 7 Q2(PG(Z7)) 18
5 11 Q2(PG(Z11)) 28
6 13 Q2(PG(Z13)) 32.8488

.

As per the above discussion we conclude the following Theorem -

Theorem 5.1. If p is a prime number then energy of Q2(PG(Zp)) is (2p − 3) +
√

7p + (p − 7).
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6 Energy of PG1(Zp)
Example 6.1. For p = 2, the adjacency matrix of PG1(Z2) is

M(PG1(Z2)) =

[
0 1
1 0

]
.

The eigen values are −1, 1. Therefore, E(PG1(Z2)) = 2.

Example 6.2. For p = 3, the adjacency matrix of PG1(Z3) is

M(PG1(Z3)) =

0 1 1
1 0 0
1 0 0

.
Therefore, E(PG1(Z3)) = 2.8284.

From the SCILAB Software we found here some values of Energy of PG1(Zp) given in

Table 6.1

Sr.No. n Graph Energy

1 2 PG1(Z2) 2
2 3 PG1(Z3) 2.8284
3 5 PG1(Z5) 6.4721
4 7 PG1(Z7) 10.3245
5 11 PG1(Z11) 18.1980
6 13 PG1(Z13) 22.1655

.

As per the above discussion we conclude the following Theorem -

Theorem 6.1. If p is an odd prime number then energy of PG1(Zp) is (p − 3) +
√

(p − 1)2 + 4.

7 Energy of PG2(Zp)
Example 7.1. For p = 2, the adjacency matrix of PG2(Z2) is

M(PG2(Z2)) =

[
0 1
1 0

]
.

The eigen values are −1, 1. Therefore, E(PG2(Z2)) = 2.

Example 7.2. For p = 3, the adjacency matrix of PG2(Z3) is

M(PG2(Z3)) =

0 1 1
1 0 1
1 1 0

.
Therefore, E(PG2(Z3)) = 4.

From the SCILAB Software we found here some values of Energy of PG2(Zp) given in the

18



Table 7.1

Sr.No. n Graph Energy

1 2 PG2(Z2) 2
2 3 PG2(Z3) 4
3 5 PG2(Z5) 7.1231
4 7 PG2(Z7) 10
5 11 PG2(Z11) 15.4031
6 13 PG2(Z13) 18

.

As per the above discussion we conclude the following Table 7.1.

Theorem 7.1. If p is an odd prime number then energy of PG2(Zp) is (p − 2) +
√

3p + (p − 3).

General Scilab software code to find Energy of a Graph:

(1) A = [...; ...; ...; ...]: To create a matrix that has multiple rows, separate, the rows with
semicolons.

(2) poly(A, x): Gives the polynomial of matrix A in variable x.
(3) spec(A): Gives the Eigen Values of matrix A.
(4) abs(spec(A)): Gives absolute values of Eigen values of matrix A.
(5) sum(abs(spec(A))): Gives the Energy of a Graph.
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Abstract

In this article, we establish some fixed point theorems for weak contraction mappings in the
setting of complete S -metric spaces. Our results extend, generalize and unify several results
from the existing literature regarding S -metric space.
2010 Mathematics Subject Classifications: 54H25.
Keywords and phrases: Fixed point, weak contraction, S -metric space.

1 Introduction and Preliminaries
Fixed point theory is one of the famous and traditional theories in mathematics and has a broad
set of applications. In this theory, contraction is one of the main tools to prove the existence and
uniqueness of a fixed point. Banach’s contraction principle which gives an answer to the existence
and uniqueness of a solution of an operator equation T x = x, is the most widely used fixed point
theorem in all of analysis. This principle is constructive in nature and is one of the most useful
techniques in the study of nonlinear equations. The statement of the Banach contraction principle
is as follows.

Theorem 1.1. (Banach Contraction Principle) Let (X, d) be a complete metric space, c ∈ [0, 1)
and f : X → X a mapping such that for each x, y ∈ X,

d( f (x), f (y)) ≤ c d(x, y).(1.1)

Then f has a unique fixed point p ∈ X, such that for each x ∈ X, limn→∞ f nx
= p. Inequality (1.1) implies the continuity of f .

The Banach contraction principle has been generalized in many ways over the years. In some
generalizations, the contractive notion of the map is weakened, see [2, 3, 4, 5, 6, 7, 10, 11] and
others.

There are many generalizations of the Banach contraction principle for different metric spaces
that exist in the literature of metric fixed point theory.

Recently, Sedghi et al. [8] introduced the notion of S -metric space which is a generalization
of a G-metric space and D∗-metric space. In [8] the authors proved some properties of S -metric
spaces. Also, they obtained some fixed point theorems in S -metric space for a self-map.

The definition and properties of S -metric spaces are as follows (see, [8]).
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Definition 1.1. ([8]), A S -metric on a non-empty set X is a function S : X3 → R+ satisfying the
following conditions:

(S M1) S (x, y, z) = 0 if and only if x = y = z;
(S M2) S (x, y, z) ≤ S (x, x, t) + S (y, y, t) + S (z, z, t);
for all x, y, z, t ∈ X, where R+ = [0,∞). Then the function S is called an S -metric on X and

the pair (X, S ) is called an S -metric space or simply SMS.

Example 1.1. ([8]), Let X = Rn and ‖.‖ a norm on X, then S (x, y, z) = ‖y + z − 2x‖ + ‖y − z‖ is an
S -metric on X.

Example 1.2. ([8]), Let X = Rn and ‖.‖ a norm on X, then S (x, y, z) = ‖x − z‖ + ‖y − z‖ is an
S -metric on X.

Example 1.3. ([9]), Let X = R be the real line. Then S (x, y, z) = |x − z| + |y − z| for all x, y, z ∈ R
is an S -metric on X. This S -metric on X is called the usual S -metric on X.

Lemma 1.1. ([8], Lemma 2.5) If (X, S ) is an S -metric space, then we have S (x, x, y) = S (y, y, x)
for all x, y ∈ X.

Lemma 1.2. ([8], Lemma 2.12) Let (X, S ) be an S -metric space. If {xn} and {yn} are sequences in
X converging to x and y respectively, that is, xn → x and yn → y as n → ∞, then S (xn, xn, yn) →
S (x, x, y) as n→ ∞.

Lemma 1.3. ([8], Lemma 2.10) Let (X, S ) be an S -metric space. If the sequence {xn} in X
converges to x, then the limit x is unique.

Lemma 1.4. ([8], Lemma 2.11) Let (X, S ) be an S -metric space. If the sequence {xn} in X converges
to x, then {xn} is a Cauchy sequence.

Definition 1.2. ([8]) Let (X, S ) be an S -metric space.
(1) A sequence {xn} in X converges to x ∈ X if S (xn, xn, x) → 0 as n → ∞; that is, for each

ε > 0, there exists an m0 ∈ N such that for all n ≥ m0 we have S (xn, xn, x) < ε. We denote this by
limn→∞ xn = x or xn → x as n→ ∞.

(2) A sequence {xn} in X is called a Cauchy sequence if S (xn, xn, xm)→ 0 as n,m→ ∞; that is,
for each ε > 0, there exists an m0 ∈ N such that for all n,m ≥ m0 we have S (xn, xn, xm) < ε.

(3) The S -metric space (X, S ) is called complete if every Cauchy sequence in (X, S ) is
convergent in (X, S ).

Definition 1.3. Let T be a self mapping on an S -metric space (X, S ). Then T is said to be
continuous at x ∈ X if for any sequence {xn} in X with xn → x implies that T xn → T x as n→ ∞.

Definition 1.4. ([8]) Let (X, S ) be an S -metric space. A mapping T : X → X is said to be a
contraction if there exists a constant 0 ≤ L < 1 such that

S (T x,T x,Ty) ≤ L S (x, x, y),(1.2)

for all x, y ∈ X. If the S -metric space (X, S ) is complete then the mapping defined as above has a
unique fixed point.
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Definition 1.5. ([1]) (Weak Contraction Mapping) Let (X, d) be a complete metric space. A
mapping T : X → X is said to be weakly contractive if

d(T (x),T (y)) ≤ d(x, y) − ψ(d(x, y)),(1.3)

where x, y ∈ X, ψ : [0,∞)→ [0,∞) is continuous and non-decreasing, ψ(x) = 0 if and only if x = 0
and limx→∞ ψ(x) = ∞.

If we take ψ(x) = cx where 0 < c < 1 then (1.3) reduces to (1.1).
Now, we introduce the notion of weak contraction in S -metric space as follows.

Definition 1.6. Let (X, S ) be an S -metric space. A mapping T : X → X is said to be a weak
contraction on X if there exists a function ψ : [0,∞)→ [0,∞) with ψ(t) = 0 if and only if t = 0 and
satisfying the following condition

S (T x,T x,Ty) ≤ S (x, x, y) − δ ψ(S (x, x, y)),(1.4)

for all x, y ∈ X, where 0 ≤ δ < 1.

If we take ψ(x) = x and δ = L, then (1.4) reduces to (1.2).

Example 1.4. Let X = R and defined S : X3 → R+ by

S (x, x, y) =

{
4x2 + y2 if x , y,

0 if x = y,
for all x, y ∈ X. Then S is an S -metric on X and (X, S ) is a S -metric space. Let T : X → X
defined by T (x) = x

4 and ψ(t) = 15t for all t ≥ 0, where ψ : [0,∞) → [0,∞) is continuous and
non-decreasing function. Then

S (T (x),T (x),T (y)) = S
( x
4
,

x
4
,

y
4

)
=

x2

4
+

y2

16

= 4x2 + y2 −
15
16

(4x2 + y2)

= S (x, x, y) −
1

16
ψ(S (x, x, y)).

Thus T is a weak contraction on X.

The purpose of this paper is to prove some fixed point theorems under a weak contraction
condition in the setting of S -metric spaces. Our results extend, generalize and improve several
results from the existing literature in S -metric spaces.

2 Main Results
In this section, we shall prove some fixed point theorem in a complete S -metric space for weak
contraction mapping.

Theorem 2.1. Let (X, S ) be a complete S -metric space. Let T : X → X be a mapping satisfying
the condition:

S (T x,T x,Ty) ≤ min{S (x, x,T x), S (y, y,Ty)}(2.1)

− h φ
(

max{S (x, x,Ty), S (y, y,T x)}
)
,

for all x, y ∈ X where h > 0 and φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and
only if t = 0. Then T has a unique fixed point in X.
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Proof. Let x0 ∈ X and {xn} be a sequence defined by xn+1 = T xn for n = 0, 1, 2, . . . . If
xn = xn+1 = T xn, then xn is a fixed point of T . So we assume that xn , xn+1. It follows from (2.1),
(S M2) and Lemma 1.1 that

S (xn, xn, xn+1) = S (T xn−1,T xn−1,T xn)(2.2)
≤ min{S (xn−1, xn−1,T xn−1), S (xn, xn,T xn)}
−h φ

(
max{S (xn−1, xn−1,T xn), S (xn, xn,T xn−1)}

)
= min{S (xn−1, xn−1, xn), S (xn, xn, xn+1)}
−h φ

(
max{S (xn−1, xn−1, xn+1), S (xn, xn, xn)}

)
= min{S (xn−1, xn−1, xn), S (xn, xn, xn+1)}
−h φ

(
max{S (xn−1, xn−1, xn+1), 0}

)
= S (xn−1, xn−1, xn) − h φ

(
S (xn−1, xn−1, xn+1)

)
.

Since φ ≥ 0, then we obtain from equation (2.2) that

S (xn, xn, xn+1) ≤ S (xn−1, xn−1, xn).(2.3)

Thus we have a non-negative and non-increasing sequence {S (xn, xn, xn+1)}. Therefore, there
exists an L ≥ 0 such that

lim
n→∞

S (xn, xn, xn+1) = L.(2.4)

Since φ is continuous on [0,∞), using (2.2), (S M2), Lemma 1.1 and taking the limit as n→ ∞,
we obtain

L ≤ L − h lim
n→∞

φ
(
2S (xn−1, xn−1, xn) + S (xn, xn, xn+1)

)
(2.5)

= L − h φ
(

lim
n→∞

2S (xn−1, xn−1, xn) + lim
n→∞

S (xn, xn, xn+1)
)

= L − h φ(3L).

Since h > 0 and φ(3L) ≥ 0, then equation (2.5) is possible only if φ(3L) = 0. Thus, we get
L = 0. Hence, we obtain that

lim
n→∞

S (xn, xn, xn+1) = L = 0.(2.6)

This proves that {xn} is a Cauchy sequence in X. Since X is complete, then there exists an
element z ∈ X such that limn→∞ xn = z, that is, xn → z as n→ ∞. To show that z is a fixed point of
T . Using (2.1), we have

S (xn+1, xn+1,Tz) = S (T xn,T xn,Tz)(2.7)
≤ min{S (xn, xn,T xn), S (z, z,Tz)}
−h φ

(
max{S (xn, xn,Tz), S (z, z,T xn)}

)
= min{S (xn, xn, xn+1), S (z, z,Tz)}
−h φ

(
max{S (xn, xn,Tz), S (z, z, xn+1)}

)
.

Since limn→∞ xn = z and limn→∞ S (xn, xn, xn+1) = 0, then from equation (2.7) and taking the
limit as n→ ∞, we get

S (z, z,Tz) ≤ min{S (z.z.Tz), S (z, z,Tz)}(2.8)
−h φ

(
max{S (z, z,Tz), S (z, z, z)}

)
= min{0, S (z, z,Tz)}

23



−h φ
(

max{S (z, z,Tz), 0}
)

= 0 − h φ
(
S (z, z,Tz)

)
.

The above inequality (2.8) is possible only if S (z, z,Tz) = 0. Thus z = Tz. This shows that z
is a fixed point of T . To prove the uniqueness of fixed point of T , assume that v be another fixed
point of T such that v = Tv with v , z. Using (2.1) and Lemma 1.1, we have

S (z, z, v) = S (Tz,Tz,Tv)(2.9)
≤ min{S (z.z.Tz), S (v, v,Tv)}
−h φ

(
max{S (z, z,Tv), S (v, v,Tz)}

)
= min{S (z, z, z), S (v, v, v)}
−h φ

(
max{S (z, z, v), S (v, v, z)}

)
= min{0, 0}
−h φ

(
max{S (z, z, v), S (z, z, v)}

)
= 0 − h φ

(
S (z, z, v)

)
.

Inequality (2.9) is possible only if S (z, z, v) = 0. Hence z = v. This shows that the fixed point
of T is unique. This completes the proof.

Theorem 2.2. Let (X, S ) be a complete S -metric space. Let T : X → X be a continuous mapping
satisfying the condition:

Ψ
(
S (T x,T x,Ty), S (Ty,Ty,T x)

)
≤ q Ψ

(
S (x, x, y), S (y, y, x)

)
,(2.10)

for all x, y ∈ X, where 0 < q < 1 and Ψ : [0,∞)2 → [0,∞)2 is a continuous function on [0,∞)2

with Ψ(a, b) = 0 if and only if a = 0 = b. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and {xn} be a sequence defined by xn+1 = T xn for n = 0, 1, 2, . . . . If xn = xn+1 =

T xn, then xn is a fixed point of T . So, we assume that xn , xn+1. It follows from (2.10), (S M2) and
Lemma 1.1 that

Ψ
(
S (xn+1, xn+1, xn+2), S (xn+2, xn+2, xn+1)

)
(2.11)

= Ψ
(
S (T xn,T xn,T xn+1), S (T xn+1,T xn+1,T xn)

)
≤ q Ψ

(
S (xn, xn, xn+1), S (xn+1, xn+1, xn)

)
...

≤ qn+1 Ψ
(
S (x0, x0, x1), S (x1, x1, x0)

)
.

Since 0 < q < 1 and, for n→ ∞, we get

Ψ
(
S (xn+1, xn+1, xn+2), S (xn+2, xn+2, xn+1)

)
→ 0.(2.12)

Since Ψ is a continuous function,

0 = lim
n→∞

Ψ
(
S (xn+1, xn+1, xn+2), S (xn+2, xn+2, xn+1)

)
= Ψ

(
lim
n→∞

S (xn+1, xn+1, xn+2), lim
n→∞

S (xn+2, xn+2, xn+1)
)
.

Thus, by the property of Ψ,

lim
n→∞

S (xn+1, xn+1, xn+2) = lim
n→∞

S (xn+2, xn+2, xn+1) = 0.
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Hence by Lemma 1.1 and Definition 1.2(2), {xn} is a Cauchy sequence in a complete S -metric
space X. Therefore there exists an u ∈ X such that limn→∞ xn = u. Since T is continuous, we have

Tu = T ( lim
n→∞

xn) = lim
n→∞

T xn = lim
n→∞

xn+1 = u,

and u is a fixed point of T . Now, we shall show that the uniqueness u is unique. For this, suppose
that v is another fixed point of the mapping T such that v = Tv with v , u. Using equation (2.10),
we have

Ψ
(
S (u, u, v), S (v, v, u)

)
= Ψ

(
S (Tu,Tu,Tv), S (Tv,Tv,Tu)

)
≤ q Ψ

(
S (u, u, v), S (v, v, u)

)
.

Since 0 < q < 1, then we get Ψ
(
S (u, u, v), S (v, v, u)

)
= 0, which by the property of Ψ, implies

that S (u, u, v) = S (v, v, u) = 0. Thus we obtain u = v. This shows that the fixed point of T is
unique. This completes the proof.

If we take Ψ(x, y) = x + y, q = L and using Lemma 1.1 in Theorem 2.2, then we have the
following result as corollary.

Corollary 2.1. Let (X, S ) be a complete S -metric space. Suppose that T : X → X be a mapping
satisfying the condition:

S (T x,T x,Ty) ≤ L S (x, x, y),

for all x, y ∈ X and 0 < L < 1 is a constant. Then T has a unique fixed point in X.

Remark 2.1. Corollary 2.1 extends the well known Banach contraction principle from complete
metric space to that in the setting of a complete S -metric space considered in this paper.

Example 2.1. Let X = R be the real line and S be the usual S -metric on X defined as S (x, y, z) =

|x − z| + |y − z| for all x, y, z ∈ R. Then (X, S ) is called an S -metric space. Consider the mapping
T : X → X defined by T (x) = x

7 for all x ∈ [0, 1]. Then, we have

S (T x,T x,Ty) = S
( x
7
,

x
7
,

y
7

)
=

∣∣∣∣ x7 − y
7

∣∣∣∣ +
∣∣∣∣ x7 − y

7

∣∣∣∣
= 2

∣∣∣∣ x7 − y
7

∣∣∣∣
=

2
7
|x − y|

≤ |x − y|

=
1
2

(
2|x − y|

)
= L S (x, x, y),

where L = 1
2 < 1. Thus T satisfies all the conditions of Corollary 2.1. Hence, by applying

Corollary 2.1, T has a unique fixed point in X. It is seen that 0 ∈ X is the unique fixed point of T .

3 Conclusion
In this article, we have established some unique fixed point theorems under a weak contractive
condition in the framework of complete S -metric spaces. Our results extend, generalize and unify
some recent results from the existing literature.
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Abstract

In this article, certain Laurent type linear and bilateral hypergeometric generating relations
are derived by using series rearrangement technique, summation theorems of Pfaff-Saalchütz,
Chu-Vandermonde and some reduction formulas.
2010 Mathematics Subject Classifications: 33B15, 33C10, 33C20.
Keywords and phrases: Hypergeometric functions; Series rearrangement technique; Chu-
Vandermonde theorem; Pfaff-Saalschütz theorem.

1 Introduction and preliminaries
The generalized hypergeometric series is defined as:

(1.1) pFq

 (αp);
z

(βq);

 = pFq

 α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =

∞∑
n=0

(α1)n(α2)n . . . (αp)n

(β1)n(β2)n . . . (βq)n

zn

n!
.

We recall here the definition of a more general double hypergeometric function (than the one
defined by Kampé de Fériet) in a slightly modified notation [7, p.423, Eq.(26)]:

(1.2) F p: q; k
`: m; n

 (ap) : (bq) ; (ck) ;
x, y

(α`) : (βm) ; (γn) ;

 =

∞∑
r,s=0

p∏
j=1

(a j)r+s

q∏
j=1

(b j)r

k∏
j=1

(c j)s

∏̀
j=1

(α j)r+s

m∏
j=1

(β j)r

n∏
j=1

(γ j)s

xr

r!
ys

s!
,

where, for convergence,

(i) p + q < ` + m + 1, p + k < ` + n + 1, |x| < ∞, |y| < ∞, or(1.3)
(ii) p + q = ` + m + 1, p + k = ` + n + 1 and(1.4)

(1.5)

|x|1/(p−`) + |y|1/(p−`) < 1, if p > `
max {|x|, |y|} < 1, if p ≤ `.

Series rearrangement technique is based upon certain interchanges of the order of a double
(or multiple) summation. Several hypergeometric generating relations have been established using
series rearrangement technique.

Here, we consider some well known results.
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Cauchy’s double series identity [6, p.100]:

(1.6)
∞∑

m,n=0

Φ(m, n) =

∞∑
m=0

m∑
n=0

Φ(m − n, n),

provided that the associated double series are absolutely convergent.
Chu-Vandermonde theorem [2, p.69, Q.No. 4]:

(1.7) 2F1

 −N, G ;
1

H ;

 =
(H −G)N

(H)N
; N = 0, 1, 2, · · · ,

such that ratio of Pochhammer symbols in r.h.s. is well defined and H, G ∈ C \ Z−0 .
Pfaff-Saalschütz theorem [2, p.87, Theorem 29]:
If n is a non-negative integer, then

(1.8) 3F2

 −n, a, b ;
1

c, a + b − c − n + 1 ;

 =
(c − a)n (c − b)n

(c)n (c − a − b)n
,

such that ratios of Pochhammer symbols in r.h.s. are well defined and a, b, c, 1+a+b−c−n ∈ C\Z−0 .
Srivastava’s multiple series identity [5, p.4, Eqn(12)]:

(1.9)
∞∑

m=0

f (m)
(x1 + x2 + · · · + xn)m

m!
=

∞∑
m1,m2,··· ,mn=0

f (m1 + m2 + · · · + mn)
x1

m1

m1!
x2

m2

m2!
· · ·

xn
mn

mn!
,

provided that the multiple series involved are absolutely convergent.
Motivated by the work on generating functions and generating relations recorded in beautiful

monographs of Rainville [2, Chapter 8], Srivastava-Manocha [6] and recent investigations
including [3, 1, 4], in this article, we derive certain Laurent type generating relations.

The paper is organized as: In Section 2, some auxiliary results are derived by using series
rearrangement technique which are used in our main results. In Section 3, some hypergeometric
generating relations are established with the help of the auxiliary results obtained in Section 2.

2 Some reduction formulae
Here, we prove the following auxiliary results:

Lemma 2.1. The following result holds true:

(2.1) F1:1;0
1:1;0

 A : C ; ;
X, − X

B : D ; ;

 = 2F2

 A, D −C ;
−X

B, D ;

 ,
where B, D ∈ C \ Z−0 and for all finite values of X.

Lemma 2.2. The following result holds true:

(2.2) F0:1;2
1:0;1

 : G ; H, J ;
X, X

E : ; K ;

 =

∞∑
m=0

(G)mXm

(E)m m! 3F2

 −m, H, J ;
1

K, 1 −G − m ;

 ,
where E, K ∈ C \ Z−0 and for all finite values of X.

The 3F2(1) in the r.h.s. of equation (2.2) can be summed with the help of hypergeometric
summation theorems of Dixon, Whipple, Watson and Pfaff-Saalschütz and other theorems for
terminating Clausen series.
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Lemma 2.3. The following result holds true:

F0:1;2
1:0;1

 : −ν + n ; 1 + α, − p − n ;
X, X

1 + α − ν + n : ; 1 − ν + α − p ;

(2.3)

= 1F1

 −ν − p ;
X

1 − ν + α − p ;

 ,
where 1 + α − ν + n, 1 − ν + α − p ∈ C \ Z−0 and for all finite values of X.

Proof of Lemma 2.1:
Suppose the power series form of l.h.s. of equation (2.1) is denoted by Π. Then, we have

Π =

∞∑
m,n=0

(A)m+n(C)mXm(−X)n

(B)m+n(D)m m! n!
.(2.4)

Replacing m by m− n in equation (2.4) and using Cauchy’s double series identity (1.6), we get

Π =

∞∑
m=0

(A)m(C)mXm

(B)m(D)m m!

m∑
n=0

(1 − D − m)n(−m)n

(1 −C − m)n n!
(2.5)

=

∞∑
m=0

(A)m(C)mXm

(B)m(D)m m! 2F1

 −m, 1 − D − m ;
1

1 −C − m ;

 .
Now, applying Chu-Vandermonde summation Theorem 1.7 in equation (2.5), we get

Π =

∞∑
m=0

(A)m(C)mXm

(B)m(D)m m!
(D −C)m

(1 −C − m)m
.

Simplifying above equation, we get equation (2.1).
Proof of Lemma 2.2:

Suppose the power series form of l.h.s. of equation (2.2) is denoted by Φ. Then, we have

Φ =

∞∑
m,n=0

(G)m(H)n(J)nXm+n

(E)m+n(K)n m! n!
(2.6)

=

∞∑
m=0

m∑
n=0

(G)m−n(H)n(J)nXm(−m)n

(E)m(K)n m!(−1)n n!
, (on replacing m by m − n)

=

∞∑
m=0

(G)m Xm

(E)m m!

m∑
n=0

(G + m)−n(H)n(J)n(−m)n

(K)n(−1)n n!
.

Simplifying equation (2.6), we get equation (2.2).
Proof of Lemma 2.3:

If we choose G = −ν + n, E = 1 + α − ν + n, H = 1 + α, J = −p − n, K = 1 − ν + α − p in
Lemma 2.2, we find

F0:1;2
1:0;1

 : −ν + n ; 1 + α, − p − n ;
X, X

1 + α − ν + n : ; 1 − ν + α − p ;

(2.7)

=

∞∑
m=0

(−ν + n)mXm

(1 + α − ν + n)m m! 3F2

 −m, 1 + α, − p − n ;
1

1 − ν + α − p, 1 + ν − n − m ;

 .
On using Pfaff-Saalchütz summation Theorem 1.8 in equation (2.7) and applying some

algebraic properties of Pochhammer symbols, we obtain Lemma 2.3.
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3 Laurent type generating relations
In this section, we prove the following Laurent type hypergeometric generating relations:

Theorem 3.1. The following Laurent type bilateral generating relation for hypergeometric
functions 2F2(−ab) or 1F1(x) holds true for all finite values of a, b, x, t:

exp(axt)(1 − at)α−ν1F1

 −ν ;
x − ab − axt + b

t
1 + α − ν ;

(3.1)

=

∞∑
p=−∞

(ν − α)p(−ν)p?(−ab)p?

(p + p?)!(p?)! 2F2

 −ν + p?, 1 ;
−ab

1 + p + p?, 1 + p? ;

×
×1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p, 0 < |at| < 1; t , 0,

where

(3.2) p? = max {0,−p} =

−p, when p = · · · ,−3,−2,−1
0, when p = 0, 1, 2, · · ·

and numerator, denominator parameters are neither zero nor negative integers in each hypergeo-
metric function.

Theorem 3.2. The following Laurent type linear generating relation for the hypergeometric
function 3F2

(
a
b

)
holds true:(

a +
c
t

)α−γ
(bt + d)−α 2F1

 α, λ ;
at+c
bt+d

µ ;

(3.3)

=
aα−γ

dα

∞∑
p=−∞

(α)p

(
−b
d

)p ∞∑
`=0

(γ − α)`+p?(α + p)`+p?
(

bc
ad

)`+p?

(` + p?)! (` + p + p?)!
×

×3F2

 λ, 1 − γ + α, − ` − p − p? ;
a
b

µ, 1 − γ + α − ` − p? ;

 tp

(
0 <

∣∣∣∣∣ c
at

∣∣∣∣∣ < 1, 0 <
∣∣∣∣∣bt
d

∣∣∣∣∣ < 1, 0 <
∣∣∣∣∣at + c
bt + d

∣∣∣∣∣ < 1; t , 0
)
,

where p? is defined by equation (3.2) and numerator, denominator parameters are neither zero nor
negative integers in each hypergeometric function.

Proof of Theorem 3.1
Suppose the power series form of l.h.s. of equation (3.1) is denoted by Ω. Then, we have

Ω = exp(axt) 1F0

 ν − α ;
at

;

 ∞∑
N=0

(−ν)N

(
x − ab − axt + b

t

)N

(1 + α − ν)N N!
,(3.4)

where ν − α, −ν, 1 + α − ν ∈ C \ Z−0 .
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Using Srivastava’s multiple series identity (1.9) in the r.h.s. of equation (3.4), we obtain

Ω =

∞∑
`=0

(axt)`

`!

∞∑
m=0

(ν − α)m(at)m

m!

∞∑
r,s,q,n=0

(−ν)r+s+q+n xr(−ab)s(−axt)q
(

b
t

)n

(1 + α − ν)r+s+q+n r! s! q! n!
(3.5)

=

∞∑
m=0

∞∑
r,s,n=0

(ν − α)m(at)m(−ν)r+s+n xr(−ab)s
(

b
t

)n

m!(1 + α − ν)r+s+n r! s! n!
×

×

∞∑
`=0

∞∑
q=0

(−ν + r + s + n)q(−1)q(axt)`+q

(1 + α − ν + r + s + n)q `! q!
.

On replacing ` by ` − q in equation (3.5), it follows that

Ω =

∞∑
m,r,s,n=0

(ν − α)m(−ν)r+s+n(at)m xr(−ab)s
(

b
t

)n

(1 + α − ν)r+s+n m! r! s! n!

∞∑
`=0

(axt)`

`!
×(3.6)

×2F1

 −`, − ν + r + s + n ;
1

1 + α − ν + r + s + n ;

 .
Now, applying Chu-Vandermonde summation Theorem 1.7 in equation (3.6), we get

Ω =

∞∑
m,r,s,n=0

(ν − α)m(−ν)r+s+n(at)m xr(−ab)s
(

b
t

)n

(1 + α − ν)r+s+n m! r! s! n!
(3.7)

×

∞∑
`=0

(axt)`

`!
(1 + α)`

(1 + α − ν + r + s + n)`

=

∞∑
m,r,s,n,`=0

(ν − α)m(−ν)r+s+n(1 + α)`
(1 + α − ν)r+s+n+`

(−1)sam+s+`bs+nxr+`tm−n+`

m! r! s! n! l!
.

Further, putting m − n + ` = p, equation (3.7) becomes

Ω =

∞∑
p=−∞

∞∑
r,s,n,`=0

(ν − α)p+n−`(−ν)r+s+n(1 + α)`
(1 + α − ν)r+s+n+`

(−1)sap+n+sbs+nxr+`tp

(p + n − `)! r! s! n! `!
(3.8)

=

∞∑
p=−∞

∞∑
r,`=0

(ν − α)p−`(−ν)r(1 + α)` xr x`

(1 + α − ν)r+` (1)p−` r! `!
×

×

∞∑
s,n=0

(ν − α + p − `)n(−ν + r)s+n(−ab)s(ab)n

(1 + α − ν + r + `)s+n(1 + p − `)n s! n!
(at)p

=

∞∑
p=−∞

∞∑
r,`=0

(ν − α)p−`(−ν)r(1 + α)` xr x`

(1 + α − ν)r+` (1)p−` r! `!
×

×F1:1;0
1:1;0

 −ν + r : ν − α + p − ` ; ;
ab, − ab

1 + α − ν + r + ` : 1 + p − ` ; ;

 (at)p.

Now, applying Lemma 2.1 in equation (3.8), we obtain

Ω =

∞∑
p=−∞

∞∑
r,`=0

(ν − α)p−`(−ν)r(1 + α)` xr x`

(1 + α − ν)r+` (1)p−` r! `!
×(3.9)
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×2F2

 −ν + r, 1 − ν + α ;
−ab

1 + α − ν + r + `, 1 + p − ` ;

 (at)p

=

∞∑
p=−∞

∞∑
r,`,n=0

(ν − α)p−`(−ν)r+n(1 + α)` (1 − ν + α)n xr x`(−ab)n

(1 + α − ν)r+`+n (1)p−`+n r! `! n!
(at)p

=

∞∑
p=−∞

∞∑
n=0

(ν − α)p(−ν)n(−ab)n(at)p

(1)p+n n!
×

×

∞∑
r,`=0

(−ν + n)r(1 + α)` (−p − n)` xr x`

(1 + α − ν + n)r+` (1 − ν + α − p)` r! `!

=

∞∑
p=−∞

∞∑
n=0

(ν − α)p(−ν)n(−ab)n(at)p

(1)p+n n!
×

×F0:1;2
1:0;1

 : −ν + n ; 1 + α, − p − n ;
x, x

1 + α − ν + n : ; 1 − ν + α − p ;

 .
Further, using Lemma 2.3 in equation (3.9), we find

Ω =

∞∑
p=−∞

(ν − α)p

∞∑
n=0

(−ν)n(−ab)n

(n + p)! n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p(3.10)

=

−1∑
p=−∞

(ν − α)p

∞∑
n=0

(−ν)n(−ab)n

(n + p)!) n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p +

+

∞∑
p=0

(ν − α)p

∞∑
n=0

(−ν)n(−ab)n

(n + p)! n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p

=

∞∑
p=1

(ν − α)−p

∞∑
n=p

(−ν)n(−ab)n

(n − p)! n! 1F1

 −ν + p ;
x

1 − ν + α + p ;

 (at)−p

+

∞∑
p=0

(ν − α)p

∞∑
n=0

(−ν)n(−ab)n

(n + p)! n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p

=

−1∑
p=−∞

(ν − α)p

∞∑
n=−p

(−ν)n(−ab)n

(n + p)! n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p

+

∞∑
p=0

(ν − α)p

∞∑
n=0

(−ν)n(−ab)n

(n + p)! n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p

=

∞∑
p=−∞

(ν − α)p

∞∑
n=p?

(−ν)n(−ab)n

(n + p)! n! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p,

where p? is defined by equation (3.2).
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Replacing n by n + p? in equation (3.10), we get

Ω =

∞∑
p=−∞

(ν − α)p

∞∑
n=0

(−ν)n+p?(−ab)n+p?

(n + p + p?)! (n + p?)! 1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p(3.11)

=

∞∑
p=−∞

(ν − α)p(−ν)p?(−ab)p?

(p + p?)! (p?)!

∞∑
n=0

(−ν + p?)n(1)n(−ab)n

(1 + p + p?)n(1 + p?)n n!
×

×1F1

 −ν − p ;
x

1 − ν + α − p ;

 (at)p.

Using definition of 2F2 in the r.h.s. of equation (3.11), assertion (3.1) follows.

Proof of Theorem 3.2
Suppose the l.h.s of equation (3.3) is denoted by ∆. Then we have

∆ =
aα−γ

dα

∞∑
k=0

(α)k (λ)k (at)k

(µ)k dk k!

(
1 +

c
at

)k+α−γ
(
1 +

bt
d

)−(k+α)

(3.12)

=
aα−γ

dα

∞∑
k=0

(α)k (λ)k (at)k

(µ)k dk k! 1F0

 γ − α − k ;
− c

at
;

 1F0

 α + k ;
−bt

d
;


=

aα−γ

dα

∞∑
k=0

∞∑
`=0

∞∑
m=0

(α)k (λ)k (at)k

(µ)k dk k!
(γ − α − k)`

`!

(
−c
at

)` (α + k)m

m!

(
−bt
d

)m

=
aα−γ

dα

∞∑
k=0

∞∑
`=0

∞∑
m=0

(α)k+m(λ)k

(
a
d

)k
(γ − α − k)`

(
−c
a

)` (
−b
d

)m

(µ)k k! `! m!
tk−`+m.

Replacing m by m − k, we get

(3.13)

∆ =
aα−γ

dα

∞∑
`=0

∞∑
m=0

m∑
k=0

(α)m(λ)k
(

a
d

)k
(γ − α − k)`

(
−c
a

)` (
−b
d

)m−k

(µ)k k! `! (m − k)!
tm−`

=
aα−γ

dα

∞∑
`=0

(γ − α)`
(
−c
a

)`
`!

∞∑
m=0

(α)m
(
−b
d

)m

m!

m∑
k=0

(λ)k
(γ − α + `)−k

(γ − α)−k

(
−b
d

)−k (
a
d

)k

(µ)k k! (1 + m)−k
tm−`

=
aα−γ

dα

∞∑
`,m=0

(γ − α)`(α)m
(
−c
a

)` (
−b
d

)m

`! m!

m∑
k=0

(λ)k (1 − γ + α)k (−m)k

(µ)k (1 − γ + α − `)k

(
a
b

)k

k!
tm−`

=
aα−γ

dα

∞∑
`,m=0

(γ − α)`(α)m
(
−c
a

)` (
−b
d

)m

`! m! 3F2

 λ, 1 − γ + α, − m ;
a
b

µ, 1 − γ + α − ` ;

 tm−`.

Now, putting m − ` = p or m = p + `, we get

(3.14)

∆ =
aα−γ

dα

∞∑
p=−∞

∞∑
`=0

(γ − α)`(α)`+p
(
−c
a

)` (
−b
d

)`+p

`! (` + p)! 3F2

 λ, 1 − γ + α, − ` − p ;
a
b

µ, 1 − γ + α − ` ;

 tp
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=
aα−γ

dα

∞∑
p=−∞

(α)p

(
−b
d

)p ∞∑
`=0

(γ − α)`(α + p)`
(

bc
ad

)`
`! (` + p)! 3F2

 λ, 1 − γ + α, − ` − p ;
a
b

µ, 1 − γ + α − ` ;

 tp

=
aα−γ

dα


−1∑

p=−∞

(α)p

(
−b
d

)p ∞∑
`=0

(γ − α)`(α + p)`
(

bc
ad

)`
`! (` + p)! 3F2

 λ, 1 − γ + α, − ` − p ;
a
b

µ, 1 − γ + α − ` ;

 tp+

+

∞∑
p=0

(α)p

(
−b
d

)p ∞∑
`=0

(γ − α)`(α + p)`
(

bc
ad

)`
`! (` + p)! 3F2

 λ, 1 − γ + α, − ` − p ;
a
b

µ, 1 − γ + α − ` ;

 tp


=

aα−γ

dα


∞∑

p=1

(α)−p

(
−b
d

)−p ∞∑
`=p

(γ − α)`(α − p)`
(

bc
ad

)`
`! (` − p)! 3F2

 λ, 1 − γ + α, − ` + p ;
a
b

µ, 1 − γ + α − ` ;

 t−p+

+

∞∑
p=0

(α)p

(
−b
d

)p ∞∑
`=0

(γ − α)`(α + p)`
(

bc
ad

)`
`! (` + p)! 3F2

 λ, 1 − γ + α, − ` − p ;
a
b

µ, 1 − γ + α − ` ;

 tp


=

aα−γ

dα

∞∑
p=−∞

(α)p

(
−b
d

)p ∞∑
`=p?

(γ − α)`(α + p)`
(

bc
ad

)`
`! (` + p)! 3F2

 λ, 1 − γ + α, − ` − p ;
a
b

µ, 1 − γ + α − ` ;

 tp,

where p? = max{0,−p}.
On replacing ` by ` + p? in equation (3.14), we obtain assertion (3.3).
Several other bilinear (multilinear) and bilateral (multilateral) hypergeometric generating

relations may also be derived by using series rearrangement technique.
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[4] Y. Simsek, Generating Functions for Finite Sums Involving Higher Powers of Binomial

Coefficients: Analysis of Hypergeometric Functions Including New Families of Polynomials
and Numbers, J. Math. Anal. Appl., 477(2) (2019), 1328-1352.

[5] H. M. Srivastava; Certain Double Integrals Involving Hypergeometric Functions , Jñānābha
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Abstract

Motivated by the recent result of Aydi et al.[4], we establish a fixed point theorem of
Suzuki-type generalized multivalued contraction mappings in the framework of weak partial
metric space. An example is also given to show the significance of our result.
2010 Mathematics Subject Classifications: 47H10, 54H25.
Keywords and phrases: Weak partial metric space, H+-type Hausdorff metric, generalized
Suzuki type contraction.

1 Introduction
The notion of partial metric space was introduced in 1994 by Matthews[7] as a generalization
of the metric space. Such spaces are useful for modeling the problems occurring in computer
science. He also proved the famous Banach Contraction Principle in partial metric space. Later
on many fixed point results in partial metric space have been proved (see, for instance [1], [2],
[6] and references therein). Further Aydi et al.[3] obtained an analogue of Nadler’s fixed point
theorem in partial metric space using the concept of a partial Hausdorff metric. Recently, Beg and
Pathak[5] introduced a weaker form of partial metric called weak partial metric and gave a fixed
point theorem. This result extended and generalized by Negi and Gairola[8].
The aim of this paper is to generalize the result of Aydi et al. [4] by introducing generalized
Suzuki type multivalued contraction mapping in weak partial metric space. Our result extend
various known comparable results in the literature.

2 Preliminaries
The following definitions and results are followed by Beg and Pathak[5].

Definition 2.1. Let X be a nonempty set. A function q : X×X → R+ is called a weak partial metric
on X if for all x, y, z ∈ X, the following conditions hold:
(Q1) q(x, x) = q(x, y)⇔ x = y;
(Q2) q(x, x) ≤ q(x, y);
(Q3) q(x, y) = q(y, x);
(Q4) q(x, y) ≤ q(x, z) + q(z, y).
The pair (X, q) is called a weak partial metric space.

Let CBq(X) be the family of all non-empty, closed and bounded subsets of weak partial metric
space (X, q). For E, F ∈ CBq(X) and x ∈ X, define δq : CBq(X) ×CBq(X)→ [0,∞) and

35

DOI: https://doi.org/10.58250/jnanabha.2020.50104



q(x, E) = inf{q(x, a) : a ∈ E},
δq(E, F) = sup{q(a, F) : a ∈ E},
δq(F, E) = sup{q(b, E) : b ∈ F}.
Each weak partial metric q on X generates a T0 topology τq on X which has as a base the family

of open q-balls {Bq(x, ε) : x ∈ X, ε > 0}, where Bq(x, ε) = {y ∈ X : q(x, y) < q(x, x) + ε} for all
x ∈ X and ε > 0.

Remark 2.1. Let φ , E be a set in (X, q). Then
a ∈ E if and only if q(a, E) = q(a, a),
where E denotes the closure of E with respect to the weak partial metric space.
Note that E is closed in (X, q) if and only if E = E.

Definition 2.2. A sequence {xn} in (X, q) converges to a point x ∈ X with respect to τq if and only
if q(x, x) = limn→∞ q(x, xn).

Remark 2.2. If q is a weak partial metric on X, the function qs : X × X → R+ given by qs(x, y) =

q(x, y) − 1
2

[
q(x, x) + q(y, y)

]
, defines a metric on X. Further, a sequence {xn} converges in (X, qs) to

a point x ∈ X if and only if

(2.1) q(x, x) = lim
n→∞

q(xn, x) = lim
n,m→∞

q(xn, xm).

Proposition 2.1. Let (X, q) be a weak partial metric space. For any E, F,H ∈ CBq(X), the following
holds:
(i) δq(E, E) = sup{q(a, a) : a ∈ E};
(ii) δq(E, E) ≤ δq(E, F);
(iii) δq(E, F) = 0⇒ E ⊆ F;
(iv) δq(E, F) ≤ δq(E,H) + δq(H, F).

Proposition 2.2. Let (X, q) be a weak partial metric space. For all E, F,H ∈ CBq(X), we have
(wp1) H+

q (E, E) ≤ H+
q (E, F);

(wp2) H+
q (E, F) = H+

q (F, E);
(wp3) H+

q (E, F) ≤ H+
q (E,H) + H+

q (H, F).

Definition 2.3. Let (X, q) be a weak partial metric space. For E, F ∈ CBq(X), define

H+
q (E, F) =

1
2
{δq(E, F) + δq(F, E)}.

The mapping H+
q : CBq(X) × CBq(X) → [0,+∞), is called H+

q -type Hausdorff metric induced
by q.

Definition 2.4. Let (X, q) be a complete weak partial metric space. A multi-valued map T : X →
CBq(X) is called H+

q -contraction if for every x, y ∈ X,
(i) there exists r in (0, 1) such that

H+
q (T (x) \ {x},T (y) \ {y}) ≤ r q(x, y),

(ii) for every x in X, y in T (x) and ε > 0, there exists z in T (y) such that
q(y, z) ≤ H+

q (T (y),T (x)) + ε.

Beg and Pathak[5] gave the following variant of Nadler’s fixed point theorem.
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Theorem 2.1. [5] Every H+
q - type multivalued contraction on a complete weak partial metric space

(X, q) has a fixed point.

Recently Aydi et al.[4] introduced H+
q - type Suzuki multivalued contraction mappings and

prove the following theorem.

Theorem 2.2. [4] Let (X, q) be a complete weak partial metric space, and let T : X → CBq(X) be
a multivalued mapping. Let ψ : [0, 1)→ (0, 1] be the non increasing function defined by

(2.2) ψ(r) =

1 if 0 ≤ r < 1
2

1 − r if 1
2 ≤ r < 1.

Suppose that there exists 0 ≤ r < 1 such that T satisfies the condition ψ(r)q(x,T x) ≤ q(x, y)
implies

H+
q (T x \ {x},Ty \ {y}) ≤ rq(x, y),

for all x, y ∈ X.
Suppose also that, for all x in X, y in T x , and t > 1, there exists z in Ty such that

q(y, z) ≤ tH+
q (Ty,T x).

Then T has a fixed point.

3 Main result
Now we state our main result.

Theorem 3.1. Let (X, q) be a complete weak partial metric space and let T : X → CBq(X) be a
multivalued mapping and ψ : [0, 1) → (0, 1] be the non-increasing function defined by (2.2). If
there exists 0 ≤ r < 1 such that T satisfies the condition

(3.1) ψ(r)q(x,T x) ≤ q(x, y) implies H+
q (T x \ {x},Ty \ {y}) ≤ rM(x, y),

where M(x, y) = max{q(x, y), q(x,T x), q(y,Ty)} for all x, y ∈ X.
Suppose also that for every x ∈ X, y ∈ T x and t > 1,∃ z ∈ Ty such that

(3.2) q(y, z) ≤ tH+
q (Ty,T x).

Then T has a fixed point.

Proof. Let r1 be a real number such that 0 ≤ r ≤ r1 < 1 and w0 ∈ X. Since Tw0 is nonempty, it
follows that if w0 ∈ Tw0, then proof is finished. Let w1 ∈ Tw0 be such that w0 , w1. Similarly
∃ w2 ∈ Tw1 such that w1 , w2. From (3.2) we have

(3.3) q(w1,w2) ≤
1
√

r1
H+

q (Tw0,Tw1).

Since ψ(r) ≤ 1, we have

ψ(r)q(w1,Tw1) ≤ q(w1,Tw1) ≤ q(w1,w2).

Using (3.1) in (3.3), we have

q(w1,w2) ≤
1
√

r1
H+

q (Tw0,Tw1)

≤
1
√

r1
H+

q (Tw0 \ {w0},Tw1 \ {w1})
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≤
r
√

r1
M(w0,w1) <

√
r1M(w0,w1)

=
√

r1 max{q(w0,w1), q(w0,Tw0), q(w1,Tw1)}
≤
√

r1 max{q(w0,w1), q(w0,w1), q(w1,w2)}.

If q(w0,w1) ≤ q(w1,w2) then

q(w1,w2) ≤
√

r1q(w1,w2)

but
√

r1 < 1 then we get a contradiction.
Thus, we have

q(w1,w2) ≤
√

r1q(w0,w1).

Continuing this process, we obtain a sequence {wn} in X such that

q(wn,wn+1) ≤ (
√

r1)nq(w0,w1).

Now, we prove that {wn} is a Cauchy sequence in (X, qs).
For all k ∈ N, we have

qs(wn,wn+k) ≤ q(wn,wn+k)
≤ q(wn,wn+1) + q(wn+1,wn+2) + ... + q(wn+k−1,wn+k)
≤ [(

√
r1)n + (

√
r1)n+1 + ... + (

√
r1)n+k−1]q(w0,w1)

≤
(
√

r1)n

1 −
√

r1
q(w0,w1)

−→ 0 as n→ ∞.
Hence, limn→∞ qs(wn,wn+k) = 0.
This implies that {wn} is a Cauchy sequence in (X, qs). Since (X, q) is complete, therefore (X, qs)

is also complete metric space. It follows that there exists u ∈ X such that limn→∞ wn = u in (X, qs).
Therefore, limn→∞ qs(wn, u) = 0.
From (2.1), we have

q(u, u) = lim
n→∞

q(wn, u) = lim
n,k→∞

q(wn,wk) = 0.

Now, from triangle inequality

q(u,T x) ≤ q(u,wn+1) + q(wn+1,T x)

and
q(wn+1,T x) ≤ q(wn+1,wn) + q(wn, u) + q(u,T x).

Taking limit in the above inequalities, we get

(3.4) q(u,T x) = lim
n→∞

q(wn+1,T x).

We claim that
q(u,T x) ≤ 2r max{q(u, x), q(x,T x)}, ∀ x ∈ X \ {u}.

Since, limn→∞ q(wn, u) = 0, ∃ n0 ∈ N such that q(wn, u) ≤ 1
3q(u, x), ∀ n ≥ n0.

As wn+1 ∈ Twn then we have

ψ(r)q(wn,Twn) ≤ q(wn,Twn) ≤ q(wn,wn+1)
≤ q(wn, u) + q(u,wn+1)

≤
1
3

q(u, x) +
1
3

q(u, x) =
2
3

q(u, x)
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≤ q(u, x) −
1
3

q(u, x)

≤ q(u, x) − q(wn, u)
≤ q(x,wn).

Hence, for any n ≥ n0 we get

ψ(r)q(wn,Twn) ≤ q(x,wn).

From (3.1) we have
H+

q (Twn,T x) ≤ rM(wn, x).

Since

q(wn+1,T x) ≤ δq(Twn,T x)
≤ 2H+

q (Twn,T x)
≤ 2rM(wn, x) = 2r max{q(wn, x), q(wn,Twn), q(x,T x)}
≤ 2r max{q(wn, u) + q(u, x), q(wn,wn+1), q(x,T x)}.

Taking limit as n→ ∞, we get

lim
n→∞

q(wn+1,T x) ≤ 2r max{q(u, x), q(x,T x)}.

From (3.4) we get

(3.5) q(u,T x) ≤ 2r max{q(u, x), q(x,T x)}, ∀ x ∈ X \ {u}.

Now, we claim that

(3.6) H+
q (T x,Tu) ≤ r max{q(x, u), q(x,T x), q(u,Tu)}

for all x ∈ X such that x , u.
For each n ∈ N, ∃ yn ∈ T x such that

q(u, yn) ≤ q(u,T x) +
1
n

q(u, x).

Therefore

(3.7) q(x,T x) ≤ q(x, yn)
≤ q(x, u) + q(u, yn)

≤ q(x, u) + q(u,T x) +
1
n

q(u, x)

≤ q(x, u) + 2r max{q(u, x), q(x,T x)} +
1
n

q(u, x).

Suppose max{q(u, x), q(x,T x)} = q(u, x) then

q(x,T x) ≤ (1 + 2r +
1
n

)q(u, x),

which implies
1

1 + 2r + 1
n

q(x,T x) ≤ q(u, x).

This further implies that
H+

q (Tu,T x) ≤ rM(x, u),
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and equation (3.6) holds.
Now if max{q(x, u), q(x,T x)} = q(x,T x) then from (3.7), we get

q(x,T x) ≤ q(x, u) + 2rq(x,T x) +
1
n

q(x, u)

(1 − 2r)(
1 + 1

n

) q(x,T x) ≤ q(x, u).

This also implies that
H+

q (T x,Tu) ≤ rM(x, u) and equation (3.6) holds.

Finally, let b ∈ Tu then

(3.8) q(b,Twn) ≤ δq(Tu,Twn).

Also, we know that

q(u,Tu) ≤ q(u,Twn) + q(Twn,Tu)
≤ q(u,wn+1) + q(b,Twn).

From (3.8), we have
q(u,Tu) ≤ q(u,wn+1) + δq(Tu,Twn).

Taking limit, we get

(3.9) q(u,Tu) ≤ lim
n→∞

δq(Tu,Twn).

Also we know that
q(wn+1,Tu) ≤ δq(Twn,Tu).

Taking limit, we have

(3.10) q(u,Tu) ≤ lim
n→∞

δq(Twn,Tu).

From the definition(2.3), we know that
1
2
[
δq(Twn,Tu) + δq(Tu,Twn)

]
= H+

q (Twn,Tu).

Taking limit in the above expression and using (3.9) and (3.10) we get
1
2
[
q(u,Tu) + q(u,Tu)

]
≤ lim

n→∞

1
2
[
δq(Twn,Tu) + δq(Tu,Twn)

]
= lim

n→∞
H+

q (Twn,Tu)

= lim
n→∞

H+
q (Twn \ {wn},Tu \ {u})

≤ lim
n→∞

r max{q(wn, u), q(wn,Twn), q(u,Tu)}

= rq(u,Tu)

which implies that

q(u,Tu) ≤ rq(u,Tu).

Since r < 1 then we get a contradiction.
Hence, we have q(u,Tu) = 0 = q(u, u). Since Tu is closed then u ∈ Tu = Tu.
Now we give an example to verify our result.
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Example 3.1. Let X =
{
0, 1

3 , 1
}

and define a weak partial metric q : X × X → [0,∞) as follows:
q(0, 0) = 0, q(1

3 ,
1
3 ) = 1

5 , q(1, 1) = 1
3 , q(0, 1) = q(1, 0) = 2

5 , q(1, 1
3 ) = q( 1

3 , 1) =
3
5 , q(0, 1

3 ) = q(1
3 , 0) = 1

4 .
Define a mapping T : X → CBq(X) by

T x =


{0} if x = 0
{1} if x = 1

3

{0, 1
3 } if x = 1.

Clearly (X, q) is a weak partial metric space.
Choose r = 0.9. From the definition of ψ we have ψ(0.9) = 0.1. To investigate the contraction

condition (3.1) holds for all x, y ∈ X, we assume the following cases:
Case (I)When x = 0, we have

ψ(r)q(0,T (0)) = 0 ≤ q(0, y), ∀ y ∈ X.

For y = 0, we have

H+
q
(
T (0) \ {0},T (0) \ {0}

)
= H+

q (φ, φ) = 0 ≤ rM(0, 0).

For y = 1
3 , we have

H+
q
(
T (0) \ {0},T (1

3 ) \ { 13 }
)

= H+
q (φ, {1}) = 0 ≤ rM(0, 1

3 ).

For y = 1, we have

H+
q
(
T (0) \ {0},T (1) \ {1}

)
= H+

q

(
φ,

{
0, 1

3

})
= 0 ≤ rM(0, 1).

Case (II)When x = 1
3 , we have

ψ(r)q
(1
3
,T

(1
3

))
= (0.1)q

(1
3
, 1

)
= 0.06 ≤ q

(1
3
, y

)
, ∀ y ∈ X.

For y = 0, we have

H+
q
(
T ( 1

3 ) \ { 13 },T (0) \ {0}
)

= H+
q ({1}, φ) = 0 ≤ rM( 1

3 , 0).

For y = 1
3 , we have

H+
q
(
T ( 1

3 ) \ { 13 },T (1
3 ) \ { 13 }

)
= H+

q ({1}, {1}) = 1
3 ≤ rM(1

3 ,
1
3 ) = r 3

5 .

For y = 1, we have

H+
q
(
T ( 1

3 ) \ { 13 },T (1) \ {1}
)

= H+
q

(
{1},

{
0, 1

3

})
= 1

2 ≤ rM( 1
3 , 1) = r 3

5 .

Case (III)When x = 1, we have

ψ(r)q(1,T (1)) = (0.1)q
(
1,

{
0,

1
3

})
= 0.04 ≤ q(1, y), ∀ y ∈ X.

For y = 0, we have

H+
q
(
T (0) \ {0},T (1) \ {1}

)
= H+

q

(
φ,

{
0, 1

3

})
= 0 ≤ rM(1, 0).
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For y = 1
3 , we have

H+
q
(
T (0) \ {0},T (1

3 ) \ { 13 }
)

= H+
q (φ, {1}) = 0 ≤ rM(0, 1

3 ) = r 3
5 .

For y = 1, we have

H+
q
(
T (1) \ {1},T (1) \ {1}

)
= H+

q

({
0, 1

3

}
,
{
0, 1

3

})
= 1

5 ≤ rM(1, 1) = r 2
5 .

Finally, we will enquire the condition (3.2) with t = 2. For this, we discuss the following
situations:
(i) If x = 0, then y ∈ T (0) = {0}, so ∃ z ∈ T (y) = {0} such that

0 = q(y, z) ≤ 2H+
q
(
T (y),T (x)

)
.

(ii) If x = 1
3 , then y ∈ T (1

3 ) = {1}, so ∃ z(say z = 0) ∈ T (1) = {0, 1
3 } such that

2
5

= q(y, z) ≤ 2H+
q

(
T (1),T

(1
3

))
= 1.

(iii) If x = 1, then y ∈ T (1) = {0, 1
3 }. If y = 0, then z = 0, and condition holds.

Also if y = 1
3 , then ∃ z ∈ T ( 1

3 ) = {1} such that
3
5

= q(y, z) ≤ 2H+
q

(
{1},

{
0,

1
3

})
= 1.

Hence all the conditions of Theorem 3.1 are satisfied. Here x = 0 is fixed point of T .
On the other hand the result of Aydi et al.[4] is not applicable. We see that

H+
q
(
T ( 1

3 ) \ { 13 },T (1
3 ) \ { 13 }

)
= H+

q ({1}, {1}) = 1
3 ≤ r 1

5 = rq( 1
3 ,

1
3 )

is not satisfied for any r ∈ (0, 1).
Acknowledgements. We are very much thankful to the worthy referee for his valuable suggestions
to bring the paper in its present form.
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Abstract

In this paper we introduce the notion of a Caristi-Banach type Zb
R

- contraction in the
framework of b-metric space endowed with a transitive relation that combine the ideas of
Caristi type contraction and Banach contraction with a help of simulation function. We present
an example to clarify the statement of the given result.
2010 Mathematics Subject Classifications: 47H10, 54H25.
Keywords and phrases: Caristi-Banach typeZb

R
- contraction, Simulation function, transitive

relation.

1 Introduction and preliminaries
In 1922, Polish mathematician Stefan Banach [2] gave a fixed point theorem. It is also known as
the Banach Contraction mapping theorem or principle (BCP). It is an important tool in the metric
fixed point theory. It confirms the existence and uniqueness of fixed point of certain self maps of
metric spaces and provides a constructive method to find fixed points. There are so many extension,
generalizations of BCP in different settings and there applications. Among them, In 1976, Caristi
[4] proved a fixed point theorem and applied to derive a generalization of the Contraction Mapping
Principle in a complete metric space. Recently, In 2019, E. Karapinar et al., [9] give a new fixed
point theorem in b-metric space which is inspired from both Caristi and Banach. b-metric space
introduced by Czerwik [5] to generalize the concept of metric space by introducing a real number
s ≥ 1 in the triangle inequality of metric space.

Inspired by E. Karapinar et al., [9] we introduce the notion of a Caristi-Banach type Zb
R
-

contraction in the framework of b-metric space endowed with a transitive relation that combine the
ideas of Caristi type contraction and Banach contraction with a help of simulation function. We
present an example also to clarify the statement of the given result.

Definition 1.1. [5] Let M be a non-empty set and s ≥ 1 be a given real number. A function
d : M × M → [0,∞) is said to be a b-metric space if, for all σ, ρ,w ∈ M, the following conditions
are satisfied:

(i) d(σ, ρ) = 0 iff σ = ρ;
(ii) d(σ, ρ) = d(ρ, σ);
(iii) d(σ,w) ≤ s[d(σ, ρ) + d(ρ,w)].

The triple (M, d, s) is called a b-metric space.
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It should be noted that, every metric space is a b-metric space with s = 1 and hence the class of
b-metric spaces is larger than the class of metric spaces. But a metric space need not be b-metric
space (see example 1.4 [14]).

Definition 1.2. [3] Let (M, d, s) be a b-metric space.

(i) A sequence (σn) in M is called b-convergent if and only if there exist σ ∈ M such that
d(σn, u)→ 0, as n→ ∞. In this case, we write limn→∞ σn → u.
(ii) (σn) in M is said to be b-Cauchy if and only if d(σn, σm)→ 0, as n,m→ ∞.
(iii) The b-metric space (M, d, s) is said to be b-complete if every b-Cauchy sequence (σn) in M is
convergent.

Recently, in 2015, Khojasteh et al. [10] introduced the notion of simulation function with a
view to consider a new class of contractions, called Z-contraction with respect to a simulation
function.

Definition 1.3. [10] A mapping ζ : [0,∞) × [0,∞)→ R is a simulation function if:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s − t, s, t > 0;
(ζ3) (tn) and (sn) are sequences in (0,∞) satisfying limn→∞ tn = limn→∞ sn > 0, then

lim supn→∞ ζ(tn, sn) < 0.

Set of all simulation functions is denoted by Z. For examples of simulation function we may
refer to ([7], [8], [10] ).

In what follows (M, d), R, N and N0 respectively, stand for a metric space, a non-empty binary
relation defined on a non-empty setM, the set of natural numbers and the set of whole numbers.

Definition 1.4. [12] A binary relation R on a non-empty setM is defined as a subset ofM×M.
We say that “σ is R-related to ρ” iff (σ, ρ) ∈ R.

Definition 1.5. [13] A binary relation R is complete if either (σ, ρ) ∈ R or (ρ, σ) ∈ R (i.e. [ρ, σ] ∈
R), ∀ σ, ρ ∈ M.

Definition 1.6. [1] Let F be a self-mapping defined on a non-empty setM. Then binary relation
R is F -closed if

(σ, ρ) ∈ R ⇒ (Fσ,F ρ) ∈ R, σ, ρ ∈ M.

Definition 1.7. [12] The symmetric closure Rs is the smallest symmetric relation containing R, i.e.,
Rs = R ∪ R−1.

Proposition 1.1. [1] If R is F -closed, then Rs is also F -closed.

Definition 1.8. [1] A sequence (σn) inM is R-preserving if

(σn, σn+1) ∈ R, n ∈ N0.

Definition 1.9. Let X, d) be a d-metric space. Then a binary relation R is transitive if (σ, ρ) ∈ R
and (ρ, η) ∈ R implies that (σ, η) ∈ R
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Definition 1.10. [16] Let (M, d, s) be a b-metric space. A binary relation R on M is (b-d)-self-
closed if (σn) is an R-preserving sequence and

σn → σ as n→ ∞,
then there exists a subsequences (σnk) of (σn) with [σnk , σ] ∈ R, k ∈ N.

Definition 1.11. [15] A subset D ofM is R-directed if for each pair of points σ, ρ ∈ D, there exists
η ∈ M satisfying (σ, η) ∈ R and (ρ, η) ∈ R.

Definition 1.12. [11] For σ, ρ ∈ M, a path of length k in R from σ to ρ is a finite sequence
(η0, η1, η2, ..., ηk) ⊂ M satisfying:
(i) η0 = σ and ηk = ρ,
(ii) (ηi, ηi+1) ∈ R for each i (0 ≤ i ≤ k − 1) (k is a natural number).

Clearly a path of length k necessitate k + 1 elements ofM, which are not essentially distinct.

In the following
M(F ;R) := {σ ∈ M : (σ,Fσ) ∈ R}, where F :M→M and γ(σ, ρ,R) is the class of all paths in
R from σ to ρ.

2 Main Result
In this section, the notation Zb

R
denotes the set of simulation function in b-metric space endowed

with an given binary relation R.

Definition 2.1. Let F be a self mapping on a b-metric space (M, d, s) equipped with a binary
relation R. If there exist ζ ∈ Zb

R
and φ :M→ [0,∞) such that

d(σ,Fσ) > 0⇒ ζ(sd(Fσ,F ρ), (φ(σ) − φ(Fσ))d(σ, ρ)) ≥ 0,(2.1)
∀ σ, ρ ∈ M, (σ, ρ) ∈ R, then F is called Caristi-Banach typeZb

R
-contraction.

Theorem 2.1. Let (M, d, s) be a complete b-metric space equipped with a binary relation R and
F be a self mapping onM. Let the following hypotheses holds:
(i)M(F ;R) is non-empty;
(ii) R is F -closed and transitive;
(iii) either F is R- continuous or R is (b-d)-self-closed;
(iv) F is Caristi-Banach typeZb

R
-contraction with respect to ζ ∈ Z. Then F has a fixed point.

Proof. Let σ0 be an arbitrary point in M(F ;R). Put σn = Fσn−1 = F nσ0 ∀n ∈ N. Let
Cn+1 = d(σn, σn+1), if for some n′ ∈ N0, σn′ = σn′+1, then σn′ is a fixed point of F and so the proof
is complete. Thus, we let σn , σn+1 ∀ n ∈ N0 i.e., Cn+1 > 0. Since (σ0,Fσ0) ∈ R, using the
F -closedness of R, we obtain

(Fσ0,F
2σ0), (F 2σ0,F

3σ0), ..., (F nσ0,F
n+1σ0), ... ∈ R.

Thus
(σn, σn+1) ∈ R,(2.2)

and the sequence (σn) is R- preserving. Since F is Caristi-Banach typeZb
R
-contraction, we have

0 ≤ ζ
(
sd(Fσn−1,Fσn), (φ(σn−1) − φ(Fσn−1))d(σn−1, σn)

)
< (φ(σn−1) − φ(Fσn−1))d(σn−1, σn) − sd(Fσn−1,Fσn),

yields
Cn+1 = d(σn, σn+1) = d(Fσn−1,Fσn) ≤ sd(Fσn−1,Fσn)

< (φ(σn−1) − φ(Fσn−1))d(σn−1, σn)
= (φ(σn−1) − φ(σn))Cn.

So we have
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0 < Cn+1
Cn
≤ (φ(σn−1) − φ(σn)) for each n ∈ N.

Thus the sequence (φ(σn)) is necessarily non-negative and decreasing. Hence, it converges to
some a ≥ 0. On the other hand, for each n ∈ N, we have

n∑
k=1

Ck+1

Ck
≤

n∑
k=1

(φ(σk−1) − φ(σk))

= (φ(σ0) − φ(σ1)) + (φ(σ1) − φ(σ2)) + ... + (φ(σn−1) − φ(σn))
= (φ(σ0) − φ(σn))→ φ(σ0) − a < ∞, as n→ ∞.

It means that
∞∑

n=1

Cn+1

Cn
< ∞.

Accordingly, we have

lim
n→∞

Cn+1

Cn
= 0.(2.3)

On account of (2.3), for % ∈ (0, 1), there exist n0 ∈ N such that
Cn+1

Cn
≤ %, ∀ n ≥ n0.(2.4)

yields that

d(σn, σn+1) ≤ %d(σn−1, σn), ∀ n ≥ n0.(2.5)

Now using Lemma 3.1 [17] we obtain that the sequence (σn) is Cauchy. Thus from the
completeness of M, there exist σ ∈ M such that σn → σ as n → ∞. By (iii), if F is R-
continuous then Fσn → Fσ as n→ ∞.

Alternately, let us assume that R is (b-d)-self-closed. As (σn) is an R preserving sequence and
σn → σ as n→ ∞. So there exist a subsequence (σnk) of (σn) with [σnk , σ] ∈ R, ∀ k ∈ N0. Notice
that [σnk , σ] ∈ R, ∀ k ∈ N0 implies that either (σnk , σ) ∈ R, ∀ k ∈ N0 or (σ,σnk) ∈ R, ∀ k ∈ N0.
Applying condition (iv) to (σnk , σ) ∈ R, ∀ k ∈ N0, we have

0 ≤ ζ
(
sd(Fσnk ,Fσ), (φ(σnk) − φ(F (σnk))d(σnk , σ)

)
< (φ(σnk) − φ(F (σnk))d(σnk , σ) − sd(Fσnk ,Fσ)

=⇒ sd(Fσnk ,Fσ) < (φ(σnk) − φ(F (σnk))d(σnk , σ).

Using the triangle inequality together with the inequality above, we derive that

d(σ,Fσ) ≤ s[d(σ,σnk+1) + d(σnk+1,Fσ)]
= s[d(σ,σnk+1) + d(Fσnk ,Fσ)]
< sd(σ,σnk+1) + (φ(σnk) − φ(F (σnk))d(σnk , σ),

putting n→ ∞ and using σnk → σ, above inequality→ 0 as n→ ∞. Consequently, we obtain that
d(σ,Fσ) = 0, i.e., Fσ = σ.

Similarly, if (σ,σnk) ∈ R, ∀ k ∈ N0, we obtain d(Fσ,σ) = 0. So that Fσ = σ, i.e., σ is a fixed
point of F .

Theorem 2.2. Under the conditions of Theorem 2.1, if
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(v) γ(σ, ρ,R) , φ,

then F has a unique fixed point.

Proof. Let σ∗, ρ∗ are two fixed point of F such that σ∗ , ρ∗. Since γ(σ∗, ρ∗,R) , φ, there exists
a path (η0, η1, η2, ..., ηk) of some finite length k in R from σ to ρ so that

η0 = σ∗, ηk = ρ∗, (ηi, ηi+1) ∈ R, i = 0, 1, 2, ..., k − 1.
Since R is transitive,

(η0, ηk) ∈ R.
Therefore

0 ≤ ζ
(
sd(F η0,F ηk), (φ(η0) − φ(F η0))d(η0, ηk)

)
< (φ(η0) − φ(F η0))d(η0, ηk) − sd(F η0,F ηk)
= (φ(σ∗) − φ(Fσ∗))d(σ∗, ρ∗) − sd(Fσ∗,F ρ∗) < 0,

which is a contradiction. Thus F has a unique fixed point.

Example 2.1. Let (M, d) = [1, 4] and d(σ, ρ) = (σ − ρ)2. Then (M, d, s) be a complete b-metric
space with coefficient s = 2. Define a binary relation

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)}
onM and the mapping F :M→M by

F (σ) =


1, if 1 ≤ σ ≤ 2;
2, if 2 < σ ≤ 3;
3, if 3 < σ ≤ 4.

Let φ : M → [0,∞) defined by φ(σ) = 3σ, σ ∈ [0,∞). Since for (σ, ρ) ∈ R we have
(Fσ,F ρ) ∈ R which implies that R is F - closed and transitive. For σ = 2,Fσ = 1, (σ,Fσ) ∈ R
i.e.,M(F ;R) , φ. If we take any R- preserving sequence (σn) with σn → σ and (σn, σn+1) ∈ R, ∀
n ∈ N0, this implies that there exists an integer N ∈ N0 such that σn = σ for all n ≥ N. So, we can
take a subsequence (σnk) of the sequence (σn) such that σnk = σ for all k ∈ N0,. which amounts to
saying that [σnk , σ] ∈ R, for all k ∈ N0. Therefore, R is (b-d)-self-closed.

Now, with a view to check that F is Caristi-Banach typeZb
R
-contraction, let for all σ ∈ M such

that d(σ,Fσ) > 0 and (σ, ρ) ∈ R, (in this example σ , 1), we have
0 ≤ ζ

(
sd(Fσ,F ρ), (φ(σ) − φ(Fσ))d(σ, ρ)

)
.

Thus all the hypotheses of Theorems 2.1 and 2.2 are verified. Hence σ = 1 is the unique fixed
point of F .

Remark 2.1. It is interesting to see that in Example 2.1 at (2.4), it is not a b-simulation function
[6] i.e.,

0 ≤ ζ
(
2d(F 2,F 4), d(2, 4)

)
< d(2, 4) − 2d(1, 3) = −4 < 0,

which is a contradiction and if we take the usual metric on place of d(σ, ρ) = (σ − ρ)2, then at
the same point we notice that d(F 2,F 4) = d(2, 4). Thus it is not satisfy the BCP [2] and also the
contractive condition (iv) of Theorem 3.1 [1].

Remark 2.2. In Example 2.1, observe that the binary relation R is nonreflexive, nonirreflexive,
nonsymmetric and nonantisymmetric. Therefore it is none of near-order, partial order, pre-
order and tolerance. Thus, it is worth mentioning that Theorem 2.2 is genuine extension and
improvement of Alam and Imdad [1] in b-metric space.

Acknowledgement. The authors are thankful to the referee for his valuable suggestions to bring
the paper in its present form.
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Abstract

The conformal β− change of Finsler metric L(x, y) is given by L∗(x, y) = eσ(x) f (L(x, y),
β(x, y)), where σ(x) is a function of x, β(x, y) = bi(x)yi is a one-form on the underlying
manifold Mn, and f (L(x, y), β(x, y)) is a homogeneous function of degree one in L and β.
Let Fn and F∗n be Finsler spaces with metric functions L and L∗ respectively. In this paper
we study the hypersurface of F∗n and find condition under which this hypersurfcae becomes
a hyperplane of first kind, a hyperplane of second kind and a hyperplane of third kind. In this
endeavour we connect quantities of F∗n with those of Fn. When the hypersurface of F∗n is
a hyperplane of first kind, we investigate the conditions under which it becomes a Landsberg
space, a Berwald space, or a locally Minkowskian space.
2010 Mathematics Subject Classifications: 53B40, 53C60.
Keywords and phrases: Finsler space, Hypersurface, Cartan-parallel, Hyperplane, Confor-
mal β−change, Homothetic β−change.

1 Introduction
Let Fn = (Mn, L) be an n−dimentional Finsler space on the differentiable manifold Mn equipped
with the fundamental function L(x, y). B. N. Prasad and Bindu Kumari [10] have studied the
general β−change, i.e., L′(x, y) = f (L, β), where f is positively homogeneous function of degree
one in L and β, β(x, y) = bi(x)yi is a one-form on Mn.

The conformal theory of Finsler space has been dealt by M. Hashiguchi [3], H. Izumi [4, 5],
M. Kitayama [6], S. H. Abed [1, 2]. The conformal change is given by L′′(x, y) = eσ(x)L(x, y),
where σ(x) is a function of position only. In 2009 and 2010, Nabil L. Youssef, S. H. Abed and S.
G. Elgendi [14, 15] introduced the transformation L′′(x, y) = f (eσL, β), which is general β−change
of conformally changed Finsler metric L.

H. S. Shukla and Neelam Mishra [11] have changed the order of combination of the above
two changes as
(1.1) L∗(x, y) = eσ(x) f (L(x, y), β(x, y)),
where σ(x) is a function of x only and β(x, y) = bi(x)yi is a one-form on Mn. They have called
this change as conformal β−change of Finsler metric and have studied its geometrical properties in
[11] and [12]. When σ = 0, the change (1.1) reduces to general β−change. When σ = constant, it
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becomes a homothetic β−change. Some properties of homothetic β−change with bi(x) as Cartan-
parallel have been studied by H. S. Shukla and Neelam Mishra in [13].

In 1985 M. Matsumoto [7] studied the theory of Finsler hypersurfaces. In 2011, S. K.
Narasimhamurthy et al. [9] have considered hypersurface of Finsler space with metric L′′′(x, y) =

f (eσL, β) and studied its geometric properties.
In this paper we shall study the hypersurface of F∗n = (Mn, L∗).

2 Hypersurface of Fn

The metric tensor gi j(x, y) and Cartan’s C−tensor Ci jk(x, y) of Fn are given by

gi j =
1
2
∂2L2

∂yi ∂y j , Ci jk =
1
2
∂gi j

∂yk

respectively. Let CΓ = (F i
jk,G

i
j,C

i
jk) denote the Cartan’s connection of Fn.

Let (Mn−1, L) be a hypersurface of (Mn, L) given by

(2.1) xi = xi(uα).

Let us suppose that the functions (2.1) are at least of class C3 in uα and the projection factor
B j
β = ∂x j

∂uβ are such that their matrix has maximum rank (n−1). We shall use the following notations:

Bi
αβ =

∂2xi

∂uα∂uβ
, Bi

0β = vαBi
αβ, Bi j

αβ = Bi
αB j

β,

where vα is the element of support for the hypersurface satisfying the relation yi = Bi
α(u)vα. The

fundamental metric function of the hypersurface is given by

L(uα, vα) = L(xi(uα), Bi
αvα).

At each point (uα) of Fn−1 the unit normal vector N i(u, v) is defined by

(2.2) gi jBi
αN j = 0, gi j N i N j = 1.

If (Bα
i ,Ni) is the inverse matrix of (Bi

α,N
i), we have

(2.3) Bi
αBβ

i = δβα, Bi
αNi = 0, N iNi = 1 and Bi

αBα
j + N iN j = δi

j.

Making use of the inverse matrix (gαβ) of (gαβ), we get

(2.4) Bα
i = gαβgi jB

j
β.

For the induced Cartan’s connection ICΓ = (Fα
βγ,G

α
β ,C

α
βγ) of Fn−1 induced from the Cartan’s

connection CΓ = (F i
jk,G

i
j,C

i
jk) of Fn, the second fundamental h−tensor Hαβ and the normal

curvature vector Hβ are respectively given by [8]:

(2.5) Hαβ = Ni(Bi
αβ + F i

jkB j
αBk

β) + MaHβ, Hβ = Ni(Bi
0β + F i

0 jB
j
β),

where Mα = Ci jkBi
αN jNk.

Contracting Hαβ by vα, we get H0β = Hαβvα = Hβ. The second fundamental v−tensor Mαβ is
given by [8]:

(2.6) Mαβ = Ci jkBi
αB j

βN
k.

The Gauss characteristic equation with respect to ICΓ is written as

(2.7) Rαβγδ = Ri jkhBi jkh
αβγδ + Pi jkh(Bh

γHδ − Bh
δHγ)B

i j
αβH

k + HαγHβδ − HαδHβγ.
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3 Fundamental quantities of F∗n
We shall denote the quantities corresponding to F∗n by putting star on the top of them.
Differentiating equation (1.1) with respect to yi, we have

(3.1) l∗i = eσ( f1li + f2bi),

where the subscripts 1 and 2 denote the partial derivatives with respect to L and β respectively.
Differentiating (3.1) with respect to y j, we get

(3.2) h∗i j = e2σ(phi j + q0mim j),

where mi = bi −
β

L Li, p =
f f1
L , q0 = f L2w, w =

f11
β2 =

− f12
Lβ =

f22
L2 .

From (3.1) and (3.2), we get the following relation between metric tensors of Fn and F∗n:

(3.3) g∗i j = h∗i j + l∗i l∗j = e2σ{pgi j + p0bib j + p1(lib j + l jbi) + p2lil j},

where

(3.4) p0 = q0 + f 2
2 , p1 = f f1 − f Lβw, p2 =

( f f1 − f Lβw)β
L

.

From (3.3), we get the following relations between Cartan’s C−tensors of Fn and F∗n:

(3.5) C∗i jk = e2σ{pCi jk +
p

2L
(hi jmk + h jkmi + hkim j) +

qL2

2
mim jmk},

where q = 3 f2w + f w2;

(3.6)
C∗hi j =Ch

i j +
p

2 f f1
(hi jmh + hh

jmi + hh
i m j) +

qL3

2 f f1
mim jmh

−
L
f t

C.i jnh −
pL4

2 f 2 f1t
hi jnh −

(2pL + qL44)
2 f 2 f1t

mim jnh,

where C. jk = Ci jkbi, nh = f L2wbh + plh, hi
j = gilhl j.

The spray coefficient of F∗n is given by [13]:

(3.7) G∗i =
1
2
γ∗ijky

jyk = Gi + Di,

where the vector Di is given by

(3.8) Di =
f2L
f1

si
0 −

L
f f1t

( f1r00 − 2L f2sr0br)(pyi − L2w f bi) + σ0yi −
1
2

f 2σi,

with

(3.9) 2ri j = bi| j + b j|i, 2si j = bi| j − b j|i, si
0 = gir sr jy j, σk =

∂σ

∂xk , σi = gi jσ j.

and ‘0’ standing for contradiction with yk, viz., σ0 = σkyk, sr0 = srkyk, etc.
The Cartan’s non-linear connection of F∗n is given by [13]:

(3.10) G∗ij = Gi
j + Di

j,

where the tensor Di
j = ∂̇ jDi is given by

Di
j =

Le2σ

f f1
Ai

j − QiAr jbr +
pL f2

f 2 f 2
1 t

b0| j{−L f1bi + ( fβ − L24 f2)yi}(3.11)

+ σ jyi − fσi( f1 f j + f2b j),

in which

Ai j =
1
2

r00Bi j + e2σ f f2si j + si0Q j −
(e2σ f f1

L
Cim j + Vi jm

)
Dm,
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Ai
j = girAr j, Vi jm = gs jV s

im, Qi = e2σ{(p + f L2w)yi + f 2
2 bi},

B jk =
1
2

e2σ(ph jk +
1
2

qL2m jmk), ∂̇kQ j =
1
2

B jk.

The Berwald’s connection coefficient of F∗n is given by [13]:

(3.11a) G∗ijk = Gi
jk + Bi

jk,

where Bi
jk = ∂̇kDi

j. The Cartan’s connection coefficient of F∗n is given by [13]:

(3.12) F∗ijk = F i
jk + Di

jk,

where

Di
jk =

[e−2σL
f f1

gis − Qibs + ys e−2σpL
f 3 f1t

{−L f bi + ( fβ − 4L2 f2)yi}
]

(3.13)

(Bs jb0|k + Bskb0| j − Bk jb0|s + ss jQk + sskQ j + rk jQs

+
f f1e2σ

L
C jkrDr

s + V jkrDr
s −

f f1e2σ

L
CskmDm

j − Vs jmDm
k

−
f f1e2σ

L
Cs jmDm

k − VskmDm
j ) − e−2σσig∗jk.

The tensor Di
jk, called the difference tensor, has the following properties:

(3.14) Di
j0 = Bi

j0 = Di
j, Di

00 = 2Di.

The (v)h−torsion tensor of Fn is defined as [8]:

(3.15) Ri
jk = δkGi

j − δ jGi
k, δk = ∂k −Gr

k∂̇r,

the h−curvature tensor of Fn is defined as [8]:

(3.16) Ri
h jk = θ( j, k)[δkF i

h j − Fm
h jF

i
mk + Ci

hmRm
jk],

and the (v)hv−torsion tensor of Fn is defined as [8]:

(3.17) Pi
jk = ∂̇kGi

j − F i
jk.

4 Hypersurface of F∗n

Let us consider a hypersurface Fn−1 = (Mn−1, L(u, v)) of Fn and another hypersurface F∗n−1 =

(Mn−1, L
∗
(u, v)) of F∗n, both hypersurfaces being represented by the same equation (2.1). Let N i

be the unit normal vector at each point of Fn−1, which is invariant under the conformal β−change.
The unit normal vector N∗i(u, v) of F∗n−1 is uniquely determined by

(4.1) g∗i jB
i
αN∗i = 0, g∗i jN

∗iN∗ j = 1.

Transvecting the first equation of (2.2) by vα, we get

(4.2) yiN i = 0.

Contracting (3.3) by N iN j and using (2.2) and (4.2), we have

(4.3) g∗i jN
iN j = e2σ{p + p0(biN i)2}.

This gives

g∗i j
[
±

N i

eσ
√
{p + p0(biN i)2}

][
±

N j

eσ
√
{p + p0(biN i)2}

]
= 1.
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Hence, we can put

(4.4) N∗i =
N i

eσ
√
{p + p0(biN i)2}

,

where we have chosen the positive sign of the radical in order to fix the orientation. Using equations
(2.2) and (4.2), the first condition of (4.1) gives

(4.5) (p0biBi
α + p1liBi

α)
b jN j

eσ
√
{p + p0(biN i)2}

= 0.

Suppose that p0biBi
α + p1liBi

α = 0. Then transvecting it by vα, we get p0β + p1L = 0. But this
is impossible as L and β are independent. Hence

(4.6) b jN j = 0.

Therefore (4.4) is rewritten as

(4.7) N∗i =
1

eσ
√

p
N i.

Thus, we have

Proposition 4.1. For a field of linear frame (Bi
α,N

i) of Fn, there exists a field of linear frame
(Bi

α,N
∗i) of F∗n such that the conditions (4.1) are satisfied along F∗n−1 and bi is tangential to both

the hypersurfaces Fn−1 and F∗n−1.
The quantities B∗αi are uniquely defined along F∗n−1 by

B∗αi = g∗αβg∗i jB
j
β,

where (g∗αβ) is the inverse matrix of (g∗αβ). Let (B∗αi ,N
∗
i ) be the inverse matrix of (Bi

α,N
∗i). Then,

we have
Bi
αB∗βi = δβα, Bi

αN∗i = 0, N∗iN∗i = 1, B∗αi N∗i = 0.

Also, Bi
αB∗αj + N∗iN∗j = δi

j, where

(4.8) N∗i = eσ
√

p Ni.

From (4.8) and (2.5), we get

(4.9) H∗α = eσ
√

p Ni(Bi
0β + F∗i0 jB

j
β).

If each path of a hypersurface Fn−1 with respect to the induced connection is also a path of
the enveloping space Fn, then Fn−1 is called a hyperplane of the first kind. A hyperplane of the first
kind is characterized by Hα = 0.

We shall use the following theorem which has been proved in [13]:

Theorem 4.1. Under the conformal β−change (1.1) consider the following two assertions:

(1) The covariant vector field bi(x) is Cartan-parallel.
(2) The difference tensor Di

jk vanishes identically.

Then we have:

(a) If (1) and (2) hold, then σ is homothetic.
(b) If σ is homothetic, then (1) and (2) are equivalent.
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Let σ be homothetic and bi(x) be Cartan-parallel in Fn. Then from (4.9), (2.5) and
Theorem 4.1., we get

(4.10) H∗α = eσ
√

p Hα.

From (4.10) we find that H∗α = 0 iff Hα = 0. Thus we have the theorem:

Theorem 4.2. Let σ be homothetic and bi(x) be Cartan-parallel in Fn. Then the hypersurface
F∗n−1 is a hyperplane of the first kind iff the hypersurface Fn−1 is a hyperplane of the first kind.

Next, contracting (3.5) by Bi
αN∗ jN∗k, making use of (4.7), Mα = Ci jkBi

αN jNk, miN i = 0,
biN i = 0, h jkN jNk = 1 and hi jBi

αN j = 0, we get

(4.11) M∗
α = Mα.

To compute H∗αβ we use (2.5), (4.7), (4.10), (4.11) and Theorem 4.1 to get

(4.12) H∗αβ = eσ
√

p Hαβ.

If each h−path of a hypersurface Fn−1 with respect to the induced connection is also an h−path
of the enveloping space Fn, then Fn−1 is called a hyperplane of the second kind. A hyperplane of
the second kind is characterized by Hα = 0, Hαβ = 0. From (4.12) we find that H∗αβ = 0 iff Hαβ = 0.
Therefore from (4.10) and (4.12) we have the theorem:

Theorem 4.3. Let σ be homothetic and bi(x) be Cartan-parallel in Fn. Then the hypersurface
F∗n−1 is a hyperplane of the second kind iff the hypersurface Fn−1 is a hyperplane of the second
kind.

Finally, contracting (3.5) by Bi
αB j

βN
∗k and making use of (2.6), (4.7), miN i = 0, hi jBi

αN j = 0
and Theorem 4.1, we have

(4.13) M∗
αβ = eσ

√
p Mαβ.

If the unit normal vector of Fn−1 is parallel along each curve of Fn−1, then Fn−1 is called a
hyperplane of the third kind. A hyperplane of the third kind is characterized by Hα = 0, Hαβ = 0
and Mαβ = 0. Hence from (4.10), (4.12) and (4.13), we have the theorem:

Theorem 4.4. Let σ be homothetic and bi(x) be Cartan-parallel in Fn. Then the hypersurface
F∗n−1 is a hyperplane of the third kind iff the hypersurface Fn−1 is a hyperplane of the third kind.

For hyperplane of the first kind, the (v)hv−torsion tensor is given by [7]:

(4.14) Pα
βγ = Bα

i Ki
βγ,

where
Ki
βγ = Pi

jkB jk
βγ.

Using (4.14) and the last relation of (2.3), we get

(4.15) Ki
βγ = Bi

δP
δ
βγ + N iNhKh

βγ.

Under homothetic β−change with bi(x) as Cartan-parallel it has been proved in [13] that

(i) a Landsberg space remains a Landsberg space,
(ii) a Berwald space remains a Berwald space,

(iii) a locally Minkowskian space remains a locally Minkowskian space.
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When σ is homothetic and bi(x) is Cartan-parallel, we have K∗iβγ = Ki
βγ, and then it follows

that
(4.16) P∗αβγ = B∗αi Ki

βγ.

On substituting (4.15) in (4.16) and using (2.3), we get
(4.17) P∗αβγ = Pα

βγ.

Thus we have the theorem:

Theorem 4.5. Let σ be homothetic and bi(x) be Cartan-parallel in Fn. Then the hyperplane F∗n−1

of the first kind is a Landsberg space iff the hyperplane Fn−1 of the first kind is a Landsberg space.
For hyperplane of the first kind, the Berwald connection coefficients Gα

βγ are given by [7]:
(4.18) Gα

βγ = Bα
i Ai

βγ,

where
Ai
βγ = Gi

jkB jk
βγ + Bi

βγ.

Using (4.18) and the last relation of (2.3), we get
(4.19) Ai

βγ = Bi
δG

δ
βγ + N iNhAh

βγ.

When σ is homothetic and bi(x) is Cartan-parallel, we have G∗ijk = Gi
jk. Then A∗iβγ = Ai

βγ and it
follows that
(4.20) G∗αβγ = B∗αi Ai

βγ.

On substituting (4.19) in (4.20) and using (2.3), we get
(4.21) G∗αβγ = Gα

βγ.

Then we have the theorem:

Theorem 4.6. Let σ be homothetic and bi(x) be Cartan-parallel in Fn. Then the hyperplane F∗n−1

of the first kind is a Berwald space iff the hyperplane Fn−1 of the first kind is a Berwald space.
From (2.7) the Gauss characteristic equation of hyperplane Fn−1 of the first kind is written as

(4.22) Rαβγδ = Ri jkhBi jkh
αβγδ + HαγHβδ − HαδHβγ.

The Gauss characteristic equation of hyperplane F∗n−1 of the first kind is similarly written as
(4.23) R∗αβγδ = R∗i jkhBi jkh

αβγδ + H∗αγH∗βδ − H∗αδH
∗
βγ.

Making use of the equation (4.12), the above equation becomes
(4.24) R∗αβγδ = R∗i jkhBi jkh

αβγδ + e2σp(HαγHβδ − HαδHβγ).
Equations (4.24) and (4.22) together give

(4.25) R∗αβγδ = e2σpRαβγδ + (R∗i jkh − e2σpRi jkh)Bi jkh
αβγδ.

We know that when σ is homothetic and bi(x) is Cartan-parallel, then if Fn is locally
Minkowskian, so is F∗n; i.e. R∗i jkh = 0 iff Ri jkh = 0. Under these conditions the equation (4.25)
reduces to

R∗αβγδ = e2σpRαβγδ.

Thus, in view of the Theorem 4.6, we have the theorem:

Theorem 4.7. Let σ be homothetic, bi(x) be Cartan-parallel and Fn be a locally Minkowskian
space. Then the hyperplane F∗n−1 of the first kind is a locally Minkowskian space iff the hyperplane
Fn−1 of the first kind is a locally Minkowskian space.
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Abstract

In recent papers, new sets of Sheffer and Brenke polynomials based on higher order
Bell numbers, and several integer sequences related to them have been studied. In this
article new sets of Sheffer polynomials are introduced defining a sort of adjointness property.
As an application, we show the adjoint set of Actuarial polynomials and derive their main
characteristics.
2010 Mathematics Subject Classifications: 33C99, 34L99, 11B73
Keywords and phrases: Sheffer polynomials, Generating functions, Monomiality principle,
Actuarial polynomials, Combinatorial analysis.

1 Introduction
In recent articles [24, 8], new sets of Sheffer and Brenke polynomials [7] based on higher order Bell
numbers, have been studied. Furthermore, several integer sequences associated with the considered
polynomials sets both of exponential and logarithmic type have been introduced.

In this article adjoint sets of Sheffer polynomials are considered and a particular case is
analyzed.

2 Sheffer polynomials
The Sheffer polynomials {sn(x)} are introduced [26] by means of the exponential generating
function [28] of the type:

(2.1) A(t) exp(xH(t)) =

∞∑
n=0

sn(x)
tn

n!
,

where

A(t) =

∞∑
n=0

an
tn

n!
, (a0 , 0),(2.2)

H(t) =

∞∑
n=0

hn
tn

n!
, (h0 = 0).

According to a different characterization (see [25, p. 18]), the same polynomial sequence can
be defined by means of the pair (g(t), f (t)), where g(t) is an invertible series and f (t) is a delta
series:

g(t) =

∞∑
n=0

gn
tn

n!
, (g0 , 0),(2.3)
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f (t) =

∞∑
n=0

fn
tn

n!
, ( f0 = 0, f1 , 0).

Denoting by f −1(t) the compositional inverse of f (t), i.e. such that
f
(

f −1(t)
)

= f −1 ( f (t)) = t,

the exponential generating function of the sequence {sn(x)} is given by

(2.4)
1

g[ f −1(t)]
exp

(
x f −1(t)

)
=

∞∑
n=0

sn(x)
tn

n!
,

so that

(2.5) A(t) =
1

g[ f −1(t)]
, H(t) = f −1(t).

When g(t) ≡ 1, the Sheffer sequence corresponding to the pair (1, f (t)) is called the associated
Sheffer sequence {σn(x)} for f (t), and its exponential generating function is given by

(2.6) exp
(
x f −1(t)

)
=

∞∑
n=0

σn(x)
tn

n!
.

A list of known Sheffer polynomial sequences and their associated ones can be found in [5, 6].

3 Adjointness for Sheffer polynomial sequences
According to the above considerations, Sheffer polynomials are characterized both by the ordered
couples (A(t),H(t)), or by (g(t), f (t)).

Definition 3.1. Adjoint Sheffer polynomials are defined by interchanging the ordered couple
(A(t),H(t)) with (g(t), f (t)), when writing the generating function.

Here and in the following the tilde “∼”, above the symbol of a polynomial set stands for the
adjective “adjoint”.

Examples of adjoint polynomial sets are listed here.
Adjoint-Hermite polynomials

A(t) = exp(t2/4), H(t) = t/2,(3.1)

G(t, x) = exp
[
t(t + 2x)

4

]
=

∞∑
n=0

H̃en(x)
tn

n!
.

Adjoint-generalized Hermite polynomials

A(t) = exp [(t/ν)m] , H(t) = t/ν,(3.2)

G(t, x) = exp
[( t
ν

)m
+

xt
ν

]
=

∞∑
n=0

H̃(m)
n (x)

tn

n!
.

Adjoint modified Pidduck polynomials

A(t) =
2

et + 1
, H(t) =

et − 1
et + 1

,(3.3)

G(t, x) =
2

et + 1
exp

[
x
(
et − 1
et + 1

)]
=

∞∑
n=0

P̃n(x)
tn

n!
.

Adjoint Actuarial polynomials

A(t) = (1 − t)−β, H(t) = log(1 − t),(3.4)
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G(t, x) = (1 − t)x−β =

∞∑
n=0

α̃(β)
n (x)

tn

n!
.

Adjoint Poisson-Charlier polynomials
A(t) = exp

(
a(et − 1)

)
, H(t) = a

(
et − 1

)
,(3.5)

G(t, x) = exp
(
a(1 + x)(et − 1)

)
=

∞∑
n=0

c̃n(x; a)
tn

n!
.

Adjoint Peters polynomials
A(t) =

(
1 + eλt

)µ
, H(t) = et − 1,(3.6)

G(t, x) =
(
1 + eλt

)µ
exp

(
x(et − 1)

)
=

∞∑
n=0

s̃n(x; λ, µ)
tn

n!
.

Adjoint Bernoulli polynomials of the second kind
A(t) =

t
et − 1

, H(t) = et − 1,(3.7)

G(t, x) =
t

et − 1
exp

(
x
(
et − 1

))
=

∞∑
n=0

b̃n(x)
tn

n!
.

Adjoint Related polynomials

A(t) =
1 + et

2
, H(t) = et − 1,(3.8)

G(t, x) =
1 + et

2
exp

[
x
(
et − 1

)]
=

∞∑
n=0

r̃n(x)
tn

n!
.

Adjoint Hahn polynomials
A(t) = sec t, H(t) = tan t,(3.9)

G(t, x) = sec t exp(x tan t) =

∞∑
n=0

R̃n(x)
tn

n!
.

Remark 3.1. In the above list we have not considered the Laguerre polynomials Ln(x) and their
generalized form Lαn (x), since they are self-adjoint, in the sense that they coincide respectively with
L̃n(x) and L̃αn (x).

Furthermore, recalling the Hermite polynomials Hn(x) and their generalized form Hm
n (x),

introduced by M. Lahiri [19] (see also the article by R.C.S. Chandel [11]), it is worth to note that
their respective Adjoint form H̃n(x) and H̃(m)

n (x) reduce to a particular case of the Appell-Kampé
de Fériet polynomials in two variables [1], so that they will not be considered in the following.

Remark 3.2. It is also worth to note that generalized Laguerre-type polynomial families have been
considered by G. Dattoli [13], and further extensions have been recently obtained by using umbral
methods [2, 20].

4 Adjoint Actuarial polynomials
Actuarial polynomials have been considered in the book by R.P. Boas and R.C. Buck [6]. They
were previously introduced by J.F. Steffensen [29] and also sudied by L. Toscano [31].

Here we consider the adjoint Actuarial polynomials, defined through their generating function,
i.e. by putting

A(t) = (1 − t)−β, H(t) = log(1 − t),(4.1)

G(t, x) = exp
[
(x − β) log(1 − t)

]
=

∞∑
k=0

α̃
(β)
k (x)

tk

k!
.
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4.1 Recurrence relation
Theorem 4.1. For any k ≥ 0, the polynomials α̃(β)

k (x) satisfy the following recurrence relation:

α̃
(β)
k+1(x) =

∑k
h=0

k!
(k−h)! (β − x)α̃(β)

k−h(x).(4.2)

Proof. Differentiating G(t, x) with respect to t, we have
∂G(t, x)
∂t

=

( x − β
t − 1

)
exp

[
(β − x) log(1 − t)

]
,(4.3)

∂G(t, x)
∂t

= G(t, x)(β − x)
1

1 − t
= (β − x)

∞∑
k=0

α̃
(β)
k (x)

tk

k!

∞∑
k=0

k!
tk

k!
=(4.4)

=

∞∑
k=1

α̃
(β)
k (x)

tk−1

(k − 1)!
.

i.e.

(β − x)
∞∑

k=0

 k∑
h=0

(
k
h

)
α̃

(β)
k−h(x)h!

 tk

k!
=

∞∑
k=0

α̃
(β)
k+1(x)

tk

k!
.

so that the recurrence relation (4.2) follows.
4.2 Generating function’s PDE
Theorem 4.2. The generating function (4.1) satisfies the homogeneous linear PDE

(4.5) (x − β)
∂G
∂x

+ (1 − t) log(1 − t)
∂G
∂t

= 0.

Proof. Differentiating G(t, x) with respect to x, we have

(4.6)
∂G(t, x)
∂x

= log(1 − t) exp
[
(x − β) log(1 − t)

]
.

From equation (4.6) we find

exp
[
(x − β) log(1 − t)

]
=

1
log(1 − t)

∂G
∂x
.

Eliminating the exponential function in equation (4.3), by using the above equation, we find
∂G(t, x)
∂t

=

( x − β
t − 1

) 1
log(1 − t)

∂G
∂x

,

so that our result is proved.
4.3 Shift operators
We recall that a polynomial set {pn(x)} is called quasi-monomial if and only if there exist two
operators P̂ and M̂ such that

P̂ (pn(x)) = npn−1(x), M̂ (pn(x)) = pn+1(x), (n = 1, 2, . . . ).(4.7)

P̂ is called the derivative operator and M̂ the multiplication operator, as they act in the same way
of classical operators on monomials.

This definition traces back to a paper by J.F. Steffensen [30], recently improved by G. Dattoli
[12] and widely used in several applications [14, 17].

Y. Ben Cheikh [3] proved that every polynomial set is quasi-monomial under the action of
suitable derivative and multiplication operators (see also the article by G. Dattoli et al. [16]). In
particular, in the same article (Corollary 3.2), the following result is proved
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Theorem 4.3. Let (pn(x)) denote a Boas-Buck polynomial set, i.e. a set defined by the generating
function

A(t)ψ(xH(t)) =

∞∑
n=0

pn(x)
tn

n!
,(4.8)

where

A(t) =

∞∑
n=0

ãntn , (ã0 , 0),(4.9)

ψ(t) =

∞∑
n=0

γ̃ntn , (γ̃n , 0 for all n),

with ψ(t) not a polynomial, and lastly

(4.10) H(t) =

∞∑
n=0

h̃ntn+1 , (h̃0 , 0).

Let σ ∈ Λ(−) the lowering operator defined by
(4.11) σ(1) = 0, σ(xn) =

γ̃n−1

γ̃n
xn−1, (n = 1, 2, . . . ).

Put
σ−1(xn) =

γ̃n+1

γ̃n
xn+1 (n = 0, 1, 2, . . . ).(4.12)

Denoting, as before, by f (t) the compositional inverse of H(t), the Boas-Buck polynomial set
{pn(x)} is quasi-monomial under the action of the operators

P̂ = f (σ), M̂ =
A′[ f (σ)]
A[ f (σ)]

+ xDxH′[ f (σ)]σ−1,(4.13)

where prime denotes the ordinary derivatives with respect to t.

Note that in our case we are dealing with a Sheffer polynomial set, so that since we have
ψ(t) = et, the operator σ defined by equation (4.11) simply reduces to the derivative operator Dx.
Furthermore, we have:

f (t) = H−1 (t) = 1 − et,

A(t) = (1 − t)−β, H(t) = log(1 − t),
A′(t)
A(t)

= β(1 − t)−1, H′(t) =
1

t − 1
,

and consequently
f (σ) = 1 − eDx ,

A′[ f (σ)]
A[ f (σ)]

= β[1 − f (σ)]−1 = βe−Dx ,

H′[ f (σ)] = −e−Dx .
Comparing the last three equations with equation (4.13), the following result follows:

Theorem 4.4. The adjoint Actuarial polynomial set {α̃(β)
k (x)} is quasi-monomial under the action

of the operators

P̂ = 1 − eDx = −

∞∑
k=0

Dk+1
x

(k + 1)!
,(4.14)

M̂ = (β − x)e−Dx = (β − x)
∞∑

k=0

(−1)kDk
x

k!
.

There is no problem about the convergence of the above series, since they reduce to finite sums
when applied to polynomials.
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4.4 Differential equation
According to the results of monomiality principle [12, 17], the quasi-monomial polynomials
{pn(x)} satisfy the differential equation

M̂P̂pn(x) = npn(x).(4.15)
In the present case, recalling equations (4.14), we have

Theorem 4.5. The adjoint Actuarial polynomials {α̃(β)
k (x)} satisfy the differential equation

(4.16) (β − x)
n−1∑
k=0

(−1)k+1

(k + 1)!
Dk+1

x α̃(β)
n (x) = nα̃(β)

n (x).

Proof. Equation (4.15), by using equations (4.14), becomes
M̂P̂α̃(β)

n (x) = (β − x)e−Dx
[
1 − eDx

]
α̃(β)

n (x) =

= (β − x)
[
e−Dx − 1

]
α̃(β)

n (x) = nα̃(β)
n (x),

i.e.

(β − x)
∞∑

k=0

(−1)k+1

(k + 1)!
Dk+1

x α̃(β)
n (x) = nα̃(β)

n (x),

and furthermore, for any fixed n, the last series expansion reduces to a finite sum, with upper limit
n − 1, when it is applied to a polynomial of degree n, because the last not vanishing term (for
k = n − 1) contains the derivative of order n.
4.5 First few values
Here we show the first few values for the adjoint Actuarial polynomials, defined by the generating
function (4.1)

α̃
(β)
0 (x) = 1,
α̃

(β)
1 (x) = (β − x),
α̃

(β)
2 (x) = (β − x)2 + (β − x),
α̃

(β)
3 (x) = (β − x)3 + 3(β − x)2 + 2(β − x),
α̃

(β)
4 (x) = (β − x)4 + 6(β − x)3 + 11(β − x)2 + 6(β − x),
α̃

(β)
5 (x) = (β − x)5 + 10(β − x)4 + 35(β − x)3 + 50(β − x)2 + 24(β − x),
α̃

(β)
6 (x) = (β − x)6 + 15(β − x)5 + 85(β − x)4 + 225(β − x)3 + 274(β − x)2+

+120(β − x),
α̃

(β)
7 (x) = (β − x)7 + 21(β − x)6 + 175(β − x)5 + 735(β − x)4 + 1624(β − x)3+

+1764(β − x)2 + 720(β − x),
α̃

(β)
8 (x) = (β − x)8 + 28(β − x)7 + 322(β − x)6 + 1960(β − x)5 + 6769(β − x)4+

+13132(β − x)3 + 13068(β − x)2 + 5040(β − x).
Note that the coefficients of the considered adjoint Actuarial polynomials appear in the

Encyclopedia of Integer Sequences [27], under A094638: Triangle read by rows: T (n, k) =

|s(n, n + 1 − k)|, where s(n, k) are the signed Stirling numbers of the first kind (1 ≤ k ≤ n; in
other words, the unsigned Stirling numbers of the first kind in reverse order).

In several articles [9, 10, 21, 22, 23], further adjoint sets of Sheffer polynomials have been
examined.
Acknowledgements. I want to express my deep thanks to Professor Dr. Youssef Ben Cheikh and
Professor G. Dattoli for useful advice and information to improve this paper.
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Abstract

In this present investigation a subclass of alpha convex bi-univalent functions of complex
order in the open unit disc U = {z :| z |< 1}, defined by Salagean operator and quasi-
subordination is discussed. The estimates on the initial coefficients |a2| and |a3| for the
functions in this subclass are studied. The results obtained in this paper would generalise
those already proved by various authors.
2010 Mathematics Subject Classifications: 30C45.
Keywords and phrases: Bi-univalent functions, Salagean operator, Quasi-subordination,
Coefficient estimate, Univalent functions.

1 Introduction and Preliminaries
Let A be the class of functions of the form

(1.1) f (z) = z +

∞∑
k=2

akzk,

which are analytic in the open unit disc U = {z :| z |< 1}. By S , we denote the class of functions
f (z) ∈ A and univalent in U.

Let us denote by B, the class of bounded or Schwarz functions w(z) satisfying w(0) = 0 and
|w(z)| ≤ 1 which are analytic in the open unit disc U and of the form

w(z) =

∞∑
n=1

cnzn, z ∈ U.

A function f ∈ S is said to be starlike if it satisfies the inequality

Re
(
z f ′(z)
f (z)

)
> 0(z ∈ U).

The class of starlike functions is denoted by S ∗.
A function f ∈ S is said to be convex if it satisfies the inequality

Re
(
(z f ′(z))′

f ′(z)

)
> 0(z ∈ U).
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The class of convex functions is denoted by K.
A function f ∈ S is said to be α-convex if it satisfies the inequality

Re
(
(1 − α)

z f ′(z)
f (z)

+ α
(z f ′(z))′

f ′(z)

)
> 0(0 ≤ α ≤ 1, z ∈ U).

The class of α-convex functions is denoted by M(α) and was introduced by Mocanu [8]. In
particular M(0) ≡ S ∗ and M(1) ≡ K.

For f ∈ A, Salagean [14] introduced the following operator:

D0 f (z) = f (z),D1 f (z) = z f ′(z),

and in general,
Dn f (z) = D(Dn−1 f (z)), n ∈ N

or equivalent to

Dn f (z) = z +

∞∑
k=2

knakzk, n ∈ N0 = N ∪ (0).

The inverse functions of the functions in the class S may not be defined on the entire unit disc
U although the functions in the class S are invertible. However using Koebe-one quarter theorem
[4] it is obvious that the image of U under every function f ∈ S contains a disc of radius 1

4 . Hence
every univalent function f has an inverse f −1, defined by

f −1( f (z)) = z(z ∈ U)

and

f ( f −1(w)) = w
(
| w |< r0( f ) : r0( f ) ≥

1
4

)
,

where

(1.2) g(w) = f −1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + ... .

A function f ∈ A is said to be bi-univalent in U if both f and f −1 are univalent in U.
By Σ, we denote the class of bi-univalent functions in U defined by (1.1).
Consider two functions f and g analytic in U. We say that f is subordinate to g (symbolically

f ≺ g) if there exists a bounded function u(z) ∈ B for which f (z) = g(u(z)). This result is known
as principle of subordination.

Robertson [13] introduced the concept of quasi-subordination in 1970. If f and φ are analytic
functions, then we say that f is quasi-subordinate to φ (symbolically f ≺q φ) if there exists analytic
functions k and ω with |k(z)| ≤ 1, ω(0) = 0 and |ω(z)| < 1 such that

f (z)
k(z)

≺ φ(z),

or it is equivalent to

(1.3) f (z) = k(z)φ(ω(z)).

In particular for k(z) = 1, f (z) = φ(ω(z)), so that f (z) ≺ φ(z) in U. It is obvious to see
that the quasi-subordination is a generalization of the usual subordination. The work on quasi-
subordination is quite extensive which finds interesting dimensions in some recent investigations
[1,5,7,12].
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Lewin [6] discussed the class Σ of bi-univalent functions and obtained the bound for the second
coefficient. Brannan and Taha [2] investigated certain subclasses of bi-univalent functions, similar
to the familiar subclasses of univalent functions consisting of strongly starlike, starlike and convex
functions. They introduced bi-starlike functions and bi-convex functions and obtained estimates on
the initial coefficients. Also the subclasses of bi-univalent functions defined by Salagean operator
were studied by various authors [3,9,11,15].

The earlier work on bi-univalent functions defined by quasi-subordination and Salagean
operator motivate us to define the following subclass:

Also we assume that φ(z) is analytic in U with φ(0) = 1 and let

(1.4) φ(z) = 1 + B1z + B2z2 + ...(B1 ∈ R+)

and

(1.5) k(z) = A0 + A1z + A2z2 + ...(|k(z)| ≤ 1, z ∈ U).

To avoid repetition, throughout the paper we assume that 0 ≤ α ≤ 1 and z ∈ U.

Definition 1.1. A function f ∈ Σ given by (1.1) is said to be in the class MΣ(n, α, γ, φ) if it satisfy
the following conditions:

(1.6)
1
γ

[
(1 − α)

z(Dn−1 f (z))′

Dn−1 f (z)
+ α

z(Dn f (z))′

Dn f (z)
− 1

]
≺q (φ(z) − 1)

and

(1.7)
1
γ

[
(1 − α)

w(Dn−1g(w))′

Dn−1g(w)
+ α

w(Dng(w))′

Dng(w)
− 1

]
≺q (φ(w) − 1),

where g = f −1 and z,w ∈ U.
The folowing observations are obvious:
(i) MΣ(n, α, 1, φ) ≡ MΣ(n, α, φ).
(ii) MΣ(1, α, 1, φ) ≡ MΣ(α, φ).
(iii) MΣ(1, 0, 1, φ) ≡ S ∗

Σ
(φ), the class of bi-starlike functions defined with quasi subordination.

(iv) MΣ(1, 1, 1, φ) ≡ KΣ(φ), the class of bi-conves functions defined with quasi subordination.
For deriving our main results, we need the following lemma:

Lemma 1.1. [10] If p ∈ P be family of all functions p analytic in U for which Re[p(z)] > 0 and
have the form p(z) = 1 + p1z + p2z2 + ... for z ∈ U, then |pn| ≤ 2 for each n.

2 Coefficient bounds for the function class MΣ(n, α, γ, φ)
Theorem 2.1. If f ∈ MΣ(n, α, γ, φ), then

(2.1) |a2| ≤ min.

 |A0γ|B1

(n + α + 1)
,

√
|A0γ|(B1 + |B2 − B1|)

(n + α + 1)


and

(2.2) |a3| ≤ min.
[
|A0γ|(B1 + |B2 − B1|)

(n + α + 1)
+
|A1γ|B1 + |A0γ|B1

(n + 2)(n + 2α + 1)

|γ|

(n + 2)(n + 2α + 1)

[
|γ|

[
(n + 1)2 + α(2n + 3)

(n + α + 1)2

]
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]
.
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Proof. As f ∈ MΣ(n, α, γ, φ), so by Definition 1.1, using the concept of quasi-subordination, there
exists Schwarz functions r(z) and s(z) and analytic function k(z) such that

(2.3)
1
γ

[
(1 − α)

z(Dn−1 f (z))′

Dn−1 f (z)
+ α

z(Dn f (z))′

Dn f (z)
− 1

]
= k(z)(φ(r(z)) − 1)

and

(2.4)
1
γ

[
(1 − α)

w(Dn−1g(w))′

Dn−1g(w)
+ α

w(Dng(w))′

Dng(w)
− 1

]
= k(w)(φ(s(w)) − 1),

where r(z) = 1 + r1z + r2z2 + ... and s(w) = 1 + s1w + s2w2 + ....
Define the functions p(z) and q(z) by

(2.5) r(z) =
p(z) − 1
p(z) + 1

=
1
2

[
c1z + (c2 −

c2
1

2
)z2 + ...

]
and

(2.6) s(z) =
q(z) − 1
q(z) + 1

=
1
2

[
d1z + (d2 −

d2
1

2
)z2 + ...

]
.

Using (2.5) and (2.6) in (2.3) and (2.4) respectively, it yields

(2.7)
1
γ

[
(1 − α)

z(Dn−1 f (z))′

Dn−1 f (z)
+ α

z(Dn f (z))′

Dn f (z)
− 1

]
= k(z)

[
φ

(
p(z) − 1
p(z) + 1

)
− 1

]
and

(2.8)
1
γ

[
(1 − α)

w(Dn−1g(w))′

Dn−1g(w)
+ α

w(Dng(w))′

Dng(w)
− 1

]
= k(w)

[
φ

(
q(w) − 1
q(w) + 1

)
− 1

]
.

But
1
γ

[
(1 − α)

z(Dn−1 f (z))′

Dn−1 f (z)
+ α

z(Dn f (z))′

Dn f (z)
− 1

]

(2.9) =
1
γ

[
(n + α + 1)a2z + [(n + 2)(n + 2α + 1)a3 − ((n + 1)2 + α(2n + 3))a2

2]z2 + ...
]

and

(2.10)
1
γ

[
(1 − α)

w(Dn−1g(w))′

Dn−1g(w)
+ α

w(Dng(w))′

Dng(w)
− 1

]
=

1
γ

[
−(n + α + 1)a2w + [(n + 2)(n + 2α + 1)(2a2

2 − a3) − ((n + 1)2 + α(2n + 3))a2
2]w2 + ...

]
.

Again using (1.4) and (1.5) in (2.5) and (2.6) respectively, we get

(2.11) k(z)
[
φ

(
p(z) − 1
p(z) + 1

)
− 1

]
=

1
2

A0B1c1z +

[
1
2

A1B1c1 +
1
2

A0B1

(
c2 −

c2
1

2

)
+

A0B2c2
1

4

]
z2 + ...

and

(2.12) k(w)
[
φ

(
q(w) − 1
q(w) + 1

)
− 1

]
=

1
2

A0B1d1w +

[
1
2

A1B1d1 +
1
2

A0B1

(
d2 −

d2
1

2

)
+

A0B2d2
1

4

]
w2 + ...

Using (2.9) and (2.11) in (2.7) and equating the coefficients of z and z2, we get

(2.13)
(n + α + 1)

γ
a2 =

1
2

A0B1c1
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and

(2.14)
(n + 2)(n + 2α + 1)a3 − ((n + 1)2 + α(2n + 3))a2

2

γ
=

1
2

A1B1c1 +
1
2

A0B1

(
c2 −

c2
1

2

)
+

A0B2

4
c2

1.

Again using (2.10) and (2.12) in (2.8) and equating the coefficients of w and w2, we get

(2.15) −
(n + α + 1)

γ
a2 =

1
2

A0B1d1

and

(2.16)
(n + 2)(n + 2α + 1)(2a2

2 − a3) − ((n + 1)2 + α(2n + 3))a2
2

γ

=
1
2

A1B1d1 +
1
2

A0B1

(
d2 −

d2
1

2

)
+

A0B2

4
d2

1.

From (2.13) and (2.15), it is clear that
(2.17) c1 = −d1

and

(2.18) a2 =
A0B1c1γ

2(n + α + 1)
= −

A0B1d1γ

2(n + α + 1)
.

Therefore on applying triangle inequality and using Lemma 1.1, (2.18) yields

(2.19) |a2| ≤
|A0γ|B1

(n + α + 1)
.

Adding (2.14) and (2.16), it yields

(2.20)
2[(n + 2)(n + 2α + 1) − (n + 1)2 − α(2n + 3)]

γ
a2

2 =
1
2

A0B1(c2 + d2) +
A0(B2 − B1)

4
(c2

1 + d2
1).

Using Lemma 1.1 and on applying triangle inequality in (2.20), we obtain

(2.21) |a2|
2 ≤
|A0γ|(B1 + |B2 − B1|)

(n + α + 1)
.

So, the result (2.1) can be easily obtained from (2.19) and (2.21).
Now subtracting (2.16) from (2.14), we obtain

(2.22) a3 = a2
2 +

A1B1(c1 − d1) + A0B1(c2 − d2)
4(n + 2)(n + 2α + 1)

γ.

Applying triangle inequality and using Lemma 1.1 and (2.21) in (2.22), it yields

(2.23) |a3| ≤
|A0|(B1 + |B2 − B1|)

(n + α + 1)
+
|A1γ|B1 + |A0γ|B1

(n + 2)(n + 2α + 1)
.

From (2.13) and (2.14), we have
(2.24)

|a3| ≤
|γ|

(n + 2)(n + 2α + 1)

[
|γ|

[
(n + 1)2 + α(2n + 3)

(n + α + 1)2

]
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]
.

Again from (2.15) and (2.17), it gives
(2.25)

|a3| ≤
|γ|

(n + 2)(n + 2α + 1)

[
|γ|

[
n2 + 2nα + 5α + 3

(n + α + 1)2

]
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]
.

Since R.H.S. of (2.25) is greater than that of (2.24), so result (2.2) is obvious.
For γ = 1, Theorem 2.1 gives the following result:
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Corollary 2.1. If MΣ(n, α, φ), then

|a2| ≤ min.

 |A0|B1

(n + α + 1)
,

√
|A0|(B1 + |B2 − B1|)

(n + α + 1)


and

|a3| ≤ min.
[
|A0|(B1 + |B2 − B1|)

(n + α + 1)
+
|A1|B1 + |A0|B1

(n + 2)(n + 2α + 1)
,

1
(n + 2)(n + 2α + 1)

[[
(n + 1)2 + α(2n + 3)

(n + α + 1)2

]
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]]
.

For γ = 1 and n = 1, the following result is obvious from Theorem 2.1:

Corollary 2.2. If f (z) ∈ MΣ(α, φ), then

|a2| ≤ min.

 |A0|B1

(2 + α)
,

√
|A0|(B1 + |B2 − B1|)

(2 + α)


and

|a3| ≤ min.
[
|A0|(B1 + |B2 − B1|)

(2 + α)
+
|A1|B1 + |A0|B1

6(1 + α)
,

1
6(1 + α)

[[
4 + 5α

(2 + α)2

]
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]]
.

For γ = 1,α = 0 and n = 1, Theorem 2.1 gives the following result:

Corollary 2.3. If f (z) ∈ S ∗
Σ
(φ), then

|a2| ≤ min.

 |A0|B1

2
,

√
|A0|(B1 + |B2 − B1|)

2


and

|a3| ≤ min.
[
|A0|(B1 + |B2 − B1|)

2
+
|A1|B1 + |A0|B1

6
,

1
6

[
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]]
.

For γ = 1,α = 1 and n = 1, the following result is obvious from Theorem 2.1:

Corollary 2.4. If f (z) ∈ KΣ(φ), then

|a2| ≤ min.

 |A0|B1

3
,

√
|A0|(B1 + |B2 − B1|)

3


and

|a3| ≤ min.
[
|A0|(B1 + |B2 − B1|)

3
+
|A1|B1 + |A0|B1

12
,

1
12

[
B2

1|A0|
2 + (B1 + |B2 − B1|)|A0| + |A1|B1

]]
.
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3. Conclusion
This paper is concerened with a very generalized subclass of alpha convex bi-univalent functions of
complex order in the open unit disc. The class is associated with Salagean operator and is defined
by means of quasi-subordination. We have studied the estimates of the initial coefficients |a2| and
|a3| for the functions in this class. By giving the particular values to the various paprameters like α,
γ, n and q, the results already proved by earlier researchers can be easily obtained. So this paper
will work as a milestone to the future researchers in this field.
Acknowledgement. The authors are very much grateful to the Editor and referee for their
suggestions to bring the paper in its present form.
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Abstract

Let p(z) be a polynomial of degree n. We have several results for the bounds of maximum
modulus of polynomial in terms of coefficients of polynomial and radius of the disk having no
zeros in it. In this paper we have proved some results for the bounds of maximum modulus of
polynomial not vanishing in a disk of greater or smaller than unity. Our results improve the
earlier proved results.
2010 Mathematics Subject Classifications: 26A15, 26A10
Keywords and phrases: Polynomials, zeros, bounds, inequalities, maximum modulus of
polynomials.

1 Introduction and Statement of Results
Let p(z) be a polynomial of degree n. Let us define m = min

|z|=k
|P(z)| and M(p, r) = max

|z|=r
|P(z)|.

Concerning the estimate for the maximum modulus of a polynomial on the circle |z| = R, R > 0, in
terms of its degree and the maximum modulus on the unit circle, we know that for every R ≥ 1,

max
|z|=R
|p(z)| ≤ Rn max

|z|=1
|p(z)|.(1.1)

The result is best possible for the polynomial having all its zeros at origin.
Inequality (1.1) is a simple deduction from the maximum modulus principle (for reference see

[8] or [11]).
For the polynomial of degree n and the case r ≤ 1, we have the following result due to Varga

[13] who attributed it to Zerrantonello.

max
|z|=r
|p(z)| ≥ rn max

|z|=1
|p(z)|.(1.2)

Again the result is best possible for the polynomial having all its zeros at origin.
For the class of polynomials having no zeros in |z| < 1, the inequalities (1.1) and (1.2) are

sharpened by Ankeny and Rivlin [1] and Rivlin [12], by proving following inequality (1.3) and
inequality (1.4) respectively

max
|z|=R≥1

|p(z)| ≤
Rn + 1

2
max
|z|=1
|p(z)|,(1.3)

max
|z|=r
|p(z)| ≥

(
1 + r

2

)n

max
|z|=1
|p(z)|.(1.4)
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Aziz and Dawood [3] improved inequality (1.3) under the same hypothesis as

max
|z|=R≥1

|p(z)| ≤
(
Rn + 1

2

)
max
|z|=1
|p(z)| −

(
Rn − 1

2

)
min
|z|=1
|p(z)|.(1.5)

There are several results concerning the refinement and generalizations of above mentioned
inequalities (see [5], [7] and [14]).

For the case 0 < ρ ≤ 1, when polynomial does not vanish in |z| < k, k ≥ 1 we have the following
inequality due to Aziz [2].

max
|z|=ρ
|p(z)| ≥

(
ρ + k
1 + k

)n

max
|z|=1
|p(z)|.(1.6)

The result is sharp and equality in (1.6) is attained for p(z) = c(zeiβ + k)n, c(, 0) ∈ C and β ∈ R.
Inequality (1.6) was improved by Govil, Qazi and Rahman [6] by introducing coefficients of

polynomial under consideration in it as following

Theorem 1.1. Let p(z) =
n∑

j=0
a jz j does not vanish in |z| < k, k ≥ 1 and let λ = λ(k) = ka1

na0
. Then for

0 < ρ ≤ 1,

max
|z|=ρ
|p(z)| ≥

(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

max
|z|=1
|p(z)|.(1.7)

In the case when n is even equality in (1.7) is attained for

p(z) = c(z2ei2β + 2kzeiβ cosα + k2)
n
2 , c(, 0) ∈ C and α, β ∈ R.

The following result is also due to Govil, Qazi and Rahman [6] and is complement to
Theorem 1.1.

Theorem 1.2. Let p(z) =
n∑

j=0
a jz j does not vanish in |z| < k, k ∈ (0, 1) and let λ = λ(k) = ka1

na0
. Then

for 0 ≤ ρ ≤ k2

max
|z|=ρ
|p(z)| ≥

(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

max
|z|=1
|p(z)|.(1.8)

In the case when n is even equality in (1.8) is attained for

p(z) = c(z2ei2β + 2kzeiβ cosα + k2)
n
2 , c(, 0) ∈ C and α, β ∈ R.

Recently, Mir et al. [7] proved the following interesting result and generalized a result due to
Govil and Nwaeze [5] and many other results improving the Theorem of T. J. Rivlin [12].

Theorem 1.3. Let p(z) = a0 +
n∑

j=µ
a jz j, 1 ≤ µ < n be a polynomial of degree n that does not vanish

in |z| < k, k ≥ 1.Then for 0 < r < R ≤ 1,

M(p, r) ≥
(1 + rµ)

n
µ

(1 + rµ)
n
µ + (Rµ + rµ)

n
µ − (kµ + rµ)

n
µ

M(p,R) + m ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ

 ,(1.9)

where m = min
|z|=k
|p(z)| and M(p, r) = max

|z|=r
|p(z)| etc.
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2 Main Theorems
In this paper, firstly we prove the following result for the class of polynomials not vanishing in a
prescribed disk, which improves upon the bound obtained by Theorem 1.1.

Theorem 2.1. Let p(z) =
n∑

j=0
a jz j , 0 for |z| < k, k ≥ 1 and let λ = λ(k) = ka1

na0
. Then for 0 < ρ ≤ 1,

we have

max
|z|=ρ
|p(z)| ≥

(
ρ2 + 2|λ|kρ + k2

1 + 2|λ|k + k2

) n
2

max
|z|=1
|p(z)| +

1
kn


(
ρ2 + 2|λ|kρ + k2

1 + 2|λ|k + k2

) n
2

− ρn

 min
|z|=k
|p(z)|.(2.1)

In the case where n is even, equality in (1.9) is attained for
p(z) = c(z2ei2β + 2kzeiβ cosα + k2)

n
2 , c(, 0) ∈ C and α, β ∈ R.

The above inequality (2.1) always gives better bounds than inequality (1.7) except in the case
when min

|z|=k
|p(z)| = 0.

Next we prove the following result, which is complement to Theorem 2.1, for the class of
polynomials not vanishing in a disk of radius less than (or equal) unity and also improves upon
Theorem 1.2.

Theorem 2.2. Let p(z) =
n∑

j=0
a jz j does not vanish in |z| < k, k ∈ (0, 1) and let λ = λ(k) = ka1

na0
. Then

for 0 ≤ ρ ≤ k2

max
|z|=ρ
|p(z)| ≥

(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

max
|z|=1
|p(z)| +

1
kn


(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

− ρn

 min
|z|=k
|p(z)| .(2.2)

In the case when n is even equality in (2.2) is attained for
p(z) = c(z2ei2β + 2kzeiβ cosα + k2)

n
2 , c(, 0) ∈ C and α, β ∈ R.

Finally, we prove the following interesting result, which improves upon Theorem 1.3 by Mir
et al. [7] and hence also generalizes and improves upon all those results which are claimed to be
improved by Theorem 1.3 as well.

Theorem 2.3. Let p(z) = a0 +
n∑

j=µ
a jz j, 1 ≤ µ < n be a polynomial of degree n that does not vanish

in |z| < k, k ≥ 1. Then for 0 < r < R ≤ 1,

(2.3) M(p, r) ≥
(1 + rµ)

n
µ

(1 + rµ)
n
µ + (Rµ + kµ)

n
µ − (rµ + kµ)

n
µM (p,R) +

 n
kn In −

rn

kn


(
(Rµ + kµ)
(rµ + kµ)

) n
µ

− 1

 + ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ
 min
|z|=k
|p(z)|

 .
Here, the integral In is defined as

In =

∫ R

r

tn+µ−1

tµ + kµ
dt.(2.4)

Here, the integrand being a rational algebraic function can be evaluated by reduction formulae
for a given value of n. For example, I0 = 1

2 ln
(

R
k

)
and I1 = (R − r) − k ln

(
R+k
r+k

)
.

Remark 2.1. The integrand in (2.4) is increasing function of t, so the least approximate value of In

can be taken as

n(R − r)rn+µ−1

kn(rµ + kµ)

.
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3 Lemmas
For the proof of the Theorems, we need the following lemmas.

Lemma 3.1. Let p(z) = a0 +
n∑
ν=µ

aνzν, 1 ≤ µ ≤ n is a polynomial of degree n having no zeros in

|z| < k, k ≥ 1. Then

max
|z|=1
|p′(z)| ≤

n
1 + kµ

{
max
|z|=1
|p(z)| −min

|z|=1
|p(z)|

}
.(3.1)

The result is sharp and equality holds for the polynomial p(z) = (zµ + kµ)
n
µ .

The above Lemma 3.1 is due to Pukhta [9].
The next lemma is due to Bidkham and Dewan [4].

Lemma 3.2. Let p(z) = a0 +
n∑

j=µ
a jz j, 1 ≤ µ ≤ n is a polynomial of degree n, having no zeros in

|z| < k, k ≥ 1. Then for 0 < r < R ≤ 1,

max
|z|=r
|p(z)| ≥

(
kµ + rµ

kµ + Rµ

) n
µ

max
|z|=R
|p(z)|.(3.2)

We improve the above Lemma 3.2 as follows.

Lemma 3.3. Let p(z) = a0 +
n∑

j=µ
a jz j is a polynomial of degree n, having no zeros in |z| < k, k ≥ 1.

Then for 0 < r < R ≤ 1,

max
|z|=r
|p(z)| ≥

(
kµ + rµ

kµ + Rµ

) n
µ

max
|z|=R
|p(z)| +

Rn

kn

(
kµ + rµ

kµ + Rµ

) n
µ

−
rn

kn

 min
|z|=k
|p(z)|.(3.3)

Proof. [Proof of Lemma 3.3] Since p(z) does not vanish in |z| < k, k ≥ 1 and |p(z)| ≥ m =

min
|z|=k
|p(z)|, therefore by Rouche’s theorem, the polynomial F(z) = p(z) + λ zn

kn m, |λ| < 1, also

does not vanish in |z| < k, k ≥ 1. Therefore on applying inequality (3.2) to the polynomial
F(z) = p(z) + λ zn

kn m, we have

max
|z|=r

∣∣∣∣∣p(z) + λ
zn

kn m
∣∣∣∣∣ ≥ (

kµ + rµ

kµ + Rµ

) n
µ

max
|z|=R

∣∣∣∣∣p(z) + λ
zn

kn m
∣∣∣∣∣ ,

or

max
|z|=r
|p(z)| + |λ|

rn

kn m ≥
(

kµ + rµ

kµ + Rµ

) n
µ
(
max
|z|=R

∣∣∣∣∣p(z) + λ
zn

kn m
∣∣∣∣∣) .(3.4)

Now suitably choosing the argument of λ such that R.H.S. of inequality (3.4) becomes

max
|z|=R

∣∣∣∣∣p(z) + λ
zn

kn m
∣∣∣∣∣ = max

|z|=R
|p(z)| + |λ|

Rn

kn m .(3.5)

Now combining inequalities (3.4) and (3.5), we get

max
|z|=r
|p(z)| + |λ|

rn

kn m ≥
(

kµ + rµ

kµ + Rµ

) n
µ
(
max
|z|=R
|p(z)| + |λ|

Rn

kn m
)
.

Or equivalently,

max
|z|=r
|p(z)| ≥

(
kµ + rµ

kµ + Rµ

) n
µ

max
|z|=R
|p(z)| + |λ|

Rn

rn

(
kµ + rµ

kµ + Rµ

) n
µ

−
rn

kn

 min
|z|=k
|p(z)|.

Finally letting |λ| → 1, we get the desired result.
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4 Proof of the Main Theorems
Proof. [Proof of Theorem 2.1] Since p(z) does not vanish in |z| < k, k ≥ 1 and |p(z)| ≥ m =

min
|z|=k
|p(z)|, therefore by Rouche’s theorem, the polynomial F(z) = p(z) + µ zn

kn m, |µ| < 1, also

does not vanish in |z| < k, k ≥ 1. Therefore on applying inequality (1.7) to the polynomial
F(z) = p(z) + µ zn

kn m, we have

max
|z|=ρ
|F(z)| ≥

(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

max
|z|=1
|F(z)|

or

max
|z|=ρ

∣∣∣∣∣p(z) + µm
zn

kn

∣∣∣∣∣ ≥ (
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

max
|z|=1

∣∣∣∣∣p(z) + µm
zn

kn

∣∣∣∣∣
or

max
|z|=ρ
|p(z)| + |µ|m

ρn

kn ≥

(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2

max
|z|=1

∣∣∣∣∣p(z) + µm
zn

kn

∣∣∣∣∣ .(4.1)

Now suitably choosing argument of µ on R.H.S. of (4.1), we have

max
|z|=1

∣∣∣∣∣p(z) + µm
zn

kn

∣∣∣∣∣ = max
|z|=1
|p(z)| + |µ|

m
kn .(4.2)

Combining (4.1) and (4.2) we get

max
|z|=ρ
|p(z)| + |µ|m

ρn

kn ≥

(
k2 + 2|λ|kρ + ρ2

k2 + 2|λ|k + 1

) n
2
{

max
|z|=1
|p(z)| + |µ|

m
kn

}
or

max
|z|=ρ
|p(z)| ≥

(
ρ2 + 2|λ|kρ + k2

1 + 2|λ|k + k2

) n
2

max
|z|=1
|p(z)| +

|µ|

kn


(
ρ2 + 2|λ|kρ + k2

1 + 2|λ|k + k2

) n
2

− ρn

 min
|z|=k
|p(z)| .

Finally, on letting |µ| → 1 the proof of Theorem 2.1 is completed.
Proof. [Proof of Theorem 2.2] Proof of Theorem 2.2 follows on the same lines as that of proof of
Theorem 2.1. Here we use inequality (1.8) instead of (1.7). Hence we omit the details.
Proof. [Proof of Theorem 2.3] Let 0 < t ≤ k. Since p(z) does not vanish in |z| < k, k ≥ 1, the
polynomial F(z) = p (tz) does not vanish in |z| < k

t ,
k
t ≥ 1, therefore applying Lemma 3.1 to F(z),

we have

max
|z|=1
|F′(z)| ≤

n

1 +
(

k
t

)µ max
|z|=1
|F(z)| −min

|z|= k
t

|F(z)|
 ,

which is equivalent to

max
|z|=t
|p′(z)| ≤

n tµ−1

tµ + kµ

{
max
|z|=t
|p(z)| −min

|z|=k
|p(z)|

}
.(4.3)

We have, now for 0 ≤ θ < 2π and 0 < r < R ≤ 1,∣∣∣p(Reiθ) − p(reiθ)
∣∣∣ ≤ ∫ R

r

∣∣∣p′(teiθ)
∣∣∣ dt.∣∣∣∣p (

Reiθ
)
− p

(
reiθ

)∣∣∣∣ ≤ ∫ R

r

n tµ−1

tµ + kµ

{
max
|z|=t
|p(z)| −min

|z|=k
|p(z)|

}
dt by using (4.3)(4.4)

Now applying inequality (3.3) of Lemma 3.3 to inequality (4.4), we get∣∣∣∣p (
Reiθ

)
− p

(
reiθ

)∣∣∣∣
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≤

∫ R

r

ntµ−1

tµ + kµ



(

tµ + kµ

rµ + kµ

) n
µ

max
|z|=r
|p(z)| −

 tn

kn −
rn

kn

(
tµ + kµ

rµ + kµ

) n
µ
 min
|z|=k
|p(z)|

 −min
|z|=k
|p(z)|

 dt

=

∫ R

r

n tµ−1

tµ + kµ

(
tµ + kµ

rµ + kµ

) n
µ

max
|z|=r
|p(z)|dt − n

∫ R

r

tµ−1

tµ + kµ

 tn

kn −
rn

kn

(
tµ + kµ

rµ + kµ

) n
µ

+ 1

 min
|z|=k
|p(z)|dt.

The above expression is equivalent to∣∣∣∣p (
Reiθ

)
− p

(
reiθ

)∣∣∣∣
≤

∫ R

r

ntµ−1

(rµ + kµ)
n
µ

(tµ + kµ)
n
µ−1 max

|z|=r
|p(z)|dt

− n min
|z|=k
|p(z)|

∫ R

r

 tn+µ−1

(tµ + kµ)kn −
rn

kn

tµ−1(tµ + kµ)
n
µ−1

(rµ + kµ)
n
µ

+
tµ−1

(tµ + kµ)

 dt

≤
n

(rµ + kµ)
n
µ

M (p, r)
∫ R

r
tµ−1(tµ + kµ)

n
µ−1dt − n min

|z|=k
|p(z)|∫ R

r

 tn+µ−1

(tµ + kµ)kn −
rn

kn

tµ−1(tµ + kµ)
n
µ−1

(rµ + kµ)
n
µ

+
tµ−1

(tµ + kµ)

 dt,

≤
n

(rµ + 1)
n
µ

M (p, r)
∫ R

r
tµ−1(tµ + kµ)

n
µ−1dt −min

|z|=k
|p(z)|[

n
kn In −

nrn

kn(rµ + kµ)
n
µ

∫ R

r
tµ−1(tµ + kµ)

n
µ−1 +

∫ R

r

tµ−1

(tµ + kµ)
dt

]
=

(Rµ + kµ)
n
µ − (rµ + kµ)

n
µ

(1 + rµ)
n
µ

M (p, r)

−

 n
kn In −

rn

kn

(Rµ + kµ)
n
µ − (rµ + kµ)

n
µ

(kµ + rµ)
n
µ

+
n
µ

ln
(
(Rµ + kµ)
(rµ + kµ)

) min
|z|=k
|p(z)|

=
(Rµ + kµ)

n
µ − (rµ + kµ)

n
µ

(1 + rµ)
n
µ

M (p, r)

−

 n
kn In −

rn

kn


(
Rµ + kµ

rµ + kµ

) n
µ

− 1

 + ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ
 min
|z|=k
|p(z)|

where the integral In is as defined in (2.4).
Thus we have shown that for 0 ≤ θ < 2π and 0 < r < R ≤ 1,∣∣∣∣p (

Reiθ
)
− p

(
reiθ

)∣∣∣∣ ≤ (Rµ + kµ)
n
µ − (rµ + kµ)

n
µ

(1 + rµ)
n
µ

M (p, r)

−

 n
kn In −

rn

kn


(
Rµ + kµ

rµ + kµ

) n
µ

− 1

 + ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ
 min
|z|=k
|p(z)|

Therefore, finally, we have the equivalent result

M (p,R) ≤ M (p, r) +
(Rµ + kµ)

n
µ − (rµ + kµ)

n
µ

(1 + rµ)
n
µ

M (p, r)

−

 n
kn In −

rn

kn


(
(Rµ + kµ)
(rµ + kµ)

) n
µ

− 1

 + ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ
 min
|z|=k
|p(z)|
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or

M (p,R) ≤
(1 + rµ)

n
µ + (Rµ + kµ)

n
µ − (rµ + kµ)

n
µ

(1 + rµ)
n
µ

M (p, r)

−

 n
kn In −

rn

kn


(
(Rµ + kµ)
(rµ + kµ)

) n
µ

− 1

 + ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ
 min
|z|=k
|p(z)|

or equivalently

M (p, r) ≥
(1 + rµ)

n
µ

(1 + rµ)
n
µ + (Rµ + kµ)

n
µ − (rµ + kµ)

n
µM (p,R) +

 n
kn In −

rn

kn


(
(Rµ + kµ)
(rµ + kµ)

) n
µ

− 1

 + ln
(
(Rµ + kµ)
(rµ + kµ)

) n
µ
 min
|z|=k
|p(z)|

 .
Thus the desired result is proved.
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Abstract

The concept of Boehmian was motivated by the so called regular operators introduced by
T.K.Boehme. The construction of Boehmians is similar to the construction of field of quotients.
Several integral transforms have been extended to various class of Boehmians. We study here
Kamal transform and extend it to Strong Boehmian space. This Kamal tranform is 1-1 and
continuous in the space of Boehmians. Inverse Kamal transform is also defined.
2010 Mathematics Subject Classifications: 54C40, 14E20, 46E25, 20C20.
Keywords and phrases: Kamal Transform, Convolution Theorem, Boehmians, Distribution.

1 Introduction
Boehmians have an algebraic character of Mikusinski operators and do not have any restriction
on the support. Here we discuss the Kamal transform defined by [11] on certain space of
Strong Boehmians. Definition and some properties of Kamal transforms are given. The Kamal
transform was introduced by Abdelilah Kamal [11] and many properties are discussed in [10, 13].
Some application related to population growth and decay of Kamal transform are given in[3].
Khandelwal [13] discussed Kamal transform and Kamal decomposition method for solving
system of non linear PDE. Also Alomari and Kilicman[7] studied generalized Hartley-Hilbert and
Fourier-Hilbert transform and extended them to a class of Boehmians. Al-omari [6] studied the
distributional Elzaki transform and gave the extension to Boehmian space. The application of
Natural transform and Boehmians [5] is also studied by Al-omari. Sudhansh Aggarwal [2, 3]
gave application of Kamal transform for solving voltera integral equation, population growth
& decay problems. S.K.Q Al-omari [6] gave application and the relation between Boehmians
and Elzaki transform. E.R. Dill & P. Mikusinski [9] defined the concept of Strong Boehmians
& its applications. The concept of Mikusinski operators was defined by T.K. Boehme[8]. R.
Roopkumar & E.R. Negrin [17] discussed the unified extension of Stieltjes and Poission transform
to Boehmians.

The Kamal transform of f(t) is defined by [11]

K[ f (t)] = F(v) =

∞∫
0

f (t)e−t/v dt J1 ≤ v ≤ J2(1.1)
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over the set of functions

(1.2) A = { f (t) : ∃M, J1, J2 > 0 | f (t)| < Me|t|/J j if t ∈ (−1) j × [0,∞)}.

We denote the usual convolution of f and g by

(1.3) ( f ∗ g)(x) =

∫
R+

f (x − t) g(t) dt.

The Kamal transform of the convolution product is given by

(1.4) K( f ∗ g) = K( f ) · K(g).

General properties of Kamal transforms:

1. If α, β ∈ R and K[ f ] = F(v) and K[g] = G(v) then Kamal transform is linear.

K[α f + βg] =

∞∫
0

(α f + βg) (t) e−t/v dt

= α

∞∫
0

f (t) e−t/v dt + β

∞∫
0

g(t) e−t/v dt

= αK[ f ] + βK[g]
= αF(v) + βG(v).

2. If f (t) = eat, sin at, cos at then corresponding K[ f (t)] is given by
v

1 − av
,

av2

1 + a2v2 ,
v

1 + a2v2

For more properties see [11].

2 Strong Boehmians
We study Strong Boehmians [4, 9] and General Boehmians [5]-[8]. Let I+ is the set of positive
real numbers and F denote the Schwartz space of test functions φ with compact supports over I+

and η(Ω) be the space of all infinitely differentiable functions over Ω where Ω= [1,∞)× I+. The
dual of η(Ω) is η′(Ω) consists of distributions of compact supports. Let f ∈ η(Ω) and φ ∈ F the
convolution of f and φ is given by

( f #φ)(x) =

∫
I+

f (α, t) φ(x − t)dt,(2.1)

where α ∈ [1,∞).
Let µ(I+) be the subset of F of the test functions such that∫

I+

φ(x) dx = 1.(2.2)

The pair ( f , φ) or ( f /φ) of functions such that f ∈ η(Ω) , φ ∈ µ(I+) is said to be quotient of
function denoted by ( f , φ) or ( f /φ) if and only if

{ f (α, x)}#{βφ (βx)} = { f (β, x)}#{αφ (αx)},(2.3)

for all α, β ∈ [1,∞)
or we define

f (α, x) # dβ φ(x) = f (β, x) # dα φ(x),
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where

dβ φ(x) = β φ(βx),
dα φ(x) = αφ(αx).

We use both the definitions whenever we required. Two quotients ( f , φ) and (g, ψ) are said to
be equivalent that is ( f , φ) ∼ (g, ψ) if and only if

f (α, x)#βψ (βx) = g (β, x) #αφ(αx),(2.4)

α,β ∈[1,∞).
Let the set be denoted by

B = {( f , φ)|∀ f ∈ η(Ω) , φ ∈ µ(I+)}.(2.5)

Then the equivalence class [( f , φ)] containing ( f , φ) is called Strong Boehmian. The space of
all such Boehmians is denoted by L (η, µ, #) is called as space of Strong Boehmians. Following
conclusions are given in [9]

1. Let φ, ψ ∈ µ(I+) then φ # ψ ∈ µ(I+),
2. Let f ∈ η(Ω) and φ ∈ µ(I+) then f # φ ∈ η(Ω),
3. Let (f,φ) ∈B and ψ ∈ µ(I+) then

( f #ψ, φ#ψ) ∈ B and ( f , φ) ∼ ( f #ψ, φ#ψ).(2.6)

4. If φ ∈ µ(I+) then for α≥1 αφ(α x) ∈ µ(I+),
5. Let ( f , φ) ∈ B, z > 0 and h(α, x) = f (α + z, x) and ψ = zφ(zx) then

(g, ψ) ∈ B and (g, ψ) ∼ ( f , φ).(2.7)

Further the operation of addition and scalar multiplication in L (η, µ, #) are defined in the usual
notation as,

(2.8)
f
φ

+
g
ψ

=
f #ψ + g#φ
φ#ψ

, λ ·
f
φ

=
λ f
φ
,

f
φ

#ψ =
f #ψ
φ
.

The above operations are well defined in L and hence L is a vector space.
Let

DP = (
∂

∂x1
)P1(

∂

∂x2
)P2(

∂

∂x3
)P3 · · · (

∂

∂xN
)PN(2.9)

where P = (p1, p2, · · · , pN) and p1, p2, · · · , pN are nonnegative integers for
f
φ
∈ L (η, µ, #) define

Dp(
f
φ

) =
Dp f
φ

, where Dp is well defined operation on L . A sequence of Strong Boehmians {yn}

is said to converge to a Strong Boehmian y if y =
f
φ

and yn =
fn

φ
for some f , fn ∈ η & φ ∈ µ(I+),

n ∈ N and fn → f uniformly on compact subset of Ω as n→∞.

3 General Construction of Boehmians
Mikusinski introduced a new class of generalised function space called Boehmian space, which
is suitable for extending integral transforms. The construction of Boehmian space and its
convergence is given in [15] The construction of Boehmians consists of following elements:

1. A set Γ,
2. Commutative semi group(S,⊗),
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3. An operationF: Γ × S→ Γ such that for each x ∈ Γ and φ1, φ2 ∈
a
⊂ S xF(φ1 ⊗

φ2) = (xF φ1) ⊗ (xF φ2),
4. (a) A collection

a
⊂ S such that if x, y ∈ Γ , φn ∈

a
xF φn = yF φn

∀n⇒ x = y,

(b) If φn ∈
a

and ψn ∈
a

then φn⊗ψn ∈
a

,
a

is a set of all delta sequences.

Consider

B = {(xn, φn) : xn ∈ Γ, φn ∈
i
, xnF φm = xmF φn ∀m, n ∈ N}.(3.1)

If (xn, φn), (yn, ψn) ∈ B xnFψm = ymFφn ∀m, n ∈ N we say that (xn, φn) ∼ (yn, ψn).The
relation ∼ is an equivalence relation in B.The space of equivalence classes in B is denoted by
LB(Γ, S ,

a
). Elements of LB(Γ, S ,

a
) are called General Boehmians.We define a mapping which

is a canonical mapping between Γ and LB as x → xF φn/φn.
In LB(Γ, S ,

a
) there are two type convergences

1. A sequence qn in LB(Γ, ρ,
a

) is said to be δ convergent to q in LB(Γ, S ,
a

) denoted by

qn
δ
−→ q if there exist a delta sequence δn such that ( qnF δn), ( qF δn) ∈ Γ and for all k,n

∈ N ( qnF δk)→ ( qF δk) as n→∞ in Γ,
2. A sequence ( qn) in LB(Γ, S ,

a
) is said to be

a
convergent to q in LB(Γ, S ,

a
) denoted by

qn

a

−→ q if there exist (δn) ∈
a

such that (qn − q)F δn ∈ Γ ∀n ∈ N and
(qn − q)F δn → 0 as n → ∞ in Γ.

Following lemma is an equivalent statement for δ- convergence given by [17]

Lemma 3.1. qn
δ
−→ q (as n→ ∞ ) in LB(Γ, S ,

a
) if and only if there exist fn,k, fk ∈ Γ and δk ∈

a

such that
qn = [ fn,k/δk] q = [ fn/δk]

and for each k ∈ N fn,k → fk as n→ ∞ on Γ.

4 Kamal Transform of Strong Boehmians
Theorem 4.1 (Convolution theorem). Let f ∈ η(Ω) and φ ∈ µ(I+) then

K( f # βψ(βx))(ξ) = K( f (x)) · βK(ψ(βx))(4.1)

= f̂ (ξ) · βψ̂(βξ).

If onwards we define

f (α, x) # βψ (βx) = f (α, x)# dβ ψ(x),

where,

dβ ψ(x) = βψ(βx)

Then,

K( f # dβ ψ) (ξ) = f̂ (α, ξ) · dβ ψ̂(ξ),

where f̂ and ψ̂ are Kamal transforms of f and ψ.
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Proof. By using definition of Kamal transform, Fubini’s theorem,

K( f (α, t)# dα ψ(x))(ξ) =

∞∫
0

f (α, t) dt

∞∫
0

dα ψ(x − t)e−x/ξ dx(4.2)

=

∞∫
0

f (α, t) dt

∞∫
0

α ψ(αx − αt) e−x/ξ dx.

Put αx − αt = z i.e x =
z
α

+ t and dx =
dz
α

to get(4.3)

K( f (α, t)#dαψ(x))(ξ) =

∞∫
0

f (α, t) dt

∞∫
0

αψ(z) e−( z
α+t)/ξ dz

=

∞∫
0

f (α, t) dt

∞∫
0

αψ(z) e−
z
αξ · e−

t
ξ dz

=

∞∫
0

e−
t
ξ f (α, t) dt

∞∫
0

αψ(z) e−
z
αξ dz

= f̂ (α, ξ) · dα ψ̂(ξ),
which completes the proof of the Theorem.

Now we define the images of Kamal transform of Strong Boehmians.

Definition 4.1. Let
a

1(I+) or
a

1 be a set of delta sequences such that ψn ∈ µ(I+) and suppose
ψn⊂(0, γn) γn > 0, γn → 0 as n→ ∞.
Let m(I+) be the set of images of Kamal transforms of all µ(I+) elements and

a
2(I+) be the set

of Kamal transform of all delta sequences from
a

1 for f ∈ η(Ω) and ψ̂ ∈ m(I+) we define the
operation ~ as

f (α, ξ) ~ ψ̂(ξ) = f (α, ξ) da ψ̂(ξ) as ∈ [1,∞),
from which we see that

f ~ ψ̂ ∈ η(Ω) as f ∈ η(Ω) and da · ψ̂ ∈ m(I+).(4.4)

Lemma 4.1. 1. If φ̂n, ψ̂n ∈
a

2(I+) then ψ̂n ~ φ̂n ∈
a

2(I+) ∀n ∈ N
2. Let f , g ∈ η(Ω) and ψ̂n ∈

a
2(I+) such that

f (c, ξ) ~ ψ̂n(ξ) = g(d, ξ) ~ ψ̂n(ξ)(4.5)
then f (c, ξ) = g(d, ξ) ∀c, d ∈ [1,∞).

Proof. 1. φ̂n, ψ̂n ∈
a

2(I+) we find the sequences φn, ψn ∈
a

1(I+).
Since φn #ψn ∈

a
1(I+), we get

(4.6) K(φn #ψn) = φ̂n(ξ) · ψ̂n(ξ) = φ̂n ~ ψ̂n ∈
a

2(I+) ∀n ∈ N [by(4.4)].

2. Let ψ̂n ∈
a

2(I+) where ψ̂n is delta sequence daψ̂n → 1 hence ψ̂n → 1 as n→ ∞
f (c, ξ) ~ ψ̂n(ξ) = f (c, ξ) daψ̂n(ξ) → f (c, ξ) as n→ ∞,(4.7)

g(d, ξ) ~ ψ̂n(ξ) = g(d, ξ) daψ̂n(ξ) → g(d, ξ) as n→ ∞,(4.8)
from (4.7) and (4.8) f (c, ξ) = g(d, ξ) ∀ξ ∈ I+ c, d ∈ [1,∞), which completes the proof.
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Lemma 4.2. The mapping η(Ω) ~ m(I+)→ m(I+) defined by

f (α, ξ) ~ φ̂n(ξ) = f (α, ξ) daφ̂n(ξ)(4.9)

satisfies the following properties:

1 φ̂n ~ ψ̂n = ψ̂n ~ φ̂n for every (φ̂n), (ψ̂n) ∈
a

2(I+) then

( f + g) ~ φ̂n = f ~ φ̂n + g ~ φ̂n,

2 If f ∈ η(Ω), (φ̂n), (ψ̂n) ∈
a

2(I+) then

( f ~ φ̂n) ~ ψ̂n = f ~ (φ̂n ~ ψ̂n),

3 If f ∈ η(Ω), (φ̂n), (ψ̂n) ∈
a

2(I+) then

( f ~ φ̂n) ~ ψ̂n = f ~ (φ̂n ~ ψ̂n).

Theorem 4.2. The following are true

1 If fn → f in η(Ω) and ψ̂ ∈ m(I+) then fn ~ ψ̂→ f ~ ψ̂ as n→ ∞,
2 If fn → f in η(Ω) and ψ̂n ∈

a
2(I+) then fn ~ ψ̂n → f as n→ ∞.

Proof. 1. ψ̂ ∈ m(I+) fn, f ∈ η(Ω) then

(4.10) |Dk
ξ( fn(α, ξ) ~ ˆψ(ξ) − f (α, ξ) ~ ˆψ(ξ))| = |Dk

ξ · da ψ̂(ξ) ( fn − f )(α, ξ)| → 0.

As n→ ∞ in η(Ω), therefore fn ~ ψ̂→ f ~ ψ̂.
2. φ̂m

a
2(I+) then da φ̂n(ξ)→ 1 as n→ ∞ implies

(4.11) |Dk
ξ( fn ~ ψ̂n(ξ) − f (α, ξ)| → |Dk

ξ( fn(α, ξ) − f (α, ξ)| → 0 as n→ ∞.

Hence fn ~ ψ̂n → f , which completes the proof.
The General Boehmian space LB(η, m,

a
2, ~) or LBis constructed. We give some properties

of sum, scalar multiplication, differentiation as

[
fn

φ̂n
] + [

gn

ψ̂n
] = [

fn ~ ψ̂n + gn ~ φ̂n

φ̂n ~ ψ̂n
], α[

fn

φ̂n
] = [

α fn

φ̂n
].(4.12)

[
fn

φ̂n
] ~ [

gn

ψ̂n
] = [

fn ~ gn

φ̂n ~ ψ̂n
],Dα[

fn

φ̂n
] = [

Dα fn

φ̂n
].(4.13)

Now we are concerned with the Strong Boehmians which are described by the set (η, #) and the
subset (µ, #) with the family

a
1 of delta sequences such a space is denoted by L (η, (µ, #),

a
1, #)

or simply by L .This space preserve the operation of addition, scalar multiplication,differentiation
and the convolution.

Definition 4.2. Let f ∈ η(Ω) and φ ∈ µ(I+) we define the Kamal transform of the Strong Boehmians
[ fn/φn] in L by

γ̃[
fn

φn
] = [

f̂n

daφ̂n
] ∈ LB where LBis General Boehmians.(4.14)

Theorem 4.3. The Kamal transform γ̃ : L → LB is well defined.
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Proof. Let [
fn

φn
], [

gn

ψn
] ∈ L are such that [

fn

φn
] = [

gn

ψn
]. Then

fn(α, x) # dβ ψn(x) = gn(β, x) # dα φn(x).(4.15)
Apply the convolution theorem on both sides of (4.15)

ĝn

dβ ψ̂n
=

f̂n

dα φ̂n

Hence

γ̃ [
fn

φn
] = γ̃ [

gn

ψn
],(4.16)

which completes the proof.

Theorem 4.4. (ψn), (φn) ∈
a

1(I+) and f , g ∈ η(Ω) then mapping γ̃ : L → LB is one-one.

Proof. Now by (4.16)
γ̃ [ fn/φn] = γ̃ [gn/ψn] in LB.

Therefore
f̂n(α, ξ) ~ ψ̂n(ξ) = ĝn(β, ξ) ~ φ̂n(ξ),

f̂n(α, ξ) dβ ψ̂n(ξ) = ĝn(β, ξ) dα φ̂n(ξ),

K( fn(α, x) # dβ ψn(x)) = K(gn(β, x) # dα φn(x)).
Since Kamal transform is one-one.

fn(α, x) # dβ ψn(x) = gn(β, x) # dα φn(x)

⇒
fn(α, x)
φn(x)

∼
gn(β, x)
ψn(x)

⇒ [
fn

φn
] = [

gn

ψn
],

which completes the proof.

Theorem 4.5. γ̃ : L → LB is continuous with respect to µ convergence.

Proof. Let yn → y ∈ L by using the convergence concept in µ in L [[9], [Theorem (2.6)]], we

have φ for all yn such that yn = [
fn

φ
] y = [

f
φ

] and fn → f as n→ ∞

Hence f̂n → f̂ as n→ ∞

⇒
f̂n

dαφ̂
→

f̂
dαφ̂

as n→ ∞

Therefore γ̃ yn → γ̃ y as n → ∞ in LB.

Definition 4.3. Let z = [ f̂n/dα φ̂n] ∈ LB then we can define γ̃−1 of γ̃ by

γ̃−1z = [
fn

φn
] ∈ L .

We can prove that γ̃−1 is well defined,linear,continuous w.r.t. δ convergence.
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Theorem 4.6. The mapping γ̃−1 : LB → L is well defined.

Proof. Let
[ f̂n/daφ̂n] = [ĥm/dbψ̂n] a, b ∈ [1,∞).

Then
f̂n(a, ξ) ~ ψ̂m(ξ) = ĥm(b, ξ) ~ φ̂n(ξ).

By(4.4)

f̂n(a, ξ) db ψ̂m(ξ) = ĥm(b, ξ) da φ̂n(ξ),(4.17)

therefore by Theorem (4.1)

K( fn(a, x) # db ψm(x)) = K(hm(b, x) # da φn(x)).

Hence

fn(a, x) # db ψm(x) = hm(b, x) # da φn(x),(4.18)

which completes the proof.

Theorem 4.7. The mapping γ̃−1 : LB → L is linear

Proof. Let [ f̂n/daφ̂n], [ĥn/dbψ̂n] ∈ LB & c ∈ [1,∞).
Then by (4.4)

γ̃−1{[ f̂n/daφ̂n] + [ĥn/dbψ̂n]} = γ̃−1{
f̂n(a, ξ) dbψ̂n(ξ) + ĥn(b, ξ) daφ̂n(ξ)

daφ̂n(ξ) # dbψ̂n(ξ)
}(4.19)

= [
fn(a, x) # dbψn(x) + hn(b, x) # daφn(x)

daφn(x) # dbψn(x)
]

= [
fn

φn
+

hn

ψn
]

= γ̃−1[ f̂n/daφ̂n] + γ̃−1[ĥn/dbψ̂n].

We can also prove that
γ̃−1[ ˆc fn/daφ̂n] = c γ̃−1[ f̂n/daφ̂n],

which completes the proof.

Theorem 4.8. The mapping γ̃−1 : LB → L is continuous w.r.t. δ convergence.

Proof. Let xn → x in LB

Therefore,
xn = [ĥn,k/daφ̂k] x = [ĥk/daφ̂k]

and
ĥn,k → ĥk as n→ ∞.

Applying inverse Kamal transform

hn,k → hk as n→ ∞

⇒ hn/φn → f /φn as n→ ∞,

which completes the proof.
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5 Conclusion
In this paper we defined the Strong Boehmians for Kamal transform and defined a mapping from
Strong Boehmians to General Boehmians. Also we defined the convolution and inverse transform
from General Boehmian to Strong Boehmians. An attempt is made to define Strong Boehmian
with some references.
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Abstract

The drugs which are effective for malignant disease are anticancer drugs. They are also
called antineo plastics. Anti cancer drugs are classified into several classes which include
alkalyting agents, harmones and anti metabolites. Studies reveal the fact that, there will be an
intrinsic relationship with the properties of alkanes and also drugs(e.g., Boiling Point-BP and
Melting Point-MP) with its chemical structure. In this paper, various topological indices are
defined on the drug to assist the researchers for better understanding of physical properties and
chemical reactions. Here the topological indices are defined and computed for an anticancer
drug .
2010 Mathematics Subject Classifications: 05C05, 05C12, 05C35.
Keywords and phrases: Atom Bond Connectivity (ABC) indices, Symmetric division
index(SDD), F−indices, Multiplicative F−indices, F−polynomial indices, Anticancer drug.

1 Introduction and Terminologies
One of the main disease that lead to death in the world is Cancer. The proportion of death

increases as increase of deaths caused by breast, stomach, lungs and colon cancers. When cells
divide uncontrollably and invasively it causes cancer. It also invades the surrounding tissues there
by causing damage to it. Cell division is a normal process in a human body. When cells get harmful
or grow old, new cells take their place and old once die. This ordered process broke down as cancer
grows. When cells became more harm, older or damage cells survive when they should die and
new cells survive when those were not in need. All these extra cells divide without stopping
and causes tumour. Tumours are malignant when they roll out into surrounding tissues. Unlike
malignant tumours do not invade the neighbouring tissues. This dangerous disease can be cured
by several treatments like surgery, radiotherapy, chemotherapy, harmone therapy, targeted therapy
and more. Surgery of cancer includes some terms and conditions specified for the disease. Further
this consist of not only taking away the tumour but also organism involvement. In various cases,

89

DOI: https://doi.org/10.58250/jnanabha.2020.50111



the simple excision with extended resection beyond the tumour margin won’t resolve the issue
of recurrence and metastasis. Surgery is the first treatment for oncology, even though we have
various limitations and constraints named adenopathies, metastases, etc. This solution will be very
effective one, easy to perform and economical. Contradictions will get generate for some cases
like multi centric cancer(leukosis), cancer with special locations, mesenteric lymph node tumour,
facial, spinal, pelvic osteosarcomas, cancer characterized by important local extensions, tonsillar
epidermoid carcinoma, bilateral thyroid adenocarcinoma, disseminated pancreatic insulinomas.

The therapeutic method will consist of satisfied defined plans: In the first-stage, for each
patient this should be separated and particularized. Then it should consist of parallel treatment
of metastases, para-neoplastic syndrome and its side effects also. The general condition of the
patients are essentially evaluated and continuously maintained over the total duration of treatment
being needed. The option to make use few anticancer drugs relies on many of the considerations
like the type and location of the cancer, its gravity state, surgery or radiation therapy needed or not,
and also considers the side effects of the drugs. Maximum of the drugs will be given intravenously
where as few are taken orally and some others are given within the spinal cord.

This is an attempt to the application of graph theory in anticancer drugs. In this work, the
drug is taken and using the degree based calculations few topological indices are determined. In
this work the drug considered is dox-loaded micelle consisting of PEG-PAsp copolymer. First
polymeric micelle developed was filled with anti cancer drug doxorubicin(DOX). Here DOX
was covalently conjugated to side chains of the poly(aspartate)(PAsp)segmeny by an amide bond
between the carboxylic group of the glycosidyl residue in DOX [17, 18].

The molecular structure topological index is described as a non-empirical numerical measure,
which represents the molecular structures and their branching pattern. Also at this end, topological
indices will map each molecule structure to a real number and used as a descriptor of the molecule
under testing. Various important indices applicable in chemical-engineering (e.g., QSPR/QSAR
study) for establishing the relationship within the molecular structures and the physico-chemical
properties [4].

Usually, chemical compounds are modelled as a graph[16, 20] considering the atoms as the
vertices and the links connecting them as the edges. In a similar fashion, the anti cancer drug under
this study is considered as chemical compound and the said topological indices are determined.
Applications of graph theory are QSAR, QSPR and QSTR where chemists or pharmacists are
welcome to use this data for further research study.

All the graphs used in this work are simple graphs, i.e. cycle free and undirected [4].
Consider G=(V(G), E(G)) will be a molecular graph, where V(G) and E(G) are vertex and edge

respectively, which maps to atoms set and chemical bond set.

Definition 1.1. For a graph G, the First F − index and Second F−index [3, 14] are defined
respectively as

F1(G) =
∑

e=uv∈E(G)

[
(dG(u))2 + (dG(v))2

]
.

F2(G) =
∑

e=uv∈E(G)

[
(dG(u))2 × (dG(v))2

]
.
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Definition 1.2. The multiplicative first F−index is defined as foolows [1, 5]

F1II(G) =
∏

e=uv∈E(G)

[
(dG(u))2 + (dG(v))2

]
.

Definition 1.3. For a graph G, the second multiplicative F-index [14] can be defined as

F2II(G) =
∏

e=uv∈E(G)

[
(dG(u))2 × (dG(v))2

]
.

Definition 1.4. The multiplicative First and Second hyper F-index [10] for a graph G are

HF1II(G) =
∏

e=uv∈E(G)

[
(dG(u))2 + (dG(v))2

]2
.

HF2II(G) =
∏

e=uv∈E(G)

[
(dG(u))2 × (dG(v))2

]2
.

Definition 1.5. For a graph G, both Multiplicative Sum Connectivity and Multiplicative Product
Connectivity F-indices [14] are

S FII(G) =
∏

e=uv∈E(G)

1√
(dG(u))2 + (dG(v))2

.

PFII(G) =
∏

e=uv∈E(G)

1√
(dG(u))2 × (dG(v))2

.

Definition 1.6. Again to the graph G, general multiplicative First and Second F-indices are stated
[12, 14] as

Fk
1II(G) =

∏
e=uv∈E(G)

[
(dG(u))2 + (dG(v))2

]k
.

Fk
2II(G) =

∏
e=uv∈E(G)

[
(dG(u))2 × (dG(v))2

]k
.

Definition 1.7. The multiplicative atom bond connectivity F-index [8, 14] for a graph G is

ABCFII(G) =
∏

e=uv∈E(G)

√
(dG(u))2 + (dG(v))2 − 2

(dG(u))2 × (dG(v))2 .

Definition 1.8. For a graph G, Multiplicative Geometric Arithmetic F-index [14] can be defined
as

GAFII(G) =
∏

e=uv∈E(G)

2
√

(dG(u))2 × (dG(v))2

(dG(u))2 + (dG(v))2 .

Definition 1.9. Ghobadi et al.. defined the First F- polynomial [5] of a graph as

F1(G, x) =
∑

e=uv∈E(G)

x(dG(u))2+(dG(v))2
.
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Definition 1.10. The Second F-polynomial, the First and Second hyper F- polynomial [5, 15] of a
graph are stated as

F2(G, x) =
∑

e=uv∈E(G)

x(dG(u))2×(dG(v))2
.

HF1(G, x) =
∑

e=uv∈E(G)

x[(dG(u))2+(dG(v))2]2

.

HF2(G, x) =
∑

e=uv∈E(G)

x[(dG(u))2×(dG(v))2]2

.

Definition 1.11. Consider a molecular graph G = (V, E), dG(u) is the vertex degree of u and dG(v)
is the vertex degree of v then first index ABC of G [6] can be stated as

ABC(G) =
∑

e=uv∈E(G)


√

(dG(u) + dG(v) − 2)
(dG(u)) × (dG(v))

 .
Definition 1.12. In chemical graph theory field, there are some new degree based graph types,
which plays an important role. These topological indices are required for finding total- surface-
area and heat-formation of various chemical compounds. These graphs types are as follow
Symmetric division [7, 19],

S S D(G) =
∑

e=uv∈E(G)

[A
B

+
B
A

]
.

where, A = min [dG(u), dG(v)] and B = max [dG(u), dG(v)] .

In Section 2 we highlight main results obtained, in detail proofs and the calculations of
topological indices of molecular graphs family.

2 Results and Discussions
Dox-loaded micelle consisting of PEG − PAsp block polymer and copolymers with chemically
conjugated Dox S P[n] is considered in this study, as shown in Figure 1. The integer number n is
step of growth in these form of polymers. Here Figure 2 represents S P[1], Figure 3 represents
S P[2] and Figure 4 represents S P[3]. And also for n = 1, 2 and 3 (consider the Figures 2, 3
and 4 respectively) are determined.
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Figure 2.1: Dox-loaded micelle consisting PEG-PAsp block copolymer with chemically conjugated Dox SP[n]

.

Figure 2.2: The molecular structure of SP[1]

.
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Figure 2.3: The molecular structure of SP[2]

.

Figure 2.4: The molecular structure of SP[3]

.
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Theorem 2.1. The Dox-loaded micelle consisting PEG-PAsp block copolymer with chemically
conjugated Dox S P[n], One has

S P[n] = FK
1 II(G) = 5k(18n+2) × 2k(44n+13) × 9k(16n) × 13k(18n−1) × 17k(n).

Proof. Let the lowest and highest degree of S P[n] respectively are δ and ∆. Suppose the edge set
E(S P[n]) can categorised as various divisions:

(i)E3(orE∗2) : dG(u) = 1 and dG(v) = 2;
(ii)E∗3 : dG(u) = 1 and dG(v) = 3;
(iii)E5 ∩ E∗4 : dG(u) = 1 and dG(v) = 4;
(iv)E4 ∩ E∗4 : dG(u) = 2 and dG(v) = 2;
(v)E∗6 : dG(u) = 2 and dG(v) = 3;
(vi)E∗8 : dG(u) = 2 and dG(v) = 4;
(vii)E∗9 : dG(u) = dG(v) = 3;
(viii)E7(orE∗12) : dG(u) = 3 and dG(v) = 4.

Again Calculating in terms, we observe that |V(S P[n])| = 49n + 6 and |E(S P[n])|
= 54n + 5. In specific, we define

|E3| = |E∗2| = 2n + 1, |E∗3| = 9n + 1, |E5 ∩ E∗4| = |E7| = |E∗12| = n,
|E4 ∩ E∗4| = 5n + 4, |E∗6| = 18n − 1, |E∗8| = 2n and |E∗9| = 16n.

∴ The general multiplicative first F- index of a graph S P[n] is

Fk
1II(G) =

∏
e=uv∈E(G)

[
(dG(u))2 + (dG(v))2

]k
.

=
∏

uv∈E3

[
(1)2 + (2)2

]k
×

∏
uv∈E∗3

[
(1)2 + (3)2

]k
×

∏
uv∈E5∩E∗4

[
(1)2 + (4)2

]k

×
∏

uv∈E4∩E∗4

[
(2)2 + (2)2

]k
×

∏
uv∈E∗6

[
(2)2 + (3)2

]k
×

∏
uv∈E∗8

[
(2)2 + (4)2

]k

×
∏

uv∈E∗9

[
(3)2 + (3)2

]k
×

∏
uv∈E7

[
(3)2 + (4)2

]k
.

= 5k(18n+2) × 2k(44n+13) × 9k(16n) × 13k(18n−1) × 17k(n).

We get the below results by using Theorem 2.1.

Corollary 2.1. The multiplicative first F- index of a graph S P[n] is

F1II(G) = 5(18n+2) × 2(44n+13) × 9(16n) × 13(18n−1) × 17(n).

Proof. Put k = 1 in Theorem 2.1, we gain the required result.

Corollary 2.2. The multiplicative first hyper F- index of a graph S P[n] is

HF1II(G) = 5(36n+4) × 2(88n+26) × 9(32n) × 13(36n−2) × 17(2n).

Proof. Put k = 2 in Theorem 2.1, we gain the required result.
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Corollary 2.3. The multiplicative sum connectivity F- index of a graph S P[n] will be

S FII(G) =

(
1
√

5

)18n+2

×

(
1
√

2

)44n+13

×

(
1
√

9

)16n

×

(
1
√

13

)18n−1

×

(
1
√

17

)n

.

Proof. Put k = −1
2 in Theorem 2.1, we gain the desired result. We now determine the general

multiplicative second F- index of SP[n].

Theorem 2.2. The general multiplicative second F- index of a graph S P[n] is
FK

2 II(G) = 4k(20n+4) × 9k(30n).

Proof.

Fk
2II(G) =

∏
e=uv∈E(G)

[
(dG(u))2 · (dG(v))2

]k
.

=
∏

uv∈E3

[
(1)2(2)2

]k
×

∏
uv∈E∗3

[
(1)2(3)2

]k
×

∏
uv∈E5∩4∗

[
(1)2(4)2

]k

×
∏

uv∈E4∩4∗

[
(2)2(2)2

]k
×

∏
uv∈E∗6

[
(2)2(3)2

]k
×

∏
uv∈E∗8

[
(2)2(4)2

]k

×
∏

uv∈E∗9

[
(3)2(3)2

]k
×

∏
uv∈E7

[
(3)2(4)2

]k
.

= 4k(20n+4) × 9k(30n).

The following results are obtained by using Theorem 2.5.

Corollary 2.4. The multiplicative second F- index of a graph S P[n] is
F2II(G) = 4(20n+4) × 9(30n).

Proof. Put k = 1 in Theorem 2.5, we gain the required results.

Corollary 2.5. The multiplicative second hyper F- index of a graph S P[n] will be
HF2II(G) = 4(40n+8) × 9(60n).

Proof. Put k = 2 in Theorem 2.5, we acquire the required result.

Corollary 2.6. The multiplicative product connectivity F- index of a graph S P[n] will be

PFII(G) =

(
1
4

)10n+2

×

(
1
9

)15n

.

Proof. Put k = −1
2 in Theorem 2.5, we obtained the required result. In the following theorems, we

deduce the multiplicative atom bond connectivity F-index and multiplicative geometric-arithmetic
F-index of S P[n].

Theorem 2.3. The multiplicative atom bond connectivity F- index of S P[n] will be

ABCFII(G) =


√

3
4

2n+1

×

√8
9

9n+1

×


√

15
16

n

×


√

6
16

5n+4

×

√11
36

18n−1

×

√18
64

2n

×


√

16
81

16n

×


√

23
144

n

.
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Proof.

ABCFII(G) =
∏

e=uv∈E(G)


√

(dG(u))2 + (dG(v))2 − 2
(dG(u))2 · (dG(v))2

 .
=


√

(1)2 + (2)2 − 2
(1)2(2)2


2n+1

×


√

(1)2 + (3)2 − 2
(1)2(3)2


9n+1

×


√

(1)2 + (4)2 − 2
(1)2(4)2


n

×


√

(2)2 + (2)2 − 2
(2)2(2)2


5n+4

×


√

(2)2 + (3)2 − 2
(2)2(3)2


18n−1

×


√

(2)2 + (4)2 − 2
(2)2(4)2


2n

×


√

(3)2 + (3)2 − 2
(3)2(3)2


16n

×


√

(3)2 + (4)2 − 2
(3)2(4)2


n

.

=


√

3
4

2n+1

×

√8
9

9n+1

×


√

15
16

n

×


√

6
16

5n+4

×

√11
36

18n−1

×

√18
64

2n

×


√

16
81

16n

×


√

23
144

n

.

Theorem 2.4. The multiplicative geometric-airtmetic F- index of S P[n] is

=

(
24
25

)7n

×

(
12
13

)33n−1

×

(
4
5

)4n

×

(
3
5

)16n

×

(
8

17

)4n

.

Proof.

GAFII(G) =
∏

e=uv∈E(G)

2
√

(dG(u))2 · (dG(v))2

(dG(u))2 + (dG(v))2 .

=

2
√

(1)2(2)2

(1)2 + (2)2

2n+1

×

2
√

(1)2(3)2

(1)2 + (3)2

9n+1

×

2
√

(1)2(4)2

(1)2 + (4)2

n

×

2
√

(2)2(2)2

(2)2 + (2)2

5n+4

×

2
√

(2)2(3)2

(2)2 + (3)2

18n−1

×

2
√

(2)2(4)2

(2)2 + (4)2

2n

×

2
√

(3)2(3)2

(3)2 + (3)2

16n

×

2
√

(3)2(4)2

(3)2 + (4)2

n

.

=

(
24
25

)7n

×

(
12
13

)33n−1

×

(
4
5

)4n

×

(
3
5

)16n

×

(
8

17

)4n

.

Theorem 2.5. The S P[n] for the first F- polynomial of a graph is
= (2n + 1)x5 + (9n + 1)x10 + (n)x17 + (5n + 4)x8 + (18n − 1)x13 + (2n)x20

+ (16n)x18 + (n)x25.

Proof.
F1(G, x) =

∑
e=uv∈E(G)

x(dG(u))2+(dG(v))2
.
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= (2n + 1)
[
x(1+4)

]
+ (9n + 1)

[
x(1+9)

]
+ (n)

[
x(1+16)

]
+ (5n + 4)

[
x(4+4)

]
+ (18n − 1)

[
x(4+9)

]
+ (2n)

[
x(4+16)

]
+ (16n)

[
x(9+9)

]
+ (n)

[
x(9+16)

]
.

= (2n + 1)x5 + (9n + 1)x10 + (n)x17 + (5n + 4)x8 + (18n − 1)x13 + (2n)x20

+ (16n)x18 + (n)x25.

Theorem 2.6. The S P[n] for the second F- polynomial of a graph is
(2n + 1)x4 + (9n + 1)x9 + (6n + 4)x16 + (18n − 1)x36 + (2n)x64 + (16n)x81

+ (n)x144.

Proof.
F2(G, x) =

∑
e=uv∈E(G)

x(dG(u))2·(dG(v))2
.

= (2n + 1)
[
x(1)(4)

]
+ (9n + 1)

[
x(1)(9)

]
+ (n)

[
x(1)(16)

]
+ (5n + 4)

[
x(4)(4)

]
+ (18n − 1)

[
x(4)(9)

]
+ (2n)

[
x(4)(16)

]
+ (16n)

[
x(9)(9)

]
+ (n)

[
x(9)(16)

]
.

= (2n + 1)x4 + (9n + 1)x9 + (6n + 4)x16 + (18n − 1)x36 + (2n)x64 + (16n)x81

+ (n)x144.

Theorem 2.7. The S P[n] for the first hyper F- polynomial of a graph is
(2n + 1)x10 + (9n + 1)x20 + n(x)34 + (5n + 4)x16 + (18n − 1)x26 + (2n)x40 + (16n)x36

+ (n)x50.

Proof.
HF1(G, x) =

∑
e=uv∈E(G)

x[(dG(u))2+(dG(v))2]2

.

= (2n + 1)
[
x(1+4)2]

+ (9n + 1)
[
x(1+9)2]

+ (n)
[
x(1+16)2]

+ (5n + 4)
[
x(4+4)2]

+ (18n − 1)
[
x(4+9)2]

+ (2n)
[
x(4+16)2]

+ (16n)
[
x(9+9)2]

+ (n)
[
x(9+16)2]

.

= (2n + 1)x10 + (9n + 1)x20 + n(x)34 + (5n + 4)x16 + (18n − 1)x26 + (2n)x40

+ (16n)x36 + (n)x50.

Theorem 2.8. The S P[n] for the second hyper F- polynomial of a graph is
(2n + 1)x8 + (9n + 1)x18 + (6n + 4)x32 + (18n − 1)x72 + (2n)x128 + (16n)x162

+ (n)x288.

Proof.
HF2(G, x) =

∑
e=uv∈E(G)

x[(dG(u))2·(dG(v))2]2

.

= (2n + 1)
[
x(1)(4)

]2
+ (9n + 1)

[
x(1)(9)

]2
+ (n)

[
x(1)(16)

]2
+ (5n + 4)

[
x(4)(4)

]2

+ (18n − 1)
[
x(4)(9)

]2
+ (2n)

[
x(4)(16)

]2
+ (16n)

[
x(9)(9)

]2
+ (n)

[
x(9)(16)

]2
.

= (2n + 1)x8 + (9n + 1)x18 + (6n + 4)x32 + (18n − 1)x72 + (2n)x128 + (16n)x162

+ (n)x288.
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Theorem 2.9. For a graph G, The ABC index of S P[n] will be

ABC(G) =
194n

5
+

18
5
.

Proof. By the definition, the ABC index of a graph SP[n] is

ABC(G) =
∑

e=uv∈E(G)


√

(dG(u) + dG(v) − 2)
(dG(u))(dG(v))

 .

=
∑

uv∈E3


√

(1 + 2 − 2)
(1)(2)

 +
∑

uv∈E∗3


√

(1 + 3 − 2)
(1)(3)

 +
∑

uv∈E5∩E∗4


√

(1 + 4 − 2)
(1)(4)


+

∑
uv∈E4∩E∗4


√

(2 + 2 − 2)
(2)(2)

 +
∑

uv∈E∗6


√

(2 + 3 − 2)
(2)(3)

 +
∑

uv∈E∗8


√

(2 + 4 − 2)
(2)(4)


+

∑
uv∈E∗9


√

(3 + 3 − 2)
(3)(3)

 +
∑

uv∈E7


√

(3 + 4 − 2)
(3)(4)

 .

= (25n + 4)


√

1
2

 + (9n + 1)

√2
3

 + n


√

3
4

 + 2n


√

5
8

 + 16n

√4
9


+ n


√

5
12

 .
ABC(G) =

194n
5

+
18
5
.

Theorem 2.10. The Symmetric division index of a graph S P[n] is

S DD(G) =
1273n

10
+

117
10

.

Proof.

S S D(G) =
∑

e=uv∈E(G)

[
A(dG(u), dG(v))
B(dG(u), dG(v))

+
B(dG(u), dG(v))
A(dG(u), dG(v))

]
.

=
∑

uv∈E3

[
A(1, 2)
B(1, 2)

+
B(1, 2)
A(1, 2)

]
+

∑
uv∈E∗3

[
A(1, 3)
B(1, 3)

+
B(1, 3)
A(1, 3)

]

+
∑

uv∈E5∩E∗4

[
A(1, 4)
B(1, 4)

+
B(1, 4)
A(1, 4)

]
+

∑
uv∈E4∩E∗4

[
A(2, 2)
B(2, 2)

+
B(2, 2)
A(2, 2)

]

+
∑

uv∈E∗6

[
A(2, 3)
B(2, 3)

+
B(2, 3)
A(2, 3)

]
+

∑
uv∈E∗8

[
A(2, 4)
B(2, 4)

+
B(2, 4)
A(2, 4)

]

+
∑

uv∈E∗9

[
A(3, 3)
B(3, 3)

+
B(3, 3)
A(3, 3)

]
+

∑
uv∈E7

[
A(3, 4)
B(3, 4)

+
B(3, 4)
A(3, 4)

]
.
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= (2n + 1)
(
5
2

)
+ (9n + 1)

(
10
3

)
+ n

(
17
4

)
+ (5n + 4) (2) + (18n − 1)

(
13
6

)
+ 2n

(
20
8

)
+ 16n (2) + n

(
25
12

)
.

=
1273n

10
+

117
10

.

3 Conclusion
In this work, various topological indices are obtained with the values inspired by Dox-loaded
micelle consisting of PEG-PAsp block copolymer for an anti cancer drug. By means of which the
exact expressions are denoted for several important indices. These formulae help in correlating
chemical structure of polymers with the physical properties. The outcome obtained in this work
demonstrate the optimistic applications in chemical and pharmaceutical engineering field.
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Abstract

In our day to day life we face many problems which are abstract or vague in nature.
These problems cannot be solved only by using simple mathematical tools. To deal with
such kind of problems a new technique popularly known as Fuzzy Set Theory was discovered.
Fuzzy set is the generalization of crisp set and is used in almost every field of life including
Medical Sciences, Business, Administration, Social Science and Operation Research. Later
on, a new concept of parameterization of power set of the universal set was introduced.
Consequently, Fuzzy Soft Set Theory was defined by embedding Fuzzy Set and Soft Set. In
the present communication fuzzy binary relation is described and its applications are studied.
The concepts of soft and fuzzy soft relations are also defined with their applications in decision
making problems.
2010 Mathematics Subject Classifications: 03E72, 03E75, 62C86, 11M50.
Keywords and phrases: Fuzzy Set, Soft Set, Fuzzy Soft Set, Soft Relation and Fuzzy Soft
Relation, Decision making.

1 Introduction
In real life there exist many problems which contain vague or linguistic data and these data cannot
be analysed merely by mathematical tools. However, other concepts, like Game Theory, Fuzzy
Set, Soft Set, Fuzzy Soft Set and Rough Set, etc. have been developed to deal with such types of
imprecise data. Fuzzy Set theory is very popular now these days and so several studies have been
carried out in this area during past few years.

L.A. Zadeh [10] defined the concept of Fuzzy Set to handle the imprecise data. Fuzzy Set
theory is the extension of crisp set. In addition to this, Rough Set theory was developed by
Computer Scientist Pawlak [8] and that was known as Pawlak Rough Set Theory. These theories
have been successfully applied to the fields of Decision Making, Dimension Reduction, Data
Mining, etc.

Besides the Fuzzy Set Theory, the Soft Set Theory is another mathematical tool to deal with
vague data. Soft Set is the parameterization of power set of fuzzy subsets of universal set.
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Molodstov [4] was the first to introduce soft set theory for modelling uncertainties. He not only
defined fundamental concepts of soft set theory, but also showed how this theory had removed
parameterization insufficiency which was existing in the case of game theory, probability theory,
rough set and fuzzy set theories. Many models are unique in case of soft set theory. Soft set has
its wide applications in the fields of medical and environmental sciences, economic and business
management.

Extending soft set theory a new approach known as Fuzzy Soft Set was introduced by Maji et
al. [6]. He proposed Fuzzy Soft Set theory by embedding the concept of fuzzy set and soft set.
Later on this concept was generalized by Majumdar and Samanta [7] in many ways and frequently
used in decision making problems. Recently, Hooda and Kumari [4] have applied this theory in
dimension reduction and medical diagnosis.

Aktas and Cagman [1] compared soft sets with the related concepts of fuzzy sets and rough sets.
Yang et al. [10] worked on different operations for fuzzy soft sets. Zou and Xiao [11] introduced
the soft set and fuzzy soft set into incomplete environment.

Decision making problems are the centre of attraction in every field. Optimum decision must
be taken on the basis of uncertain or vague data. Fuzzy set theory and soft set theory are the best
technique to handle such situations. Also, there may be the situation where two or more soft sets or
fuzzy soft sets are given and we have to form a relation between them. On the basis of that relation
decision is taken.

The concepts of soft relation and fuzzy soft relation are applied in forming relations between
two attributes, like the relation of weight with height. A person is considered to be fit if his/her
weight is within the range prescribed corresponding to his/her height. Otherwise he/she is
considered as overweight or underweight according to the situation. The binary relation of height
and weight is one of the important studies in health. The study of fuzzy relation was extended
to soft and fuzzy soft relations which have found interesting and useful applications in decision
making problems and medical diagnosis.

In the present paper basic concepts and definitions are described in Section 2, Section 3 fuzzy
binary relation and its applications are studied. Soft and fuzzy soft relations with their applications
are discussed in Sections 4 and 5 respectively. The conclusion and future scope are given in Section
6 with the references in the end.

2 Basic Concepts and Definitions
In this section we define some basic concepts and definitions which are used later on development
of the paper.
2.1 Fuzzy Set
Definition 2.1. Let us consider X as a set of universe, then a fuzzy subset ‘̀A” of X is defined as a
set of ordered pair given by
(2.1) A = {< x, µA(x) > /xεX}
where,µA(x) is called membership function from X to [0, 1] with the following properties:

(2.2) µA(x) =


0, if x < A there is no ambiguity
1, xεA there is no ambiguity
0.5 whether xεA or x < A, there is maximum ambiguity .

Example 2.1. A possible membership function defined for the set of real number close to 9 is

(2.3) µA(x) =
1

1 + (x − 9)2 ; (x, µA(x))εR2.
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Here, number 7 is assigned a membership value 0.2, 11 is assigned a membership value 0.2, 21
is assigned a membership value 0.0068 and for 9 membership value is 1. Thus the set A given by
A = {(7, 0.2), (11, 0.2), (21, 0.0068), (9, 1)} is a fuzzy set.

2.2 Soft Set
Definition 2.2. Soft set is the extension of fuzzy set theory proposed by Molodstov [5] to handle
uncertainty of the non-probabilistic approach.

Let’s consider ‘U′ as the universal set and T be the parametric set, then the pair (π,T ) is
defined as soft set over U iff π is a function of T into power set of U i.e. π : T → P(U).

Example 2.2. Assuming S = {s1, s2, s3, s4, s5} be the set of scooters under study and let ‘T ′ be the
parametric set given as T = {t1 = expensive, t2 = beautiful, t3 = cheap, t4 = in good repair, t5 =

latest}. Then the soft set is given by (π,T ) describe the attractiveness of the scooters and given by

(2.4) (π,T ) =



expensive = s1, s2, s3,

beautiful = s3, s5,

cheap = s3, s4, s5

in good repair = s1, s2, s3, s4, s5

latest = s1, s3, s4, s5.

Table 2.1: Tabular representation of (π,T )

X/E t1 t2 t3 t4 t5

s1 1 0 0 1 1
s2 1 0 0 1 0
s3 0 1 1 1 1
s4 0 0 1 1 1
s5 1 1 1 1 1

2.3 Fuzzy Soft Set
Definition 2.3. [6] Fuzzy soft set was defined was by Maji et al. as a hybridization of soft set and
fuzzy set. Let X be a universal set and E be the set of parameters and A ⊂ E. Let F(x) be the set
of all fuzzy subsets of X, then the pair (F, A) is called fuzzy soft subset of X, where F is a mapping
from A to fuzzy set F(x).

Example 2.3. Let X = {c1, c2, c3} be set of 3 cars and E = {costly(e1), getup(e2), colour(e3)} be the
set of parameters and let A = {e1, e2}εE. Then,

(2.5) (F, A) =

F(e1) = {c1/0.6, c2/0.4, c3/0.4}
F(e2) = {c1/0.6, c2/0.3, c3/0.8},

(F, A) is a Fuzzy Soft Set over U to give the “attractiveness of cars”.

3 Fuzzy Relations
A relation is a subset of X × Y , where X and Y are crisp sets, where fuzzy relation is a fuzzy subset
of X × Y i.e. a mapping from X to Y . There are many applications of fuzzy relations.
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Definition 3.1. [2] A fuzzy relation is as a fuzzy set defined on Cartesian product of crisp set
(X1, X2, , Xn) with membership grade (x1, x2, , xn). The membership grade indicates the strength of
the relation present between the elements of the tuples.

A fuzzy relation can also be conveniently represented by n-dimensional membership array
whose entries correspond to n-tuples in the universal set. These entries take values representing
the membership grades of the corresponding n-tuples. In other words, an n- dimensional fuzzy
relation R is a fuzzy set of Cartesian product (X1 × X2 × · · · × Xn), where (X1, X2, , Xn) are domain.

Definition 3.2. [2] Binary Fuzzy Relation
When fuzzy relation is taken over only two crisp sets i.e. between X and Y is known as binary fuzzy
relation.

Example 3.1. Let X = (a, b, c) and Y = (x, y), then binary fuzzy relation ‘R′ on X × Y is given in
Table 3.1.

Table 3.1

R x y
a 0.6 1.0
b 0.3 0.5
c 0.4 0.2

Definition 3.3. Ternary Binary Relation

When fuzzy relation is taken over three crisp sets i.e. between X,Y and Z is known as Ternary
Binary Relation.

Example 3.2. Let X = (x1, x2, x3), Y = (y1, y2) and Z = (z1, z2), then fuzzy relation X × Y × Z is
given as

(3.1) R =
0.21

< x1, y1, z1 >
+

0.38
< x2, y2, z1 >

+
0.9

< x1, y2, z2 >
.

The tabular representation of the fuzzy relation R is given in Tables 3.2 and 3.3.

Table 3.2

R y1 y2

x1 0 0.9
x2 0 0
x3 0 0

Table 3.3

R y1 y2

x1 0.21 0
x2 0 0.38
x3 0 0

Definition 3.4. Height of a Fuzzy Relation
It is a number denoted by h(R), where R is a fuzzy relation given as:

(3.2) h(R) = max
xεX,yεY

R(x, y)

i.e. it is the largest membership grade attained be any pair (x, y) in fuzzy relation R. If h(R) = 1,
then it is a normal fuzzy relation
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Definition 3.5. Inverse of a Fuzzy Relation
Inverse of a fuzzy relation R(x, y) is denoted by R−1(x, y), a fuzzy relation over Y × X is given as
(3.3) R−1(x, y) = R(x, y); xεX, yεY.

Definition 3.6. Max-Min Composition of Two Fuzzy Relations
Let us consider R be a binary fuzzy relation on X × Y and S be a binary fuzzy relation over Y × Z.
Then, max-min composition of R followed by S is a binary fuzzy relation on X ×Z. It is denoted by
S ◦ R, given by
(3.4) (S ◦ R)(x, z) = max[min(R(x, y),R(y, z))],
where max is taken over all y in Y.

Example 3.3. Consider the fuzzy relation ‘R′ on X × Y and ‘S ′ on Y × Z. X,Y and Z are given as:
X = (a, b, c),Y = (d, e, f ) and Z = (?, #). Fuzzy relations ‘R′ and ‘S ′ in matrix form are given in
the following Tables 3.4 and 3.5 respectively:

Table 3.4

R d e F
a 1.0 0.4 0.5
b 0.3 0.0 0.4
c 0.6 0.3 0.2

Table 3.5

S ∗ #
d 0.7 0.1
e 0.2 0.9
f 0.3 0.4

Then the composition S ◦ R is defined and that is also a fuzzy relation over X × Z described as
follows:

S ◦ R(a, ?) = max[min(1, 0.7),min(0.4, 0.2),min(0.5, 0.3)]
= max[0.7, 0.2, 0.3]
= 0.7

S ◦ R(a, #) = max[min(1, 0.1),min(0.4, 0.9),min(0.5, 0.4)]
= max[0.1, 0.4, 0.4]
= 0.4

S ◦ R(b, ?) = max[min(0.3, 0.7),min(0.0, 0.2),min(0.4, 0.3)]
= max[0.3, 0.0, 0.3]
= 0.3

S ◦ R(b, #) = max[min(0.3, 0.1),min(0.0, 0.9),min(0.4, 0.4)]
= max[0.1, 0.0, 0.4]
= 0.4

S ◦ R(c, ?) = max[min(0.6, 0.7),min(0.3, 0.2),min(0.2, 0.3)]
= max[0.6, 0.2, 0.2]
= 0.6

S ◦ R(c, #) = max[min(0.6, 0.1),min(0.3, 0.9),min(0.2, 0.4)]
= max[0.1, 0.3, 0.2] = 0.3.

Thus, S ◦ R in matrix form is given as

106



0.7 0.4
0.3 0.4
0.6 0.3

Definition 3.7. Max Product Composition If R and S are the fuzzy relation over X × Y and Y × Z
respectively, then max-product composition of R followed by S is given as

(3.5) (S ◦ R)(x, z) = max[R(x, y) ∗ S (z, y)]

where ‘*’ is the ordinary product of real numbers and max is taken over all elements y in Y.

Definition 3.8. Let we consider R and S two fuzzy relations over X × Y and Y × Z respectively
given in following Tables

Table 3.6: Fuzzy Relation R

0.3 0.5 0.8
0.0 0.7 1.0
0.4 0.6 0.5

Table 3.7: Fuzzy Relation S

0.9 0.5 0.7 0.7
0.3 0.2 0.0 0.9
1.0 0.0 0.5 0.5

Then the max-product composition of S ◦ R is given in the Table 3.8 given below:

Table 3.8: S ◦ R

0.8 0.15 0.4 0.45
1.0 0.14 0.5 0.63
0.5 0.20 0.28 0.54

4 Soft Relation and its Application
In this section the concept of soft relation is introduced and its application in decision making is
studied with an example.

Definition 4.1. Let us consider U and V as two initial universal sets and E be the parametric set
and let (F, E) and (G, E) be two soft set over U and V respectively, then (H, E) is a soft relation
between (F, E) and (G, E) over U × V if

H : E → 2U×V ,

where H is a mapping such that

(4.1) H(e) =

(ui, v j); if uiεF(e) and v j ε G(e) ∀ e ε E
φ; otherwise

.

Example 4.1. Let U = (h1, h2, h3, h4) be the set of four houses and let V = ( f1, f2, f3) , be the set of
three farm houses. Also, let ‘E′ be the parametric set namely

E = (e1(green surrounding), e2(cheap), e3(wooden)). Then the soft sets (F, E) and (G, E) over
U and V are given by:
(F, E) = F(e1) = (h1, h3), F(e2) = (h2, h4), F(e3) = (h1, h2) and
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(G, E) = G(e1) = ( f1, f3),G(e2) = ( f1, f2),G(e3) = ( f2, f3).
Then, the soft relation (H,E) between (F,E) and (G,E) is given as
H(e1) = (h1, f1), (h1, f3), (h3, f1), (h3, f3),
H(e2) = (h2, f1), (h2, f2), (h4, f1), (h4, f2) and
H(e3) = (h1, f2), (h1, f3), (h2, f2), (h2, f3) .

The tabular representation of soft sets (F, E) and (G, E) are given in Tables 4.1 and 4.2.

Table 4.1: Soft Set (F, E)

U e1 e2 e3

h1 1 0 1
h2 0 1 1
h3 1 0 0
h4 0 1 0

Table 4.2: Soft Set (G, E)

V e1 e2 e3

f1 1 1 0
f2 0 1 1
f3 1 0 1

The soft relation (H,E) is given in the following Table:

Table 4.3: Soft Relation (H, E)

U × V e1 e2 e3

(h1, f1) 1 0 0
(h1, f2) 0 0 1
(h1, f3) 1 0 1
(h2, f1) 0 1 0
(h2, f2) 0 1 1
(h2, f3) 0 0 1
(h3, f1) 1 0 0
(h3, f2) 0 0 0
(h3, f3) 1 0 0
(h4, f1) 0 1 0
(h4, f2) 0 1 0
(h4, f3) 0 0 0

4.1 Properties of Soft Relation
Let (H1, E) and (H2, E) be the two soft relations between (F, E) and (G, E) over U × V , then the
following results hold:

(a) Union of two soft relations is also a soft relation, i.e., (H, E) = (H1, E) ∪ (H2, E) such that
H(e) = H1(e) ∪ H2(e) ; ∀ e εE.

(b) Intersection of soft relation is also a soft relation, i.e., (K, E) = (H1, E) ∩ (H2, E); such that
K(e) = H1(e) ∩ H2(e) ; ∀e ε E.

(c) Complement of soft relation is also a soft relation. Let us consider (F, E)C and (G, E)C as the
complement of soft set (F, E) and (G, E). Then soft relation between (F, E)C and (G, E)C is
given by
HC =eE → 2U×V , where HC is a mapping such that

HC(e, e) = (ui, v j), where ui ε F(ee) and v j G(ee), ∀ e εE.
The symbol “e” stands for “not in”.
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(d) Composition of soft relation is also a soft relation. Let (F, E), (G, E) and (H, E) are three
soft sets over U,V and W respectively. Also let (K1, E) and (K2, E) are soft relation between
(F, E)&(G, E) and (G, E)&(H, E) over U × V and V ×W respectively. Then composition of
(K1, E) and (K2, E) is also a soft relation over U ×W given as K : E → 2U×W : such that

K(e) = {(u, v);∃vεV, uεU and wεW, also (u, v)ε(K1, E) and (v,w)ε(K2, E)}
(e) A soft relation is reflexive iff (ui, ui)εH(e) ∀eεE anduiεU.
(f) A soft relation is symmetric iff (ui, u j)εH(e) and (u j, u j) ε H(e) ∀ eεE and ui, u j, ukεU
(g) A soft relation is transitive iff (ui, u j)εH(e) and (u j, ui) ε H(e) ∀ eεE and ui, u jεU
(h) A soft relation is soft tolerance relation if it is reflexive and symmetric.
(i) A soft relation is soft equivalence relation if it is reflexive, symmetric and transitive.

4.2 Application of Soft Relation in Decision Making Problem
Here we discuss the application of soft relation in decision making problem. Suppose B =

b1, b2, b3, b4 is the set of four boys and G = g1, g2, g3 is the set of three girls who play badminton.
From these players a pair of boy and girl is to be chosen for sponsorship. Also, let ‘E’ be the set
of parameters to judge the capability of a badminton players. E is given as =e1 (physical fitness),
e2 (average matches win), e3 (judgement capability), e4 (average matches played), e5 (height).

Suppose Mr X is interested to sponsor a mixed pair of badminton player on the basis of his
choice of parameters.

A =e1 (physical fitness), e2 (average matches win), e3 (judgement capability).
4.2.1 Soft Set Formation
Let us consider soft sets (F, A) and (H, A) over B and G respectively, given as

(F, A) = F(e1) = (b1, b2), F(e2) = (b1, b2, b4), F(e3) = (b1, b3)
(H, A) = H(e1) = (g1, g3),H(e2) = (g1, g2),H(e3) = (g1, g2, g3)

Tabular representation of soft sets (F, A) and (H, A) are given in the following tables respectively.

Table 4.4: Soft Set (F, A)

B e1 e2 e3

b1 1 1 1
b2 1 1 0
b3 0 0 1
b4 0 1 0

Table 4.5: Soft Set (H, A)

B e1 e2 e3

g1 1 1 1
g2 0 1 1
g3 1 0 1

4.2.2 Algorithm for Selection of Mixed Double Players using Soft Relation
(i) Firstly, input the soft set (F, A) and (H, A).

(ii) Secondly, construct the soft relation (I, A) table using soft sets (F, A) and (H, A) w.r.t the
choice of the paramters of Mr X.

(iii) Then compute the choice value ri, j i.e ri, j =
∑

eεE(bi, g j) for the soft relation (I, A).
(iv) Find m = max

1≤i≤4,1≤ j≤3
ri, j,

If two or more values of ‘m′ are same then Mr X can choose any one of them by his opinion.

As we already construct the soft set(F, A) and (H, A) in Tables 4.4 and 4.5. Now we construct
the soft relation (I, A) over B × G and then compute the choice valueri, j. By applying
Algorithm 4.2.2, we get the following soft relation as given below:
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Table 4.6: Soft Relation over B ×G

B ×G e1 e2 e3 Choice value (ri, j)
(b1, g1) 1 1 1 3
(b1, g2) 0 1 1 2
(b1, g3) 1 0 1 2
(b2, g1) 1 1 0 2
(b2, g2) 0 1 0 1
(b2, g3) 1 0 0 1
(b3, g1) 0 0 1 1
(b3, g2) 0 0 1 1
(b3, g3) 1 0 1 1
(b4, g1) 0 1 0 1
(b4, g2) 0 1 0 1
(b4, g3) 0 0 0 0

Here maximum value of ri j = 3 given by r11 for pair (b1, g1). Hence, Mr X will sponsor the
pair (b1, g1) for mixed double badminton game

5 Fuzzy Soft Relation
In this section we shall define fuzzy soft relation with its application in decision making problem
by considering example.

Definition 5.1. Let U and V be two initial universal sets and E be the set of parameter. Also, let
(F, E) and (G, E) be two fuzzy soft set over U and V respectively and φ(U × V) be the set of all
fuzzy subset of U × V, then (H, E) is a fuzzy soft relation between (F, E) and (G, E) over U × V if
H : E → φ(U × V), where H is a mapping such that

(5.1) H(e) = {(ui, v j)/ui j; ui j = min(ui, u j) ∀e ε E, (ui, ui) ε F(e) and (v j, u j) ε G(e)}.

Example 5.1. Let U = {Paris, Berlin, Amsterdam} and V = {Rome, Madrid, Lisbon} are sets of
cities and let ‘E′ be the set of given parameters, where E ={e1 (far), e2 (very far), e3 (near), e4

(crowded), e5 (well managed)}. Let H be the fuzzy soft relation over U and V given by

(H, E) = {H(e1) = (Paris, Rome)/0.60, (Paris, Madrid)/0.45,(Paris, Lisbon)/0.40, (Berlin,
Rome)/0.55, (Berlin, Madrid)/0.65, (Amsterdam, Lisbon)/0.70, (Amsterdam, Rome)/0.75, (Ams-
terdam, Madrid)/0.50, (Amsterdam, Lisbon)/0.80}

Tabular Representation of Fuzzy Soft Relation over U × V is given in Table 5.1.

Table 5.1: Fuzzy Soft Relation over U × V

H (far) Rome Madrid Lisbon
Paris 0.60 0.45 0.40

Berlin 0.55 0.65 0.70
Amsterdam 0.75 0.50 0.80
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5.1 Properties of Fuzzy Soft Relation
Let (H1, E) and (H2, E) be the two fuzzy soft relations between (F, E) and (G, E) over U × V , then

(a) Union of two fuzzy soft relations is also a fuzzy soft relation i.e.
(H, E) = (H1, E) ∪ (H2, E), where H(e) = H1(e) ∪ H2(e) ;∀ e εE.

(b) Intersection of fuzzy soft relation is also a fuzzy soft relation i.e
(K, E) = (H1, E) ∩ (H2, E), where K(e) = H1(e) ∩ H2(e); ∀ e ε E.

(c) Complement of fuzzy soft relation is also a fuzzy soft relation.
Let us consider (F, E)(C) and (G, E) as the complement of fuzzy soft set (F, E) and (G, E),
then fuzzy soft relation between (F, E)C and (G, E)C is given by

HC =eE → 2U×V , where HC is a mapping such that

HC(ee) =
(ui, v j)

ui j
; u j j = min(µi, µ j),∀ eεE, (ui, µi) εF(ee) and (v j, µ j) εG(ee).

The symbol “e” stands for “not in”
(d) A fuzzy soft relation is reflexive iff µH(e) (hi, hi) = 1 ∀ eεE and hiεU.
(e) A fuzzy soft relation is symmetric iff µH(e)(hi, h j) = µH(e)(h j, hi) ∀ e εE and hi, h j ε U.
(f) A fuzzy soft relation is transitive iff µH(e)(hi, h j) = λ1 and µH(e)(h j, hk) = λ2 → µH(e)(hi, hk) =

λ ∀e ε E, λ ≥ min(λ1, λ2) and hi, h j, hk ε U.
(g) A fuzzy soft relation is fuzzy tolerance relation if it is reflexive and symmetric.
(h) A fuzzy soft relation is fuzzy equivalence relation if it is reflexive, symmetric and transitive.

5.2 Application of Fuzzy Soft Relation in Decision Making Problem
Let us consider B = b1, b2, b3, b4 the set of four boys and G = g1, g2, g3 the set of three girls who
play badminton. We are to choose a pair for double badminton game. Further, let ‘E′ be a set of
parameters to judge the capability of a badminton players and is given as

={e1 (physical fitness), e2 (average matches win), e3 (judgement capability),

e4 (average matches played), e5 (height)}

Suppose Mr X is interested to sponsor a mixed pair of badminton player on the basis of his
choice of parameters. Let A be a subset of E given as

={e1 (physical fitness), e2 (average matches win), e3 (judgement capability)}
5.2.1 Algorithm for Selection of Mixed Double Using Fuzzy Soft Relation

(i) Firstly, input the soft sets (F, A) and (H, A) w.r.t. choice of parameters of Mr X.
(ii) Secondly, covert the soft sets (F, A) and (H, A) into fuzzy soft sets using suitable technique.

(iii) Form the fuzzy soft relation (I, A) between fuzzy soft sets (F, A) and (H, A).
(iv) Then compute the comparison table for fuzzy soft relation (I, A).
(v) Then compute row-sum and column-sum of comparison table as

si j =
∑
eεA

ri j and pi j =
∑
eεA

ri j

(vi) Then find the score value S i j = si j − pi j.
(vii) Finally, maximum of S i j will be the choice. In case two or more values of S i j are same, then

Mr X can choose any one the pair according to his opinion
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5.2.2 Illustration with Example
Let us consider soft sets (F, A) and (H, A) over B and G respectively, given as

(F, A) = {F(e1) = (b1, b2), F(e2) = (b1, b2, b4), F(e3) = (b1, b3)}
(H, A) = {H(e1) = (g1, g3),H(e2) = (g1, g2),H(e3) = (g1, g2, g3)}.

Tabular representation of soft sets (F, A) and (H, A) are given in Tables 5.2 and 5.3 respectively.

Table 5.2: Soft Set (F, A)

B e1 e2 e3

b1 1 1 1
b2 1 1 0
b3 0 0 1
b4 0 1 0

Table 5.3: Soft Set (H, A)

G e1 e2 e3

g1 1 1 1
g2 0 1 1
g3 1 0 1

These soft sets are converted respectively to fuzzy soft set by applying Algorithm 5.2.1 given
in Tables 5.4 and 5.5 below:

Table 5.4: Fuzzy Soft Set (F, A)

B e1 e2 e3

b1 0.50 0.75 0.50 3/3
b2 0.34 0.50 0 2/3
b3 0 0 0.17 1/3
b4 0 0.26 0 1/3

2/4 3/4 2/4

Table 5.5: Fuzzy Soft Set (H, A)

G e1 e2 e3

g1 0.67 0.67 1 3/3
g2 0 0.45 0.67 2/3
g3 0.45 0 0.67 2/3

2/3 2/3 3/3

By applying the Algorithm 5.2.1 the fuzzy soft relation (I, A) is found out as given below in
the Table 5.6.

Table 5.6: Fuzzy Soft Relation (I, A)

B ×G e1 e2 e3

(b1, g1) 0.50 0.67 0.50
(b1, g2) 0 0.45 0.50
(b1, g3) 0.45 0 0.50
(b2, g1) 0.34 0.50 0
(b2, g2) 0 0.45 0
(b2, g3) 0.34 0 0
(b3, g1) 0 0 0.17
(b3, g2) 0 0 0.17
(b3, g3) 0 0 0.17
(b4, g1) 0 0.26 0
(b4, g2) 0 0.26 0
(b4, g3) 0 0 0

Now the comparison table is given below in Table 5.7
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Table 5.7: Comparison Table

B ×G (b1, g1) (b1, g2) (b1, g3) (b2, g1) (b2, g2) (b2, g3) (b3, g1) (b3, g2) (b3, g3) (b4, g1) (b4, g2) (b4, g3)
(b1, g1) 3 3 3 3 3 3 3 3 3 3 3 3
(b1, g2) 1 3 2 1 2 2 3 3 3 3 3 3
(b1, g3) 1 2 3 2 2 3 3 3 3 2 2 3
(b2, g1) 0 2 1 3 3 3 2 2 2 3 3 3
(b2, g2) 0 2 1 1 3 2 2 2 2 3 3 3
(b2, g3) 0 1 1 2 2 3 2 2 2 2 2 3
(b3, g1) 0 1 1 1 2 2 3 3 3 2 2 3
(b3, g2) 0 1 1 1 2 2 3 3 3 2 2 3
(b3, g3) 0 1 1 1 2 2 3 3 3 2 2 3
(b4, g1) 0 1 1 1 2 2 2 2 2 3 3 3
(b4, g2) 0 1 1 1 2 2 2 2 2 3 3 3
(b4, g3) 0 1 1 1 2 2 2 2 2 2 2 3

Table 5.8: Comparison between Row-sum and Column-sum

Row-sum Colum sum Score Value
36 5 31
29 9 20
29 17 12
27 18 9
24 27 -3
22 28 -6
23 30 -7
23 30 -7
23 30 -7
22 30 -8
22 30 -8
20 36 -16

Here maximum score value S i j = 31 corresponding to the pair (b1, g1). So Mr X would like to
sponsor (b1, g1) for mixed double badminton game.

6 Conclusion and Future Scope
The concepts of soft set and fuzzy soft set are recently emerged important topics to deal with
uncertainties and ambiguities present in our day to day life. The availability of the parameterization
tools in these sets has further enhanced the flexibility of their applications. Thus, soft and fuzzy
soft relations which are extensions to crisp and fuzzy relations have been introduced and their
applications in decision making problems have been studied with examples.

In our view the theory of soft and fuzzy soft relations based on soft set and fuzzy soft set
respectively, can be extended to interval valued soft and fuzzy soft sets. Also, the theory can
be extended to intuitionistic soft and fuzzy soft sets, generating a new class of relations. Their
application to decision making and medical diagnosis problems can be further considered and
studied.
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Abstract

In present paper an inventory model is produced for immediate transient things with cubical
polynomial time function demand rate and pareto type perishable rate with permissible delay
in payments. Deficiencies are permitted and partially backlogged for the next replenishment
cycle. Holding cost is linear function of time. The fundamental motivation of this paper is
to examine the retailer’s ideal strategy that minimizes the retailer’s yearly total cost per unit
time under reasonable deferral in instalments inside the EOQ structure. Numerical results
are shown for proposed model. Sensitivity investigation of the ideal arrangements regarding
various parameters is examined.
2010 Mathematics Subject Classifications: 90B05, 90B10, 90B15
Keywords and phrases: Inventory, Instantaneous deterioration, Pareto perishable rate,
Cubical polynomial time function demand rate, Permissible delay in payments.

1 Introduction
It is day to day challange that concerns the need and availability of products relevant to
distributers, wholesalers and consumers. On large scale inventory problems can be devided into
raw materials, process work and finished products. The basic EOQ model (1915) recognized three
categories of costs, such as inventory prices, purchasing/set up cost and keeping/holding/carrying
costs. Deterioration of commodities is unavoidable and a growing occurence of every day life.
Deterioration plays significant role in the control of inventories. Instant and non-instant are two
categories of deterioration. Stock actions under the permissible delay in payments is another
crucial function in actual world scenarios. Partial backlogging is another factor which effect a
slight decline in profit if there is waiting for shipment. Significant studies performed by a number
of researchers in the field. Goyal [9] established an EOQ model that provided a reasonable pause
in payments. Aggarwal and Jaggi [1] developed an EOQ model to achieve optimum order quantity
of deteriorating products. Chen and Kang [5] have established an optimized inventory model
with a pricing approach focussed on the permitted pause in payments. Prasad and Kansal [17] also
established a dealer EOQ model where the manufacturer has an incremental interest rate within the
allowable delay in payments. A lot size model for decaying items was provided by Shah [24, 25]
in order to assess the optimum specific turnaround duration where the manufacturer only gave a
specific extended payments for one duration. Optimum cost and lot size was evaluated by Teng et
al.[30] under delay in payments. Shalini Singh [27] developed a procuring strategy of an inventory
model for single item and multi supplier with allowing shortages.
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An inventory model for deteriorating products with power dependent demand and linear
deterioration was discussed by Sharma and Vijay [26]. Mohanty et al.[19] considered random
review period and discounts for deteriorating items. An EOQ model for instantaneous items
with cubic demand and constant deterioration rate was analyzed by Rangarajan and Karthikeyan
[21]. Jaggi et al.[8] had taken ramp type demand to develop inventory model. Incremental
holding cost were considered under partial backlogging by Singh et al. [28]. Jain et al.[14]
produced an inventory model for a supplier. They assumed stock dependent demand rate for
perishable items in inflationary environment. Ideal purchasing strategies carried out in [3, 18]
with delay in payments. Chang and Dye [4] produced an EOQ model for deteriorating products
with time dependent demand and marginally backlogged. When the ordered quantity is less
than the prescribed quantity hypothetical theory developed in [11, 20]. Time dependent demand
and perishable rate based EOQ model was designed by Sarkar [23] under permissible delay in
payments. Strategies of inventory replenishment were discussed and Goyal’s model modified by
[6, 7]. Jamal et al. [15, 16] constructed an EOQ model for perishable goods and permissible
delay in payments. Salameh et al.[22] discussed the continuous inventory analysis paradigm. Teng
[29] revised Goyal’s model by recognizing the gap between product price and product expenses.
An EOQ model with time dependent perishable cost and constant demand rate was presented by
Amutha and Chandrasekaran [2]. Teng et al.[31] extended the existing models by introducing some
additional parameters. Geetha and Uthayakumar [32] provided an EOQ model for non-immediate
depreciation and allowable delay in payments. Inventory models for decaying goods with delay in
payments were established in [12, 13, 25].

In this paper, we develop an inventory model with cubical polynomial time function demand
rate, perishable rate is taken pareto type, shortages are allowed and are partially backlogged with
permissible delay in payments. Holding cost has been taken linear function of time. Replenishment
rate is taken infinite and instantaneous. This paper is structured as follows: some notations and
assumptions are mentioned in Section 2. Mathematical formulation and solution of model carried
out in Section 3. Numerical investigation by assigning values of parameters is performed in Section
4. In Section 5, we present sensitivity analysis of the developed model by varying parameters.
Results and observations are reported in Section 6. In Section 7, consequences of the paper are
concluded.

2 Notations and Assumptions
We have used the following postulates to develop this inventory model:

1. Lead time is assigned to zero.
2. The replenishment rate is taken as infinite and instantaneous.
3. The finite planning horizon is reckoned.
4. The demand for the aspect is snatched as a cubical polynomial function of time.
5. Perishable rate is put up within the Pareto type.
6. The supplier didn’t have provided the replacement or return strategy. Entities that have

terminated will be demolished.
7. Shortages are tolerated and are partially backlogged. The backlogging rate is dangling on

the customer’s waiting duration for the subsequent replenishment, throughout the stock-out
duration i.e. for the negative inventory, the backlogging rate is distinguished as B(t) =

1
1+δ(T−t) ; δ > 0 denotes the backlogging parameter and t1 ≤ t ≤ T .
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8. During the permissible delay deriod of payments, the retailer does not have to settle down the
account with the supplier. The retailer deposites the generated sales revenue in an interest-
bearing account. The supplier starts charging interest as soon as the deadline ends.

The following notations have been used in compiling this inventory model:

D(t): The demand rate D(t) =

a + bt + ct2 + dt3, 0 ≤ t ≤ t1

D0(constant), t1 ≤ t ≤ T
where a=initial demand, b=initial rate of change of demand,
c=acceleration of demand,
d=rate of change of acceleration of demand,
θ(t): θ(t) = θ1θ2

1+θ2t (Pareto type),
where θ1 > 0 and 0 < θ2 < 1,
HC: Holding cost has taken as a linear function of time.HC = α + βt, α > 0, β > 0,
t1: Time to exhaust stock within a replenishment cycle, 0 < t1 < T ,
T : Length of a replenishment cycle,
M: Permissible delay period,
A: Fixed ordering cost per unit,
p(t): The selling price at time t, p(0) = p,
Cb: Unit shortage cost of an item,
Cp: Unit purchasing cost of an item,
Cl: Unit lost sale cost of an item,
Ip: The interest charged per unit of money per year by the supplier, 0 < Ip < 1,
Ie: The interest earned per unit of money per year, 0 < Ie < 1.

3 Mathematical Formulation and Solution of the Model
The inventory system for instantaneous deteriorating items with shortages is portrayed in the
following Figure 3.1

Figure 3.1: Inventory System for Instantaneous Deteriorating Items with Shortages

The instantaneous inventory level I(t) at any time ‘t′ during the cycle time [0, t1] is represented
by the following governing differential equation:

dI(t)
dt

+ θ(t)I(t) = −D(t), 0 ≤ t ≤ t1(3.1)
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=⇒
dI(t)

dt
+

(
θ1θ2

1 + θ2t

)
I(t) = −(a + bt + ct2 + dt3), 0 ≤ t ≤ t1.

The solution of above equation (3.1) with boundary condition I(t1) = 0 is

I(t) =

[
a(t1 − t) +

b
2

(t2
1 − t2) +

c
3

(t3
1 − t3) +

d
4

(t4
1 − t4)(3.2)

+
aθ1θ2

2
(t2

1 − 2tt1 + t2) +
bθ1θ2

6
(2t3

1 − 3tt2
1 + t3)

+
cθ1θ2

12
(3t4

1 − 4tt3
1 + t4) +

dθ1θ2

20
(4t5

1 − 5tt4
1 + t5)

]
, 0 ≤ t ≤ t1.

and by using boundary condition I(0) = R, we get the maximum positive inventory

R =

[
at1

2
(2 + θ1θ2t1) +

bt2
1

6
(3 + 2θ1θ2t1)(3.3)

+
ct3

1

12
(4 + 3θ1θ2t1) +

dt4
1

20
(5 + 4θ1θ2t1)

]
.

Partial Backlogging Model
The instantaneous inventory level I1(t) at any time ‘t′ during the shortage period [t1,T ] is
represented by the governing differential equation

(3.4)
dI1(t)

dt
= −

D0

1 + δ(T − t)
, t1 ≤ t ≤ T.

The solution of above equation (3.4) with boundary condition I1(t1) = 0 is

(3.5) I1(t) =
D0

δ
log

[
1 + δ(T − t)
1 + δ(T − t1)

]
, t1 ≤ t ≤ T.

Using boundary condition −I1(T ) = P, we get the negative inventory

(3.6) −I1(T ) = P =
D0

δ
log{1 + δ(T − t1)}.

Total inventory, Q = R + P

=⇒ Q =

[
at1

2
(2 + θ1θ2t1) +

bt2
1

6
(3 + 2θ1θ2t1)(3.7)

+
ct3

1

12
(4 + 3θ1θ2t1) +

dt4
1

20
(5 + 4θ1θ2t1) +

D0

δ
log {1 + δ(T − t1)}

]
.

The total average inventory cost (TC) per cycle consists of the following costs:
(i) Ordering cost per cycle:

(3.8) OC =
A
T
.

(ii) Holding cost per cycle:

HC =
1
T

∫ t1

0
(α + βt)I(t)dt

(3.9)

=
α

T

{
at2

1

6
(3 + θ1θ2t1) +

bt3
1

24
(8 + 3θ1θ2t1) +

ct4
1

20
(5 + 2θ1θ2t1) +

dt5
1

60
(12 + 5θ1θ2t1)

}
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+
β

T

{
at3

1

24
(4 + θ1θ2t1) +

bt4
1

120
(15 + 4θ1θ2t1) +

ct5
1

180
(18 + 5θ1θ2t1) +

dt6
1

84
(7 + 2θ1θ2t1)

}
.

(iii) Shortage cost per cycle:

S C =
Cb

T

∫ T

t1
[−I1(t)] dt(3.10)

=
CbD0

δ2T
[
δ(T − t1) − log{1 + δ(T − t1)}

]
.

(iv) Perishable cost per cycle:

PC =
Cp

T

{
R −

∫ t1

0
D(t) dt

}
(3.11)

=
Cp

T

{
a
2

(θ1θ2t2
1) +

b
3

(θ1θ2t3
1) +

c
4

(θ1θ2t4
1) +

d
5

(θ1θ2t5
1)
}
.

(v) Cost due to lost sales per cycle:

CLS =
ClD0

T

∫ T

t1

[
1 −

1
1 + δ(T − t)

]
dt(3.12)

=
ClD0

T

[
T − t1 −

1
δ

log{1 + δ(T − t1)}
]
.

(vi) Interest earned per cycle: (t1 < M)

InE =
pIe

T

∫ M

0
tD(t) dt(3.13)

=
pIe

T

[
at2

1

2
+

bt3
1

3
+

ct4
1

4
+

dt5
1

5
+

D0

2
(M2 − t2

1)
]
.

(vii) Interest payable per cycle: (t1 ≥ M)

InP1 =
CpIp

T

∫ t1

M
I(t) dt(3.14)

=
CpIp

T

[
a
2

(t2
1 − 2Mt1 + M2) +

b
6

(2t3
1 − 3Mt2

1 + M3)

+
c

12
(3t4

1 − 4Mt3
1 + M4) +

d
20

(4t5
1 − 5Mt4

1 + M5)

+
aθ1θ2

6
(t3

1 − 3Mt2
1 + 3M2t1 − M3)

+
bθ1θ2

24
(3t4

1 − 8Mt3
1 + 6M2t2

1 − M4)

+
cθ1θ2

60
(6t5

1 − 15Mt4
1 + 10M2t3

1 − M5)

+
dθ1θ2

120
(10t6

1 − 24Mt5
1 + 15M2t4

1 − M6)
]
.

Total average inventory cost per cycle,
(3.15) TC = OC + HC + PC + S C + CLS + InP1 − InE.

(3.16) TC =
A
T

+
α

T

{
at2

1

6
(3 + θ1θ2t1) +

bt3
1

24
(8 + 3θ1θ2t1) +

ct4
1

20
(5 + 2θ1θ2t1) +

dt5
1

60
(12 + 5θ1θ2t1)

}
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+
β

T

{
at3

1

24
(4 + θ1θ2t1) +

bt4
1

120
(15 + 4θ1θ2t1) +

ct5
1

180
(18 + 5θ1θ2t1) +

dt6
1

84
(7 + 2θ1θ2t1)

}
+

Cp

T

{
a
2

(θ1θ2t2
1) +

b
3

(θ1θ2t3
1) +

c
4

(θ1θ2t4
1) +

d
5

(θ1θ2t5
1)
}

+
CbD0

δ2T
[
δ(T − t1) − log{1 + δ(T − t1)}

]
+

ClD0

T

[
T − t1 −

1
δ

log{1 + δ(T − t1)}
]

+
CpIp

T

[
a
2

(t2
1 − 2Mt1 + M2) +

b
6

(2t3
1 − 3Mt2

1 + M3)

+
c

12
(3t4

1 − 4Mt3
1 + M4) +

d
20

(4t5
1 − 5Mt4

1 + M5)

+
aθ1θ2

6
(t3

1 − 3Mt2
1 + 3M2t1 − M3)

+
bθ1θ2

24
(3t4

1 − 8Mt3
1 + 6M2t2

1 − M4)

+
cθ1θ2

60
(6t5

1 − 15Mt4
1 + 10M2t3

1 − M5)

+
dθ1θ2

120
(10t6

1 − 24Mt5
1 + 15M2t4

1 − M6)
]

−
pIe

T

[
at2

1

2
+

bt3
1

3
+

ct4
1

4
+

dt5
1

5
+

D0

2
(M2 − t2

1)
]
.

Our objective is to minimize the total average inventory cost per cycle. Firstly we consider the
derivative of TC with respect to the decision variable t1 i.e. d(TC)

dt1
. Setting the derivative equal to

zero, we have, d(TC)
dt1

= 0 .
Secondly we consider the second order derivative of TC with respect to the decision variable

t1. Provided that TC satisfies the following condition: d2(TC)
dt21

> 0.
By solving above non-linear equation by MATLAB software, the value of t∗1 can be obtained

and then from Eqns. (3.7) and (3.16), the optimal values of Q∗ and TC∗ can be found out
respectively. Assume suitable values for A, T , a, b, c, d, α, β, p, θ1, θ2, D0, δ, M, Cb,
Cl, Cp, Ie and Ip with appropriate units.

4 Numerical Example
Suppose that there is a product of pareto type decreasing function θ(t) =

(
θ1θ2

1+θ2t

)
, where θ1 > 0 and

0 < θ2 < 1. The parameters of the inventory system are A = 1000, T = 2, a = 10, b = 12, c = 15,
d = 20, α = 5, β = 0.5, p = 50, θ1 = 0.2, θ2 = 0.4, D0 = 0.5, δ = 0.5, M = 0.5, Cb = 2, Cl = 4,
Cp = 5, Ie = 0.12, Ip = 0.15.

Under the above given parameters we obtain the optimum solutions t∗1 = 0.7087, TC∗ =

499.7216 and Q∗ = 14.0885.

5 Sensitivity Analysis
On the basis of the data given in above example the sensitivity analysis is studied by changing
the values of parameters a, b, c, d, θ1, θ2, δ, α, β and M by +50%, +25%, −25% and −50% and
supervising the halting parameters at their original values
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Table 5.1: Sensitivity Analysis of Partial Backlogging Inventory Model

Changing Changing Optimal values
parameter % t∗1 TC∗ Q∗

a -50 % 0.7003 499.9223 10.1999
-25 % 0.7049 499.8220 12.1445
+25 % 0.7120 499.6210 16.0322
+50 % 0.7148 499.5202 17.9756

b -50 % 0.7019 499.8175 12.3190
-25 % 0.7055 499.7696 13.2034
+25 % 0.7115 499.6734 14.9743
+50 % 0.7140 499.6251 15.8605

c -50 % 0.7028 499.7771 12.9799
-25 % 0.7059 499.7494 13.5335
+25 % 0.7112 499.6937 14.6447
+50 % 0.7135 499.6657 15.2018

d -50 % 0.7032 499.7589 13.2595
-25 % 0.7061 499.7403 13.6730
+25 % 0.7111 499.7028 14.5057
+50 % 0.7133 499.6839 14.9241

δ -50 % 0.6960 499.5806 13.7148
-25 % 0.7027 499.6524 13.9103
+25 % 0.7147 499.7945 14.2725
+50 % 0.7212 499.8772 14.4804

θ1 -50 % 1.0409 498.3046 29.5772
-25 % 0.8457 499.2445 19.3630
+25 % 0.6091 500.0015 11.0248
+50 % 0.5341 500.1836 9.0719

θ2 -50 % 1.0409 498.3046 29.5772
-25 % 0.8457 499.2445 19.3630
+25 % 0.6091 500.0015 11.0248
+50 % 0.5341 500.1836 9.0719

α -50 % 2.0000 262.7969 183.1858
-25 % 2.0000 422.3803 183.1858
+25 % 0.2546 500.7201 3.6986
+50 % 0.1526 500.8670 2.3513

β -50 % 0.8028 499.4838 17.6810
-25 % 0.7508 499.6180 15.6120
+25 % 0.6737 499.8046 12.9142
+50 % 0.6440 499.8731 11.9795

M -50 % 0.4589 500.3020 7.2639
-25 % 0.5895 500.0489 10.4045
+25 % 0.8173 499.3249 18.2999
+50 % 0.9167 498.8731 23.0253
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6 Results and Observations
Graphical representations and effect of different parameters on t∗1, TC∗, Q∗ is as follows:
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Figure 6.1: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter a

From above graph we observe that the values of t∗1 and Q∗ increase linearly and TC∗ decreases
linearly with respect to the parameter a.
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Figure 6.2: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter b

From above graph we observe that the values of t∗1 and Q∗ increase linearly and TC∗ decreases
linearly with respect to the parameter b.
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Figure 6.3: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter c

From above graph we observe that the values of t∗1 and Q∗ increase linearly and TC∗ decreases
linearly with respect to the parameter c.
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Figure 6.4: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter d

From above graph we observe that the values of t∗1 and Q∗ increase linearly and TC∗ decreases
linearly with respect to the parameter d.
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Figure 6.5: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter δ

From above graph we observe that the values of t∗1, Q∗ and TC∗ increase linearly with respect
to the parameter δ.
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Figure 6.6: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter θ1

From above graph we observe that on adjusting the percentage value of the parameter θ1, t∗1
decreases approximately linear, TC∗ increases initially and after a certain time it goes flat and Q∗

decreases initially and after a certain time it goes flat.
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Figure 6.7: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter θ2

From above graph we observe that on adjusting the percentage value of the parameter θ2, t∗1
decreases approximately linear, TC∗ increases initially and after a certain time it goes flat and Q∗

decreases initially and after a certain time it goes flat.
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Figure 6.8: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter M

From above graph we observe that the values of t∗1 and Q∗ increase linearly with respect to the
parameter M. TC∗ decreases linearly and then suddenly it increases with respect to the parameter
M.
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Figure 6.9: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter α

From above graph we observe that t∗1 decreases with non-constant slop and TC∗ increases with
non-constant slope with respect to the parameter α. Q∗ with respect to α initially remains constant,
then decreases linearly and finally goes flat.
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Figure 6.10: graph of percentage change in optimum time, total optimal cost and economic order quantity with respect to parameter β

From above graph we observe that the values of t∗1 and Q∗ increase linearly and TC∗ decreases
linearly with respect to the parameter β.

7 Conclusion
The suggested model offers an effective path for the management of a company enterprise where
customer’s demand rate is cubical polynomial time function. Pareto type perishable rate is taken.
Delay in payment is allowed and shortages are taken partially backlogged. The model is solved
analytically by minimizing the total inventory cost. Numerical example of the parameters is also
presented to illustrate the model. By sensitivity analysis the decision maker can plan for the optimal
value for total cost and for other related parameters. The proposed model can further be extended
by taking more realistic assumptions such as probabilistic demand rate, finite replenishment rate
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Abstract

In this paper, we introduce and study a new subclass of meromorphic functions with
positive coefficients involving the polylogaritham function and obtain coefficient estimates,
growth and distortion theorem, radius of convexity, integral transforms, convex linear
combinations and convolution properties for the class σc,p(α, β, λ).
2010 Mathematics Subject Classifications: 30C45 .
Keywords and phrases: Meromorphic, Polylogarithm, Coefficient estimates.

1 Introduction
Historically,the classical polylogarithm function was invented in 1696, by Leibnitz and Bernoulli,
as mentioned in [3]. For |z| < 1 and c a natural number with c ≥ 2, the polylogarithm function
(which is also known as Jonquiere’s function) is defined by the absolutely convergent series:

(1.1) Lic(z) =

∞∑
k=1

zk

kc .

Later on, many mathematicians studied the polylogarithm function such as Euler, Spence, Abel,
Lobachevsky, Rogers, Ramanujan and many others [6], where they discovered many functional
identities by using polylogarithm function. However, the work employing polylogarithm has
been stopped many decades later. During the past four decades, the work using polylogarithm
has again been intensified vividly due to its importance in many fields of mathematics, such as
complex analysis, algebra, geometry, topology, and mathematical physics (quantum field theory)
[5, 7, 9]. In [10], Ponnusamy and Sabapathy discussed the geometric mapping properties of
the generalized polylogarithm. Recently, Al-Shaqsi and Darus [1] generalized Ruscheweyh and
Salagean operators, using polylogarithm functions on class A of analytic functions in the open
unit disk U = {z : |z| < 1}. By making use of the generalized operator they introduced certain
new subclasses of A and investigated many related polylogarithm function to define a multiplier
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transformation on the class A in U [2]. To the best of our knowledge, no research work has
discussed the polylogarithm function conjunction with meromorphic functions. Thus, in this
present paper, we redefine the polylogarithm function to be on meromorphic type. Let

∑
denote

the class of functions of the form

(1.2) f (z) =
1
z

+

∞∑
m=0

amzm,

which are analytic in the punctured open unit disk
(1.3) U∗ := {z : z ∈ C, 0 < |z| < 1} = U \ {0}.

A function f in
∑

is said to be meromorphically starlike of order δ if and only if

(1.4) R
{
−

z f ′(z)
f (z)

}
> δ; (z ∈ U∗),

for some δ (0 ≤ δ < 1). We denote by
∑

(δ) the class of all meromorphically starlike order δ.
Furthermore, a function f in

∑
is said to be meromorphically convex of order δ if and only if

(1.5) R
{
−

(
1 +

z f ′′(z)
f ′(z)

) }
> δ; (z ∈ U∗),

for some δ, (0 ≤ δ < 1). We denote by
∑
k

(δ) the class of all meromorphically convex order δ. For

functions f ∈
∑

given by (1.2) and g ∈
∑

(1.6) g(z) =
1
z

+

∞∑
m=0

bmzm,

we define the Hadamard product (or convolution) of f and g by

(1.7) ( f ∗ g)(z) =
1
z

+

∞∑
m=0

ambmzm.

Let
∑
p

be the class of functions of the form

(1.8) f (z) =
1
z

+

∞∑
m=0

amzm; am ≥ 0

which are analytic and univalent in U∗. Liu and Srivastava [8] defined a function hp(α1, · · · , αq;
β1, · · · , βs; z) by multiplying the well known generalized hypergeometric function qFs, with z−p as
follows:
(1.9) hp(α1, · · · , αq; β1, · · · , βs; z) = z−p

qFs(α1, · · · , αq; β1, · · · , βs; z),
where α1, · · · , αq; β1, · · · , βs are complex parameters and q ≤ s + 1, p ∈ N. Analogous to Liu
and Srivastava work [8] and corresponding to a function φc(z) given by

(1.10) φc(z) = z−2Lic(z) =
1
z

+

∞∑
m=0

1
(m + 2)c zm.

We consider a linear operator Ωc f (z) :
∑
→

∑
which is defined by the following Hadamard

product (or Convolution):
Ωc f (z) = φc(z) ∗ f (z)(1.11)

=
1
z

+

∞∑
m=0

1
(m + 2)c amzm.
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Next, we define the linear operator Dc f (z) :
∑
→

∑
as follows:

Dc f (z) =
{
Ωc f (z) −

1
2c a0

}
(1.12)

=
1
z

+

∞∑
m=1

1
(m + 2)c amzm.

For function f in the class
∑
p
, we define a linear operator Dn

c, λ f (z) as follows

D
0
c, λ f (z) = f (z),(1.13)

D
1
c, λ f (z) = (1 − λ)Dc f (z) + λ

(z2Dc f (z))′

z
λ ≥ 0,

= (1 + λ)Dc f (z) + λz(Dc f (z)′) = Dc, λ f (z),

D
2
c, λ f (z) = Dc, λ f (z)(D1

c, λ f (z)),
...

D
n
c, λ f (z) = Dc, λ f (z)(Dn−1

c, λ f (z)),

=
1
z

+

∞∑
m=1

[1 + λ(m + 1)]n

(m + 2)c amzm for n = 1, 2, · · · .

Now, by making use of operator Dn
c, λ f (z), we define a new subclass of functions in

∑
p

as

follows.

Definition 1.1. For −1 ≤ α < 1, β ≥ 1, and λ ≥ 0 we let σc,p(α, β, λ) be the subclass of
∑
p

consisting of functions of the form (1.8) and satisfying the analytic criterion

(1.14) −Re
z(Dn

c, λ f (z))′

Dn
c, λ f (z)

+ α

 > β
∣∣∣∣∣∣z(Dn

c, λ f (z))′

Dn
c, λ f (z)

+ 1

∣∣∣∣∣∣ .
Dn

c, λ f (z) is given by (1.13). The main object of the paper is to study some usual properties of the
geometric function theory such as coefficient bounds, growth and distortion properties, radius of
convexity, convex linear combination and convolution properties, and integral operators for the
class σc,p(α, β, λ).

2 Coefficient inequality
Theorem 2.1. A function f of the form (1.8) is in σc,p(α, β, λ) if

(2.1)
∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c |am| ≤ 1 − α,

− 1 ≤ α < 1 , β ≥ 1 and λ ≥ 0.

Proof. It is sufficient to show that

β
∣∣∣∣z(Dn

c, λ f (z))′

Dn
c, λ f (z)

+ 1
∣∣∣∣ + Re

{z(Dn
c, λ f (z))′

Dn
c, λ f (z)

+ 1
}
≤ 1 − α.

We have

β
∣∣∣∣z(Dn

c, λ f (z))′

Dn
c, λ f (z)

+ 1
∣∣∣∣ + Re

{z(Dn
c, λ f (z))′

Dn
c, λ f (z)

+ 1
}
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≤(1 + β)
∣∣∣∣z(Dn

c, λ f (z))′

Dc f (z)
+ 1

∣∣∣∣
≤

(1 + β)
∞∑

m=1

[1+λ(m+1)]n

(m+2)c (m + 1)|am||z|m

1
|z| −

∞∑
m=1

[1+λ(m+1)]n

(m+2)c |am||z|m
.

Letting z→ 1 along the real axis, we obtain

≤

(1 + β)
∞∑

m=1

[1+λ(m+1)]n

(m+2)c (m + 1)|am|

1 −
∞∑

m=1

[1+λ(m+1)]n

(m+2)c |am|

.

The last expression is bounded by (1 − α) if
∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c |am| ≤ 1 − α.

Hence the theorem is proved.

Corollary 2.1. Let the function f defined by (1.8) be in the class σc,p(α, β, λ). Then

(2.2) am ≤

∞∑
m=1

(m + 2)c(1 − α)
[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]

, (m ≥ 1).

Equality holds for the functions of the form

(2.3) fm(z) =
1
z

+

∞∑
m=1

(m + 2)c(1 − α)
[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]

zm.

3 Distortion Theorems
Theorem 3.1. Let the function f defined by (1.8) be in the class σc,p(α, β, λ). Then for 0 < |z| =
r < 1,

(3.1)
1
r
−

3c(1 − α)
[1 + 2λ]n(3 + 2β − α)

r ≤ | f (z)| ≤
1
r

+
3c(1 − α)

[1 + 2λ]n(3 + 2β − α)
r

with equality for the function

(3.2) f (z) =
1
z

+
3c(1 − α)

[1 + 2λ]n(3 + 2β − α)
z.

Proof. Suppose f is in σc,p(α, β, λ). In view of Theorem 2.1, we have

[1 + 2λ]n(3 + 2β − α)
3c

∞∑
m=1

am ≤

∞∑
m=1

[(1 + β)(m + 1) + 1 − α][1 + λ(m + 1)]n

(m + 2)c ≤ (1 − α)

which evidently yields
∞∑

m=1

am ≤
3c(1 − α)

[1 + 2λ]n(3 + 2β − α)
.

Consequently, we obtain

| f (z)| =
∣∣∣∣1z +

∞∑
m=1

amzm
∣∣∣∣
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≤ |
1
z
| +

∞∑
m=1

am|z|m ≤
1
r

+ r
∞∑

m=1

am

≤
1
r

+
3c(1 − α)

[1 + 2λ]n(3 + 2β − α)
r.

Also

| f (z)| =
∣∣∣∣1z +

∞∑
m=1

amzm
∣∣∣∣

≥
∣∣∣1
z

∣∣∣ − ∞∑
m=1

am|z|m

≥
1
r
− r

∞∑
m=1

am

≥
1
r
−

3c(1 − α)
[1 + 2λ]n(3 + 2β − α)

r.

Hence the results (3.1) follow.

Theorem 3.2. Let the function f defined by (1.8) be in the class σc,p(α, β, λ). Then for 0 < |z| =
r < 1,

1
r2 −

3c(1 − α)
[1 + 2λ]n(3 + 2β − α)

≤ | f ′(z)| ≤
1
r2 +

3c(1 − α)
[1 + 2λ]n(3 + 2β − α)

.

The result is sharp, the extremal function being of the form (2.3).

Proof. From Theorem 2.1, we have
[1 + 2λ]n(3 + 2β − α)

3c

∞∑
m=1

mam ≤

∞∑
m=1

[(1 + β)(m + 1) + 1 − α][1 + λ(m + 1)]n

(m + 2)c ≤ (1 − α)

which evidently yields
∞∑

m=1

mam ≤
3c(1 − α)

[1 + 2λ]n(3 + 2β − α)
Consequently, we obtain

| f (z)| =
1
r2 +

∞∑
m=1

mamrm−1

≤
1
r2 +

∞∑
m=1

mam

≤
1
r2 +

3c(1 − α)
[1 + 2λ]n(3 + 2β − α)

.

Also

| f (z)| ≥
1
r2 −

∞∑
m=1

mamrm−1

≥
1
r2 −

∞∑
m=1

mam

≥
1
r2 −

3c(1 − α)
[1 + 2λ]n(3 + 2β − α)

.

This completes the proof.
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4 Class Preserving Integral Operators
In this section we consider the class preserving integral operators of the form (1.8).

Theorem 4.1. Let the function f be defined by (1.8) be in the class σc,p(α, β, λ). Then

(4.1) F(z) = µz−µ−1

z∫
0

tµ f (t)dt =
1
z

+

∞∑
m=1

µ

µ + m + 1
amzm, µ > 0

belongs to the class σ[δ(α, β, λ,m, µ)], where

(4.2) δ(α, β, λ,m, µ) =
[1 + 2λ]n(3 + 2β − α)(µ + 2) − 3cµ(1 − α)
[1 + 2λ]n(3 + 2β − α)(µ + 2) + 3cµ(1 − α)

.

The result is sharp for f (z) = 1
z +

3c(1−α)
[1+2λ]n(3+2β−α)z.

Proof. Suppose f (z) = 1
z +

∞∑
m=1

amzm is in σc,p(α, β, λ).

We have

F(z) = µz−µ−1

z∫
0

tµ f (t)dt =
1
z

+

∞∑
m=1

µ

µ + m + 1
amzm, µ > 0

It is sufficient to show that

(4.3)
∞∑

m=1

m + δ

1 − δ
µam

m + µ + 1
≤ 1.

Since f (z) is in σc,p(α, β, λ), we have

(4.4)
∞∑

m=1

[(1 + β)(m + 1) + 1 − α][1 + λ(m + 1)]n

(m + 2)c(1 − α)
|am| ≤ 1.

Thus (4.3) will be satisfied if

(4.5)
(m + δ)µ

(1 − δ)(m + µ + 1)
≤

[(1 + β)(m + 1) + 1 − α][1 + λ(m + 1)]n

(m + 2)c(1 − α)
, for each m

or
δ ≤

[1 + λ(m + 1)]n[(1 + β)(m + 1) + (1 − α)](µ + m + 1) − mµ(1 − α)(m + 2)c

[1 + λ(m + 1)]n[(1 + β)(m + 1) + (1 − α)](µ + m + 1) + mµ(1 − α)(m + 2)c

G(m) =
[1 + λ(m + 1)]n[(1 + β)(m + 1) + (1 − α)](µ + m + 1) − mµ(1 − α)(m + 2)c

[1 + λ(m + 1)]n[(1 + β)(m + 1) + (1 − α)](µ + m + 1) + mµ(1 − α)(m + 2)c .

Then G(m + 1) −G(m) > 0, for each m. Hence G(m) is increasing function of m. Since

G(1) =
[1 + 2λ]n(3 + 2β − α)(µ + 2) − 3cµ(1 − α)
[1 + 2λ]n(3 + 2β − α)(µ + 2) + 3cµ(1 − α)

.

The result follows.
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5 Convex Linear Combinations and Convolution Properties
Theorem 5.1. If the function f is in σc,p(α, β, λ) then f (z) is meromorphically convex of order
δ (0 ≤ δ < 1) in |z| < r = r(α, β, λ, δ) where

r(α, β, λ, δ) = inf
n≥1

{ [1 + λ(m + 1)]n(1 − δ)[(1 + β)(1 + m) + 1 − α]
(m + 2)c(1 − α)m(m + 2 − δ)

} 1
m+1

The result is sharp.

Proof. Let f (z) is in σc,p(α, β, λ). Then by Theorem 2.1, we have

(5.1)
∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c |am| ≤ (1 − α).

It is sufficient to show that
∣∣∣∣2 +

z f ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 − δ, for |z| < r = r(α, β, λ, δ), where r(α, β, λ, δ) is
specified in the statement of the theorem. Then

∣∣∣∣2 +
z f ′′(z)
f ′(z)

∣∣∣∣ =

∣∣∣∣∣∣
∞∑

m=1
m(m + 1)amzm−1

−1
z2 +

∞∑
m=1

mamzm−1

∣∣∣∣∣∣ ≤ ∞∑
m=1

m(m + 1)am|z|m+1

1 −
∞∑

m=1
mam|z|m+1

.

This will be bounded by (1 − δ) if

(5.2)
∞∑

m=1

m(m + 2 − δ)
1 − δ

am|z|m+1 ≤ 1.

By (5.1), it follow that (5.2) is true if
m(m + 2 − δ)

1 − δ
|z|m+1 ≤

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

, m ≥ 1

or

(5.3) |z| ≤
{ [1 + λ(m + 1)]n(1 − δ)[(1 + β)(1 + m) + 1 − α]

(m + 2)c(1 − α)m(m + 2 − δ)

} 1
m+1
.

Setting |z| = r(α, β, λ, δ) in (5.3), the result follows.
The result is sharp for the function

fm(z) =
1
z

+
(m + 2)c(1 − α)

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
zm, (m ≥ 1).

Theorem 5.2. Let f0(z) = 1
z and

fm(z) =
1
z

+
(m + 2)c(1 − α)

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
zm, (m ≥ 1).

Then f (z) = 1
z +

∞∑
m=1

amzm is in the class σc,p(α, β, λ) if and only if it can be expressed in the

form f (z) = λ0 f0(z) +
∞∑

m=1
λm fm(z), where λ0 ≥ 0, λm ≥ 0 (m ≥ 1) and λ0 +

∞∑
m=1

λm = 1.

Proof. Let f (z) = λ0 f0(z) +
∞∑

m=1
λm fm(z) with λ0 ≥ 0, λm ≥ 0 (m ≥ 1) and

λ0 +

∞∑
m=1

λm = 1.
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Then

f (z) = λ0 f0(z) +

∞∑
m=1

λm fm(z)

=
1
z

+

∞∑
m=1

λm
(m + 2)c(1 − α)

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
zm.

Since
∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

λm
(m + 2)c(1 − α)

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]

=

∞∑
m=1

λm = 1 − λ0 ≤ 1.

By Theorem 2.1, f is in the class σc,p(α, β, λ).
Conversely suppose that the function f is in the class σc,p(α, β, λ), since

am ≤
(m + 2)c(1 − α)

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
, (m ≥ 1)

λm =
[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]

(m + 2)c(1 − α)
am,

and λ0 = 1 −
∞∑

m=1
λm, it follows that f (z) = λ0 f0(z) +

∞∑
m=1

λm fm(z).

This completes the proof of the Theorem.

For the functions f (z) = 1
z +

∞∑
m=1

amzm and g(z) = 1
z +

∞∑
m=1

bmzm belongs to
∑
p

we denote by

( f ∗ g)(z) the convolution of f (z) and g(z) or

( f ∗ g)(z) =
1
z

+

∞∑
m=1

ambmzm.

Theorem 5.3. If the functions f (z) = 1
z +

∞∑
m=1

amzm and g(z) = 1
z +

∞∑
m=1

bmzm are in the class

σc,p(α, β, λ), then

( f ∗ g)(z) =
1
z

+

∞∑
m=1

ambmzm

is in the class σc,p(α, β, λ).

Proof. Suppose f (z) and g(z) are in σc,p(α, β, λ). By Theorem 2.1, we have
∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

am ≤ 1

∞∑
m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

bm ≤ 1.

Since f (z) and g(z) are regular are in E, so is ( f ∗ g)(z). Furthermore,
∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

ambm
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≤
{ [1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]

(m + 2)c(1 − α)

}2
ambm

≤
( ∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

am

)
( ∞∑

m=1

[1 + λ(m + 1)]n[(1 + β)(m + 1) + 1 − α]
(m + 2)c(1 − α)

bm

)
≤1.

Hence by Theorem 2.1, ( f ∗ g)(z) is in the class σc,p(α, β, λ).

6 Neighborhoods for the class σc,p(α, β, λ)
Neighborhoods for the class σc,p(α, β, λ) which we define as follows:

Definition 6.1. A function f ∈
∑
p

is said to in the class σc,p(α, β, λ, γ) if there exists a function

g ∈ σc,p(α, β, λ) such that

(6.1)
∣∣∣∣ f (z)
g(z)
− 1

∣∣∣∣ < 1 − γ, z ∈ U, (0 ≤ γ < 1).

Following the earlier works on neighborhoods of analytic functions by Goodman [4] and
Ruschweyh [11], we define the δ−neighborhhod of a function f ∈

∑
p

by

(6.2) Nδ( f ) :=
{
g ∈

∑
p

: g(z) =
1
z

+

∞∑
m=1

bmzm :
∞∑

m=1

m|am − bm| ≤ δ
}
.

Theorem 6.1. If g ∈ σc,p(α, β, λ) and

(6.3) γ = 1 −
δ(3 + 2β − α)(1 + 2λ)

(3 + 2β − α)(2 + 2β) − 3c(1 − α)
.

Then Nδ(g) ⊂ σc,p(α, β, λ, γ).

Proof. Let f ∈ Nδ(g). Then we find from (6.2) that

(6.4)
∞∑

m=1

m|am − bm| ≤ δ,

which implies the coefficient inequality

(6.5)
∞∑

m=1

|am − bm| ≤ δ, (m ∈ N).

Since g ∈ σc,p(α, β, λ), we have
∞∑

m=1
bm <

3c(1−α)
(1+2λ)n(3+2β−α) . So that

∣∣∣∣ f (z)
g(z)
− 1

∣∣∣∣ ≤
∞∑

m=1
|am − bm|

1 −
∞∑

m=1
bm

≤
δ(1 + 2λ)(3 + 3β − α)

(1 + 2λ)(3 + 3β − α) − 3c(1 − α)
= 1 − γ

provided γ is given by (6.3). Hence, by definition f ∈ σc,p(α, β, λ, γ) for γ given by (6.3), which
completes the proof.

Remark 6.1.
(i.) For λ = 0 in the results mentioned in all the sections above the class are the same as those

of Venkateswarlu et al: [13].
(ii.) For λ = 0 and β = 1 in the results mentioned in all the sections above the class are the same

as those of Thirupathi Reddy et al: [12].
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7 Conclusion
This research has introduced a new linear differential operator related to polylogarithm function
and studied some properties were studied. Accordingly, some results related to closure theorems
have also been considered, inviting future research for this field of study.
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Abstract

This study deals with an unreliable single service station Erlangian queueing model with
k-phase service and l-phase repair under N-policy. The arriving customers follow Poisson
process with arrival rates dependent upon the state of the service station, which may be idle,
operating, broken down, and under setup or repair states. Due to N-policy the service station
turns on only when at least N(≥ 1) customers are accumulated in the system and turns off only
when the system becomes empty. While providing service, the service station may breakdown
according to Poisson process. An optimal operating N-policy is proposed to minimize the total
expected cost. If the service station breakdowns, then it is sent for repair at the repair facility
which renders repair after a set up time. After repairing, the service station works as good as
before breakdown. Recursive technique and generating functions are employed for solution
purpose. Explicit expressions for various performance indices are established. Cost analysis
and sensitivity analysis have been done to explore the effects of different parameters.
2010 Mathematics Subject Classifications: 90B22, 60K25.
Keywords and phrases: N-Policy, Erlangian queue, Breakdown, Phase repair, Setup, Balking
Recursive technique, Generating function, Cost analysis.

1 Introduction
There is an extensive literature on the Erlangian queueing model, which has been studied in various
forms by numerous authors. Earlangeian queueing system represent a simple single server with
negative exponential inter arrival and service time distribution. In this direction Conolly [4] studied
the generalized state dependent Erlangian queue. Wang and Kuo [18] considered the profit analysis
of the M/Ek/1 machine repair problem with a non-reliable server. The transient solution to M/Ek/1
queue was investigated by Griffiths et al. [5]. The transient phase probabilities are obtained in terms
of a new generalisation of the modified Bessel function, and the mean waiting time in the queue is
evaluated. Kim et al. [10] developed the erlang loss queueing system with batch arrivals operating
in a random environment. Sharma [15] analyzed unreliable server Mx/G/1 queue with loss and
delay, balking and second optional service. After receiving the essential service, the customers
may opt for the optional service with some probability or may leave the system.

The congestion situation where the service does not start until some specified number of
customers, say N are accumulated in the system during an idle period and once server starts
serving, goes on serving till the system become empty is called N-policy. Medhi and Templeton
[11] developed a Poisson input queue under N-policy restriction and a general start up time.
Optimal NT policies for M/G/1 system with a startup and unreliable server was analysed by
Ke [9]. Sharma [14] investigated a single unreliable server interdependent loss and delay queueing
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model with controllable arrival rate under N-policy. When there is no customer present in the
system then the server goes on vacation and returns back in the system whenever the specified
N (≥ 1) or more customers are accumulated. Sharma [13] developed machine repair problem
with spares, balking, reneging and n-policy for vacation. In this system, there are two repairmen,
the first repairman is always available for providing service to the failed units while the second
repairman goes on vacation when the failed units are less than a threshold value (say N).

One important fact that has been overlooked in most studies is that the server is subject to
breakdown while serving a customer. This phenomenon is encountered in the manufacturing
system, communication system, computer system and many others. Some queueing problems
with breakdowns were studied by Avi-Itzhak and Naor [2], M/G/1 queue with breakdown was
investigated by Ke [8]. Wang et al. [17] comprised the two randomized policy M/G/1 queues with
second optional service, server breakdown and startup.

In the real life congestion situations, the customer may balk from the system due to some
reason; one most common reason is long queue. Blackburn [3] considered optimal control of
single server queue with balking and reneging. Multi server queue with balking and reneging was
investigated by Abou and Hariri [1]. Controllable multi server queue with balking was studied
by Jain and Sharma [6]. We incorporate an additional server which is added and removed at
pre-specified threshold levels of queue size to control the balking behaviour of the customers.
Finite capacity queueing system with queue dependent servers and discouragement was analysed
by Jain and Sharma [7]. The service rates of the servers are different and the number of servers
in the system changes depending on the queue length. The first server starts service only when
N customers are accumulated in the queue and once he starts serving, continues to serve until the
system becomes empty. Sharma [12] developed loss and delay multi server state dependent queue
with discouragement, additional server and no-passing. The customers arrive according to Poisson
process and depart from the system in the same chronological order in which they join the system,
due to no-passing restriction.

The present investigation deals with N-policy for Earlangian service queueing model with
unreliable service station, ` phase repair, setup and balking. Here, we consider the state dependent
arrival rates. The steady state results for different states are obtained by using probability
generating function and recursive techniques. The rest of the paper is organized as follows. In
the next section, the model is described by stating requisite notations and assumptions. In Sections
3 and 4, we construct the steady state equations and obtain the distribution for the queue size,
respectively. Some performance measures are given in Section 5. In Section 6, we discuss
the optimal N-policy by constructing the cost function. Special cases are deduced in section 7.
Sensitivity analysis is carried out in Section 8 by taking numerical illustrations. In the final Section
9, we conclude the investigation.

2 Model Description
Consider an Earlangian queueing system under N-policy restriction and unreliable single service
station. The notations and basic assumptions governing the model are stated below.

1. The service station renders service under N-policy restriction, according to which the service
station starts service only when there are N-customers are accumulated in the system and
keeps providing service until the system becomes empty.

2. The state of the system is defined by (n, i, j); where n(n =0, 1, 2... denotes the number of
customers present in the system, the customer in service is in phase i(i =0, 1, 2, . . ., k), and
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j( j =0, b, d,1, 2. . ., l) represents the state of the service station, respectively. The state j of
the service station at any time t is stared as follows:

j =


0, for turn-off state of the service station
b, for turn-on and busy state of the service station
d, for brokendown and under setup state of the service station
m, for mth phase repair state of the server where m = 1, 2, 3, ..., l

3. The customers arrive at the service station according to Poisson fashion with rate λ. The
customers may balk on finding service station busy, under setup state when broken down,
and under phase repair, with balking function (i.e. the joining probabilities) of customers γ j

when j( j = 0, b, d, 1, 2, . . . , l) denotes the state of the service station.
4. The service time is k-phase Earlangian distributed with service rate µ.
5. The life time and setup time of service station follow negative exponential distribution with

mean 1
α

and 1
δ
, respectively.

6. It is assumed that the repair time of mth phase is negative exponentially distributed with mean
1/βm(m = 1, 2, 3, . . . , l).

7. After repair the service station performs its duty with same efficiency as before breakdown.
8. The service discipline is first come first served.

3 The Mathematical Formulation
The steady state probabilities for mathematical formulation of the model are given as follows:

P0
0,0 The probability that there is no customer present in the system and service station is in turned

off state.
P0

n,k The probability that there are n(1 ≤ n ≤ N − 1) customers present in the system but the
service of customer is not initiated (i.e. i = k) as service station is in turned off state.

Pb
n,i The probability that there are n(≥ 1) customers present in the system, the customer is in

ith(i = 1, 2, ..., k) phase of service and service station is in turned on busy in rendering service
i.e. in operation.

Pd
n,i The probability that there are n(≥ 1) customers present in the system, the customer is in

ith(i = 1, 2, ..., k) phase of service and the service station is in brokendown and under setup
state.

Pm
n,i The probability that there are n(≥ 1) customers in the system, customer is in ith(i = 1, 2, ..., k)

phase of service and the service station is receiving mth phase repair m = 1, 2, 3, ..., l.

The steady states equations governing the model are obtained as follows:

λP0
1,k = λP0

0,0,(3.1)

λP0
n,k = λP0

n−1,k; 2 ≤ n ≤ N − 1,(3.2)

λP0
0,0 = kµPb

1,1,(3.3)

(λγ0 + α + kµ) Pb
1,i = kµPb

1,i+ 1 + βlPl
1,i; 1 ≤ i ≤ k − 1,(3.4)

(λγ0 + α + kµ) Pb
1,k = kµPb

2,1 + βlPl
1,k,(3.5)

(λγ0 + α + kµ) Pb
n,i = λγ0Pb

n−1,i + kµPb
n,i+1 + βlPl

n,i; 2 ≤ n ≤ N, 1 ≤ i ≤ k − 1,(3.6)

(λγ0 + α + kµ) Pb
n,k = λγ0Pb

n−1,k + kµPb
n+1,1 + βlPl

n,k; 2 ≤ n ≤ N − 1,(3.7)
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(λγ0 + α + kµ) Pb
N,k = λγ0Pb

N−1,k + kµPb
N+1,1 + βlPl

N,k + λP0
N−1,k,(3.8)

(λγ0 + α + kµ) Pb
n,i = λγ0Pb

n−1,i + kµPb
n,i+1 + βlPl

n,i; n ≥ N + 1, 2 ≤ i ≤ k − 1,(3.9)

(λγ0 + α + kµ) Pb
n,k = λγ0Pb

n−1,k + kµPb
n+1,1 + βlPl

n,k; n ≥ N + 1,(3.10)

(λγ1 + δ) Pd
1,i = αPb

1,i; 1 ≤ i ≤ k,(3.11)

(λγ1 + δ) Pd
n,i = λγ1Pd

n−1,i + αPb
n,i; n ≥ 2, 1 ≤ i ≤ k,(3.12)

(λγ2 + β1) P1
1,i = δPd

1,i; 1 ≤ i ≤ k,(3.13)

(λγ2 + β1) P1
n,i = λγ2P1

n−1,i + δPd
n,i; n ≥ 2, 1 ≤ i ≤ k,(3.14) (

λγ j+1 + β j

)
P j

1,i = β j−1P j−1
1,i ; 1 ≤ i ≤ k, j = 2, 3, ...., l,(3.15) (

λγ j+1 + β j

)
P j

n,i = λγ j+1P j
n−1,i + β j−1P j−1

n,i ; n ≥ 2, 1 ≤ i ≤ k, j = 2, 3, ....l.(3.16)

4 The Generating Function Method
By using the recursive technique it is not possible to obtain the explicit result forP0

0,0, so we employ
probability-generating function technique to obtain analytic solution in neat closed form. The
partial probability generating functions are defined as

Xi(z) =

∞∑
n=1

Pb
n,iz

n; 1 ≤ i ≤ k, |z| < 1,(4.1)

Yd
i (z) =

∞∑
n=1

Pd
n,iz

n; 1 ≤ i ≤ k, |z| < 1,(4.2)

Y j
i (z) =

∞∑
n=1

P j
n,iz

n; 1 ≤ i ≤ k, |z| < 1, and , j = 1, 2, ....., l,(4.3)

G0(z) = P0
0,0 +

N−1∑
n=1

P0
n,0zn; |z| ≤ 1,(4.4)

G1(z) =

k∑
i=1

Xi(z); |z| ≤ 1,(4.5)

G2(z) =

k∑
i=1

Yd
i (z); |z| ≤ 1,(4.6)

G j
3(z) =

k∑
i=1

Y j
i (z); |z| ≤ 1, j = 1, 2, ...., l.(4.7)

Equations (3.1), (3.2) and (4.3) yield

G0(z) =

(
1 − zN

)
(1 − z)

P0
0,0.(4.8)

On multiplying equation (3.4) by z, equation (3.6) by zn(2 ≤ n ≤ N) and equation (3.9) by
zn(n ≥ N + 1) respectively and summing over all n, we obtain

Xi+1(z) = (1 + a0 − b0z)Xi(z) − rlY l
i (z), 1 ≤ i ≤ k,(4.9)

a0 =
λγ0 + α

kµ
, b j =

λγ j

kµ
( j = 0, 1, 2, ..., l + 1), r j =

β j

kµ
for ( j = 1, 2, ..., l).
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Again, multiplying equation (3.5) by z, equation (3.7) by zn(2 ≤ n ≤ N − 1), equation (3.8) by
zn and equation (3.10) by zn(n ≥ N + 1), respectively and summing over all n and simplifying, we
obtain

(4.10) X1(z) = z (1 + a0 − b0z) Xk(z) − rlzY l
k(z) − pz

(
zN − 1

)
P0

0,0,

where p = λ
kµ .

Now, multiplying equation (3.11) by z, equation (3.12) by zn(n ≥ 2), summing over all n, we
have

(4.11) Yd
i (z) =

(a0 − b0)
(b1 + c − b1z)

Xi(z); 1 ≤ i ≤ k. where c =
δ

kµ
.

Similarly, multiplying equation (3.13) by z, equation (3.4) by zn(n ≥ 2), summing over all n,
we get

(4.12) Y1
i (z) =

c
(b2 + r1 − b2z)

Yd
i (z); 1 ≤ i ≤ k.

In the similar manner, we obtain

(4.13) Y2
i (z) =

r1

(b3 + r2 − b3z)
Y1

i (z); 1 ≤ i ≤ k.

In general, multiplying equations (3.15) and (3.16) by the appropriate power of z and summing
over all n, one can have

(4.14) Y j
i (z) =

r j−1(
b j+1 + r j − b j+1z

)Y j−1
i (z); 1 ≤ i ≤ k, j = 3, 4, ..., l.

By using equation, (4.9), (4.10) and (4.11) in (4.14), we have

(4.15) Y l
i (z) =

c (a0 − b0)
∏l−1

k=1 rk

(b1 + c − b1z)
l∏

k=1

(bk+1 + rk − bk+1z)

Xi(z); 1 ≤ i ≤ k.

Substituting the value from equation (4.15) in equation (4.9), we obtain

(4.16) Xi+1(z) = w(z)Xi(z)

where

w(z) = (1 + a0 − b0z) −

c (a0 − b0)
l∏

k=1

rk

(b1 + c − b1z)
l∏

k=1

(bk+1 + rk − bk+1z)

.

Here,

(4.17) w(1) = 1,

(4.18)

w′(z) = −b0−

c(a0 − b0)
l∏

k=1

rk

b1

l∏
k=1

(bk+1 + rk − bk+1z) + (b1 + c − b1z)


l∑

m=1

bm

l∏
k=1
k,m

(bk+1 + rk − bk+1z)


(b1 + c − b1z)

l∏
k=1

(bk+1 + rk − bk+1z)


2 ,
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(4.19) w′(1) =

(b0 − a0)

b1

l∏
k=1

(rk) + c


l∑

m=1

bm

l∏
k=1
k,m

(rk)


 − b0c

l∏
k=1

(rk)

c
l∏

k=1

(rk)

,

(4.20)

w′′(z) =

c (a0 − b0)
l∏

k=1

rk ×


(b1 + c − b1z)

l∏
k=1

(bk+1 + rk − bk+1z)


2
b1


l∑

m=1

bm

l∏
k=1
k,m

(bk+1 + rk − bk+1z)


+2b1

∑l
m=1 bm

l∏
k=1
k,m

(bk+1 + rk − bk+1z)

 + (b1 + c − b1z)
∑l

p=1 bp

∑l
m=1 bm

l∏
k=1
k,m

(bk+1 + rk − bk+1z)




+2

(b1 + c − b1z)
l∏

k=1

(bk+1 + rk − bk+1z)

×b1

l∏
k=1

(bk+1 + rk − bk+1z) + (b1 + c − b1z)
l∑

m=1

bm

l∏
k=1
k,m

(bk+1 + rk − bk+1z)


2(b1 + c − b1z)

l∏
k=1

(bk+1 + rk − bk+1z)


4

(4.21)

w′′(z) =

c
l∏

k=1

rk

2b1


l∑

m=1

bm

l∏
k=1
k,m

(rk)

 + c


l∑

p=1

bp


l∑

m=1

bm

l∏
k=1
k,m

(rk)



 + 2

b1

l∏
k=1
k,m

(rk) + c


l∑

m=1

bm

l∏
k=1
k,m

(rk)




2

c
l∏

k=1

rk


2 .

Equation (4.16) gives

(4.22) Xi(z) = wi−1(z)X1(z); 1 ≤ i ≤ k.

On putting i = k in equation (4.21), we have

(4.23) Xk(z) = wk−1(z)X1(z).

Substituting the values from equations (4.23) and (4.15) in equation (4.10), and after
simplification, we get

(4.24) X1(z) =
zp

(
1 − zN

)(
1 − zwk(z)

)P0
0,0.

Using above equation in equation (4.22), we get

(4.25) Xi(z) =
zp

(
1 − zN

)
wi−1(z)(

1 − zwk(z)
) P0

0,0.
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Now we have

(4.26) G1(z) =
zp

(
1 − zN

)(
1 − zwk(z)

) (
1 − wk(z)
1 − w(z)

)
P0

0,0,

(4.27) G2(z) =
(a0 − b0)

(b1 + c − b1z)
G1(z),

(4.28) G j
3(z) =

c (a0 − b0)
l−1∏
k=1

rk

(b1 + c − b1z)
l∏

k=1

(bk+1 + rk − bk+1z)

G1(z); for j = 1, 2, ..., l.

Evaluation of P0
0,0

To obtain the value of P0
0,0, we use the normalizing condition

(4.29) G (1) = G0 (1) + G1 (1) + G2 (1) +

l∑
j=1

G j
3 (1) = 1.

Using equations (4.4), (4.25), (4.26) and (4.27) in equation (4.28) and applying the L-Hospital
rule to get the limiting values when z→1, we get

G0 (1) = NP0
0,0,(4.30)

G1 (1) =
N pk

(1 + kw′ (1))
P0

0,0,(4.31)

G2 (1) =
(a0 − b0) N pk
c (1 + kw′ (1))

P0
0,0,(4.32)

G j
3 (1) =

(a0 − b0) N pk
r j (1 + kw′ (1))

P0
0,0; j = 1, 2, 3...., l(4.33)

and

P0
0,0 =

1

N
[
1 +

pk
(1+kw′(1)) +

(a0−b0)pk
(1+kw′(1))

{
1
c +

∑l
j=1

1
r j

}] .(4.34)

5 Performance Measures
In order to derive expressions for various performance measures, we use the generating functions.
Let PI , PB, PD and Pm

R denote the long run fraction of time for which service station is idle, busy,
breakdown and under setup, and under jth phase repair (m = 1, 2, 3, . . ., l) states respectively.
We compute the long run probabilities PI , PB, PD, and Pm

R (m = 1, 2, 3, . . ., l), respectively in the
following manner:

(5.1) PI = lim
z→1

G0(z) = NP0
0,0 =

1[
1 +

pk
(1+kw′(1)) +

(a0−b0)pk
(1+kw′(1))

{
1
c +

∑l
j=1

1
r j

}] ,
(5.2) PB = lim

z→1
G1(z) =

pk

(1 + kw′ (1))
[
1 +

pk
(1+kw′(1)) +

(a0−b0)pk
(1+kw′(1))

{
1
c +

∑l
j=1

1
r j

}] ,
(5.3) PD = lim

z→1
G2(z) =

(a0 − b0) pk

c (1 + kw′ (1))
[
1 +

pk
(1+kw′(1)) +

(a0−b0)pk
(1+kw′(1))

{
1
c +

∑l
j=1

1
r j

}] ,
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Similarly
(5.4)

Pm
R = lim

z→1
Gm

3 (z) =
(a0 − b0) pk

rm (1 + kw′ (1))
[
1 +

pk
(1+kw′(1)) +

(a0−b0)pk
(1+kw′(1))

{
1
c +

∑l
j=1

1
r j

}] ; (m = 1, 2, 3, ..., l) .

Expected number of customers in the system when the service station is idle, is obtained as

(5.5) E[N0] = G′0(z) |z=1 =
N (N − 1) P0

0, 0

2
.

Similarly, we can compute the expected number of customers in the system when the service
station is busy, breakdown and under setup, and under mth phase (m = 1, 2, 3, ..., l) repair state by
the following formulae:

(5.6) E[N1] = G′1(z) |z=1 =
q[MR − LQ]P0

0, 0

2[R]2 ,

E[N2] = G′2(z)|z=1 =

c′(1)d′(1)[2a′(1)b′(1) + a′′(1)b′(1) + a′(1)b′′(1)]×
−a′(1)b′(1)[c′′(1)d′(1) + c′(1)d′′(1)]

2{c′(1)d′(1)}2
,(5.7)

E[N j+1] = (G j
3(z))

′

|z=1 =

2c′(1)d′(1)e(1)[2a′(1)b′(1) + a′′(1)b′(1) + a′(1)b′′(1)] − ×
a′(1)b′(1)[c′′(1)d′(1)e(1) + 2c′(1)d′′(1)e′(1)]

12{c′(1)d′(1)e(1)}2
(5.8)

( j = 2, 3, ...., l + 1),

where a(z) = 1 − zN , b(z) = 1 −Wk(z), c(z) = 1 − zWk(z), d(z) = 1 −W(z), e(z) = b1 + c − b1z.
Then the expected number of customers in the system is given by

(5.9) E[N] = E[N0] + E[N1] + E[N2] +

l∑
j=1

E[N j+2].

6 Optimal N-Policy
Let the expected length of the idle period, busy period, breakdown period under mth phase repair
(m = 1, 2, 3, ..., l) period and busy cycle be denoted by E[I], E[B], E[D], E[Rm](m = 1, 2, 3, ..., l)
and E[C] respectively. We have

(6.1) E[C] = E[B] + E[I] + E[D] +

l∑
m=1

E[Rm].

The length of the idle period is the sum of N exponential distributed random variables with
mean 1/λ. This implies that

(6.2) E[I] =
N
λ
.

Also

(6.3) PI =
E[I]
E[C]

, PB =
E[B]
E[C]

, PD =
E[D]
E[C]

and Pm
R =

E[Rm]
E[C]

(m = 1, 2, 3, ..., l) .

Now, we define the following cost elements to determine the optimal value of control
parameters N for an Erlangian queueing model with k-phase service and l-phase repair under N-
policy restriction.
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Cd holding cost per unit time per customer present in the system,
Cu start up cost per unit time for turning the service station on,
CB shut down cost per unit time for turning the service station off,
CI cost per unit time of the service station in idle state,
CD cost per unit time of the service station in broken down state when repairman is under set up

state,
Cm

R repair cost per unit time rendering mth phaserepair (m = 1, 2, 3, ..., l),

The expected total cost per unit time is formulated as:

(6.4) E (TC) = ChE[Ns] + (Cu + Cd)
1

E[C]
+ CIPI + CBPB + CDPD +

l∑
m=1

C,m
R Pm

R .

The optimal value (say N∗) of the decision variable N, could be determined by setting

(6.5)
d {E(TC)}

dN
= 0.

In case when N∗ is not an integer, then the best positive integer value N∗ is achieved by rounding
off the N∗.

7 Special Cases
Case I: When λ = λ0, λγ1 = λ1, λγ2 = λ2, l = 1, and δ = 0, then we get the results for this

model.
Case II: If λ = λγ1 = λγ2 = Λ, l = 1, and δ = 0, then we get results for N-policy M/M/1

queueing system with breakdown.
Case III: In case when γ1 = γ2 = 1, l = 1, δ = 0, α = 0, and β = 1 then our model coincides

with the model developed by Wang and Huang [16].

8 Sensitivity Analysis
In order to show the validity of analytical results, we perform extensive numerical experiment
by using MATLAB. The effects of different parameters on the average queue length are shown
in Figs. 8.1-8.8. The numerical results of the expected total cost with the variation of different
parameters are presented in Tables 8.1 and 8.2.

The effect of arrival rate (λ), failure rate (α), service rate (µ), setup rate (σ), repair rate of first
phase (βi), repair rate of second phase (β2), optimal threshold parameter N∗ and number of phases
of service (k) respectively, on E(TC) are examined for different sets of cost elements which are
given as follows:
Set 1: CU=10, CF =5, CI=5, CB=10, CD=2, CH=5, CR1=2 CR2=1
Set 2: CU=20, CF =5, CI=5, CB=10, CD=2, CH=5, CR1=2 CR2=1
Set 3: CU=10, CF =10, CI=5, CB=10, CD=2, CH=5, CR1=2 CR2=1
Set 4: CU=10, CF =5, CI=10, CB=10, CD=2, CH=5, CR1=2 CR2=1
Set 5: CU=10, CF =5, CI=5, CB=20, CD=2, CH=5, CR1=2 CR2=1
Set 6: CU=10, CF =5, CI=5, CB=10, CD=4, CH=5, CR1=2 CR2=1
Set 7: CU=10, CF =5, CI=5, CB=10, CD=2, CH=10, CR1=2 CR2=1
Set 8: CU=10, CF =5, CI=5, CB=10, CD=2, CH=5, CR1=4 CR2=1
Set 9: CU=10, CF =5, CI=5, CB=10, CD=2, CH=5, CR1=2 CR2=2
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Fig. 8.1: Expected queue length vs. 𝜆                      Fig. 8.2: Expected queue length vs. 𝜇 
 

        
 

Fig. 8.3: Expected queue length vs. 𝛼                     Fig. 8.4: Expected queue length vs. 𝛿 

 

         
 

Fig. 8.5: Expected queue length vs. 𝛽1                      Fig. 8.6: Expected queue length vs. 𝛽2 

 

         
 

Fig. 8.7: Expected queue length vs. N                     Fig. 8.8: Expected queue length vs. k 
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From Table 8.1 it is observed that by increasing λ, α,N and k, the expected total cost increases.
But as we increase the parameters µ, β1, β2 and δ the expected total cost decreases as can be seen
from Table 8.2.

Table 8.1: Effect of parameters (λ, α, k,N) on the expected total cost for different sets of cost elements

λ SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
1.00 6.69 6.31 6.50 5.76 9.19 7.59 10.69 7.25 6.89
1.20 21.69 20.68 21.18 19.58 24.69 22.77 42.02 22.37 21.94
1.40 30.24 28.39 29.32 26.94 33.74 31.50 60.72 31.03 30.53
1.60 38.08 35.21 36.64 33.59 42.08 39.52 78.28 38.98 38.41
1.80 46.14 42.05 44.10 40.47 50.64 47.76 96.57 47.15 46.51
2.00 54.71 49.22 51.96 47.85 59.71 56.51 116.17 55.83 55.12
α SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
0.50 7.35 6.89 7.12 6.58 11.10 8.10 11.04 7.82 7.52
0.60 20.56 19.62 20.09 19.00 24.31 21.46 38.65 21.12 20.76
0.70 26.53 25.13 25.83 24.19 30.28 27.58 51.80 27.18 26.77
0.80 30.71 28.84 29.77 27.59 34.46 31.91 61.35 31.46 30.98
0.90 34.16 31.83 33.00 30.27 37.91 35.51 69.48 35.01 34.47
1.00 37.27 34.46 35.86 32.59 41.02 38.77 76.88 38.20 37.61
N SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
1.00 10.15 1.53 4.31 6.25 13.90 11.50 35.46 10.99 10.46
2.00 21.41 15.57 18.49 17.52 25.16 22.76 49.22 22.25 21.72
3.00 26.83 22.94 24.88 22.94 30.58 28.18 57.14 27.67 27.14
4.00 30.79 27.87 29.33 26.90 34.54 32.14 63.60 31.63 31.10
5.00 34.16 31.83 33.00 30.27 37.91 35.51 69.48 35.01 34.47
6.00 37.25 35.30 36.28 33.36 41.00 38.60 75.06 38.09 37.56
k SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
1.00 26.94 24.60 25.77 23.05 30.69 28.29 55.03 27.78 27.25
2.00 32.43 30.09 31.26 28.54 36.18 33.78 66.01 33.27 32.74
3.00 34.16 31.83 33.00 30.27 37.91 35.51 69.48 35.01 34.47
4.00 35.02 32.69 33.85 31.13 38.77 36.37 71.19 35.87 35.33
5.00 35.53 33.20 34.36 31.64 39.28 36.88 72.21 36.38 35.84
6.00 35.87 33.54 34.70 31.98 39.62 37.22 72.89 36.72 36.18
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Table 8.2: Effect of parameters (µ, δ, βi, β2) on the expected total cost for different sets of cost elements.

µ SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
1.00 102.53 84.19 93.36 71.96 117.53 107.93 238.15 105.91 103.76
2.00 59.29 51.61 55.45 46.50 66.79 61.99 130.37 60.97 59.90
3.00 43.42 39.31 41.37 36.57 48.42 45.22 91.54 44.55 43.83
4.00 34.16 31.83 33.00 30.27 37.91 35.51 69.48 35.01 34.47
5.00 26.11 24.84 25.48 24.00 29.11 27.19 51.24 26.79 26.36
6.00 13.08 12.52 12.80 12.15 15.58 13.98 23.76 13.64 13.28
δ SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
0.50 34.16 31.83 33.00 30.27 37.91 35.51 69.48 35.01 34.47
0.60 29.18 27.18 28.18 25.85 32.93 30.31 58.67 30.02 29.49
0.70 25.79 24.04 24.92 22.87 29.54 26.76 51.29 26.64 26.10
0.80 23.31 21.73 22.52 20.68 27.06 24.15 45.86 24.15 23.61
0.90 21.37 19.93 20.65 18.97 25.12 22.12 41.63 22.21 21.67
1.00 19.79 18.47 19.13 17.58 23.54 20.46 38.19 20.63 20.10
β1 SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
1.00 30.87 28.79 29.83 27.40 34.62 32.22 62.25 31.54 31.18
2.00 24.71 23.14 23.92 22.09 28.46 26.06 48.67 25.05 25.02
3.00 22.68 21.27 21.98 20.34 26.43 24.03 44.19 22.91 22.99
4.00 21.64 20.31 20.98 19.43 25.39 22.99 41.89 21.81 21.94
5.00 20.99 19.72 20.35 18.87 24.74 22.34 40.47 21.13 21.30
6.00 20.55 19.31 19.93 18.48 24.30 21.90 39.50 20.66 20.85
β2 SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9
1.00 35.31 32.88 34.09 31.26 39.06 36.66 72.02 36.15 35.64
2.00 29.35 27.43 28.39 26.15 33.10 30.70 58.67 30.19 29.52
3.00 27.50 25.74 26.62 24.57 31.25 28.85 54.49 28.34 27.61
4.00 26.58 24.91 25.74 23.79 30.33 27.93 52.41 27.42 26.66
5.00 26.02 24.40 25.21 23.32 29.77 27.37 51.15 26.86 26.09
6.00 25.65 24.06 24.85 23.01 29.40 27.00 50.31 26.49 25.70

Figs 8.1-8.8 depict the effect of parameters λ, α, µ, δ, β1, β2,N and k respectively, on the average
queue length. From all the graphs it is observed that the average queue length is higher for
heterogeneous arrival rates in comparison of homogeneous arrival rates. Also, it is noticed that
average queue length increases as we increase the number of phases of repair. From Figs. 8.1, 8.2
we examine the effect of arrival rate (service rate) on the average queue length and observed that
E[N] increases (decreases) with the increase in λ and µ however the effect of µ on E[N] is more
prominent for lower values. Substantially the same effects with respect to failure rate (setup rate)
have been seen in Figs. 8.3, 8.4. In Figs. 8.5 and 8.6, the average queue length E[N] is plotted
against the parameters β1 & β2. As we expect, initially E[N] decreases sharply by increasing β1

but after some time it becomes almost constant; moreover the decreasing effect due to increment in
β2 is almost not negligible. Fig. 8.7 illustrates the effect of threshold parameter N on the average
queue length and we notice that E[N] increases linearly as N increases. From Fig. 8.8 it is seen
that initially E[N] increases sharply and then after slowly as we increase k.

From the tables and graphs, overall we conclude that the average queue length increases as
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λ, α,N and k increase but decreases as µ, δ, β1, and β2 increase, which is in agreement with physical
situations.

9 Concluding Remarks
In this paper we have analysed an Erlangian queueing model with phase service and phase repair
under N-policy. We have employed the generating function approach for computing the steady
state probability distribution for various performance measures. The cost analysis facilitated may
be helpful to assist the decision makers in determining the optimal value of threshold parameter N,
so as to minimize total expected cost per unit time. The incorporation of balking behavior of the
customers makes our model more realistic to depict the day-to-day as well as industrial congestion
situations.
Acknowledgement. We are very much thankful to the Editor and referee for their suggestions to
bring the paper in its present form.
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Abstract
In this paper the R-functions have been mentioned in connection with integral operator

named as Hartely transform. The Hartley transform is a mathematical transformation which
is closely related to the better known Fourier transform. The properties that differentiate the
Hartley Transform from its Fourier counterpart are that the forward and the inverse transforms
are identical and also that the Hartley transform of a real signal is a real function of frequency.
The Whitened Hartley spectrum, which stems from the Hartley transform, is a bounded
function that encapsulates the phase content of a signal. The Whitened Hartley spectrum,
unlike the Fourier phase spectrum, is a function that does not suffer from discontinuities or
wrapping ambiguities. An overview on how the Whitened Hartley spectrum encapsulates the
phase content of a signal more efficiently compared with its Fourier counterpart as well as
the reason that phase unwrapping is not necessary for the Whitened Hartley spectrum, are
provided in this study. Moreover, in this study, we deal with the function which is significant
generalization of Fox’s H-function which was introduced by Hartley and Lorenzo and later on
modified by Jain et al.
2010 Mathematics Subject Classifications: 26A33, 33C05, 33C10, 33C20.
Keywords and phrases: Generalized fractional integral operators, H- Function, I-function
and R-function.

1 Introduction
1.1 Fox’s H-function
The H-function series introduced by Fox [4] will be represented and defined in the following
manner

Hm,n
p,q

{
(a1, A1)(a2, A2)...(ap, Ap)
(b1, B1)(b2, B2)...(bq, Bq) |x

}
=

1
2πi

∫
L

∏m
j=1 Γ(b j − B js)

∏n
j=1 Γ(1 − a j + A js)∏q

j=m+1 Γ(1 − b j + B js)
∏p

j=n+1 Γ(a j − A js)
xsds,
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where L is a suitable contour.
1.2 Hartley transform
The Hartley transform is an integral transformation that maps a real-valued temporal or spacial
function into a real-valued frequency function via the kernel, cas(vx) ≡ cos(vx) + sin(vx). This
novel symmetrical formulation of the traditional Fourier transform, attributed to Ralph Vinton
Lyon Hartley [5], leads to a parallelism that exists between the function of the original variable
and that of its transform. Furthermore, the Hartley transform permits a function to be decomposed
into two independent sets of sinusoidal components; these sets are represented in terms of positive
and negative frequency components, respectively. This is in contrast to the complex exponential,
exp( jwx), used in classical Fourier analysis. For periodic power signals, various mathematical
forms of the familiar Fourier series come to mind. For a periodic energy and power signals of
either finite or infinite duration, the Fourier integral can be used. In either case, signal and systems
analysis and design in the frequency domain using the Hartley transform may be deserving of
increased awareness due necessarily to the existence of a fast algorithm that can substantially lessen
the computational burden when compared to the classical complex-valued Fast Fourier Transform
(FFT). Perhaps one of Hartley’s most long-lasting contributions was a more symmetrical Fourier
integral originally developed for steady-state and transient analysis of telephone transmission
system problems. Although this transform remained in a quiescent state for over 40 years, the
Hartley transform was rediscovered more than a decade ago by Wang [12],[14] and Bracewell
[1],[3] who authored definitive treatises on the subject.

The Hartley transform of a function f (x) can be expressed as either

(1.1) H(v) =
1
√

2π

∫ ∞

−∞

f (x)cas(vx)dx,

(1.2) H( f ) =
1
√

2π

∫ ∞

−∞

f (x)cas(2π f x)dx.

Here the integral kernel, known as the cosine and sine or cas function, is defined as

cas(vx) = cos(vx) + sin(vx),

cas(vx) =
√

2sin(vx +
π

4
),

cas(vx) =
√

2cos(vx −
π

4
).

The Hartley transform has the convenient property of being its own inverse

f = {H{H f }}.

1.3 Generalized Functions for the Fractional Calculus(R-function)
It is of significant usefulness to develop a generalized function which when fractionally differ
integrated (by any order) returns itself. Such a function would greatly ease the analysis of
fractional order differential equations. To end this process the following was proposed by Hartley
and Lorenzo,[7]. The R-function is unique in that it contains all of the derivatives and integrals
of the F-function. The R-function has the Eigen property that is it returns itself on qth order
differ-integration. Special cases of the R-function also include the exponential function, the sine,
cosine, hyperbolic sine and hyperbolic cosine functions. The value of the R-function is clearly
demonstrated in the dynamic thermocouple problem where it enables the analyst to directly inverse
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transform the Laplace domain solution, to obtain the time domain solution, and is defined as
follows

(1.3) Rq,v[a, c, t] =

∞∑
n=0

an(t − c)(n+1)q−1−v

Γ((n + 1)q − v)
.

The more compact notation

Rq,v[a, t − c] =

∞∑
n=0

an(t − c)(n+1)q−1−v

Γ((n + 1)q − v)
.

When c = 0, we get

Rq,v[a, t] =

∞∑
n=0

an(t)(n+1)q−1−v

Γ((n + 1)q − v)
.

Put v = q − 1, we get Mittag-Leffler function

Rq,q−1[a, t] =

∞∑
n=0

an(t)(nq)

Γ(nq + 1)
= E(atq).

Taking a = 1, v = q − β

Rq,q−β[1, t] =

∞∑
n=0

1n(t)(n+1)q−1−q+β

Γ((n + 1)q − q + β)
.

⇒ Rq,q−β[1, t] = tβ−1Eq,β(tq).

2 Main Result
In this section, the authors have derived the Hartley transform of R- functions as follows

Theorem 2.1. The Hartley transform H of R-functions

H{Rq,v[a, 0, t]} =
1

Γ((n + 1)q − v)
[1 + (−1)n]cos(

nπ
2

)Γ(n + 1).

Proof. The Hartley transform of R- functions in terms of Fox’s H-function is given by

H{Rq,v[a, c, t]} = H

 ∞∑
n=0

an(t − c)(n+1)q−1−v

Γ((n + 1)q − v)

 ,
or

H{Rq,v[a, c, t]} =

∞∑
n=0

(a)nH
{

(t − c)(n+1)q−1−v

Γ((n + 1)q − v)

}
.

Taking c = 0, we get

H{Rq,v[a, 0, t]} =

∞∑
n=0

(a)nH
{

(t)(n+1)q−1−v

Γ((n + 1)q − v)

}
,Re((n + 1)q − v) > 0

=
1
√

2π

∫ ∞

−∞

(t)(n+1)q−1−v

Γ((n + 1)q − v)
cas(vt)dt,

=
1

Γ((n + 1)q − v)
1
√

2π

∫ ∞

−∞

(t)(n+1)q−1−v{cos(vt) + sin(vt)}dt,

=
1

Γ((n + 1)q − v)
1
√

2π

∫ ∞

−∞

(t)(n+1)q−1−v
√

2sin(vt +
π

4
)dt.
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This gives

H{Rq,v[a, 0, t]} =
1

Γ((n + 1)q − v)
[1 + (−1)n]cos(

nπ
2

)Γ(n + 1).

This proves the Theorem 2.1.
Special Case: Putting c = 0 and v = q − 1, we get Mittag-Leffler function as special case of the
above result, the result follows as

Theorem 2.2. The Hartley transform of Fox-Wright function in terms Fox’s H-function

H
{

pΨq
[

(a1, A1)(a2, A2)(a3, A3)...(ap, Ap)
(b1, B1)(b2, B2)(b3, B3)...(bq, Bq) |z

]}
=

1
s

H1,p
1,q

[
(1 − a1,−A1)(1 − a2,−A2)(1 − a3,−A3)...(1 − ap,−Ap)
(1 − b1,−B1)(1 − b2,−B2)(1 − b3,−B3)...(1 − bq,−Bq) |S

]
.

Proof. The Hartley transform of Fox-Wright function in terms Fox’s H-function is given by

H
{

pΨq
[

(a1, A1)(a2, A2)...(ap, Ap)
(b1, B1)(b2, B2)...(bq, Bq) |z

]}
.

This implies

H
{

pΨq
[

(a1, A1)(a2, A2)...(ap, Ap)
(b1, B1)(b2, B2)...(bq, Bq) |z

]}
=

 ∞∑
n=0

Γ(a1 + nA1)Γ(a2 + nA2)...Γ(ap + nAp)
Γ(b1 + nB1)Γ(b2 + nB2)...Γ(bq + nBq)

 H
{

zn

n!

}

=

 ∞∑
n=0

Γ(a1 + nA1)Γ(a2 + nA2)...Γ(ap + nAp)
Γ(b1 + nB1)Γ(b2 + nB2)...Γ(bq + nBq)

 1
√

2π

∫ ∞

−∞

zn

n!
cas(vz)dz

=

 ∞∑
n=0

Γ(a1 + nA1)Γ(a2 + nA2)...Γ(ap + nAp)
Γ(b1 + nB1)Γ(b2 + nB2)...Γ(bq + nBq)

 1
√

2π

∫ ∞

−∞

zn

n!
{cos(vz) + sin(vz)}dz

=

 ∞∑
n=0

Γ(a1 + nA1)Γ(a2 + nA2)...Γ(ap + nAp)
Γ(b1 + nB1)Γ(b2 + nB2)...Γ(bq + nBq)

 1
Γ(n + 1)

1
√

2π

∫ ∞

−∞

zn
√

2sin(vz +
π

4
)dz

=

 ∞∑
n=0

Γ(a1 + nA1)Γ(a2 + nA2)...Γ(ap + nAp)
Γ(b1 + nB1)Γ(b2 + nB2)...Γ(bq + nBq)

 −1
Γ(n + 1)

[1 + (−1)n]cos(
nπ
2

)Γ(n + 1)

H
{

pΨq
[

(a1, A1)(a2, A2)...(ap, Ap)
(b1, B1)(b2, B2)...(bq, Bq) |z

]}
=

1
s

 ∞∑
n=0

Γ(1 − (1 − a1) + nA1)Γ(1 − (1 − a2) + nA2)...Γ(1 − (1 − ap) + nAp)
Γ(1 − (1 − b1) + nB1)Γ(1 − (1 − b2) + nB2)...Γ(1 − (1 − bq) + nBq)

 s−n

=
1
s

H1,p
1,q

[
(1 − a1,−A1)(1 − a2,−A2)(1 − a3,−A3)...(1 − ap,−Ap)
(1 − b1,−B1)(1 − b2,−B2)(1 − b3,−B3)...(1 − bq,−Bq) |S

]
.

This proves the Theorem 2.2.
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3 Application of the Hartley Transform via the Fast Hartley Transform
The discretized versions of the continuous Fourier and Hartley transform integrals may be put in an
amenable form for digital computation. Consider the discrete Fourier transform (DFT) and inverse
DFT (IDFT) of a periodic function of period NT seconds.
• The DHT requires only half the memory storage for real data arrays vs. complex data arrays.
• For a sequence of length N, the DHT performs O(N log 2N) real operations vs. the DFT
O(N log 2N) complex operations.
• The DHT performs fewer operations that may lead to fewer truncation and rounding errors from
computer finite word length.
• The DHT is its own inverse (i.e., it has a self-inverse) For reasons of computational advantage
either occurring through waveform symmetry or simply the use of real quantities, the Hartley
transform is recommended as a serious alternative to the Fourier transform for frequency-domain
analysis. The salient disadvantage of the Hartley approach is that Fourier amplitude and phase
information is not readily interpreted. This is not a difficulty in many applications because this
information is typically used as an intermediate stage toward a final goal. Due to the cited
advantages above, it is clear that the Hartley transform has much to offer when engineering
applications warrant digital filtering of real-valued signals. In particular, the FHT should be used
when either the computation time is to be minimized; for example, in real-time signal processing.
The minimization of computing time includes many other issues, such as memory allocation, real
vs. complex variables, computing platforms, and so forth. However, when one is interested in
computing the Hartley transform or the convolution or correlation integral, the Hartley transform
is the method of choice. In general, most engineering applications based on the FFT can be
reformulated in terms of the all-real FHT in order to realize a computational advantage. This is due
primarily to the vast amounts of research within the past decade on FHT algorithm development
as evidenced in [16]. A voluminous number of applications exist for the Hartley transform H some
of which are listed below
• Fast convolution, correlation, interpolation and extrapolation, finite-impulse response and
multidimensional filter design.

4 Conclusion.
In this paper, an overview of the Hartley transform is presented, the relationship between the
Hartley transform and the Fourier transform is provided and the Hartley transform properties
are analyzed. More importantly, the Whitened Hartley spectrum is defined, its properties for
phase spectral estimation are highlighted, its short time analysis is provided and its advantages
compared with the Fourier phase spectrum are underlined. The properties of the Whitened Hartley
spectrum are also demonstrated via an example involving time-delay measurement. Summarizing,
the Whitened Hartley spectrum is proposed as an alternative to the Fourier phase spectrum for
applications related to phase spectral processing. Specifically, the Whitened Hartley spectrum,
unlike its Fourier counterpart, does not convey extrinsic discontinuities since it is not using the
inverse tangent function, whereas the discontinuities of the signal in the phase spectrum which are
caused because of intrinsic characteristics of the signal can be compensated. Finally, it is important
to mention that the phase spectrum which is developed via the Whitened Hartley spectrum does
not only have important advantages compared with the Fourier phase spectrum but it is also very
straightforward in terms of its implementation and processing.
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Abstract

This paper is devoted to study and develop the generalized fractional calculus of arbitrary
order for the I-function of two variables which is based on generalized fractional integration
and differentiation operators of arbitrary complex order involving Appell hypergeometric
function F3 as a kernel due to Saigo and Maeda. On account of general nature of the Saigo-
Maeda operators, a large number of results involving Saigo and Riemann-Liouville operetors
are found as corollaries. Some special cases also have been considered.
2010 Mathematics Subject Classifications: 26A33, 33C60, 33C70.
Keywords and phrases: Generalized fractional calculus operators, Appell function, Frac-
tional calculus, I-function of two variables, Mellin-Barnes type integrals.

1 Introduction
In last some decades, considerable amount of research work in fractional calculus is published due
to its applicability in the various fields of science and engineering such as dynamical system in
control theory, electrical circuits, viscoelasticity, electrochemistry, fluid mechanics, mathematical
biology, image processing, astrophysics and quantum mechanics.There is no doubt that fractional
calculus has become an important mathematical tool to solve diverse problems of mathematics,
science and engineering. The fractional calculus operators involving various special functions have
been successfully applied to frame relevant system in various fields of science and engineering.
see [2], [3], [19], [20]. Therefore number of authors have investigated different unifications
and extentions of various fractional calculus operators. For more detail about fractional calculus
operators, reader may refer to the research monograph by Miller and Ross [16], Samko et al.[22],
and Kiryakova [9].

The image formulas for special functions of one and more variables under various fractional
calculus operators have been obtained by number of authors such as Gupta et al.[7] obtained the
image formulas of the product of two H functions using Saigo operators, Agarwal [1] studied and
developed the generalized fractional integration of the product of H-function and a general class of
polynomials in Saigo operators, Kumar [10] established some new unified integral and differential
formulas associated with H-function applying Saigo and Maeda operator. For more information,
we may also refer to Chandel [4]; Chandel and Vishwakarma [5]; Chandel and Gupta [6]; Kumar,
Purohit and Choi [12]; Kumar [13]; Kumar, Chandel and Srivastava [14]; Kumar, Pathan and
Kumari [15]; Mathai, Saxena and Houbold [17]; Pathan, Kumar, Srivastava and Chandel [28];
Srivastava, Saxena and Ram [28]; Srivastava, Chandel and vishwakarma [29]. In order to stimulate
more interest in the subject, we have established some image formulas concerning to I-function of
two variables.
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In 1995, Goyal and Agrawal [8] introduced I-function of two variables by means of Mellin-Barnes
type integrals in the following manner

(1.1)Im1,n1:m2,n2;m3,n3

p,q:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :r

 z1 [(ep : Ep, E
′

p)] : [(a j, α j)1,n2], [(a ji, α ji)n2+1,p
(1)
i

]; [(c j, γ j)1,n3], [(c ji, γ ji)n3+1,p
(2)
i

]

z2 [( fq : Fq, F
′

q)] : [(b j, β j)1,m2], [(b ji, β ji)m2+1,q
(1)
i

]; [(d j, δ j)1,m3], [(d ji, δ ji)m3+1,q
(2)
i

]


=

1
(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2 dξ dη,

where ω =
√
−1 and φ1(ξ), φ2(η), ψ(ξ, η) are given by

(1.2) φ1(ξ) =

m2∏
j=1

Γ(b j − β jξ)
n2∏
j=1

Γ(1 − a j + α jξ)

r∑
i=1


q(1)

i∏
j=m2+1

Γ(1 − b ji + β jiξ)
p(1)

i∏
j=n2+1

Γ(a ji − α jiξ)


,

(1.3) φ2(η) =

m3∏
j=1

Γ(d j − δ jη)
n3∏
j=1

Γ(1 − c j + γ jη)

r∑
i=1


q(2)

i∏
j=m3+1

Γ(1 − d ji + δ jiη)
p(2)

i∏
j=n3+1

Γ(c ji − γ jiη)


,

(1.4) ψ(ξ, η) =

m1∏
j=1

Γ( f j − F jξ − F
′

jη)
n1∏
j=1

Γ(1 − e j + E jξ + E
′

jη)

q∏
j=m1+1

Γ(1 − f j + F jξ + F
′

jη)
p∏

j=n1+1

Γ(e j − E jξ − E
′

jη)

,

and an empty product is interpreted as unity. z1, z2 are two non zero complex variables, L1, L2 are
two Mellin-Barnes type contour integrals and m1, n1; m2, n2; m3, n3, p, q; p(1)

i ,

q(1)
i ; p(2)

i , q(2)
i are non-negative integers satisfying the conditions 0 ≤ n1 ≤ p, 0 ≤ n2 ≤ p(1)

i , 0 ≤
n3 ≤ p(2)

i , 0 ≤ m1 ≤ q, 0 ≤ m2 ≤ q(1)
i , 0 ≤ m3 ≤ q(2)

i for all i = 1, 2, 3, · · · , r where
r is also a positive integer. α j( j = 1, · · · , n2), β j( j = 1, · · · ,m2), γ j( j = 1, · · · , n3), δ j( j =

1, · · · ,m3), α ji( j = n2 + 1, · · · , p(1)
i ), β ji( j = m2 + 1, · · · , q(1)

i ), γ ji( j = n3 + 1, · · · , p(2)
i ), δ ji( j =

m3 + 1, · · · , q(2)
i ) are assumed to be positive quantities for standardization purposes. E j, E

′

j, F j, F
′

j
are also positive. a j( j = 1, · · · , n2), b j( j = 1, · · · ,m2), c j( j = 1, · · · , n3), d j( j = 1, · · · ,m3), a ji( j =

n2 + 1, · · · , p(1)
i ), b ji( j = m2 + 1, · · · , q(1)

i ), c ji( j = n3 + 1, · · · , p(2)
i ), d ji( j = m3 + 1, · · · , q(2)

i ) are
complex for all i = 1, 2, 3, · · · , r.

The contour L1 lies in the complex ξ-plane and runs from −ω∞ to +ω∞ with loops, if
necessary, to ensure that the poles of Γ(b j − β jξ)( j = 1, · · · ,m2),Γ( f j − F jξ − F

′

jη)( j = 1, · · · ,m1)
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lies to the right and the poles of Γ(1−a j +α jξ)( j = 1, · · · , n2),Γ(1−e j +E jξ+E
′

jη)( j = 1, · · · , n1) to
the left of the contour L1.The contour L2 lies in the complex η plane and runs from −ω∞ to +ω∞
with loops, if necessary, to ensure that the poles of Γ(d j−δ jη)( j = 1, · · · ,m3),Γ( f j−F jξ−F

′

jη)( j =

1, · · · ,m1) lies to the right and the poles of Γ(1− c j + γ jξ)( j = 1, · · · , n3),Γ(1− e j + E jξ+ E
′

jη)( j =

1, · · · , n1) to the left of the contour L2. All the poles are simple poles.
Convergence conditions are as follows:

(1.5) |arg z1| <
Aiπ

2
, |arg z2| <

Biπ

2
,

where

(1.6) Ai =

n1∑
j=1

E j −

p∑
j=n1+1

E j +

m1∑
j=1

F j −

q∑
j=m1+1

F j +

m2∑
j=1

β j −

q(1)
i∑

j=m2+1

β ji +

n2∑
j=1

α j −

p(1)
i∑

j=n2+1

α ji > 0,

and

(1.7) Bi =

n1∑
j=1

E
′

j −

p∑
j=n1+1

E
′

j +

m1∑
j=1

F
′

j −

q∑
j=m1+1

F
′

j +

m3∑
j=1

δ j −

q(2)
i∑

j=m3+1

δ ji +

n3∑
j=1

γ j −

p(2)
i∑

j=n3+1

γ ji > 0,

for i = 1, ..., r.
By considering the behaviour of the Gamma functions involved in I[z1, z2] defined by (1.1),

it can be shown that I[z1, z2] is of certain algebraic order of z1, z2 for large values of z1, z2, if the
validity conditions (1.5)-(1.7) are satisfied.

Also, for small values of z1 and z2

I
[

z1

z2

]
= o

(
|z1|

λ j |z2|
µk
)

for all j = 1, 2, · · · ,m2; k = 1, 2, · · · ,m3,

where λ j = min Re
( b j

β j

)
, µk = min Re

(
dk
δk

)
provided Ai > 0, Bi > 0,

Further, we observe, for large values of z1 and z2, that

I
[

z1

z2

]
= o

(
|z1|

λ
′

j |z2|
µ
′

k

)
for all j = 1, 2, · · · , n2; k = 1, 2, · · · , n3,

where λ
′

j = max Re
(a j−1
α j

)
, µ

′

k = max Re
(

ck−1
γk

)
provided Ai > 0, Bi > 0,

For the sake of brevity throughout the paper we shall use following notations:
P = m2, n2; m3, n3,
Q = p(1)

i , q(1)
i ; p(2)

i , q(2)
i : r,

U = [(a j, α j)1,n2], [(a ji, α ji)n2+1,p
(1)
i

]; [(c j, γ j)1,n3], [(c ji, γ ji)n3+1,p
(2)
i

],
V = [(b j, β j)1,m2], [(b ji, β ji)m2+1,q

(1)
i

]; [(d j, δ j)1,m3], [(d ji, δ ji)m3+1,q
(2)
i

],

If α, α′, β, β′, γ ∈ C and x > 0, then the generalized fractional calculus operators containing
Appell hypergeometric function F3 given by Saigo and Maeda [23] are defined in the following
manner:(

Iα,α
′,β,β′,γ

0+
f
)

(x) =
x−α

Γ(γ)

∫ x

0
t−α

′

(x − t)γ−1F3

(
α, α′, β, β′; γ; 1 −

t
x
, 1 −

x
t

)
f (t) dt, Re(γ) > 0,(1.8)

166



=

(
d
dx

)k (
Iα,α

′,β+k,β′,γ+k
0+

f
)

(x), Re(γ) ≤ 0; k = [−Re(γ) + 1],
(
Iα,α

′,β,β′,γ
− f

)
(x)(1.9)

=
x−α

′

Γ(γ)

∫ ∞

x
t−α(t − x)γ−1F3

(
α, α′, β, β′; γ; 1 −

x
t
, 1 −

t
x

)
f (t) dt, Re(γ) > 0,(1.10)

= (−1)k

(
d
dx

)k (
Iα,α

′,β,β′+k,γ+k
− f

)
(x), Re(γ) ≤ 0; k = [−Re(γ) + 1],(1.11)

(
Dα,α′,β,β′,γ

0+
f
)

(x) =
(
I−α

′,−α,−β′,−β,−γ
0+

f
)

(x), Re(γ) > 0,
(1.12)

=

(
d
dx

)k (
I−α

′,−α,−β′+k,−β,−γ+k
0+

f
)

(x), Re(γ) > 0; k = [Re(γ) + 1],(1.13)

(
Dα,α′,β,β′,γ
− f

)
(x) =

(
I−α

′,−α,−β′,−β,−γ
− f

)
(x), Re(γ) > 0,

(1.14)

= (−1)k

(
d
dx

)k (
I−α

′,−α,−β′,−β+k,−γ+k
− f

)
(x), Re(γ) > 0; k = [Re(γ) + 1],(1.15)

These generalized fractional calculus operators reduces to Saigo’s [24] fractional calculus
operators by means of the following relationship:(

Iα,0,β,β
′,γ

0+
f
)

(x) =
(
Iγ,α−γ,−β0+

f
)

(x), (γ ∈ C),(1.16) (
Iα,0,β,β

′,γ
− f

)
(x) =

(
Iγ,α−γ,−β− f

)
(x), (γ ∈ C),(1.17) (

D0,α′,β,β′,γ
0+

f
)

(x) =
(
Dγ,α′−γ,β′−γ

0+
f
)

(x), Re(γ) > 0,(1.18) (
D0,α′,β,β′,γ
− f

)
(x) =

(
Dγ,α′−γ,β′−γ
− f

)
(x), Re(γ) > 0.(1.19)

Our main findings in the next section are based on the following composition formula due to
Saigo-Maeda [23].

Lemma 1.1. If α, α′, β, β′, γ ∈ C,Re(γ) > 0 and Re(ρ) > max[0,Re(α + α′ + β − γ),Re(α′ − β′)]
then there hold the formula

(1.20)
(
Iα,α

′,β,β′,γ
0+

tρ−1
)

(x) = xρ−α−α
′+γ−1 Γ(ρ)Γ(ρ + γ − α − α′ − β)Γ(ρ + β′ − α′)

Γ(ρ + γ − α − α′)Γ(ρ + γ − α′ − β)Γ(ρ + β′)
,

Lemma 1.2. If α, α′, β, β′, γ ∈ C,Re(γ) > 0 and Re(ρ) < 1 + min[Re(−β),Re(α + α′ − γ),Re(α +

β′ − γ)] then there hold the formula

(1.21)
(
Iα,α

′,β,β′,γ
− tρ−1

)
(x) = xρ−α−α

′+γ−1 Γ(1 + α + α′ − γ − ρ)Γ(1 + α + β′ − γ − ρ)Γ(1 − β − ρ)
Γ(1 − ρ)Γ(1 + α + α′ + β′ − γ − ρ)Γ(1 + α − β − ρ)

,

2 Main Results
In this section we have established fractional calculus formulas associated to I-function of two
variables with the help of Saigo-Maeda generalized fractional calculus operators. Further by
specializing the parameters, we have found some corollaries concerning to Saigo fractional
calculus operators and Riemann-Liouville fractional calculus operators.The results are presented
in the form of theorems stated below.
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Theorem 2.1. Let α, α′, β, β′, γ, ρ ∈ C, z1, z2 ∈ C, Re(γ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µ min
1≤ j≤m2

Re
( b j

β j

)
+ ν min

1≤ j≤m3
Re

( d j

δ j

)
> max

[
0,Re(α + α′ + β − γ),Re(α′ − β′)

]
.

Then the fractional integration Iα,α
′,β,β′,γ

0+
of the I-function of two variables exists and the

following relation holds:

(2.1)
{

Iα,α
′,β,β′,γ

0+
tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+γ−α−α
′
−1Im1,n1+3:P

p+3,q+3:Q

[
z1xµ X1, [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], X2 : V

]
,

where

X1 = [(1 − ρ : µ, ν)], [(1 − ρ + α + α
′

+ β − γ : µ, ν)], [(1 − ρ + α
′

− β
′

: µ, ν)],

X2 = [(1 − ρ + α + α
′

− γ : µ, ν)], [(1 − ρ + α
′

+ β − γ : µ, ν)], [(1 − ρ − β
′

: µ, ν)].

Proof. In order to prove (2.1), we first express I-function of two variables occurring on the
left hand side of (2.1) in terms of Mellin-Barnes contour integral with the help of equation (1.1)
and interchanging the order of integration, which is justified under the conditions stated with the
Theorem, we obtain (say I1):

(2.2) I1 =
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2 (Iα,α
′,β,β′,γ

0+
tρ+µξ+νη−1)(x) dξ dη,

Now by applying Lemma 1.1, we arrive at

I1 = xρ+γ−α−α′−1 1
(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) (z1xµ)ξ (z2xν)η

×
Γ(ρ + µξ + νη)Γ(ρ + µξ + νη + γ − α − α′ − β)Γ(ρ + µξ + νη + β′ − α′)

Γ(ρ + µξ + νη + γ − α − α′)Γ(ρ + µξ + νη + γ − α′ − β)Γ(ρ + µξ + νη + β′)
dξ dη.

By re-interpreting the Mellin-Barnes contour integral in terms of I-function of two variables
defined by (1.1) , we obtain the right hand side of (2.1) after little simplifications. This completes
proof of Theorem 2.1.
In view of the relation (1.16), we get the following corollary concerning left-sided Saigo fractional
integral operator [24].

Corollary 2.1. Let α, β, γ, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µ min
1≤ j≤m2

Re
( b j

β j

)
+ ν min

1≤ j≤m3
Re

(d j

δ j

)
> max

[
0,Re(β − γ)

]
.
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Then the fractional integration Iα,β,γ0+
of the I-function of two variables exists and the following

relation holds:

(2.3)
{

Iα,β,γ0+
tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ−β−1Im1,n1+2:P
p+2,q+2:Q

[
z1xµ [(1 − ρ : µ, ν)], [(1 − ρ − γ + β : µ, ν)], [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], [(1 − ρ + β : µ, ν)], [(1 − ρ − α − γ : µ, ν)] : V

]
.

Now if we set β = −α in (2.3), we obtain the following result concerning left-sided Riemann-
Liouville fractional integral operator [24].

Corollary 2.2. Let α, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µ min
1≤ j≤m2

Re
( b j

β j

)
+ ν min

1≤ j≤m3
Re

(d j

δ j

)
> 0.

Then the fractional integration Iα0+
of the I-function of two variables exists and the following

relation holds:

(2.4)
{

Iα0+tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ−α−1Im1,n1+1:P
p+1,q+1:Q

[
z1xµ [(1 − ρ : µ, ν)], [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], [(1 − ρ − α : µ, ν)] : V

]
.

Theorem 2.2. Let α, α′, β, β′, γ, ρ ∈ C, z1, z2 ∈ C, Re(γ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µmax
1≤ j≤n2

[Re(a j)−1
α j

]
+ νmax

1≤ j≤n3

[Re(c j)−1
γ j

]
< 1 + min

[
Re(−β),Re(α + α′ − γ),Re(α + β′ − γ)

]
Then the fractional integration Iα,α

′,β,β′,γ
− of the I-function of two variables exists and the

following relation holds:

(2.5)
{

Iα,α
′,β,β′,γ

− tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ−α−α
′
+γ−1Im1+3,n1:P

p+3,q+3:Q

[
z1xµ [(ep : Ep, E

′

p)], X3 : U
z2xν X4, [( fq : Fq, F

′

q)] : V

]
,

where

X3 = [(1 − ρ : µ, ν)], [(1 − ρ + α + α
′

+ β′ − γ : µ, ν)], [(1 − ρ + α − β : µ, ν)],

X4 = [(1 − ρ + α + α
′

− γ : µ, ν)], [(1 − ρ + α + β′ − γ : µ, ν)], [(1 − ρ − β : µ, ν)].

169



Proof. In order to prove (2.5), we first express I-function of two variables occurring on the
left hand side of (2.5) in terms of Mellin-Barnes contour integral with the help of equation (1.1)
and interchanging the order of integration, which is justified under the conditions stated with the
Theorem, we obtain (say I2):

(2.6) I2 =
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2 (Iα,α
′,β,β′,γ

− tρ+µξ+νη−1)(x) dξ dη,

Now by applying Lemma 1.2, we arrive at

I2 = xρ−α−α
′+γ−1 1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) (z1xµ)ξ (z2xν)η

×
Γ(1 − ρ + α + α′ − γ − µξ − νη)Γ(1 − ρ + α + β′ − γ − µξ − νη)Γ(1 − ρ − β − µξ − νη)

Γ(1 − ρ − µξ − νη)Γ(1 − ρ + α + α′ + β′ − γ − µξ − νη)Γ(1 − ρ + α − β − µξ − νη)
dξ dη.

By re-interpreting the Mellin-Barnes contour integral in terms of I-function of two variables
defined by (1.1) , we obtain the right hand side of (2.5) after little simplifications. This completes
proof of Theorem 2.2.
In view of the relation (1.17), we get following corollary concerning right-sided Saigo fractional
integral operator [24].

Corollary 2.3. Let α, β, γ, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µmax
1≤ j≤n2

[Re(a j)−1
α j

]
+ νmax

1≤ j≤n3

[Re(c j)−1
γ j

]
< 1 + min

[
Re(β),Re(γ)

]
.

Then the fractional integration Iα,β,γ− of the I-function of two variables exists and the following
relation holds:

(2.7)
{

Iα,β,γ− tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ−β−1Im1+2,n1:P
p+2,q+2:Q

[
z1xµ [(ep : Ep, E

′

p)], [(1 − ρ : µ, ν)], [(1 − ρ + γ : µ, ν)], : U
z2xν [(1 − ρ + β : µ, ν)], [(1 − ρ + γ : µ, ν)][( fq : Fq, F

′

q)] : V

]
.

Further, if we set β = −α in (2.7), we get following corollary concerning right-sided Riemann
Liouville fractional integral operator [24].

Corollary 2.4. Let α, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(α) + Re(ρ) + µmax
1≤ j≤n2

[Re(a j)−1
α j

]
+ νmax

1≤ j≤n3

[Re(c j)−1
γ j

]
< 1.

Then the fractional integration Iα− of the I-function of two variables exists and the following
relation holds:

(2.8)
{

Iα−tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)
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= xρ−α−1Im1+1,n1:P
p+1,q+1:Q

[
z1xµ [(ep : Ep, E

′

p)], [(1 − ρ : µ, ν)] : U
z2xν [(1 − ρ − α : µ, ν)], [( fq : Fq, F

′

q)] : V

]
.

Theorem 2.3. Let α, α′, β, β′, γ, ρ ∈ C, z1, z2 ∈ C, Re(γ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µ min
1≤ j≤m2

Re
( b j

β j

)
+ ν min

1≤ j≤m3
Re

(d j

δ j

)
> max

[
0,Re(−α − α′ − β′ + γ),Re(β − α)

]
Then the fractional derivative Dα,α′,β,β′,γ

0+
of the I-function of two variables exists and the

following relation holds:

(2.9)
{

Dα,α′,β,β′,γ
0+

tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+α+α
′
−γ−1Im1,n1+3:P

p+3,q+3:Q

[
z1xµ X5, [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], X6 : V

]
,

where

X5 = [(1 − ρ : µ, ν)], [(1 − ρ − α − α
′

− β′ + γ : µ, ν)], [(1 − ρ − α + β : µ, ν)],
X6 = [(1 − ρ − α − β′ + γ : µ, ν)], [(1 − ρ + β : µ, ν)], [(1 − ρ − α − α′ + γ : µ, ν)].

Proof. To prove the fractional differential formula (2.9) we express I-function of two variables
occurring on the left hand side of (2.9) in terms of double Mellin-Barnes contour integral with the
help of equations (1.1),we obtain the following form after little simplification:

{
Dα,α′,β,β′,γ

0+
tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)(2.10)

=
dk

dxk

{
I−α

′,−α,−β′+k,−β,−γ+k
0+

tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x),

=
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2
dk

dxk (I−α
′,−α,−β′+k,−β,−γ+k

0+
tρ+µξ+νη−1)(x) dξ dη,

where k = [Re(γ) + 1]
Applying Lemma 1.1 to (2.10),we obtain

=
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

×
Γ(ρ + µξ + νη)Γ(ρ + µξ + νη − γ + α′ + α + β′)Γ(ρ + µξ + νη − β + α)

Γ(ρ + µξ + νη + α′ + α − γ + k)Γ(ρ + µξ + νη − γ + α + β′)Γ(ρ + µξ + νη − β)

×
dk

dxk xρ+µξ+νη+α′+α−γ+k−1 dξ dη,

Using dn

dxn xm =
Γ(m+1)

Γ(m−n+1) xm−n where m ≥ n in the above expression, we obtain

= xρ+α+α′−γ−1 1
(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) (z1x)ξ (z2x)η
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×
Γ(ρ + µξ + νη)Γ(ρ + µξ + νη − γ + α′ + α + β′)Γ(ρ + µξ + νη − β + α)

Γ(ρ + µξ + νη − γ + α + β′)Γ(ρ + µξ + νη − β)Γ(ρ + µξ + νη + α′ + α − γ)
dξ dη.

By re-interpreting the Mellin-Barnes contour integral in terms of I-function of two variables
defined by (1.1), we obtain the right hand side of (2.9) after little simplifications. This completes
proof of Theorem 2.3.

In view of the relation(1.18), we get following corollary concerning left-sided Saigo fractional
derivative operator [24].

Corollary 2.5. Let α, β, γ, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µ min
1≤ j≤m2

Re
( b j

β j

)
+ ν min

1≤ j≤m3
Re

( d j

δ j

)
> max

[
0,Re(−α − β − γ)

]
.

Then the fractional derivative Dα,β,γ
0+

of the I-function of two variables exists and the following
relation holds:

(2.11)
{

Dα,β,γ
0+

tρ−1Im1,n1:P
p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+β−1Im1,n1+2:P
p+2,q+2:Q

[
z1xµ [(1 − ρ : µ, ν)], [(1 − ρ − α − β − γ : µ, ν)], [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], [(1 − ρ − γ : µ, ν)], [(1 − ρ − β : µ, ν)] : V

]
.

Next, if we set β = −α in the above result, we obtain following result concerning left-sided
Riemann-Liouville fractional derivative operator [24].

Corollary 2.6. Let α, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µ min
1≤ j≤m2

Re
( b j

β j

)
+ ν min

1≤ j≤m3
Re

(d j

δ j

)
> 0.

Then the fractional derivative Dα
0+

of the I-function of two variables exists and the following
relation holds:

(2.12)
{

Dα
0+tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+α−1Im1,n1+1:P
p+1,q+1:Q

[
z1xµ [(1 − ρ : µ, ν)], [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], [(1 − ρ − α : µ, ν)] : V

]
.

Theorem 2.4. Let α, α′, β, β′, γ, ρ ∈ C, z1, z2 ∈ C, Re(γ) > 0, µ, ν ∈ R+. Further let the
constants m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition
Re(ρ) + µmax

1≤ j≤n2

[Re(a j)−1
α j

]
+ νmax

1≤ j≤n3

[Re(c j)−1
γ j

]
< 1 + min

[
Re(β′),Re(−α − α′ + γ),Re(−α′ − β + γ)

]
.

Then the fractional derivative Dα,α′,β,β′,γ
− of the I-function of two variables exists and the

following relation holds:
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(2.13)
{

Dα,α′,β,β′,γ
− tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+α+α
′
−γ−1Im1+3,n1:P

p+3,q+3:Q

[
z1xµ [(ep : Ep, E

′

p)], X7 : U
z2xν X8, [( fq : Fq, F

′

q)] : V

]
,

where

X7 = [(1 − ρ : µ, ν)], [(1 − ρ − α − α
′

− β + γ : µ, ν)], [(1 − ρ − α′ + β′ : µ, ν)],
X8 = [(1 − ρ − α′ − β + γ : µ, ν)], [(1 − ρ + β′ : µ, ν)], [(1 − ρ − α − α′ + γ : µ, ν)].

Proof. To prove the fractional differential formula (2.13) we express I-function of two variables
occurring on the left hand side of (2.13) in terms of double Mellin-Barnes contour integral with
the help of equations (1.1),we obtain the following form after little simplification:{

Dα,α′,β,β′,γ
− tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)(2.14)

= (−1)k dk

dxk

{
I−α

′,−α,−β′,−β+k,−γ+k
− tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= (−1)k 1
(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2
dk

dxk (I−α
′,−α,−β′,−β+k,−γ+k

− tρ+µξ+νη−1)(x) dξ dη,

where k = [Re(γ) + 1]
Applying Lemma 1.2 to (2.14),we obtain

=
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

×
Γ(1 − ρ − α − α′ + γ − k − µξ − νη)Γ(1 − ρ − α′ − β + γ − µξ − νη)Γ(1 − ρ − β′ − µξ − νη)

Γ(1 − ρ − µξ − νη)Γ(1 − ρ − α − α′ − β + γ − µξ − νη)Γ(1 − ρ − α′ + β′ − µξ − νη)

×(−1)k dk

dxk xρ+µξ+νη+α′+α−γ+k−1 dξ dη,

=
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

×
Γ(1 − ρ − α − α′ + γ − k − µξ − νη)Γ(1 − ρ − α′ − β + γ − µξ − νη)Γ(1 − ρ + β′ − µξ − νη)

Γ(1 − ρ − µξ − νη)Γ(1 − ρ − α − α′ − β + γ − µξ − νη)Γ(1 − ρ − α′ + β′ − µξ − νη)

×(1 − ρ − α − α′ + γ − k − µξ − νη)k xρ+µξ+νη+α′+α−γ−1 dξ dη,

=
1

(2πω)2

∫
L1

∫
L2

φ1(ξ) φ2(η)ψ(ξ, η) zξ1 zη2

×
Γ(1 − ρ − α′ − β + γ − µξ − νη)Γ(1 − ρ + β′ − µξ − νη)Γ(1 − ρ − α − α′ + γ − µξ − νη)

Γ(1 − ρ − µξ − νη)Γ(1 − ρ − α − α′ − β + γ − µξ − νη)Γ(1 − ρ − α′ + β′ − µξ − νη)

×xρ+µξ+νη+α′+α−γ−1 dξ dη.

By re-interpreting the Mellin-Barnes contour integral in terms of I-function of two variables
defined by (1.1) , we obtain the right hand side of (2.13) after little simplifications. This completes
proof of Theorem 2.4.

In view of the relation (1.19), we get following corollary concerning right-sided Saigo
fractional derivative operator [24].
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Corollary 2.7. Let α, β, γ, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + µmax
1≤ j≤n2

[Re(a j)−1
α j

]
+ νmax

1≤ j≤n3

[Re(c j)−1
γ j

]
< 1 + min

[
Re(−β),Re(α + γ)

]
.

Then the fractional derivative Dα,β,γ
− of the I-function of two variables exists and the following

relation holds:

(2.15)
{

Dα,β,γ
− tρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+β−1Im1+2,n1:P
p+2,q+2:Q

[
z1xµ [(ep : Ep, E

′

p)], [(1 − ρ : µ, ν)], [(1 − ρ − β + γ : µ, ν)] : U
z2xν [(1 − ρ + α + γ : µ, ν)], [(1 − ρ − β′ : µ, ν)], [( fq : Fq, F

′

q)] : V

]
.

Further, if we set β = −α in (2.15), we obtain following corollary concerning right-sided
Riemann-Liouville derivative operator [24].

Corollary 2.8. Let α, ρ ∈ C, z1, z2 ∈ C, Re(α) > 0, µ, ν ∈ R+. Further let the constants
m1, n1, p, q ∈ N0, a j, b j, a ji, b ji ∈ C, α j, β j, α ji, β ji ∈ R+(i = 1, · · · , p(1)

i ; j = 1, · · · , q(1)
i ),

c j, d j, c ji, d ji ∈ C, γ j, δ j, γ ji, δ ji ∈ R+(i = 1, · · · , p(2)
i ; j = 1, · · · , q(2)

i ), |arg z1| <
Aiπ
2 , |arg z2| <

Biπ
2 , Ai > 0, Bi > 0 and satisfy the condition

Re(ρ) + Re(α) + µmax
1≤ j≤n2

[Re(a j)−1
α j

]
+ νmax

1≤ j≤n3

[Re(c j)−1
γ j

]
< 0.

Then the fractional derivative Dα
− of the I-function of two variables exists and the following

relation holds:

(2.16)
{

Dα
−t
ρ−1Im1,n1:P

p,q:Q

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+α−1Im1+1,n1:P
p+1,q+1:Q

[
z1xµ [(ep : Ep, E

′

p)], [(1 − ρ : µ, ν)] : U
z2xν [(1 − ρ − α : µ, ν)], [( fq : Fq, F

′

q)] : V

]
.

3 Special Cases
The I-function of two variables is a most generalized form of special functions, consequently it
can be reduced in a large number of special functions (or product of such functions) by suitably
specializing the parameters involved in the function. Here we provide a few special cases of our
main results.
(i) If we set m1 = n1 = p = q = 0 in Theorem 2.1 then we have following known result given by
Saxena et al [26], p.637, eq.(3.3) in terms of product of I-function of one variable introduced by
Saxena [25].

(3.1)
{
Iα,α

′,β,β′,γ
0+

tρ−1Im2,n2

p(1)
i ,q(1)

i :r

[
z1tµ

∣∣∣∣∣ (a j, α j)1,n2 , (a ji, α ji)n2+1,p(1)
i

(b j, β j)1,m2 , (b ji, β ji)m2+1,q(1)
i

]

×Im3,n3

p(2)
i ,q(2)

i :r

[
z2tν

∣∣∣∣∣ (c j, γ j)1,n3 , (c ji, γ ji)n3+1,p(2)
i

(d j, δ j)1,m3 , (d ji, δ ji)m3+1,q(2)
i

]}
(x)

= xρ+γ−α−α
′
−1I0,3:m2,n2;m3,n3

3,3:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :r

[
z1xµ X1, ... : U
z2xν X2, ... : V

]
,
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where X1 and X2 are same as given in Theorem 2.1. The conditions of validity of the above result
easily follow from Theorem 2.1.
(ii) If we set m1 = 0 and r = 1 in Theorem 2.1, the I-function of two variables occurring in
L.H.S. reduces into H-function of two variables [27] then we have following known result given
by Dinesh Kumar [11], p.1128, eq.(4.2).

(3.2)
{

Iα,α
′,β,β′,γ

0+
tρ−1H0,n1:m2,n2;m3,n3

p,q:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1tµ [(ep : Ep, E

′

p)] : T1

z2tν [( fq : Fq, F
′

q)] : T2

]}
(x)

= xρ+γ−α−α
′
−1H0,n1+3:m2,n2;m3,n3

p+3,q+3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X1, [(ep : Ep, E

′

p)] : T1

z2xν [( fq : Fq, F
′

q)], X2 : T2

]
,

where
T1 = [(a j, α j)1,p(1)

1
]; [(c j, γ j)1,p(2)

1
], T2 = [(b j, β j)1,q(1)

1
]; [(d j, δ j)1,q(2)

1
].

Also X1 and X2 are same as given in Theorem 2.1. The conditions of validity of the above
result easily follow from Theorem 2.1.
(iii) If we set m1 = 0 and r = 2 in Theorem 2.1, then we obtain a result in terms of a particular
case of the I-function of two variables.

(3.3)
{

Iα,α
′,β,β′,γ

0+
tρ−1I0,n1:m2,n2;m3,n3

p,q:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :2

[
z1tµ [(ep : Ep, E

′

p)] : U
z2tν [( fq : Fq, F

′

q)] : V

]}
(x)

= xρ+γ−α−α
′
−1I0,n1+3:m2,n2;m3,n3

p+3,q+3:p(1)
i ,q(1)

i ;p(2)
i ,q(2)

i :2

[
z1xµ X1, [(ep : Ep, E

′

p)] : U
z2xν [( fq : Fq, F

′

q)], X2 : V

]
,

Also X1 and X2 are same as given in Theorem 2.1. The conditions of validity of the above
result easily follow from Theorem 2.1.
(iv) If we set m1 = n1 = p = q = 0 and r = 1 in Theorem 2.1, then we have following known result
given by J. Ram and D. Kumar [21], p.36, eq.(17) in terms of product of H-functions

(3.4)
{
Iα,α

′,β,β′,γ
0+

tρ−1Hm2,n2

p(1)
1 ,q(1)

1

[
z1tµ

∣∣∣∣∣ (a j, α j)1,p(1)
1

(b j, β j)1,q(1)
1

]
× Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣ (c j, γ j)1,p(2)
1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α
′
−1H0,3:m2,n2;m3,n3

3,3:p(1)
1 ,q(1)

1 ;p(2)
1 ,q(2)

1

[
z1xµ X1... : T1

z2xν X2... : T2

]
,

where X1 and X2 are same as given in Theorem 2.1, T1 and T2 are also same as given in (3.2). The
conditions of validity of the above result easily follow from Theorem 2.1.
(v) On putting m1 = n1 = p = q = 0, r = 1, µ = 1, p(1)

1 = 0,m2 = q(1)
1 = 1, b1 = 0 and β1 = 1 in

Theorem 2.1 then by virtue of the relation H1,0
0,1[z1t|(0, 1)] = e−z1t we have following known result

given by Saxena et al. [26], p.643, eq.(5.1).

(3.5)
{
Iα,α

′,β,β′,γ
0+

tρ−1e−z1tHm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣ (c j, γ j)1,p(2)
1

(d j, δ j)1,q(2)
1

]}
(x)
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= xρ+γ−α−α
′
−1H0,3:1,0;m3,n3

3,3:0,1;p(2)
1 ,q(2)

1

 z1x X9... : −; (c j, γ j)1,p(2)
1

z2xν X10... : (0, 1); (d j, δ j)1,q(2)
1

 ,
where

X9 = [(1 − ρ : 1, ν)], [(1 − ρ + α + α
′

+ β − γ : 1, ν)], [(1 − ρ + α
′

− β
′

: 1, ν)],

X10 = [(1 − ρ + α + α
′

− γ : 1, ν)], [(1 − ρ + α
′

+ β − γ : 1, ν)], [(1 − ρ − β
′

: 1, ν)].

The conditions of validity of the above result easily follow from Theorem 2.1.
(vi) On setting z1 = 0 in (3.5), we have following result.

(3.6)
{
Iα,α

′,β,β′,γ
0+

tρ−1Hm3,n3

p(2)
1 ,q(2)

1

[
z2tν

∣∣∣∣∣ (c j, γ j)1,p(2)
1

(d j, δ j)1,q(2)
1

]}
(x)

= xρ+γ−α−α
′
−1Hm3,n3+3

p(2)
1 +3,q(2)

1 +3

z2xν
∣∣∣∣∣ X11, (c j, γ j)1,p(2)

1

(d j, δ j)1,q(2)
1
, X12

 ,
where

X11 = [(1 − ρ : ν)], [(1 − ρ + α + α
′

+ β − γ : ν)], [(1 − ρ + α
′

− β
′

: ν)],

X12 = [(1 − ρ + α + α
′

− γ : ν)], [(1 − ρ + α
′

+ β − γ : ν)], [(1 − ρ − β
′

: ν)].

The conditions of validity of the above result easily follow from Theorem 2.1.
(vi) Further on reducing H-function to Wright generalized hypergeometric function in (3.6) due to
the relation

pψq

[
(c1, γ1), · · · , (cp, γp);
(d1, δ1), · · · , (dq, δq);

∣∣∣∣∣z] =

∞∑
k=0

p∏
j=1

Γ(c j + γ jk)

q∏
j=1

Γ(d j + δ jk)

zk

k!

= H1,p
p,q+1

[
− z

∣∣∣∣∣ (1 − c1, γ1) , · · · ,
(
1 − cp, γp

)
(0, 1), (1 − d1, δ1) , · · · ,

(
1 − dq, δq

) ]
.

We obtain following result

(3.7)
{
Iα,α

′,β,β′,γ
0+

tρ−1
pψq

[
ztν

∣∣∣∣∣ (c j, γ j)1,p

(d j, δ j)1,q

]}
(x)

= xρ+γ−α−α
′
−1

p+3ψq+3

[
zxν

∣∣∣∣∣ (c j, γ j)1,p, X13

(d j, δ j)1,q, X14

]
,

where

X13 = (ρ, ν), (ρ − α − α
′

− β + γ, ν), (ρ − α
′

+ β
′

, ν),

X14 = (ρ − α − α
′

+ γ, ν), (ρ − α
′

− β + γ, ν), (ρ + β
′

, ν).

The conditions of validity of the above result easily follow from Theorem 2.1.
Acknowledgement. Acknowledgement We are very much thankful to the Editor and Referee for
their valuable suggestions to bring the paper in its present form.
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Abstract

In this paper, by using Maclaurin series of given mathematical function and expressing the
coefficient of the general term of corresponding Maclaurin series in the form of Pochhammer
symbols, we obtain the hypergeometric forms of following functions:

sin−1(x)√
(1 − x2)

, [sin−1(x)]2, sin−1(x),
sinh−1(x)√

(1 + x2)
, [sinh−1(x)]2, sinh−1(x) and `n{e(1 − x)

1
x }−

2
x .

2010 Mathematics Subject Classifications: 33Cxx, 34A35, 41A58, 33B10.
Keywords and phrases: Hypergeometric functions, Leibnitz theorem, Maclaurin series, Pochham-
mer symbol.

1 Introduction and Preliminaries
In our investigations, we shall use the following standard notations:
N := {1, 2, 3, · · · } ;N0 := N

⋃
{0} ;Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real numbers, natural
numbers, integers, positive and negative real numbers respectively.
Pochhammer symbol:
The Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C)[13, p.22 eq(1), p.32 Q.N.(8) and
Q.N.(9)], see also [15, p.23, eq(22) and eq(23)], is defined by

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=



1 (ν = 0; λ ∈ C\{0})
n−1∏
j=0

(λ + j) (ν = n ∈ N; λ ∈ C)

(−1)kn!
(n−k)! (λ = −n; ν = k; n, k ∈ N0; 0 5 k 5 n)
0 (λ = −n; ν = k; n, k ∈ N0; k > n)
(−1)k

(1−λ)k
(ν = −k; k ∈ N; λ ∈ C\Z),

it being understood conventionally that (0)0 = 1 and assumed tacitly that the Gamma quotient
exists.
Generalized hypergeometric function of one variable:
A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z], is accomplished by
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introducing any arbitrary number of numerator and denominator parameters. Thus, the resulting
series

(1.1) pFq

 (αp);
z

(βq);

 = pFq

 α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =

∞∑
n=0

(α1)n(α2)n . . . (αp)n

(β1)n(β2)n . . . (βq)n

zn

n!
,

is known as the generalized hypergeometric series, or simply, the generalized hypergeometric
function. Here p and q are positive integers or zero and we assume that the variable z, the numerator
parameters α1, α2, . . . , αp and the denominator parameters β1, β2, . . . , βq take on complex values,
provided that

β j , 0,−1,−2, . . . ; j = 1, 2, . . . , q.

Supposing that none of the numerator and denominator parameters is zero or a negative integer,
we note that the pFq series defined by equation (1.1):

(i) converges for |z| < ∞, if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,

(iii) diverges for all z, z , 0, if p > q + 1,
(iv) converges absolutely for |z| = 1, if p = q + 1, and<(ω) > 0,
(v) converges conditionally for |z| = 1(z , 1), if p = q + 1 and −1 < <(ω) 5 0,

(vi) diverges for |z| = 1, if p = q + 1 and<(ω) 5 −1,

where by convention, a product over an empty set is interpreted as 1 and

(1.2) ω :=
q∑

j=1

β j −

p∑
j=1

α j,

<(ω) being the real part of complex number ω.
Relation between inverse hyperbolic and inverse trigonometric functions:
(1.3) sin−1(iθ) = i sinh−1(θ) or sinh−1(iθ) = i sin−1(θ).

Leibnitz theorem:
The nth derivative of the product of two functions, is given by

(1.4) Dn[U(x) T (x)] = (nC0)(Dn U)(D0 T ) + (nC1)(Dn−1 U)(D1 T )

+ (nC2)(Dn−2 U)(D2 T ) + · · · + +(nCn−1)(D1 U)(Dn−1 T ) + (nCn)(D0 U)(Dn T ).

Maclaurin series :
Suppose nth derivative of y(x), w.r.t. x is denoted by Dny =

dny
dxn = yn.

Then

y(x) = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + · · ·

(1.5) =

∞∑
n=0

xn

n!
(yn)0,

(1.6) =

∞∑
n=0

x2n

(2n)!
(y2n)0 +

∞∑
n=0

x2n+1

(2n + 1)!
(y2n+1)0,
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where,

(ym)0 =

(
dmy
dxm

)
x=0

.

(1.7) (α)2n = 22n
(
α

2

)
n

(
α + 1

2

)
n
.

The present article is organized as follows. In Section 3, we have derived the hypergeometric
forms of some functions involving arcsine function and logarithmic function by using Maclaurin
series. In Section 4, we have given hypergeometric forms of some inverse hyperbolic sine function
as special cases. For hypergeometric forms of other mathematical functions and functions of
mathematical physics, one can refer the literature [1],[2],[3],[4],[5],[6],[7],[8],[14] and [16], where
the proof of hypergeometric forms of related functions are not given. So we are interested to give
the proof of hypergeometric forms of the functions mentioned in Section 2. For some recent related
work, the interested readers can consult the papers by Qureshi, et al.[9, 10, 11, 12].

2 Some Hypergeometric Forms Involving Arcsine Function and Logarithmic Function
When |x| < 1, then following hypergeometric forms hold true:

sin−1(x)√
(1 − x2)

= x 2F1

 1, 1;
x2

3
2 ;

 .(2.1)

[sin−1(x)]2 = x2
3F2

 1, 1, 1;
x2

2, 3
2 ;

 .(2.2)

sin−1(x) = x 2F1


1
2 ,

1
2 ;

x2

3
2 ;

 .(2.3)

`n{e(1 − x)
1
x }−

2
x = 2F1

 1, 2;
x

3;

 .(2.4)

3 Proof of Hypergeometric Forms
Proof of hypergeometric form (2.1):

Consider the following function

y = y(x) =
sin−1(x)√
(1 − x2)

,(3.1)

that is √
(1 − x2) y = sin−1(x).

Put x = 0 in the equation (3.1), we get

(3.2) (y)0 = 0 .

Differentiate the equation (3.1) w.r.t. x and use product rule, after simplification we get

(1 − x2)y1 − xy = 1,(3.3)
(y1)0 = 1 .(3.4)

181



Again differentiate the equation (3.3) w.r.t. x and use product rule, after simplification we have

(1 − x2)y2 − 3xy1 − y = 0,(3.5)
(y2)0 = 0 .(3.6)

Now differentiate the equation (3.3) n-times w.r.t. x and apply Leibnitz theorem we obtain

Dn[(1 − x2)y1] − Dn[xy] = Dn[1]; n ≥ 2,(3.7)

(1 − x2)yn+1 − (2n + 1)xyn − n2yn−1 = 0; n ≥ 2 .

Put x = 0 in the equation (??), we get

(3.8) (yn+1)0 = n2(yn−1)0; n ≥ 2 .

Put n = 2, 3, 4, 5, 6, 7, 8, 9 in the equation (3.8), we get

(y3)0 = (2)2(1),(3.9)

(y5)0 = (4)2(2)2(1),(3.10)

(y7)0 = (6)2(4)2(2)2(1),(3.11)

(y9)0 = (8)2(6)2(4)2(2)2(1).(3.12)

Using the equation (3.8), we can write the recurrence relation:

(3.13) (ym)0 = (m − 1)2(ym−2)0; m ≥ 2 .

When m = 2n, then

(3.14) (y2n)0 = (2n − 1)2(y2n−2)0 = 0 .

When m = 2n + 1, then

(y2n+1)0 = (2n)2(y2n−1)0(3.15)

= (2n)2(2n − 2)2(2n − 4)2 · · · (8)2(6)2(4)2(2)2(1)

= {2n(1 × 2 × 3 × 4 × · · · × n)}2

= 4n(n!)2.

Now using Maclaurin series, we get

y =

∞∑
n=0

x2n

(2n)!
(y2n)0 +

∞∑
n=0

x2n+1

(2n + 1)!
(y2n+1)0 .

The function sin−1(x)√
(1−x2)

is an odd function so that the even coefficients of its Maclaurin expansion

vanish. That is

y = 0 +

∞∑
n=0

x2n+1 4n (n!)2

(2n + 1)!

= x
∞∑

n=0

4n (1)n (1)n x2n

(1)2n+1

= x
∞∑

n=0

4n (1)n (1)n x2n

(2)2n

= x
∞∑

n=0

(1)n (1)n x2n

( 3
2 )n n!

.
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On using the definition (1.1), we get the required hypergeometric form (2.1).
Proof of hypergeometric form (2.2):

Consider the following function

(3.16) y = y(x) = [sin−1(x)]2.

Put x = 0 in the equation (3.16), we get

(3.17) (y)0 = 0 .

Differentiate the equation (3.16) w.r.t. x, we get

(3.18)
√

(1 − x2)y1 = 2[sin−1(x)],

(3.19) (y1)0 = 0 .

Differentiate the equation (3.18) w.r.t. x and use product rule, after simplification we get

(1 − x2)y2 − xy1 = 2,(3.20)
(y2)0 = 2.(3.21)

Again differentiate the equation (3.20) w.r.t. x and use product rule, after simplification we
have

(3.22) (1 − x2)y3 − 3xy2 − y1 = 0.

Now differentiate the equation (3.20) n-times w.r.t. x and apply Leibnitz theorem we obtain

Dn[(1 − x2)y2] − Dn[xy1] = Dn[2]; n ≥ 2,(3.23)

(1 − x2)yn+2 − (2n + 1)xyn+1 − n2yn = 0; n ≥ 2.

Put x = 0 in the equation (3.23), we get

(3.24) (yn+2)0 = n2(yn)0; n ≥ 2 .

Put n = 2, 3, 4, 5, 6, 7, 8 in the equation (3.24), we get

(y4)0 = (2)2(2),(3.25)

(y6)0 = (4)2(2)2(2),(3.26)

(y8)0 = (6)2(4)2(2)2(2),(3.27)

(y10)0 = (8)2(6)2(4)2(2)2(2) .(3.28)

Using the equation (3.24), we can write the recurrence relation:

(ym)0 = (m − 2)2(ym−2)0; m ≥ 2 .(3.29)

When m = 2n, then

(y2n)0 = (2n − 2)2(y2n−2)0(3.30)

= (2n − 2)2(2n − 4)2 · · · (8)2(6)2(4)2(2)2(2)

= 2{2n−1 (n − 1)!}2

= (2)2n−1 {(n − 1)!}2.

When m = 2n + 1, then

(y2n+1)0 = (2n − 1)2(y2n−1)0 = 0.(3.31)
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Now using Maclaurin series, we get

y =

∞∑
n=0

x2n

(2n)!
(y2n)0 +

∞∑
n=0

x2n+1

(2n + 1)!
(y2n+1)0.

The function [sin−1(x)]2 is an even function so that the odd coefficients of its Maclaurin
expansion vanish. That is

y =

∞∑
n=0

x2n

(2n)!
(y2n)0 + 0(3.32)

= 0 +

∞∑
n=1

x2n

(2n)!
(y2n)0

=

∞∑
n=1

x2n (2)2n−1{(n − 1)!}2

(2n)!
.

Replacing n by n + 1 in equation (3.32), we get

y =

∞∑
n=0

x2n+2 (2)2n+1{n!}2

(2n + 2)!

= x2
∞∑

n=0

(1)n(1)n (2)2n+1 x2n

(1)2n+2

= x2
∞∑

n=0

(1)n(1)n (2)2n+1 x2n

(1)2 (3)2n

= x2
∞∑

n=0

(1)n(1)n(1)n x2n

(2)n (3
2 )n n!

,

on using the definition (1.1), we get the required hypergeometric form (2.2).
Proof of hypergeometric form (2.3):

Consider the following function

(3.33) y = y(x) = sin−1(x).

Put x = 0 in the equation (3.33), we get

(3.34) (y)0 = 0.

Differentiate the equation (3.33) w.r.t. x, we get

y1 = y1(x) =
1√

(1 − x2)
,

that is √
(1 − x2) y1 = 1,(3.35)

(y1)0 = 1 .(3.36)

Differentiate the equation (3.35) w.r.t. x and use product rule, after simplification we get

(1 − x2)y2 − xy1 = 0,(3.37)
(y2)0 = 0.(3.38)
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Again differentiate the equation (3.37) w.r.t. x and use product rule, after simplification we
have

(3.39) (1 − x2)y3 − 3xy2 − y1 = 0,

(3.40) (y3)0 = 1 .

Now differentiate the equation (3.37) n-times w.r.t. x, and apply Leibnitz theorem we obtain

Dn[(1 − x2)y2] − Dn[xy1] = 0; n ≥ 2,(3.41)

(1 − x2)yn+2 − (2n + 1)xyn+1 − n2yn = 0; n ≥ 2 .

Put x = 0 in the equation (??), we get

(3.42) (yn+2)0 = n2(yn)0; n ≥ 2 .

Put n = 2, 3, 4, 5, 6, 7, 8 in the equation (3.42),we get

(y5)0 = (3)2(1),(3.43)

(y7)0 = (5)2(3)2(1),(3.44)

(y9)0 = (7)2(5)2(3)2(1).(3.45)

Using the equation (3.42), we can write the recurrence relation:

(3.46) (ym)0 = (m − 2)2(ym−2)0; m ≥ 2 .

When m = 2n, then

(3.47) (y2n)0 = (2n − 2)2(y2n−2)0 = 0 .

When m = 2n + 1, then

(y2n+1)0 = (2n − 1)2(y2n−1)0(3.48)

= (2n − 1)2(2n − 3)2(2n − 5)2 · · · (7)2(5)2(3)2(1)

= {(1)(3)(5)(7) · · · (2n − 5)(2n − 3)(2n − 1)}2.

Now divide and Multiply R.H.S. of the equation (3.48) by [(2)(4)(6) · · · (2n − 4)(2n − 2)(2n)]2,
we get

(y2n+1)0 =
{(1)(2)(3)(4)(5)(6)(7) · · · (2n − 5)(2n − 4)(2n − 3)(2n − 2)(2n − 1)(2n)}2

[(2)(4)(6) · · · (2n − 4)(2n − 2)(2n)]2(3.49)

=
{(2n)!}2

[2n(1 × 2 × 3 × · · · × n)]2

=
(2n)! (2n)!

4n (n!)2 .

Now using Maclaurin series, we get

y =

∞∑
n=0

x2n

(2n)!
(y2n)0 +

∞∑
n=0

x2n+1

(2n + 1)!
(y2n+1)0 .

The function sin−1(x) is an odd function so that the even coefficients of its Maclaurin expansion
vanish. That is

y = 0 +

∞∑
n=0

x2n+1 (2n)! (2n)!
(2n + 1)! 4n (n!)2
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= x
∞∑

n=0

(1)2n (1)2n x2n

(1)2n+1 4n (1)n n!

= x
∞∑

n=0

(1)2n (1)2n x2n

(2)2n 4n (1)n n!

= x
∞∑

n=0

( 1
2 )n (1

2 )n x2n

( 3
2 )n n!

,

On using the definition (1.1), we get the required hypergeometric form (2.3).
Proof of hypergeometric form (2.4):

Let,

y = `n{e(1 − x)
1
x }−

2
x

= −
2
x
`n{e(1 − x)

1
x }

= −
2
x
{`n e + `n(1 − x)

1
x }

= −
2
x
{1 +

1
x
`n(1 − x)}

= 1 + 2(
x
3

+
x2

4
+

x3

5
+ · · · )

= 1 + 2
∞∑

n=1

xn

(n + 2)

= 1 + 2
∞∑

n=1

(2)n xn

(2)n (2 + n)

=

∞∑
n=0

(1)n (2)n xn

(3)n n!
,

on using the definition (1.1), we get the required hypergeometric form (2.4).

4 Hypergeometric Forms Involving Inverse Hyperbolic Sine Function
Replacing x by (ix) in both sides of equations (2.1), (2.2), (2.3) and using the relation (1.3),
we obtain the following hypergeometric forms of the functions involving inverse hyperbolic sine
function.
When |x| < 1, then following hypergeometric forms hold true:

sinh−1(x)√
(1 + x2)

= x 2F1

 1, 1;
−x2

3
2 ;

 .(4.1)

[sinh−1(x)]2 = x2
3F2

 1, 1, 1;
−x2

2, 3
2 ;

 .(4.2)

sinh−1(x) = x 2F1


1
2 ,

1
2 ;
−x2

3
2 ;

 .(4.3)
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5 Conclusion
In our present investigation, we derived the hypergeometric forms of some functions involving
arcsine function, inverse hyperbolic sine function and logarithmic function by using Maclaurin
series. Moreover, the results derived in this paper are expected to have useful applications in wide
range of problems of Mathematics, Statistics and Physical sciences. Similarly, we can derive the
hypergeometric forms of other functions in an analogous manner.
Acknowledgement. The authors are very much thankful to the Editor and referee for their valuable
suggestions (use of even and odd function in Maclaurin expansion) to improve the paper in its
present form.

References
[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables,Reprint of the 1972 Edition, Dover Publications, Inc., New
York, 1992.

[2] G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press,
Cambridge, UK, 1999.

[3] L.C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan
Publishing Company, New York, 1985.

[4] L.C. Andrews, Special Functions of Mathematics for Engineers, Reprint of the 1992 Second
Edition, SPIE Optical Engineering Press, Bellingham, W.A, Oxford University Press, Oxford,
1998.
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Abstract

In this paper, a nonlinear SIS model is considered to study the effect of global warming on
the spread of carrier dependent infectious diseases. In the model, we deal with five dependent
variables, namely, the density of susceptibles, the density of infectives, the density of carrier
population, the amount of carbon dioxide in the environment causing global warming and the
global warming temperature. In the model, it is assumed that the density of carriers increases
with constant growth rate as well as proportional to the global warming temperature. The
amount of CO2 in the environment increases due to human population activities as well as
natural factors. It is also assumed that the global warming temperature is proportional to the
amount of CO2 in the environment. The model is studied and investigated with the help of
stability theory of differential equations and numerical simulation. The investigation shows
that, if global warming temperature increases, then the density of carrier population and the
spread of carrier dependent infectious diseases increase.
2010 Mathematics Subject Classifications: 37C75, 92B05
Keywords and phrases: Global Warming, SIS Model, Stability, Carriers.

1 Introduction
Global warming is the most crucial subject matter to be taken under scrutiny by researchers in
this century. Certain greenhouse gases in the Earth’s atmosphere, like carbon dioxide (CO2) and
methane (CH4) trap the sun’s heat and do not let it escape. The increase of greenhouse gases
in the atmosphere over long period leads to an increase in Earth’s surface temperature causing
global warming. Over the past 130 years, the world has warmed up to 0.850C (approx.). The
last three decades have been progressively warmer than any preceding decades since 1850, IPCC
[10]. Further, it is important to note that detrimental activities of growing human population such
as deforestation, throwing waste in rivers and oceans and releasing smoke from factories and car
fumes into air etc., has discharged enough amount of carbon dioxide (CO2) in the environment.
Because of the global warming, carriers such as ticks, flies, mites, mosquitoes, cockroaches survive
in the warmer environment and can cause the spread of carrier dependent infectious diseases, Zhou
et al. [18]. The worldwide distribution of carrier dependent infectious diseases shows the impact
of climate change, IPCC [8, 9]. The prediction of World Health Organization is that, between 2030
and 2050 there will be an additional 0.25 million deaths per year from many infectious diseases as
measles, smallpox, mumps, malaria, diarrhea etc., due to global warming, WHO [15-17].

It is noteworthy that the effect of global warming on the carrier population with a constant
growth rate and it’s role on the spread of infectious diseases has not been done till now. Many
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researchers have studied the spread of infectious diseases by using mathematical models in the
past, as Anderson and May [1], Bailey [2], Ghosh et al. [3, 4], Greenhalgh [5] , Hethcote [6, 7],
May and Anderson [11], Singh [12] and Singh et al. [13, 14]. In this paper, therefore the effect
of global warming on carrier population with constant growth rate and its role on the spread of
infectious diseases is modeled and studied.

The following assumptions are made in the modeling process:
(i) The rate of density of carrier population increases with a constant rate.
(ii) The rate of density of carrier population is proportional to the global warming temperature.
(iii) The rate of amount of CO2 in the environment increases by human activities as well as

natural factors.
(iv) The rate of global warming temperature is proportional to amount of CO2 in the

environment.

2 SIS Model
Let N(t) be the total human population density which is divided into two categories, namely
susceptible human population density X(t) and infective human population density Y(t). Let Cr(t)
be the carrier population density which grows with a constant growth rate coefficient ”s”. Let
C(t) be the amount of CO2 in the environment and T (t) be the global warming temperature of the
environment due to discharge of carbon dioxide(CO2). The model is governed by the following
non linear differential equations:

dX
dt

= A − βXY − λXCr − dX + νY,(2.1)

dY
dt

= βXY + λXCr − (ν + α + d)Y,

dCr

dt
= s + s1(T − T0) − s0Cr,

dC
dt

= Qo + α1(A − dN) − αoC,

dT
dt

= θ(C −Co) − θ0(T − To),

with X + Y = N, where X(0) = X0 > 0,Y(0) = Y0 ≥ 0,N(0) = N0 > 0,Cr(0) = Cr0 ≥ 0,C(0) =

C0 > 0 and T (0) = T0 > 0 and take C0 =
Qo
αo

.
In the above model system (2.1), the used parameters are positive real numbers, described as

follows:
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A : The constant immigration rate of human population from outside the region
β : Coefficient of transmission by infective human population density
λ : Coefficient of transmission by carrier population density
d : Natural death rate constant of human population
α : Coefficient of death rate of infective human population due to disease related factors
ν : Coefficient of recovery rate of infective human population density
Q0 : Discharge rate of CO2 from natural factors
α1 : Discharge rate coefficient of CO2 from man- made sources
α0 : Natural reduction rate coefficient of CO2

θ : Growth rate coefficient of temperature of the region due to rise in amount of CO2

θ0 : Natural reduction rate coefficient of temperature in the region
s0 : Reduction rate coefficient of carriers
s : Constant growth rate coefficient of carrier population density
s1 : Growth rate of carriers due to global warming temperature
T0 : The equilibrium level of global warming temperature of the environment
C0 : The equilibrium amount of CO2

For analyzing the model (2.1), we take the following reduced system by using X = N − Y ,
dY
dt

= β(N − Y)Y + λ(N − Y)Cr − (ν + α + d)Y,(2.2)

dN
dt

= A − dN − αY,(2.3)

dCr

dt
= s + s1(T − T0) − s0Cr,(2.4)

dC
dt

= Qo + α1(A − dN) − αoC,(2.5)

dT
dt

= θ(C −Co) − θ0(T − To),(2.6)

with initial conditions

Y(0) = Y0 ≥ 0,N(0) = N0 > 0,Cr(0) = Cr0 ≥ 0,C(0) = C0 > 0 and T (0) = T0 > 0.

Region of Attraction
The region of attraction of the model system (2.2) - (2.6) is given by the set

Ω = {(Y,N,Cr,C,T ) ∈ R5
+ : 0 ≤ Y ≤ N ≤

A
d
, 0 ≤ Cr ≤ Crm, 0 < C ≤ Cm, 0 < T ≤ Tm},

where, Crm =
sθ0α0 + s1θα1A

s0θ0α0
,Cm = C0 +

α1A
αo

and Tm = To +
θα1A
θ0αo

.

It attracts all the solution initiating in the interior of the positive octant of the region.

3 Equilibrium Analysis
The model system (2.2) - (2.6) has only one non-negative equilibria:
(i) E(Y∗,N∗,C∗r ,C

∗,T ∗).
Proof. To find the equilibrium point E(Y∗,N∗,C∗r ,C

∗,T ∗) we solve the following set of equations

β(N − Y)Y + λ(N − Y)Cr − (ν + α + d)Y = 0,(3.1)
A − dN − αY = 0,(3.2)

s + s1(T − T0) − s0Cr = 0,(3.3)
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Qo + α1(A − dN) − αoC = 0,(3.4)
θ(C −Co) − θ0(T − To) = 0.(3.5)

Using above equations we get Cr =
sθ0α0 + s1θα1αY

s0θ0α0
.

Now, using the above value of Cr and equations (3.1), (3.2), we get Y∗ as the root of the
following equation

(3.6) F(Y) =
βY[A − (α + d)Y]

d
+
λ[A − (α + d)Y]

d

(
sθ0α0 + s1θα1αY

s0θ0α0

)
− (ν + α + d)Y = 0.

So we have, F(0) =
λAs
ds0

> 0 and F
( A
α + d

)
= −(ν + α + d)

( A
α + d

)
< 0

i.e. at least one root of the equation F(Y) = 0 lies in the range, 0 < Y <
A

α + d
.

Rewriting (3.6) as follows

(3.7) F(Y) =
βY[A − (α + d)Y]

d
+
λ[A − (α + d)Y]

d
(a0 + b0Y) − (ν + α + d)Y = 0,

where a0 = s
s0

and b0 = s1θα1α
s0θ0α0

.
On differentiating (3.7) with respect to Y , we get

F
′

(Y) = β
[A − (α + d)Y]

d
− βY

(
α + d

d

)
+
λ[A − (α + d)Y]

d
b0 − λ(a0 + b0Y)

(
α + d

d

)
− (ν + α + d).

Then, for Y > 0

YF
′

(Y) = β
[A − (α + d)Y]

d
Y−βY2

(
α + d

d

)
+
λ[A − (α + d)Y]

d
b0Y−λY(a0+b0Y)

(
α + d

d

)
−(ν+α+d)Y.

YF
′

(Y) = −βY2
(
α + d

d

)
−
λ(α + d)

d
b0Y2 − a0

λA
d
< 0.

Hence the equation F(Y) = 0 has unique root in the interval 0 < Y < A
(α+d)

Remark 3.1. Here we noted that dY
dQ0
|E > 0

From the model system (2.2) - (2.6), we have

(3.8)
[
βY(α + d)

d
−
β

d

{
A − (α + d)Y

}
+
λ(α + d)Cr

d
+ (ν + α + d)

]
×

dY
dQ0

=
λ[A − (α + d)Y]

d
dCr

dQ0
,

s1
dT
dQ0

= s0
dCr

dQ0
,(3.9)

dC
dQ0

=
1
αo

+
α1α

αo

dY
dQ0

,(3.10)

θ
dC
dQ0

= θ0
dT
dQ0

.(3.11)

On writing (3.8) with the help of (3.9), (3.10) and (3.11), we get

(3.12)
dY
dQ0

=
λs1θ[A − (α + d)Y]

ds0θ0αo

[
βY(α+d)

d +
λ(α+d)Cr

d −

{
β{A−(α+d)Y}

d + λ
d b0{A − (α + d)Y} − (ν + α + d)

}] .
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By equation (3.7), we have[
β{A − (α + d)Y}

d
+
λ{A − (α + d)Y}

d
b0 − (ν + α + d)

]
= −

λ[A − (α + d)Y]
dY

a0,

which on substituting in equation (3.12), gives

(3.13)
dY
dQ0

=
λs1θ[A − (α + d)Y]

ds0θ0αo

[
βY(α+d)

d +
λ(α+d)Cr

d +
λ{A−(α+d)Y}

dY a0

] .
So we have, dY

dQ0
|E > 0, which shows that the density of infective human population density

increases as the discharge rate of CO2 from natural factors increases at the equilibrium point E.

Since Cr =
sθ0α0 + s1θα1αY

s0θ0α0
=

s
s0

+
s1θα1α

s0θ0α0
Y = a0 + b0Y , using in (3.8), we get

(3.14)[
βY(α + d)

d
−
β

d
{A − (α + d)Y} +

λ(α + d)(a0 + b0Y)
d

+ (ν + α + d)
]

dY
dQ0

=
λ[A − (α + d)Y]

d
dCr

dQ0
.

By equation (3.7), we have

−
β{A − (α + d)Y}

d
+
λ(α + d)

d
(a0 + b0Y) + (ν + α + d) =

λA
dY

(a0 + b0Y),

which on substituting in (3.14), we get[
βY(α + d)

d
+
λA
dY

(a0 + b0Y)
]

dY
dQ0

=
λ[A − (α + d)Y]

d
dCr

dQ0

Since dY
dQ0
|E > 0 therefore dCr

dQ0
|E > 0. Thus, we have dCr

dQ0
|E > 0 , which shows that the density

of carrier population increases as the discharge rate of CO2from natural factors increases at the
equilibrium point E.

Remark 3.2. It is also noted that dY
dθ |E > 0

By equation (3.7), we have

(3.15)
βY[A − (α + d)Y]

d
+
λ[A − (α + d)Y]

d
(a0 + d0θY) − (ν + α + d)Y = 0,

where d0 = s1α1α
s0θ0α0

.
On differentiating (3.15) with respect to θ, we get

dY
dθ

[
βY(α + d)

d
−
β{A − (α + d)Y}

d
−
λd0θ{A − (α + d)Y}

d
+
λ(α + d)(a0 + d0θY)

d

+ (ν + α + d)] =
λd0Y[A − (α + d)Y]

d
,

dY
dθ

=
λd0Y[A − (α + d)Y]

d[βY(α+d)
d −

β{A−(α+d)Y}
d −

λd0θ{A−(α+d)Y}
d +

λ(α+d)(a0+d0θY)
d + (ν + α + d)]

.(3.16)

By equation (3.15), we have
βY(α + d)

d
+
λ(α + d)

d
(a0 + d0θY) + (ν + α + d) =

βA
d

+
λA
dY

(a0 + d0θY).

On putting in (3.16), we get
dY
dθ

=
λd0Y[A − (α + d)Y]

[β(α + d)Y + λd0θ(α + d)Y + λAa0
Y ]

.

So we have, dY
dθ |E > 0 which shows that the density of infective human population increases

as the growth rate coefficient of temperature of the region due to rise in amount of CO2 in the
environment increases at the equilibrium point E.
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4 Stability Analysis
In this section, we study the stability behavior of the equilibrium point E. The results are stated in
the following theorems.

Theorem 4.1. The equilibrium point E(Y∗,N∗,C∗r ,C
∗,T ∗) is locally asymptotically stable provided

the following conditions are satisfied

a1a2a3 − a2
3 − a2

1a4 > 0,(4.1)

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) − a5(a1a2 − a3)2 − a1a2
5 > 0,(4.2)

where

a1 = (βY∗ +
λC∗r N∗

Y∗
) + (s0 + α0 + θ0) + d,

a2 = (βY∗ +
λC∗r N∗

Y∗
)(d + s0 + α0 + θ0) + α(βY∗ + λC∗r ) + d(s0 + α0 + θ0),

+ (s0α0 + α0θ0 + s0θ0),

a3 = (βY∗ +
λC∗r N∗

Y∗
){d(s0 + α0 + θ0) + (s0α0 + α0θ0 + s0θ0)},

+ α(βY∗ + λC∗r )(s0 + α0 + θ0) + d(s0α0 + α0θ0 + s0θ0) + s0θ0α0,

a4 = (βY∗ +
λC∗r N∗

Y∗
){d(s0α0 + α0θ0 + s0θ0) + s0θ0α0},

+ α(βY∗ + λC∗r )(s0α0 + α0θ0 + s0θ0) + ds0θ0α0,

a5 =

[
(βY∗ + λC∗r )(α + d) +

λd(N∗ − Y∗)
Y∗

]
s0θ0α0.

Here it is noted that ai > 0, ∀i = 1, 2, 3, 4, 5.

Proof. See the Appendix A.

Theorem 4.2. The equilibrium point E(Y∗,N∗,C∗r ,C
∗,T ∗) is globally asymptotically stable in Ω

provided the following conditions are satisfied

αλ2C2
rm < β

2dY∗2,(4.3)

4αdλ2α2
1θ

2s2
1(N∗ − Y∗)2 < β2Y∗2s2

0θ
2
0α

2
0,(4.4)

where Crm is the maximum value of Cr, which is given by Crm =
sθ0α0 + s1θα1A

s0θ0α0
.

Proof. See the Appendix B.

5 Numerical Simulation
Here we discuss the existence and stability of non-trivial equilibrium point E(Y∗,N∗,C∗r ,C

∗,T ∗)
by taking the following set of parameters and using MAPLE.

A = 20, d = 0.0004, α = 0.0005, α0 = 0.016, α1 = 0.6 × 10−3,

β = 6 × 10−7, ν = 0.012, λ = 2 × 10−8, s0 = 0.3,T0 = 14,

Q0 = 6, θ = 0.1, θ0 = 0.19,C0 = 375, s = 2.4 × 104,

s1 = 2 × 104
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The Jacobian matrix J(E)for the above values of parameters at E(Y∗,N∗,C∗r ,C
∗,T ∗) is

−0.01259970927
−0.0005

0
0
0

0.01037645075
−0.0004

−2.4
0
0
0
× 10−7

0.0003558913828
0

−0.3
0
0

0
0

0
−0.016

0.1

0
0

20000
0
−0.19


The characteristic roots of the Jacobian matrix corresponding to the equilibrium point

E(Y∗,N∗,C∗r ,C
∗,T ∗) are:

−0.00083244611, −0.01219714633, −0.01596815206,
−0.1899940766, −0.3000078875

Since all characteristic roots are negative real numbers, therefore E(Y∗,N∗,C∗r ,C
∗,T ∗) is locally

stable.
For above values of parameters, the non-trivial equilibrium point E(Y∗,N∗,C∗r ,C

∗,T ∗) corre-
sponding to (2.2) - (2.6) is obtained as follows:
Y∗ = 14313.52483, N∗ = 32108.09397, C∗r = 89416.79265,
C∗ = 375.2683786, T ∗ = 14.14125189

Eliminating Cr,C,T from (3.1) - (3.5), we get

β(N − Y)Y + λ(N − Y)(
sθ0α0 + s1θα1αY

s0θ0α0
) − (ν + α + d)Y = 0,(5.1)

A − dN − αY = 0.(5.2)
For above values of parameters the equations (5.1) and (5.2) are plotted in Y-N plane (Fig.5.1),

and the intersection point is (Y∗,N∗).

Existence of (Y∗,N∗)

Figure 5.1

With the above mentioned set of values of parameters, we plot the graphs from Fig.5.1 -
Fig.5.13. Fig.5.2, shows the nonlinear stability behavior between N and Y with different initial
conditions tending to equilibrium point (Y∗,N∗) as time increases.
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Figure 5.2: Nonlinear stability of (Y∗,N∗) in the Y -N plane.

For solving the system of non-linear ODE, we use Runge-Kutta method in MAPLE.
The initial conditions for various quantities are given below:
C(0) = 375, Cr(0) = 80000, T (0) = 14, N(0) = 31000, Y(0) = 13000

Fig. 5.3 - Fig. 5.13 show the effect of various parameters on infective human population
density, carrier population density and amount of carbon dioxide. Every figure contains three
curves with the same initial conditions as given above but with different values of corresponding
parameter.

From Fig. 5.3, it is seen that the density of carriers increases if growth rate of carriers
due to global warming temperature (s1) increases. Fig. 5.4 shows that the amount of CO2 in
the environment increases if the discharge rate coefficient of CO2 from man-made sources(α1)
increases. From Fig. 5.5, it is seen that the density of infective human population increases
as the growth rate coefficient of temperature of the region due to rise in amount of CO2(θ)
increases. Fig. 5.6 shows that the density of infective human population increases if the discharge
rate coefficient of CO2 from man-made sources (α1) increases. Fig. 5.7 shows that the density
of infective human population decreases if reduction rate coefficient of carriers(s0) increases.
Fig. 5.8 shows that the density of infective human population increases if growth rate of carriers
due to global warming temperature (s1) increases. Fig. 5.9 shows that the density of infective
human population increases if constant growth rate coefficient of carrier population density (s)
increases. Fig. 5.10 shows that the density of infective human population increases if coefficient
of transmission by carrier population density(λ) increases. Fig. 5.11 shows that the density of
infective human population increases if constant immigration rate of human population from
outside the region under study (A) increases. Fig. 5.12 shows that the density of infective human
population increases if the discharge rate of CO2 from natural factors (Q0) increases. Fig. 5.13,
shows that the density of carrier population increases if the discharge rate of CO2 from natural
factors (Q0) increases.
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Figure 5.3: Plot between carrier population density Cr and time t for various values of s1.

Figure 5.4: Plot between amount of CO2 and time t for various values of α1.
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Figure 5.5: Plot between infective human population Y and time t for various values of θ.

Figure 5.6: Plot between infective human population Y and time t for various values of α1.
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Figure 5.7: Plot between infective human population Y and time t for various values of s0.

Figure 5.8: Plot between infective human population Y and time t for various values of s1.
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Figure 5.9: Plot between infective human population Y and time t for various values of s.

Figure 5.10: Plot between infective human population Y and time t for various values of λ.
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Figure 5.11: Plot between infective human population Y and time t for various values of A.

Figure 5.12: Plot between infective human population Y and time t for various values of Q0.
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Figure 5.13: Plot between carrier population density Cr and time t for various values of Q0.

6 Conclusions
The larger amount of carbon dioxide (CO2) in the environment is accountable for global warming.
In this paper, we have studied the effect of global warming on the growth of carrier population
with a constant growth rate and its role on the spread of infectious diseases. The model has five
dependent variables namely, the density of susceptibles, the density of infectives, the density of
carrier population, the amount of CO2 in the environment causing global warming and the global
warming temperature of the environment due to discharge of CO2 . We have assumed that the
density of carriers increases due to global warming temperature. The global warming temperature
has been assumed to be proportional to the amount of CO2 in the environment.

The proposed mathematical model has been studied with the help of stability theory of
differential equations and numerical simulation. The local stability and the global stability
conditions for non-trivial equilibrium point have been derived. For a set of parameters, numerical
simulation proves the analytical results.

It has been found out that as the discharge rate of carbon dioxide from natural factors and
man-made sources increases, the number of infectives increases. Also, the infectives and carrier
population increase as the global warming temperature increases and thus the prevalence of carrier
dependent infectious diseases increases in the environment.
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Appendix A. Proof of the Theorem 4.1
Proof. The Jacobian matrix for the system (2.2) - (2.6) is

J(E) =


a11 a12 a13 0 0
−α −d 0 0 0
0 0 −s0 0 s1

0 −α1d 0 −αo 0
0 0 0 θ −θ0

 ,
where

a11 = β(N∗ − Y∗) − βY∗ − λC∗r − (ν + α + d), a12 = βY∗ + λC∗r , a13 = λ(N∗ − Y∗).

The characteristic equation of above Jacobian matrix is as follows:

x5 + {−a11 + (s0 + α0 + θ0) + d}x4
(A.1)

+ {−a11(d + s0 + α0 + θ0) + a12α + d(s0 + α0 + θ0) + (s0α0 + α0θ0 + s0θ0)}x3

+ [−a11{d(s0 + α0 + θ0) + (s0α0 + α0θ0 + s0θ0)} + a12α(s0 + α0 + θ0) + d(s0α0 + α0θ0 + s0θ0) + s0θ0α0]x2

+ [−a11{d(s0α0 + α0θ0 + s0θ0) + s0θ0α0} + a12α(s0α0 + α0θ0 + s0θ0) + ds0θ0α0]x
+ (−a11ds0θ0α0 + a12αs0θ0α0 − a13αds1θα1) = 0.

By (2.2), we have

β(N∗ − Y∗)Y∗ + λ(N∗ − Y∗)C∗r − (ν + α + d)Y∗ = 0(A.2)

⇒ {β(N∗ − Y∗) − (ν + α + d)} = −
λ(N∗ − Y∗)C∗r

Y∗
.

Now writing the value of a11, with the help of (A.2), we get

(A.3) a11 = −

(
λN∗C∗r

Y∗
+ βY∗

)
< 0.

Also we have

(A.4) C∗r =
sθ0α0 + s1θα1αY∗

s0θ0α0
⇒ s1θα1α =

s0θ0α0(C∗r − 1)
Y∗

.

Use (A.4) and the values of a11, a12, a13 in constant term of (A.1), we get

−a11ds0θ0α0 + a12αs0θ0α0 − a13αds1θα1 = s0θ0α0[(βY∗ + λC∗r )(α + d) +
dλ(N∗ − Y∗)

Y∗
].

Hence the constant term of (A.1) is positive.
Since a11 = −(λN∗C∗r

Y∗ + βY∗) < 0 and constant term of (A.1) is positive, therefore all coefficients
of (A.1) are positive, so the characteristic equation (A.1) can be written as

(A.5) x5 + a1x4 + a2x3 + a3x2 + a4x + a5 = 0,

where

a1 = (βY∗ +
λC∗r N∗

Y∗
) + (s0 + α0 + θ0) + d,

a2 = (βY∗ +
λC∗r N∗

Y∗
)(d + s0 + α0 + θ0) + α(βY∗ + λC∗r ) + d(s0 + α0 + θ0),

+ (s0α0 + α0θ0 + s0θ0),

a3 = (βY∗ +
λC∗r N∗

Y∗
){d(s0 + α0 + θ0) + (s0α0 + α0θ0 + s0θ0)},
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+ α(βY∗ + λC∗r )(s0 + α0 + θ0) + d(s0α0 + α0θ0 + s0θ0) + s0θ0α0,

a4 = (βY∗ +
λC∗r N∗

Y∗
){d(s0α0 + α0θ0 + s0θ0) + s0θ0α0},

+ α(βY∗ + λC∗r )(s0α0 + α0θ0 + s0θ0) + ds0θ0α0,

a5 = [(βY∗ + λC∗r )(α + d) +
λd(N∗ − Y∗)

Y∗
]s0θ0α0.

Hence by Routh-Hurwitz criterion the equilibrium point E(Y∗,N∗,C∗r ,C
∗,T ∗)is locally asymp-

totically stable provided the following conditions are satisfied

(A.6) a1a2a3 − a2
3 − a2

1a4 > 0,

(A.7) (a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) − a5(a1a2 − a3)2 − a1a2
5 > 0.

Appendix B. Proof of the Theorem 4.2
Proof. For the proof of this theorem we use Lyapunov direct method. For this first we let the
following positive definite Lyapunov function

(B.1) W = K0(Y − Y∗ − Y∗ ln
Y
Y∗

) +
K1

2
(N − N∗)2 +

K2

2
(Cr −C∗r )2 +

K3

2
(C −C∗)2 +

K4

2
(T − T ∗)2,

where Ko,K1,K2,K3 and K4 are positive constants to be chosen appropriately.
Differentiate (B.1) with respect to t, we get

(B.2) Ẇ = Ko
Ẏ
Y

(Y − Y∗) + K1(N − N∗)Ṅ + K2(Cr −C∗r )Ċr + K3(C −C∗)Ċ + K4(T − T ∗)Ṫ .

Using model system (2.2) - (2.6), we get

Ẇ = − Ko
CrλN
YY∗

(Y − Y∗)2 − Koβ(Y − Y∗)2 − K1d(N − N∗)2 − K2s0(Cr −C∗r )2

− K3α0(C −C∗)2 − K4θ0(T − T ∗)2 + (Koβ − K1α)(N − N∗)(Y − Y∗)

+ Ko
Crλ

Y∗
(N − N∗)(Y − Y∗) + K0λ(

N∗ − Y∗

Y∗
)(Cr −C∗r )(Y − Y∗)

+ K2s1(Cr −C∗r )(T − T ∗) − K3α1d(N − N∗)(C −C∗) + K4θ(T − T ∗)(C −C∗).

Here we take the constants K0 and K1 such that K0 β − K1α = 0.
Further we take

(B.3) K1 = 1 then K0 =
α

β
.

We have

Ẇ = − Ko
CrλN
YY∗

(Y − Y∗)2 −

[Koβ

2
(Y − Y∗)2 −

K0λCr

Y∗
(N − N∗)(Y − Y∗) +

K1d
2

(N − N∗)2
]

−

[K1d
2

(N − N∗)2 + K3α1d(N − N∗)(C −C∗) +
K3α0

2
(C −C∗)2

]
−

[Koβ

2
(Y − Y∗)2 − K0λ(

N∗ − Y∗

Y∗
)(Cr −C∗r )(Y − Y∗) +

K2s0

2
(Cr −C∗r )2

]
−

[K2s0

2
(Cr −C∗r )2 − K2s1(Cr −C∗r )(T − T ∗) +

K4θ0

2
(T − T ∗)2

]
−

[K3α0

2
(C −C∗)2 − K4θ(T − T ∗)(C −C∗) +

K4θ0

2
(T − T ∗)2

]
.
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The derivative Ẇ is negative definite if the following conditions are satisfied:
(B.4) αλ2C2

rm < dβ2Y∗2,
where Crm is the maximum value of Cr

K3 <
αo

dα2
1

,(B.5)

K2 >
αλ2(N∗ − Y∗)2

s0β2Y∗2
,(B.6)

K2 <
s0θ0

s2
1

K4,(B.7)

K4θ
2 < K3αoθ0.(B.8)

Combining the inequalities (B.5), (B.6), (B.7) and (B.8), we get
(B.9) 4αdλ2α2

1θ
2s2

1(N∗ − Y∗)2 < β2Y∗2s2
0θ

2
0α

2
0.

The inequalities (B.4) and (B.9) are the required conditions.
Acknowledgement. We are very much thankful to wrothy refree and Editor for their valuable
suggestions to improve the paper in its present form
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Abstract

In the present work, the iterative Laplace transform method (ILTM) is implemented
to derive approximate analytical solutions for the time-fractional Cauchy reaction-diffusion
equations (CRDEs) within the Caputo fractional derivative. The proposed technique is an
elegant amalgam of the Iterative method and the Laplace transform method. The ILTM
produces the solution in a rapid convergent series which may lead to the solution in a closed
form. The obtained analytical outcomes with the help of the proposed technique are examined
graphically.
2010 Mathematics Subject Classifications: 35A20; 35A22; 34A08; 33E12
Keywords and phrases: Caputo fractional derivative,Cauchy reaction-diffusion equations,
Laplace transform, Mittag-Leffler function, Iterative Laplace transform method, fractional
partial differential equations.

1 Introduction
Fractional calculus is a branch of mathematical analysis which is concerned with derivatives and
integrals of arbitrary orders.It has attracted the great attention of scientists and engineers from a
long time ago and has resulted in many applications being created. Since the 1990’s, fractional
calculus has been rediscovered and adapted in a growing number of fields such as biology,
mathematical physics, electrochemistry, signal processing, chemical physics, electromagnetics,
acoustics, viscoelasticity, material science, probability and statistics, engineering, physics fluid
dynamics and other areas of sciences and technology. In recent years, many researchers have paid
attention to investigating solutions of fractional differential equations using numerous techniques
such as the Laplace decomposition method (LDM) [8], the Homotopy Analysis method (HAM)
[12], the Homotopy perturbation method (HPM) [18], the Homotopy perturbation transform
method (HPTM) [10, 11], Sumudu transform iterative method (STIM) [17], q-homotopy analysis
transform method (q-HATM) [16] etc.

In 2006, Daftardar-Gejji and Jafari introduced the iterative technique for numerically exam-
ining nonlinear functional equations [6, 7]. Since then, iterative technique has been used to find
a solution for several non-linear differential equations of arbitrary orders [3] and the viewing of
fractional Boundary Value problems [5]. Jafari et al. [9] used Laplace transform together with
iterative method, became a well-known technique called iterative Laplace transform method for
solving a system of partial differential equations of fractional order. Recently, fractional heat
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and wave like equations [15], fractional Navier-Stokes equations [2] and fractional Zakharov-
Kuznetsov Equations [1] are solved successfully using the iterative Laplace transform method.

In the present study, the following time-fractional Cauchy reaction-diffusion equation in
operator form is considered as[11]

(1.1) Dα
t w(ξ, t) = υ

∂2w(ξ, t)
∂ξ2 + p(ξ, t)w(ξ, t), ξ ∈ R, t > 0, 0 < α ≤ 1,

with initial condition w(ξ, 0) = w0(ξ), where υ > 0 is diffusion coefficient, w(ξ, t) and p(ξ, t) denote
the concentration and the reaction parameter, respectively. In particular for α = 1, time-fractional
Cauchy reaction-diffusion equation reduces to classical Cauchy reaction-diffusion equation.
The main objective of the present paper is to extend the work of the ILTM technique to investigate
approximate analytical solutions for the time-fractional Cauchy reaction-diffusion equations and
to conclude accuracy, efficiency, simplicity of the proposed technique.

2 Preliminaries and Basic Definitions
In this section, we give certain basic definitions, notations and properties of fractional calculus
with Laplace transform theory, which are used further in this paper.

Definition 2.1. The fractional derivative of a function in the sense of the Caputo is presented as
[4]

(2.1)
Dα

t w(ξ, t) =
1

Γ(m − α)

∫ t

0
(t − ρ)m−α−1w(m)(ξ, ρ)dρ, m − 1 < α ≤ m,m ∈ N,

= Jm−α
t Dmw(ξ, t).

Here Dm ≡
dm

dtm and Jαt stands for the Riemann-Liouville fractional integral operator of order
α > 0, defined as [13]

(2.2) Jαt w(ξ, t) =
1

Γ(α)

∫ t

0
(t − ρ)α−1w(ξ, ρ)dρ, ρ > 0,

where Γ(.) is the well-known Gamma function.

Definition 2.2. The Laplace transform of a function f (ξ), ξ > 0 is expressed as [13, 14]

(2.3) L[ f (ξ)] = F(s) =

∫ ∞

0
e−sξ f (ξ)dξ,

where s is real or complex number.

Definition 2.3. The Laplace transform of Caputo fractional derivative is presented in following
manner [13, 14]

(2.4) L[Dα
t w(ξ, t)] = sαL[w(ξ, t)] −

m−1∑
k=0

w(k)(ξ, 0)sα−k−1,m − 1 < α ≤ m,m ∈ N,

where w(k)(ξ, 0) is the k-order derivative of w(ξ, t) with respect to t at t = 0.

Definition 2.4. The Mittag-Leffler function Eα(z) is defined by the following series representation
as [13]

(2.5) Eα(z) =

∞∑
n=0

zn

Γ(αn + 1)
, α ∈ C,Re(α) > 0.
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3 Basic Idea of Iterative Laplace Transform Method
In order to elucidate the solution procedure of this method [9], we take the subsequent fractional
partial differential equation having the prescribed initial conditions can be expressed in the form
of an operator as
(3.1) Dα

t w(ξ, t) + Rw(ξ, t) + Nw(ξ, t) = g(ξ, t), m − 1 < α ≤ m,m ∈ N,
(3.2) w(k)(ξ, 0) = hk(ξ), k = 0, 1, 2, ...,m − 1,
where Dα

t w(ξ, t) is the Caputo fractional derivative of order α,m − 1 < α ≤ m, defined by equation
(2.1), R is a linear operator and may include other fractional derivatives of order less than α, N is a
non-linear operator which may include other fractional derivatives of order less than α and g(ξ, t)
is a known analytic function.

Applying the Laplace transform on both sides of equation (3.1), we have
(3.3) L[Dα

t w(ξ, t)] + L[Rw(ξ, t) + Nw(ξ, t)] = L[g(ξ, t)].
Using equation (2.4), we obtain

(3.4) L[w(ξ, t)] =
1
sα

m−1∑
k=0

sα−1−kwk(ξ, 0) +
1
sα

L[g(ξ, t)] −
1
sα

L[Rw(ξ, t) + Nw(ξ, t)].

On taking inverse Laplace transform on equation (3.4), we have

(3.5) w(ξ, t) = L−1
[ 1
sα

( m−1∑
k=0

sα−1−kwk(ξ, 0) + L[g(ξ, t)]
)]
− L−1

[ 1
sα

L[Rw(ξ, t) + Nw(ξ, t)]
]
.

Further, we apply the iterative method introduced by Daftardar-Gejji and Jafari [6], which
represents a solution w(ξ, t) in infinite series of components

(3.6) w(ξ, t) =

∞∑
i=0

wi(ξ, t).

As R is a linear operator, so we have

(3.7) R
( ∞∑

i=0

wi(ξ, t)
)

=

∞∑
i=0

R[wi(ξ, t)],

and the non-linear operator N is decomposed as

(3.8) N
( ∞∑

i=0

wi(ξ, t)
)

= N[w0(ξ, t)] +

∞∑
i=0

[
N
( i∑

k=0

wk(ξ, t)
)
− N

( i−1∑
k=0

wk(ξ, t)
)]
,

Substituting the results given by equations from (3.6) to (3.8) in the equation (3.5), we get

(3.9)
∞∑

i=0

wi(ξ, t) = L−1
[ 1
sα

( m−1∑
k=0

sα−1−kwk(ξ, 0) + L[g(ξ, t)]
)]

− L−1
[ 1
sα

L
[ ∞∑

i=0

R[wi(ξ, t)] + N[w0(ξ, t)] +

∞∑
i=1

(
N
( i∑

k=0

wk(ξ, t)
)
− N

( i−1∑
k=0

wk(ξ, t)
))]]

.

We have defined the recurrence relations as

w0(ξ, t) = L−1
[ 1
sα

(∑m−1
k=0 sα−1−kwk(ξ, 0) + L[g(ξ, t)]

)]
w1(ξ, t) = −L−1

[ 1
sα

L
[∑∞

i=0 R[wi(ξ, t)] + N[w0(ξ, t)]
]]

wm+1(ξ, t) = L−1
[ 1
sα

L
[
R[wm(ξ, t)] −

(
N
(∑m

k=0 wk(ξ, t)
)

−N
(∑m−1

k=0 wk(ξ, t)
))]]

,m ≥ 1

(3.10)
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Proceeding in the same manner the rest of components of the ILTM solution can be obtained.
Finally, we approximate the analytical solution w(ξ, t) in truncated series form is given by

(3.11) w(ξ, t) � lim
N→∞

N∑
m=0

wm(ξ, t).

The above series solutions generally converge very rapidly. A classical approach of conver-
gence of this type of series is already presented by Jafari [7] and Daftardar-Gejji and Jafari [6]

4 Solutions of the time-fractional Cauchy Reaction-Diffusion equations
In this section, we apply the ILTM technique for solving time-fractional Cauchy reaction-diffusion
equations with initial conditions.
Example 4.1. In this example, the following linear time-fractional Cauchy reaction-diffusion
equation is considered as [11]

Dα
t w(ξ, t) =

∂2w(ξ, t)
∂x2 − w(ξ, t), 0 < α ≤ 1,(4.1)

subject to the initial condition

w(ξ, 0) = e−ξ + ξ.(4.2)

Taking the Laplace transform on the both sides of equation (4.1), and making use of the result
given by equation (4.2), we have

(4.3) L[w(ξ, t)] =
(e−ξ + ξ)

s
+

1
sα

L
[∂2w
∂ξ2 − w

]
.

Operating with inverse Laplace transform on both sides of equation (4.3) gives

(4.4) w(ξ, t) = e−ξ + ξ + L−1
[ 1
sα

L
[∂2w
∂ξ2 − w

]]
.

Now, applying the iterative method, substituting the equations (3.6) to (3.8) into equation (4.4)
and applying equation (3.10), we determine the components of the ILTM solution as follows

w0(ξ, t) = e−ξ + ξ,(4.5)

w1(ξ, t) = L−1
[ 1
sα

L
[∂2w0

∂ξ2 − w0

]]
= ξ

(−tα)
Γ(α + 1)

,(4.6)

w2(ξ, t) = L−1
[ 1
sα

L
[∂2w1

∂ξ2 − w1

]]
= ξ

(−tα)2

Γ(2α + 1)
,(4.7)

w3(ξ, t) = L−1
[ 1
sα

L
[∂2w2

∂ξ2 − w2

]]
= ξ

(−tα)3

Γ(3α + 1)
.(4.8)

Proceeding in the same manner the rest of components wm(ξ, t) for m ≥ 4 can be obtained.
Thus, the approximate analytical solution in the series form can be obtained as

(4.9) w(ξ, t) � lim
N→∞

N∑
m=0

wm(ξ, t) = e−ξ + ξ + ξ
(−tα)

Γ(α + 1)
+ ξ

(−tα)2

Γ(2α + 1)
+ ξ

(−tα)3

Γ(3α + 1)
+ ...,

= e−ξ + ξEα(−t)α.

which is the same result was obtained by Kumar [11] using HPTM.
Remark 4.1. For α = 1, the result in equation (4.9) reduces to the following exact form

(4.10) w(ξ, t) = e−ξ + ξe−t.
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This result was achieved earlier by Yildirim [18] using the HPM method.

(a) (b)

(c) (d)

Figure 4.1: The surface shows the solution w(ξ, t) for Example 4.1., when (a) The exact
solution, (b) The approximate solution for α = 1, (c) The approximate solution for α = 0.5, (d)
The approximate solution for α = 0.75.

Example 4.2. Consider the following time fractional linear Cauchy reaction-diffusion equation
[11]

(4.11) Dα
t w(ξ, t) =

∂2w(ξ, t)
∂ξ2 − (1 + 4ξ2)w(ξ, t), 0 < α ≤ 1,

with the initial condition

(4.12) w(ξ, 0) = eξ
2
.

Taking the Laplace transform of the equation (4.11), and making use of the result given by
equation (4.12), we have

(4.13) L[w(ξ, t)] =
eξ

2

s
+

1
s

L
[∂2w
∂ξ2 − (1 + 4ξ2)w

]
.

Applying inverse Laplace transform to the equation (4.13), we obtain

(4.14) w(ξ, t) = eξ
2
+ L−1

[ 1
sα

L
[∂2w
∂ξ2 − (1 + 4ξ2)w

]]
.

Now,applying the iterative method, substituting the equations (3.6) to (3.8) into equation (4.14)
and applying equation (3.10), we determine the components of the ILTM solution as follows

w0(ξ, t) =eξ
2
,(4.15)
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w1(ξ, t) =L−1
[ 1
sα

L
[∂2w0

∂ξ2 − (1 + 4ξ2)w0

]]
= eξ

2 tα

Γ(α + 1)
,(4.16)

w2(ξ, t) =L−1
[ 1
sα

L
[∂2w1

∂ξ2 − (1 + 4ξ2)w1

]]
= eξ

2 t2α

Γ(2α + 1)
,(4.17)

w3(ξ, t) =L−1
[ 1
sα

L
[∂2w2

∂ξ2 − (1 + 4ξ2)w2

]]
= eξ

2 t3α

Γ(3α + 1)
.(4.18)

Proceeding in the same manner the rest of components wm(ξ, t) for m ≥ 4 can be obtained.
Thus the approximate analytical solution in the series form can be obtained as

w(ξ, t) � lim
N→∞

N∑
m=0

wm(ξ, t) =eξ
2
+ eξ

2 tα

Γ(α + 1)
+ eξ

2 t2α

Γ(2α + 1)
+ eξ

2 t3α

Γ(3α + 1)
+ ....(4.19)

=eξ
2
Eα(tα).

which is the same result was obtained by Kumar [11] using HPTM.
Remark 4.2. For α = 1, the result in equation (4.19) reduces to the following exact form
(4.20) w(ξ, t) = eξ

2+t.

This result was achieved earlier by Yildirim [18] using the HPM method.

(a) (b)

(c) (d)

Figure 4.2: The surface shows the solution w(ξ, t) for Example 4.2, when (a) The exact
solution, (b) The approximate solution for α = 1, (c) The approximate solution for α = 0.5, (d)
The approximate solution for α = 0.75.

Example 4.3. Consider the following linear Cauchy reaction-diffusion equation involving time-
fractional derivative as [11]

(4.21) Dα
t w(ξ, t) =

∂2w(ξ, t)
∂ξ2 − (4ξ2 − 2t + 2)w(ξ, t), 0 < α ≤ 1,
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subject to initial condition

(4.22) w(ξ, 0) = eξ
2
.

Taking the Laplace transform of the equation (4.21), and making use of the result given by
equation (4.22), we have

(4.23) L[w(ξ, t)] =
eξ

2

s
+

1
sα

L
[∂2w
∂ξ2 − (4ξ2 − 2t + 2)w

]
.

Applying inverse Laplace transform to the equation (4.23), we obtain

(4.24) w(ξ, t) = eξ
2
+ L−1

[ 1
sα

L
[∂2w
∂ξ2 − (4ξ2 − 2t + 2)w

]]
.

Now, applying the the iterative method, substituting the equations (3.6) to (3.8) into equation
(4.24) and applying equation (3.10), we determine the components of the ILTM solution as follows

w0(ξ, t) =eξ
2
,(4.25)

w1(ξ, t) =L−1
[ 1
sα

L
[∂2w0

∂ξ2 − (4ξ2 − 2t + 2)w0

]]
= 2eξ

2 tα+1

Γ(α + 2)
,(4.26)

w2(ξ, t) =L−1
[ 1
sα

L
[∂2w1

∂ξ2 − (4ξ2 − 2t + 2)w1

]]
= 4eξ

2 (α + 2)t2α+2

Γ(2α + 3)
,(4.27)

w3(ξ, t) =L−1
[ 1
sα

L
[∂2w2

∂ξ2 − (4ξ2 − 2t + 2)w2

]]
= 8eξ

2 (α + 2)(2α + 3)t3α+3

Γ(3α + 4)
,(4.28)

w4(ξ, t) =L−1
[ 1
sα

L
[∂2w2

∂ξ2 − (4ξ2 − 2t + 2)w2

]]
= 16eξ

2 (α + 2)(2α + 3)(3α + 4)t4α+4

Γ(4α + 5)
.(4.29)

Proceeding in the same manner the rest of components wm(ξ, t) for m ≥ 5 can be obtained.
Thus, the approximate analytical solution in the series form can be obtained as

w(ξ, t) � lim
N→∞

N∑
m=0

wm(ξ, t) = eξ
2
+ 2eξ

2 tα+1

Γ(α + 2)
+ 4eξ

2 (α + 2)t2α+2

Γ(2α + 3)
(4.30)

+ 8eξ
2 (α + 2)(2α + 3)t3α+3

Γ(3α + 4)
+ 16eξ

2 (α + 2)(2α + 3)(3α + 4)t4α+4

Γ(4α + 5)
+ ...

which is the same result was obtained by Kumar [11] using HPTM.
Remark 4.3. For α = 1, the result in equation (4.30) reduces to the following exact form

(4.31) w(ξ, t) = eξ
2+t2 .

This result was obtained earlier by Yildirim [18] by using the method of HPM.
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(a) (b)

(c) (d)

Figure 4.3: The surface shows the solution w(ξ, t) for Example 4.3, when (a) The exact
solution, (b) The approximate solution for α = 1, (c) The approximate solution for α = 0.5, (d)
The approximate solution for α = 0.75.

Example 4.4. Finally, we consider the following time-fractional linear Cauchy reaction-
diffusion equation as [11]

(4.32) Dα
t w(ξ, t) =

∂2w(ξ, t)
∂ξ2 + 2tw(ξ, t), 0 < α ≤ 1,

with the given initial condition
(4.33) w(ξ, 0) = eξ.

Taking the Laplace transform of the equation (4.32), and making use of the result given by
equation (4.33), we have

(4.34) L[w(ξ, t)] =
eξ

s
+

1
sα

L
[∂2w
∂ξ2 + 2tw

]
.

Applying inverse Laplace transform to the equation (4.34), we obtain

(4.35) w(ξ, t) = eξ + L−1
[ 1
sα

L
[∂2w
∂ξ2 + 2tw

]]
.

Now, applying the iterative method, substituting the equations (3.6) to (3.8) into equation (4.35)
and applying equation (3.10), we determine the components of the ILTM solution as follows

w0(ξ, t) =eξ,(4.36)

w1(ξ, t) =L−1
[ 1
sα

L
[∂2w0

∂ξ2 + 2tw0

]]
= eξ

( tα

Γ(α + 1)
+

2tα+1

Γ(α + 2)

)
,(4.37)

w2(ξ, t) =L−1
[ 1
sα

L
[∂2w1

∂ξ2 + 2tw1

]]
= eξ

( t2α

Γ(2α + 1)
+

2(α + 2)t2α+1

Γ(2α + 2)
+

4(α + 2)t2α+2

Γ(2α + 3)

)
,(4.38)
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w3(ξ, t) =L−1
[ 1
sα

L
[∂2w2

∂ξ2 + 2tw2

]]
= eξ

( t3α

Γ(3α + 1)
+

6(α + 1)t3α+1

Γ(3α + 2)
(4.39)

+
4(α + 2)(2α + 3)t3α+2

Γ(3α + 3)
+

8(α + 2)(2α + 3)t3α+3

Γ(3α + 4)

)
.

Proceeding in the same manner the rest of components wm(ξ, t) for m ≥ 4 can be obtained.
Thus,the approximate analytical solution in the series form can be obtained as

(4.40) w(ξ, t) � lim
N→∞

N∑
m=0

wm(ξ, t) = eξ + eξ
( tα

Γ(α + 1)
+

2tα+1

Γ(α + 2)

)
+ eξ

( t2α

Γ(2α + 1)
+

2(α + 2)t2α+1

Γ(2α + 2)
+

4(α + 2)t2α+2

Γ(2α + 3)

)
+ eξ

( t3α

Γ(3α + 1)
+

6(α + 1)t3α+1

Γ(3α + 2)
+

4(α + 2)(2α + 3)t3α+2

Γ(3α + 3)
+

8(α + 2)(2α + 3)t3α+3

Γ(3α + 4)

)
+ ...

which is the same result was obtained by Kumar [11] using HPTM.
Remark 4.4. For α = 1, the result in equation (4.40) reduces to the following exact form
(4.41) w(ξ, t) = eξ+t+t2 .

This result was obtained earlier by Yildirim [18] by using the method of HPM.

(a) (b)

(c) (d)

Figure 4.4: The surface shows the solution w(ξ, t) for Example 4.4, when (a) The exact
solution, (b) The approximate solution for α = 1, (c) The approximate solution for α = 0.5, (d)
The approximate solution for α = 0.75.

5 Conclusion
In this study, the approximate analytical solutions for the time-fractional Cauchy reaction-diffusion
equations were determined by using an effective and straight procedure of the iterative Laplace
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transform method (ILTM). The fractional derivatives were described in the Caputo Sense. The
graphical representation of the obtained solutions has been done successfully. The present method
has proved to be an effective and straightforward procedure as compared with other analytical and
numerical techniques to find approximate analytical solutions of the fractional partial differential
equations and it can be utilized to investigate analytical solutions of more problems of the partial
differential equations of fractional order.
Acknowledgements. The one of the authors Karan Singh is grateful to UGC for granting him
Junior Research Fellowship (JRF) for this project. Authors are also thankful to the Editor and
Referee for their suggestions to bring the paper in its present form.
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Abstract

In this paper we introduce the concept of generalized relative logarithmic order and
generalized relative lower logarithmic order of an entire function. We investigate some newly
developed results on the growth rates of composite entire functions depending on generalized
relative logarithmic orders and generalized relative lower logarithmic orders.
2010 Mathematics Subject Classifications: 30D20, 30D30, 30D35.
Keywords and phrases: Entire function, generalized relative logarithmic order, generalized
relative lower logarithmic order.

1 Introduction

The maximum modulus M f (r) = max {| f (z)| : |z| ≤ r} of an entire function f (z) =

∞∑
n=0

anzn is

nondecreasing function of r > 0. The order ρ( f ) and lower order λ( f ) of the entire function f are

ρ( f ) = lim sup
r→∞

log log M f (r)
log r

and

λ( f ) = lim inf
r→∞

log log M f (r)
log r

respectively.
Here we use the following notations:

log[k] x = log
(
log[k−1] x

)
, for k = 1, 2, 3, ...

log[0] x = x

and

exp[k] x = exp
(
exp[k−1] x

)
, for k = 1, 2, 3, ...

exp[0] x = x.
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Definition 1.1. [3] Also for a entire function f with order zero, the logarithmic order ρlog( f ) and
lower logarithmic order λlog( f ) are defined as

(1.1) ρlog( f ) = lim sup
r→∞

log log M f (r)
log log r

,

(1.2) λlog( f ) = lim inf
r→∞

log log M f (r)
log log r

.

Now the maximum term µ f (r) of the function f is defined as
µ f (r) = max

n≥0
|an|rn.

For 0 ≤ r < R, we have [7]

(1.3) µ f (r) ≤ M f (r) ≤
R

R − r
µ f (R) .

Definition 1.2. Using the maximum term we can define ρlog( f ) and λlog( f ) as

(1.4) ρlog( f ) = lim sup
r→∞

log log µ f (r)
log log r

and

(1.5) λlog( f ) = lim inf
r→∞

log log µ f (r)
log log r

.

Since maximum modulus M f of a nonconstant entire function f is continuous and strictly
increasing, there exists

M−1
f : (| f (0)| ,∞)→ (0,∞)

such that lim
s→∞

M−1
f (s) = ∞.

Bernel [1] introduced the following concept of relative order of an entire function.

Definition 1.3. The relative order of f with respect to g is defined as
ρg( f ) = inf

{
µ > 0 : M f (r) < Mg(rµ) for all r > r0(µ) > 0

}
= lim sup

r→∞

log M−1
g M f (r)

log r
.

and the relative lower order of f with respect to g is defined as

λg( f ) = lim inf
r→∞

log M−1
g M f (r)

log r
.

Lahiri and Banerjee [6] gave us a generalized concept of relative order.

Definition 1.4. If p ≥ 1 is a positive integer, then the p-th generalized relative order of f with
respect to g, denoted by ρ[p]

g ( f ) and is defined as
ρ[p]

g ( f ) = inf
{
µ > 0 : M f (r) < Mg(exp[p−1] rµ) for all r > r0(µ) > 0

}
= lim sup

r→∞

log[p] M−1
g M f (r)

log r
.

and the generalized relative lower order of f with respect to g, denoted by λ[p]
g ( f ) and is defined as

λ[p]
g ( f ) = lim inf

r→∞

log[p] M−1
g M f (r)

log r
.
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Datta and Maji [5] defined relative order of an entire function in terms of its maximum term as:

Definition 1.5. The relative order and relative lower order of an entire function f with respect to
g are defined as

ρg( f ) = lim sup
r→∞

log µ−1
g µ f (r)

log r
,

λg( f ) = lim inf
r→∞

log µ−1
g µ f (r)

log r
.

Again in terms of maximum term, Definition 1.4 can be rewritten as

Definition 1.6. If p ≥ 1 is a positive integer, then ρ[p]
g ( f ) and λ[p]

g ( f ) are defined as:

ρ[p]
g ( f ) = lim sup

r→∞

log[p] µ−1
g µ f (r)

log r
,

λ[p]
g ( f ) = lim inf

r→∞

log[p] µ−1
g µ f (r)

log r
.

In view of Definitions 1.1 and 1.4, here we define the generalized relative logarithmic order as:

Definition 1.7. If p ≥ 1 is a positive integer, then the p-th generalized relative logarithmic order
of f with respect to g, denoted by ρ[p]

log g( f ), is defined by

ρ
[p]
log g( f ) = lim sup

r→∞

log[p] M−1
g M f (r)

log log r
,

and the p-th generalized relative lower logarithmic order of f with respect to g, denoted by λ[p]
log g( f )

and is defined as:

λ
[p]
log g( f ) = lim inf

r→∞

log[p] M−1
g M f (r)

log log r
.

Also we define the generalized relative logarithmic order and generalized relative lower
logarithmic order by using maximum term as:

Definition 1.8. If p ≥ 1 is a positive integer, then ρ[p]
log g( f ) and λ[p]

log g( f ) are defined as:

ρ
[p]
log g( f ) = lim sup

r→∞

log[p] µ−1
g µ f (r)

log log r
,

and

λ
[p]
log g( f ) = lim inf

r→∞

log[p] µ−1
g µ f (r)

log log r
.

Biswas et. al. [2] established some results on the growth rates of composite entire functions
depending on their generalized relative orders and generalized relative lower orders. In this paper
we will prove some results of [2] on the basis of their generalized relative logarithmic orders and
generalized relative lower logarithmic orders.

From Valiron [8] we get the general theory of entire functions and so we do not explain them
in details.
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2 Lemmas
In this section we present some lemmas which will be needed to prove our results.

Lemma 2.1. [4] If f and g are two entire functions, then for all sufficiently large values of r,

M f

(
1
8

Mg

( r
2

)
− |g(0)|

)
≤ M f◦g(r) ≤ M f

(
Mg(r)

)
.

Lemma 2.2. [7] If f and g are any two entire functions. Then for every α > 1 and 0 < r < R,

µ f◦g(r) ≤
α

α − 1
µ f

(
αR

R − r
µg(R)

)
.

Lemma 2.3. [7] If f and g are two entire functions with g(0) = 0, then for all sufficiently large
values of r,

µ f◦g(r) ≥
1
2
µ f

(
1
8
µg(

r
4

) − |g(0)|
)
.

Lemma 2.4. [1] If f is an entire function and α > 1, 0 < β < α. Then for all sufficiently large r,

M f (αr) ≥ βM f (r).

Lemma 2.5. [5] If f is an entire function and α > 1, 0 < β < α. Then for all sufficiently large r,

µ f (αr) ≥ βµ f (r).

3 Main results:
In this section we will present the main results of this paper.

Theorem 3.1. Let f and h be any two entire functions such that 0 < λ
[p]
log h ( f ) ≤ ρ[p]

log h( f ) < ∞ and

g be an entire function with λ[q]
log(g) > 0 where p, q are any integers with p > 1 and q > 2. Then for

every positive constant δ and every real number α,

lim
r→∞

log[p] M−1
h M f◦g(r)[

log[p] M−1
h M f

({
exp[q−3] r

}δ)]1+α
= ∞.

Proof. If α is such that 1 + α ≤ 0, then the theorem is trivial. So we suppose that 1 + α > 0. Since
M−1

h (r) is an increasing function of r, it follows from the first part of Lemma 2.1 for all sufficiently
large values of r that

log[p] M−1
h M f◦g(r) ≥

(
λ

[p]
log h( f ) − ε

)
log log

(
1
8

Mg(
r
2

) − |g(0)|
)

(3.1)

≥
(
λ

[p]
log h( f ) − ε

)
log log Mg

( r
2

)
+ O(1)

≥
(
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)λ[q]
log(g)−ε .

Choose ε, 0 < ε < min
(
λ

[p]
log h ( f ) , λ[q]

log(g)
)
.

Again for sufficiently large values of r we have from the definition of ρ[p]
log h( f ),[

log[p] M−1
h M f

((
exp[q−3] r

)δ)]1+α

≤

[(
ρ

[p]
log h( f ) + ε

)
log log

(
exp[q−3] r

)δ]1+α

(3.2)

=
(
ρ

[p]
log h( f ) + ε

)1+α [
log

{
δ exp[q−4] r

}]1+α
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≤
(
ρ

[p]
log h( f ) + ε

)1+α [
exp[q−5] r

]1+α
+ O(1).

From (3.2) and (3.3) ,

log[p] M−1
h M f◦g(r)[

log[p] M−1
h M f

((
exp[q−2] r

)δ)]1+α
≥

(
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)λ[q]
log(g)−ε(

ρ
[p]
log h( f ) + ε

)1+α [
exp[q−5] r

]1+α
+ O(1)

.

Since lim
r→∞

exp[q−3](log r)λ
[q]
log(g)−ε

[exp[q−5] r]1+α → ∞, the theorem follows.

In view of Theorem 3.1, one can easily prove the following theorem.

Theorem 3.2. Let f , g, h and k be any four entire functions with λ
[p]
log h ( f ) > 0, λ[q]

log(g) > 0 and
ρ[m]

log k (g) < ∞ where p(> 1), q(> 2) and m(> 1) be any three integers. Then for every δ > 0 and for
every real number α,

lim
r→∞

log[p] M−1
h M f◦g(r)[

log[m] M−1
k Mg

({
exp[q−3] r

}δ)]1+α
= ∞.

Using Lemma 2.3 and Definition 1.8, the following theorems can be proved in view of
Theorem 3.1 and Theorem 3.2,

Theorem 3.3. Let f and h be any two entire functions such that 0 < λ
[p]
log h ( f ) ≤ ρ[p]

log h ( f ) < ∞ and

g be an entire function with λ[q]
log(g) > 0 where p(> 1) and q(> 2) be any two integers. Then for

every positive constant δ and every real number α,

lim
r→∞

log[p] µ−1
h µ f◦g(r)[

log[p] µ−1
h µ f

({
exp[q−3] r

}δ)]1+α
= ∞.

Theorem 3.4. Let f , g, h and k be any four entire functions with λ
[p]
log h ( f ) > 0, λ[q]

log(g) > 0 and
ρ[m]

log k (g) < ∞ where p(> 1), q(> 2) and m(> 1) be any three integers. Then for every δ > 0 and for
every real number α,

lim
r→∞

log[p] µ−1
h µ f◦g(r)[

log[m] µ−1
k µg

({
exp[q−3] r

}δ)]1+α
= ∞.

Remark 3.1. If we consider 0 < λ
[p]
log h ( f ) < ∞ instead of 0 < λ

[p]
log h ( f ) ≤ ρ

[p]
log h ( f ) < ∞ in

Theorems 3.1 and 3.3 and the other conditions remain the same, the conclusion of Theorems 3.1
and 3.3 remain valid with “limit superior” is replaced by “limit”.

Remark 3.2. If we consider 0 < λ[m]
log k (g) < ∞ instead of ρ[m]

log k (g) < ∞ in Theorems 3.2 and 3.4
and the other conditions remain the same, the conclusion of Theorems 3.2 and 3.4 remain valid
with “limit superior” is replaced by “limit”.

Theorem 3.5. Let f , g and h be any three entire functions such that 0 < λ
[p]
log h ( f ) ≤ ρ[p]

log h ( f ) < ∞
and ρ[q]

log(g) < ∞ where p, q are integers with p > 1 and q > 2. Then for every δ > 0 and each
α ∈ (−∞,∞) ,

lim
r→∞

[
log[p] M−1

h M f◦g(r)
]1+α

log[p] M−1
h M f

(
exp[q−1] (log r

)δ) = 0,

where δ > (1 + α) ρ[q]
log(g).
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Proof. For 1 + α ≤ 0, there is nothing to proof. Let us consider 1 + α > 0. As M−1
h (r) is an

increasing function, then from the last part of Lemma 2.1 we have for large values of r,

logp M−1
h M f◦g(r) ≤ logp M−1

h M f

(
Mg(r)

)
(3.3)

≤
(
ρ

[p]
log h ( f ) + ε

)
log log

(
Mg(r)

)
≤

(
ρ

[p]
log h ( f ) + ε

)
exp[q−3] (log r

)ρ[q]
log(g)+ε .

Also for sufficiently large values of r we have from the definition of λ[p]
log h( f ),

log[p] M−1
h M f

(
exp[q−1] (log r

)δ)
≥

(
λ

[p]
log h( f ) − ε

)
log log

(
exp[q−1] (log r

)δ)(3.4)

=
(
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)δ .
For sequence of values of r tending to infinity we have from (3.4) and (3.5) ,[

log[p] M−1
h M f◦g(r)

]1+α

log[p] M−1
h M f

(
exp[q−1] (log r

)δ) ≤
[(
ρ

[p]
log h ( f ) + ε

)
exp[q−3] (log r

)ρ[q]
log(g)+ε

]1+α

(
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)δ(3.5)

=

(
ρ

[p]
log h ( f ) + ε

)1+α
exp[q−3] (log r

)(ρ[q]
log(g)+ε

)
(1+α)(

λ
[p]
log h( f ) − ε

)
exp[q−3] (log r

)δ ,

where we choose 0 < ε < min
{
λ

[p]
log h( f ), δ

1+α
− ρ

[q]
log(g)

}
. So from (3.6) we get

lim
r→∞

exp[q−3] (log r
)(ρ[q]

log(g)+ε
)
(1+α)

exp[q−3] (log r
)δ = 0.

Therefore the theorem is proved.
In the line of Theorem 3.5, one may state the following Theorem with the similar proof.

Theorem 3.6. Let f , g, h and k be any four entire functions such that ρ[p]
log h ( f ) < ∞, ρ[q]

log(g) < ∞
and λ[m]

log k (g) > 0 where p, q,m are integers with p > 1, q > 2 and m > 1. Then for every δ > 0 and
each α ∈ (−∞,∞) ,

lim
r→∞

[
log[p] M−1

h M f◦g(r)
]1+α

log[m] M−1
k Mg

(
exp[q−1] (log r

)δ) = 0,

where δ > (1 + α) ρ[q]
log(g).

In view of Theorem 3.5 and Theorem 3.6, the following two Theorems can be proved by using
Lemma 2.2, Lemma 2.5 and Definition 1.8 and hence their proofs are omitted.

Theorem 3.7. Let f , g and h be any three entire functions such that 0 < λ
[p]
log h ( f ) ≤ ρ[p]

log h ( f ) < ∞
and ρ[q]

log(g) < ∞ where p, q are integers with p > 1 and q > 2. Then for every δ > 0 and each
α ∈ (−∞,∞) ,

lim
r→∞

[
log[p] µ−1

h µ f◦g(r)
]1+α

log[p] µ−1
h µ f

(
exp[q−1] (log r

)δ) = 0,

where δ > (1 + α) ρ[q]
log(g).
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Theorem 3.8. Let f , g, h and k be any four entire functions such that ρ[p]
log h ( f ) < ∞, ρ[q]

log(g) < ∞
and λ[m]

log k (g) > 0 where p, q,m are integers with p > 1, q > 2 and m > 1. Then for every δ > 0 and
each α ∈ (−∞,∞) ,

lim
r→∞

[
log[p] µ−1

h µ f◦g(r)
]1+α

log[m] µ−1
k µg

(
exp[q−1] (log r

)δ) = 0,

where δ > (1 + α) ρ[q]
log(g).

Remark 3.3. If we consider 0 < ρ
[p]
log h ( f ) < ∞ instead of 0 < λ

[p]
log h ( f ) ≤ ρ

[p]
log h ( f ) < ∞ in

Theorems 3.5 and 3.7 and the other conditions remain the same, the conclusion of Theorems 3.5
and 3.7 remain valid with ”limit inferior” is replaced by ”limit”.

Remark 3.4. If we consider ρ[m]
log k (g) > 0 instead of λ[m]

log k (g) > 0 in Theorems 3.6 and 3.8 and
the other conditions remain the same, the conclusion of Theorems 3.6 and 3.8 remain valid with
“limit inferior” is replaced by “limit”.

Theorem 3.9. Let f , g and h be any three entire functions such that ρ[p]
log h ( f ) < ∞ and λ[p]

log h( f ◦g) =

∞ where p is any integer > 1. Then for every A(> 0),

lim
r→∞

log[p] M−1
h M f◦g(r)

log[p] M−1
h M f

((
log r

)A
) = ∞.

Proof. Let us consider the contrarary part, i.e lim
r→∞

log[p] M−1
h M f◦g(r)

log[p] M−1
h M f

(
(log r)A

) is finite, then there exists a

constant B such that for a sequence of values of r tending to infinity we have,

(3.6) log[p] M−1
h M f◦g(r) ≤ B. log[p] M−1

h M f

((
log r

)A
)

Also for sufficiently large values of r we have from the definition of ρ[p]
log h( f ),

log[p] M−1
h M f

((
log r

)A
)
≤

(
ρ

[p]
log h( f ) + ε

)
log log

(
log r

)A(3.7)

<
(
ρ

[p]
log h( f ) + ε

)
log

(
log r

)A

=
(
ρ

[p]
log h( f ) + ε

)
A log log r.

For sequence of values of r tending to infinity we have from (3.6) and (3.8) ,

log[p] M−1
h M f◦g(r) ≤ B.A.

(
ρ

[p]
log h( f ) + ε

)
log log r,

i.e,
λ

[p]
log h( f ◦ g) ≤ B.A.

(
ρ

[p]
log h( f ) + ε

)
,

which contradicts the fact that λ[p]
log h( f ◦ g) is infinite. So our assumption is wrong and hence the

theorem follows.
One can prove the following theorem in view of Theorem 3.9,

Theorem 3.10. Let f , g and h be any three entire functions such that ρ[p]
log h( f ) < ∞ and λ[p]

log h( f ◦g) =

∞ where p(> 1) is any integer. Then for every A(> 0) we have

lim
r→∞

log[p] µ−1
h µ f◦g(r)

log[p] µ−1
h µ f

((
log r

)A
) = ∞.
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Remark 3.5. If we replace ”limit” by ”limit superior” and λ[p]
log h( f ◦ g) = ∞ by ρ[p]

log h( f ◦ g) = ∞ in
Theorem 3.9 and Theorem 3.10 then they are also valid.

Corollary 3.1. Under the assumption of Theorems 3.9 and 3.10,

lim
r→∞

M−1
h M f◦g(r)

M−1
h M f

((
log r

)A
) = ∞

and lim
r→∞

µ−1
h µ f◦g(r)

µ−1
h µ f

((
log r

)A
) = ∞

hold.

Proof. For all sufficiently large values of r and for K > 1 we have from Theorem 3.9,
log[p] M−1

h M f◦g(r) ≥ K. log[p] M−1
h M f

((
log r

)A
)

log[p−1] M−1
h M f◦g(r) ≥

[
log[p−1] M−1

h M f

((
log r

)A
)]K

.

Therefore first part is proved.
Similarly from Theorem 3.10, we get the second part.

Corollary 3.2. Under the assumption of Remark 3.5, one can prove the following results.

lim sup
r→∞

M−1
h M f◦g(r)

M−1
h M f

((
log r

)A
) = ∞

and lim sup
r→∞

µ−1
h µ f◦g(r)

µ−1
h µ f

((
log r

)A
) = ∞.

Using Theorems 3.9 and 3.10, Remark 3.5, Corollaries 3.1 and 3.2, one may also state the
following theorems and corollaries without their proofs.

Theorem 3.11. Let f , g and k be any three entire functions such that ρ[m]
log k(g) < ∞ and ρ[m]

log k( f ◦g) =

∞ where m(> 1) is any integer. Then for every B(> 0) we have

lim sup
r→∞

log[m] M−1
k M f◦g(r)

log[m] M−1
k Mg

((
log r

)B
) = ∞.

Theorem 3.12. Let f , g and k be any three entire functions such that ρ[m]
log k(g) < ∞ and ρ[m]

log k( f ◦g) =

∞ where m(> 1) is any integer. Then for every B(> 0) we have

lim sup
r→∞

log[m] µ−1
k µ f◦g(r)

log[m] µ−1
k µg

((
log r

)B
) = ∞.

Remark 3.6. If we replace ”limit superior” by ”limit” and ρ[m]
log k( f ◦ g) = ∞ by λ[m]

log k( f ◦ g) = ∞

then Theorems 3.11 and 3.12 also hold.

Corollary 3.3. Again under the assumption of Theorems 3.11 and 3.12, we get

lim sup
r→∞

M−1
k M f◦g(r)

M−1
k Mg

((
log r

)B
) = ∞,

lim sup
r→∞

µ−1
k µ f◦g(r)

µ−1
k µg

((
log r

)B
) = ∞.
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Corollary 3.4. Also under the assumption of Remark 3.6 we have

lim
r→∞

M−1
k M f◦g(r)

M−1
k Mg

((
log r

)B
) = ∞,

lim
r→∞

µ−1
k µ f◦g(r)

µ−1
k µg

((
log r

)B
) = ∞.

Theorem 3.13. Let f and h be any two entire functions such that 0 < λ
[p]
log h( f ) ≤ ρ

[p]
log h( f ) < ∞,

p(> 1) be any integer. Also suppose g be an entire function with 0 < δ < ρ
[q]
log(g) ≤ ∞, q(> 2) be

any integer. Then for a sequence of values of r tending to infinity,

M−1
h M f◦g(r) > M−1

h M f

(
exp[q−1] (log r

)δ) .
Proof. Since M−1

h (r) is an increasing function, then from Lemma 2.1, for a sequence of values of
r tending to infinity,

log[p] M−1
h M f◦g(r) ≥

(
λ

[p]
log h( f ) − ε

)
log log

(
1
8

Mg

( r
2

))
(3.8)

≥
(
λ

[p]
log h( f ) − ε

)
exp[q−3]

(
log

r
2

)ρ[q]
log(g)−ε

+ O(1).

Also for sufficiently large values of r we have from the definition of ρ[p]
log h( f ),

log[p] M−1
h M f

(
exp[q−1] (log r

)δ)
≤

(
ρ

[p]
log h( f ) + ε

)
log log

(
exp[q−1] (log r

)δ)(3.9)

=
(
ρ

[p]
log h( f ) + ε

)
exp[q−3] (log r

)δ .
For sequence of values of r tending to infinity we have from (3.9) and (3.10) ,

(3.10)
log[p] M−1

h M f◦g(r)

log[p] M−1
h M f

(
exp[q−1] (log r

)δ) ≥
(
λ

[p]
log h( f ) − ε

)
exp[q−3]

(
log r

2

)ρ[q]
log(g)−ε

+ O(1)(
ρ

[p]
log h( f ) + ε

)
exp[q−3] (log r

)δ .

As δ < ρ[q]
log(g), choose ε(> 0) in such that

(3.11) δ < ρ
[q]
log(g) − ε.

Using (3.11) in (3.10) we get

(3.12) lim sup
r→∞

log[p] M−1
h M f◦g(r)

log[p] M−1
h M f

(
exp[q−1] (log r

)δ) = ∞.

Therefore we have for K > 1 and for a sequence of values of r tending to infinity,

M−1
h M f◦g(r) > M−1

h M f

(
exp[q−1] (log r

)δ) .
Hence the theorem is proved.

Theorem 3.14. Let f and h be any two entire functions with 0 < λ
[p]
log h( f ) ≤ ρ[p]

log h( f ) < ∞, p(> 1)
be any integer. Also suppose g and k be any two entire functions such that ρ[m]

log k(g) < ∞ and

0 < δ < ρ
[q]
log(g) where q(> 1) and m(> 2) are two integers. Then for a sequence of values of r

tending to infinity,

log[p−1] M−1
h M f◦g(r) > log[m−1] M−1

k Mg

(
exp[q−1] (log r

)δ) .
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Proof. Let us consider 0 < δ < δ0 < ρ
[q]
log(g) and for a sequence of values of r tending to infinity

we get from (3.9) ,
(3.13) log[p] M−1

h M f

(
exp[q−1] (log r

)δ) > (
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)δ0 .

Also for sufficiently large values of r we have from the definition of ρ[m]
log k(g),

log[m] M−1
k Mg

(
exp[q−1] (log r

)δ)
≤

(
ρ[m]

log k(g) + ε
)

log log
(
exp[q−1] (log r

)δ)(3.14)

=
(
ρ[m]

log k(g) + ε
)

exp[q−3] (log r
)δ .

For sequence of values of r tending to infinity we have from (3.13) and (3.15) ,

(3.15)
log[p] M−1

h M f◦g(r)

log[m] M−1
k Mg

(
exp[q−1] (log r

)δ) ≥
(
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)δ0(
ρ[m]

log k(g) + ε
)

exp[q−3] (log r
)δ .

Since δ < δ0, then from (3.15), we have

(3.16) lim sup
r→∞

log[p] M−1
h M f◦g(r)

log[m] M−1
k Mg

(
exp[q−1] (log r

)δ) = ∞.

Hence the theorem is proved.
Again in view of Theorem 3.13 and 3.14, the following two theorems can be proved by using

Lemma 2.3 and Definition 1.8. Here we state these theorems without their proofs.

Theorem 3.15. Let f and h be any two entire functions such that 0 < λ
[p]
log h( f ) ≤ ρ

[p]
log h( f ) < ∞,

p(> 1) be any integer. Also suppose g be an entire function with 0 < δ < ρ
[q]
log(g) ≤ ∞, q(> 2) be

any integer. Then for a sequence of values of r tending to infinity,
µ−1

h µ f◦g(r) > µ−1
h µ f

(
exp[q−1] (log r

)δ) .
Theorem 3.16. Let f and h be any two entire functions with 0 < λ

[p]
log h( f ) ≤ ρ[p]

log h( f ) < ∞, p(> 1)
be any integer. Also suppose g and k be any two entire functions such that ρ[m]

log k(g) < ∞ and

0 < δ < ρ
[q]
log(g) where q(> 1) and m(> 2) are two integers. Then for a sequence of values of r

tending to infinity,
log[p−1] µ−1

h µ f◦g(r) > log[m−1] µ−1
k µg

(
exp[q−1] (log r

)δ) .
Theorem 3.17. Let f , g and h be any three entire functions such that 0 < λ

[p]
log h( f ) < ρ

[p]
log h( f ) < ∞

and λ[q]
log(g) < δ < ∞ where p(> 1) and q(> 2) are any two integers. Then for a sequence of values

of r tending to infinity,
M−1

h M f◦g(r) < M−1
h M f

(
exp[q−1] (log r

)δ) .
Proof. Since M−1

h (r) is an increasing function of r, then for a sequence of values of r tending to
infinity we have from the last part of Lemma 2.1,

logp M−1
h M f◦g(r) ≤

(
ρ

[p]
log h( f ) + ε

)
log log Mg(r)(3.17)

≤
(
ρ

[p]
log h( f ) + ε

)
exp[q−3] (log r

)λ[q]
log(g)+ε .

Now for sequence of values of r tending to infinity we have from (3.5) and (3.18) ,

(3.18)
log[p] M−1

h M f

(
exp[q−1] (log r

)δ)
logp M−1

h M f◦g(r)
≥

(
λ

[p]
log h( f ) − ε

)
exp[q−3] (log r

)δ(
ρ

[p]
log h( f ) + ε

)
exp[q−3] (log r

)λ[q]
log(g)+ε

.
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Since λ[q]
log(g) < δ, we choose ε(> 0) such that

(3.19) λ
[q]
log(g) + ε < δ < ρ

[q]
log(g).

Then from (3.18) and (3.19) ,we have

(3.20) lim sup
r→∞

log[p] M−1
h M f

(
exp[q−1] (log r

)δ)
logp M−1

h M f◦g(r)
= ∞.

Therefore we have for K > 1 and for a sequence of values of r tending to infinity,

M−1
h M f

(
exp[q−1] (log r

)δ) > M−1
h M f◦g(r).

Hence the theorem is proved.
In view of Theorem 3.17, one can get the following theorem.

Theorem 3.18. Let f , g, h and k be any four entire functions such that λ[m]
log k(g) > 0 and ρ[p]

log h( f ) < ∞
where p(> 1),m(> 1) are two integers. Also λ[q]

log(g) < δ < ∞ where q(> 2) be any two integers.
Then for a sequence of values of r tending to infinity,

log[p−1] M−1
h M f◦g(r) < log[m−1] M−1

k Mg

(
exp[q−1] (log r

)δ) .
In view of Theorems 3.17 and 3.18, the following two theorems can be proved in similar way,

Theorem 3.19. Let f , g and h be any three entire functions such that 0 < λ
[p]
log h( f ) < ρ

[p]
log h( f ) < ∞

and λ[q]
log(g) < δ < ∞ where p(> 1) and q(> 2) are any two integers. Then for a sequence of values

of r tending to infinity,
µ−1

h µ f◦g(r) < µ−1
h µ f

(
exp[q−1] (log r

)δ) .
Theorem 3.20. Let f , g, h and k be any four entire functions such that λ[m]

log k(g) > 0 and ρ[p]
log h( f ) < ∞

where p(> 1),m(> 1) are two integers. Also λ[q]
log(g) < δ < ∞ where q(> 2) be any two integers.

Then for a sequence of values of r tending to infinity,

log[p−1] µ−1
h µ f◦g(r) < log[m−1] µ−1

k µg

(
exp[q−1] (log r

)δ) .
We may state the following theorem in view of Theorems 3.13 and 3.17,

Theorem 3.21. Let f , g and h be any three entire functions such that 0 < λ
[p]
log h( f ) ≤ ρ[p]

log h( f ) < ∞
and λ[q]

log(g) < δ < ρ[q]
log(g) where p(> 1) and q(> 2) are any two integers. Then we get,

lim inf
r→∞

M−1
h M f◦g(r)

M−1
h M f

(
exp[q−1] (log r

)δ) ≤ 1 ≤ lim sup
r→∞

M−1
h M f◦g(r)

M−1
h M f

(
exp[q−1] (log r

)δ) .
Proof. The proof is omitted.

Again in view of Theorems 3.14 and 3.18, we obtain the following theorem

Theorem 3.22. Let f , g, h and k be any four entire functions such that 0 < λ[p]
log h( f ) ≤ ρ[p]

log h( f ) < ∞,
0 < λ[m]

log k(g) ≤ ρ[m]
log k(g) < ∞ and 0 < λ[m]

log (g) < δ < ρ[m]
log (g) < ∞ where p(> 1), q(> 2) and m(> 1)

are any three integers. Then we get,

lim inf
r→∞

log[p−1] M−1
h M f◦g(r)

log[m−1] M−1
k Mg

(
exp[q−1] (log r

)δ) ≤ 1 ≤ lim sup
r→∞

log[p−1] M−1
h M f◦g(r)

log[m−1] M−1
k Mg

(
exp[q−1] (log r

)δ) .
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Proof. The proof is omitted.
Similarly one can state the following two theorems without their proofs using the Theorems

3.15, 3.19 and the Theorems 3.16, 3.20 respectively.

Theorem 3.23. Let f , g and h be any three entire functions such that 0 < λ
[p]
log h( f ) ≤ ρ[p]

log h( f ) < ∞
and λ[q]

log(g) < δ < ∞ where p(> 1) and q(> 2) are any two integers. Then for a sequence of values
of r tending to infinity,

lim inf
r→∞

µ−1
h µ f◦g(r)

µ−1
h µ f

(
exp[q−1] (log r

)δ) ≤ 1 ≤ lim sup
r→∞

µ−1
h µ f◦g(r)

µ−1
h µ f

(
exp[q−1] (log r

)δ) .
Theorem 3.24. Let f , g, h and k be any four entire functions such that 0 < λ[p]

log h( f ) ≤ ρ[p]
log h( f ) < ∞,

0 < λ[m]
log k(g) ≤ ρ[m]

log k(g) < ∞ and 0 < λ[m]
log (g) < δ < ρ[m]

log (g) < ∞ where p(> 1), q(> 2) and m(> 1)
are any three integers. Then we get,

lim inf
r→∞

log[p−1] µ−1
h µ f◦g(r)

log[m−1] µ−1
k µg

(
exp[q−1] (log r

)δ) ≤ 1 ≤ lim sup
r→∞

log[p−1] µ−1
h µ f◦g(r)

log[m−1] µ−1
k µg

(
exp[q−1] (log r

)δ) .
Theorem 3.25. Let f , g, h, k, l and b be any six entire functions such that λ[m]

log b(l) > 0, ρ[p]
log h( f ) < ∞

and ρ[q]
log(g) < λ[n]

log(k) where p, q,m, n are all positive integers with p ≥ 1, m ≥ 1 and n ≥ q ≥ 2.
Then

(i) lim
r→∞

M−1
b Ml◦k(r)

M−1
h M f◦g(r)

= ∞ if p = m

(ii) lim
r→∞

M−1
b Ml◦k(r)

log[p−m] M−1
h M f◦g(r)

= ∞ if p > m

and

(iii) lim
r→∞

log[m−p] M−1
b Ml◦k(r)

M−1
h M f◦g(r)

= ∞ if p < m.

Proof. Since M−1
b (r) is an increasing function of r, then for a sequence of values of r tending to

infinity we have from the first part of Lemma 2.1,

(3.21) log[m] M−1
b Ml◦k(r) ≥

(
λ[m]

log b( f ) − ε
)

exp[n−3]
(
log

r
2

)λ[n]
log(k)−ε

+ O(1).

Since ρ[q]
log(g) < λ[n]

log(k), choose ε(> 0) such that

(3.22) ρ
[q]
log(g) + ε < λ[n]

log(k) − ε.
Case I: Suppose p = m. Now combining (3.4) and (3.21) and in view of (3.22) we get for all
sufficiently large values of r that,

M−1
b Ml◦k(r)

M−1
h M f◦g(r)

≥

exp[m]

[(
λ[m]

log b( f ) − ε
)

exp[n−3]
(
log r

2

)λ[n]
log(k)−ε

+ O(1)
]

exp[m]
[(
ρ[m]

log h ( f ) + ε
)

exp[q−3] (log r
)ρ[q]

log(g)+ε
]

then

lim
r→∞

M−1
b Ml◦k(r)

M−1
h M f◦g(r)

= ∞.

229



(i) is proved.
Case II: Suppose p > m.Now combining (3.4) and (3.21) and in view of (3.22) we get for all
sufficiently large values of r that,

M−1
b Ml◦k(r)

log[p−m] M−1
h M f◦g(r)

≥

exp[m]

[(
λ[m]

log b( f ) − ε
)

exp[n−3]
(
log r

2

)λ[n]
log(k)−ε

+ O(1)
]

exp[m]
[(
ρ

[p]
log h ( f ) + ε

)
exp[q−3] (log r

)ρ[q]
log(g)+ε

]
then

lim
r→∞

M−1
b Ml◦k(r)

log[p−m] M−1
h M f◦g(r)

= ∞.

(ii) is proved.
Case III: Suppose p < m. Similarly combining (3.4) and (3.21) and in view of (3.22) we get for
all sufficiently large values of r that,

log[m−p] M−1
b Ml◦k(r)

M−1
h M f◦g(r)

≥

exp[p]

[(
λ[m]

log b( f ) − ε
)

exp[n−3]
(
log r

2

)λ[n]
log(k)−ε

+ O(1)
]

exp[p]
[(
ρ

[p]
log h ( f ) + ε

)
exp[q−3] (log r

)ρ[q]
log(g)+ε

]
then

lim
r→∞

log[m−p] M−1
b Ml◦k(r)

M−1
h M f◦g(r)

= ∞.

(iii) is proved.

Theorem 3.26. Let f , g, h, k, l and b be any six entire functions such that λ[m]
log b(l) > 0, ρ[p]

log h( f ) < ∞
and ρ[q]

log(g) < λ[n]
log(k) where p, q,m, n are all positive integers with p ≥ 1, m ≥ 1 and n ≥ q ≥ 2.

Then

(i) lim
r→∞

µ−1
b µl◦k(r)

µ−1
h µ f◦g(r)

= ∞ if p = m

(ii) lim
r→∞

µ−1
b µl◦k(r)

log[p−m] µ−1
h µ f◦g(r)

= ∞ if p > m

and

(iii) lim
r→∞

log[m−p] µ−1
b µl◦k(r)

µ−1
h µ f◦g(r)

= ∞ if p < m.

Proof. We can prove the theorem similarly as Theorem 3.26 and with the help of Lemmas 2.2,2.3
and 2.5.

Remark 3.7. If we replace ”limit” by ”limit superior” and ρ[q]
log(g) < λ[n]

log(k) by ρ[q]
log(g) < ρ[n]

log(k)
then Theorems 3.25 and 3.26 also hold.
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Abstract

In this paper, we establish two contour integral representations involving Mittag - Leffler
functions (i) for a two variable generalized hypergeometric function of Srivastava and Daoust
and (ii) a sum of the Kummer’s confluent hypergeometric functions. Then, we make their
appeal to obtain the contour integrals for many generating functions and bilateral generating
relations. Further, in development and extensions of fractional calculus, we obtain various
relations of contour integrals with fractional derivatives and integral operators to use them in
solving of any order initial value problems.
2010 Mathematics Subject Classification: 33C15, 33C20, 33C60, 33E12, 26A33.
Keywords and phrases: Srivastava and Daoust two variable function, Kummer’s confluent
hypergeometric function, contour integral representations, Mittag - Leffler functions, arbitrary
order initial value problems.

1 Introduction
Recently, Pathan and Kumar [27] studied and solved the generalized Cauchy problem by
representing the multi-parameter Mittag - Leffler functions ([13], [14]), in terms of two variable
generalized hypergeometric function due to Srivastava and Daoust ([24], [28], [29], [30])

(1.1) S
A : B; B

C : D; D′

(
[(a) : θ, ϑ] : [(b) : ψ]; [(b′) : ψ′];
[(c) : δ, κ] : [(d) : ϕ]; [(d′) : ϕ′]; z,w

)
=

∞∑
m,n=0

H
A : B; B′

C : D; D′(m, n)
zm

m!
wn

n!
,

where, H
A : B; B′

C : D; D′(m, n) =

∏A
j=1 Γ(a j + mθ j + nϑ j)∏C
j=1 Γ(c j + mδ j + nκ j)

∏B
j=1 Γ(b j + mψ j)∏D
j=1 Γ(d j + mϕ j)

∏B′
j=1 Γ(b′j + nψ′j)∏D′
j=1 Γ(d′j + nϕ′j)

.

The series (1.1) is convergent under the conditions
C∑

j=1

δ j +

D∑
j=1

ϕ j −

A∑
j=1

θ j −

B∑
j=1

ψ j + 1 > 0;
C∑

j=1

κ j +

D′∑
j=1

ϕ j
′ −

A∑
j=1

ϑ j −

B′∑
j=1

ψ′j + 1 > 0.

The Srivastava and Daoust function (1.1) is the generalization of the Kampé de Fériet function
[33] including the Appell’s functions, Horn’s functions and Humbert’s confluent hypergeometric
functions of two variables (see for instance, ([1], [5], [6], [31], [32]).
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Applications and detailed analysis of Euler type and Hankel’s contour type integral represen-
tations of the Kampé de Fériet function and Appell’s functions are studied in various fields of
science and technology due to (Exton [5], Srivstava and Karlsson [31]).The Appell’s functions are
transformed into product of Gaussian and Kummer’s confluent hypergeometric functions by many
authors ([2], [31], [32]).

In this connection, presently, Fejzullahu [7] established a contour integral representation of the
Kummer’s confluent hypergeometric function [4] in the form

(1.2) M(α, β + ν, z) =
z1−β

2πi

∫ (0+,1+)

−∞

eztt−β
(
1 −

1
t

)−α
γ∗(ν, zt)dt, α, β, ν ∈ C, | arg(z)| <

π

2
,

where, throughout the paper i =
√

(−1), C being the set of complex numbers, γ∗(ν, z) =
z−ν

Γ(ν)
γ(ν, z),

while

γ(ν, z) =

∫ z

0
uν−1e−udu,<(ν) > 0,(1.3)

Γ(ν + k)
Γ(ν)

= (ν)k =

1, k = 0;
ν(ν + 1) . . . (ν + k − 1),∀k ∈ N;

N be the set of natural numbers, and

(1.4) M(α, β, z) =
z1−βΓ(β)

2πi

∫ (0+,1+)

−∞

eztt−β
(
1 −

1
t

)−α
dt, α, β ∈ C, | arg(z)| <

π

2
.

The function M(α, β, z) is a Kummer’s function ([4], [7], [32, p.36]) defined by

(1.5) M(α, β, z) =

∞∑
k=0

(α)k

(β)k

zk

k!
.

For further innovation and extensions of the results (1.2) - (1.5), we establish two contour
integral representations involving

(i) the generalized Mittag - Leffler function, Eν,ρ(z), of order
1
<(ν)

, ν ∈ C,<(ν) > 0, and

(ii) the Mittag - Leffler function, E 1
Q

(z) of order Q ∈ N∗ = {2, 3, 4, . . .}, for two variable
Srivastava - Daoust function (1.1) and sum up of Kummer’s functions (1.5), respectively.

Then, we make their applications to obtain various contour integral representations for
generating functions and many bilateral generating relations.

The generalized Mittag - Leffler function, Eν,ρ(z) ([10], [34]) is defined by

(1.6) Eν,ρ(z) =

∞∑
k=0

zk

Γ(νk + ρ)
,∀z, ν, ρ ∈ C,<(ν) > 0,<(ρ) > 0,

which for ρ = 1, reduces to the Mittag - Leffler function, Eν(z) ([25], [34]) such that Eν(z) = Eν,1(z).
We also have

E0(z) =
1

1 − z
; E1(z) = ez; E1(1) = e; E2(z) = cosh(

√
z); E2(−z2) = cos z; and(1.7)

E 1
2
(z

1
2 ) = ezer f (−

√
z), where, er f (z) =

∫ ∞

z
e−u2

du.

The Mittag-Leffler function arises naturally in the solution of fractional order integral equations
or fractional order differential equations, and especially in the investigations of the fractional
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generalization of the kinetic equation, random walks, Lévy flights, super-diffusive transport and
in the study of complex systems. (See for instance the literature of Diethelm [3], Hilfer [9], Kilbas
et al. [11], Kiryakova [12], Oldham and Spanier [26]). To make our study more applicable in
various diffusion and wave problems ([8], [15] - [22]), we transform the contour integrals into
various fractional derivative and integral operators and use them in solving of any order initial
value problems.

2 Contour integral representations of hypergeometric functions of one and two variables
and bilateral generating relations

In this section, we establish two contour integrals involving Mittag - Leffler functions and make
their applications to obtain the contour integral representations of generalized hypergeometric
functions of two variables of Srivastava and Daoust (1.1) and to sum up of Kummer’s functions
defined in (1.5). Then, we establish some theorems involving integral representations for some
bilateral generating functions:

Theorem 2.1. If for all α, β, λ, ρ, z,w ∈ C, | arg(w)| < π
2 , λ , 0,<(ρ) > 0, ν ∈ R+,R+ is the set of

positive real numbers and then, there exists an integral representation

1
2πi

∫ (0+,1+)

−∞

Eν,ρ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt,

such that it holds a relation for the Srivastava and Daoust function (1.1) in the form

(2.1)
1

2πi

∫ (0+,1+)

−∞

Eν,ρ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
wβ−1

Γ(α)
S

0 : 1; 1
1 : 1; 0

(
[− : −,−] : [1 : 1]; [α : 1];
[β : ν, 1] : [ρ : ν]; [− : −]; λwνzν,w

)
.

Proof. Making an application of (1.6) in left hand side of (2.1) and changing the order of
integration and summation, we get

(2.2)
1

2πi

∫ (0+,1+)

−∞

Eν,ρ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=

∞∑
k=0

λkzνkwνk+β−1

Γ(νk + ρ)Γ(νk + β)

w1−νk−βΓ(νk + β)
2πi

∫ (0+,1+)

−∞

ewtt−νk−β
(
1 −

1
t

)−α
dt

.
Making an appeal to (1.5) and (1.6), the (2.2) gives

(2.3)
1

2πi

∫ (0+,1+)

−∞

Eν,ρ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
wβ−1

Γ(α)

∞∑
k=0

∞∑
m=0

1
Γ(β + νk + m)

Γ(1 + k)Γ(α + m)
Γ(ρ + νk)

(λwνzν)k

k!
wm

m!
,

which by an appeal to (1.1) gives the result (2.1).

Theorem 2.2. If all α, β, z,w ∈ C, |arg(w + z)| < π
2 , then, there exists a new integral

1
2πi

∫ (0+,1+)

−∞

E 1
Q

(
(zt)

1
Q
)

ewtt−β
(
1 −

1
t

)−α
dt,∀Q ∈ N∗,

which gives an integral representation for the sum of Kummer’s functions as
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(2.4)
1

2πi

∫ (0+,1+)

−∞

E 1
Q

(
(zt)

1
Q
)

ewtt−β
(
1 −

1
t

)−α
dt

=

Q∑
r=1

Xr(w + z)β−1
(

z
(w + z)

)1− r
Q

M(α, β +
r
Q
− 1,w + z)∀Q = 2, 3, 4, . . . ,

where, Xr =

1, 1 ≤ r ≤ Q − 1;
1

Γ(β) , r = Q.

Proof. An appeal to the formula due to Mathai and Haubold [23, p.84]

E 1
Q

((z)
1
Q ) = ez

1 +

Q−1∑
r=1

γ(1 − r
Q , z)

Γ(1 − r
Q )

 ,∀Q ∈ N∗,

in the left hand side of (2.4) gives

(2.5)
1

2πi

∫ (0+,1+)

−∞

E 1
Q

(
(zt)

1
Q
)

ewtt−β
(
1 −

1
t

)−α
dt =

1
2πi

∫ (0+,1+)

−∞

e(w+z)tt−β
(
1 −

1
t

)−α
dt

+

Q−1∑
r=1

(z)1− r
Q

2πi

∫ (0+,1+)

−∞

e(w+z)tt−(β+ r
Q−1)

(
1 −

1
t

)−α
γ∗(1 −

r
Q
, zt)dt

⇒
1

2πi

∫ (0+,1+)

−∞

E 1
Q

(
(zt)

1
Q
)

ewtt−β
(
1 −

1
t

)−α
dt =

(w + z)1−βΓ(β)
(w + z)1−βΓ(β)2πi

∫ (0+,1+)

−∞

e(w+z)tt−β
(
1 −

1
t

)−α
dt

+

Q−1∑
r=1

(z)1− r
Q

2πi
(w + z)2−β− r

Q

(w + z)2−β− r
Q

∫ (0+,1+)

−∞

e(w+z)tt−(β+ r
Q−1)

(
1 −

1
t

)−α
γ∗(1 −

r
Q
, zt)dt.

Finally, making an appeal to (1.1) and (1.4) and (2.5), we obtain

(2.6)
1

2πi

∫ (0+,1+)

−∞

E 1
Q

(
(zt)

1
Q
)

ewtt−β
(
1 −

1
t

)−α
dt

=
(w + z)β−1

Γ(β)
M(α, β,w+z)+

Q−1∑
r=1

(w + z)β−1
(

z
(w + z)

)1− r
Q

M(α, β+
r
Q
−1,w+z), ∀Q = 2, 3, 4, . . . .

By Eqn. (2.6), we easily obtain the result (2.4).

Corollary 2.1. If all conditions of the Theorem 2.1 are satisfied along with set ν = 1, ρ = 1, then,
following result holds

(2.7)
1

2πi

∫ (0+,1+)

−∞

E1,1(λzt−1)ewtt−β
(
1 −

1
t

)−α
dt =

wβ−1

Γ(β)

∞∑
k=0

(λwz)k

(β)k
M(α, β + k,w).

Corollary 2.2. If all conditions of the Theorem 2.1 are satisfied along with set ν = 1, ρ = 1,
λ = −1

2 , and replace z by w′,w by z + w′
2 , then, by (2.7) following result holds

(2.8)
1

2πi

∫ (0+,1+)

−∞

E1,1

(
−

1
2

w′t−1
)

e(z+ w′
2 )tt−β

(
1 −

1
t

)−α
dt

=
(z + w′

2 )β−1

Γ(β)

∞∑
k=0

(−1
2 (zw′ + (w′)2

2 ))k

(β)k
M(α, β + k,w′).
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Corollary 2.3. If all conditions of the Theorem 2.1 are satisfied along with set ν = 1, ρ = 1,
λ = −1

2 , and replace z by w′,w by z + w′
2 , then, by (2.7) following result holds

(2.9)
1

2πi

∫ (0+,1+)

−∞

exp
[
w′

2
(t − t−1)

]
eztt−β

(
1 −

1
t

)−α
dt =

∞∑
n=−∞

zβ−n−1

Γ(β − n)
Jn(w′)M(α, β − n, z).

In the left hand side of equation (2.8), set some rearrangements and apply the generating
relation, exp[ x

2 (t − t−1)] =
∑∞

n=−∞ Jn(x)tn, where, Jn(x) are the Bessel functions for all n ∈
{0,±1,±2, . . .}, we get the contour integral representation for bilateral generating function (2.9).

Corollary 2.4. If all conditions of the Theorem 2.1 are satisfied along with set ν = 1, ρ = 1, and
again, replace in it, λz = ηt log(1 + t) − xt2, then, following identities hold

(2.10)
1

2πi

∫ (0+,1+)

−∞

E1,1(log(1 + t)η − xt)ewtt−β
(
1 −

1
t

)−α
dt

=
1

2πi

∫ (0+,1+)

−∞

(1 + t)ηe−xtewtt−β
(
1 −

1
t

)−α
dt =

1
2πi

∫ (0+,1+)

−∞

(1 + t)ηe(w−x)tt−β
(
1 −

1
t

)−α
dt.

Again on applying the relation
∑∞

n=0 L(η−n)
n (x)tn = (1 + t)ηe−xt where, L(η)

n (x) are the Laguerre
polynomials ∀n ∈ {0, 1, 2, . . .} in second integral of (2.10), we get the contour integrals for a
bilateral generating relation

(2.11)
1

2πi

∫ (0+,1+)

−∞

E1,1(log(1 + t)η − xt)ewtt−β
(
1 −

1
t

)−α
dt

=
1

2πi

∫ (0+,1+)

−∞

(1 + t)ηe−xtewtt−β
(
1 −

1
t

)−α
dt =

∞∑
n=0

wβ−n−1

Γ(β − n)
L(η−n)

n (x)M(α, β − n,w).

Further by (2.10), we find the contour integrals for a generating function

(2.12)
1

2πi

∫ (0+,1+)

−∞

E1,1(log(1 + t)η − xt)ewtt−β
(
1 −

1
t

)−α
dt

=
1

2πi

∫ (0+,1+)

−∞

(1 + t)ηe(w−x)tt−β
(
1 −

1
t

)−α
dt =

∞∑
n=0

(−η)n(−1)n

n!
(w − x)β−n−1

Γ(β − n)
M(α, β − n,w − x).

Corollary 2.5. If all conditions of the Theorem 2.1 are satisfied along with set ν = 1, ρ = 1, and
replace λz = 2xt2 − t3, then, by the generating relation

∑∞
n=0

Hn(x)
n! tn = exp(2xt − t2), where, Hn(x)

are the Hermite polynomials ∀n ∈ {0, 1, 2, . . .}, following identities hold

(2.13)
1

2πi

∫ (0+,1+)

−∞

E1,1(2xt − t2)ewtt−β
(
1 −

1
t

)−α
dt

=
1

2πi

∫ (0+,1+)

−∞

exp(2xt − t2)ewtt−β
(
1 −

1
t

)−α
dt =

∞∑
n=0

wβ−n−1

n!Γ(β − n)
Hn(x)M(α, β − n,w).

3 Extended contour integral representations for generalized hypergeometric functions of
two variables

In this section, we extend the contour integral given in the Section 2 and then, by properties
of Mttag - Leffler functions (1.6) and (1.7), we obtain some more results for generalized
hypergeometric functions of two variables.
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Theorem 3.1. If for all α, β, λ, ρ, σ ∈ C, |arg(w)| < π
2 , λ , 0,<(ρ) > 0,<(σ) > 0, ν ∈ R+ then, the

contour integral 1
2πi

∫ (0+,1+)

−∞
Eν,ρ+σ(λzνt−ν)ewtt−β

(
1 − 1

t

)−α
dt exists as

(3.1)
1

2πi

∫ (0+,1+)

−∞

Eν,ρ+σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
wβ−1

Γ(α)
S

0 : 1; 1
1 : 1; 0

(
[− : −,−] : [1 : 1], ; [α : 1];

[β : ν, 1] : [ρ + σ : ν]; [− : −];λwνzν,w
)
.

Proof. Consider the contour integral

1
2πi

∫ (0+,1+)

−∞

Eν,ρ+σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

and apply the result due to Mathai and Haubold [23, p.90],

zβ+µ−1Eα,β+µ(λzα) =
1

Γ(µ)

∫ z

0
uβ−1(z − u)µ−1Eα,β(λuα)du,

we get

1
2πi

∫ (0+,1+)

−∞

Eν,ρ+σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
1

zρ+σ−1Γ(σ)2πi

∫ z

0
uρ−1(z − u)σ−1

∫ (0+,1+)

−∞

t−β
(
1 −

1
t

)−α
ewtEν,ρ(λt−νuν)dtdu.

In right hand side of above equality, an appeal to the Theorem 2.1 gives

(3.2)
1

2πi

∫ (0+,1+)

−∞

Eν,ρ+σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
wβ−1

Γ(α)zρ+σ−1Γ(σ)

∫ z

0
uρ−1(z − u)σ−1S

0 : 1; 1
1 : 1; 0

(
[− : −,−] : [1 : 1]; [α : 1];
[β : ν, 1] : [ρ : ν]; [− : −]; λwνuν,w

)
du

=
wβ−1

Γ(α)
S

0 : 1; 1
1 : 1; 0

(
[− : −,−] : [1 : 1]; [α : 1];

[β : ν, 1] : [ρ + σ : ν]; [− : −]; λwνzν,w
)
.

Corollary 3.1. In the Theorem 3.1, when set ν = 1, there exists a contour integral for Srivastava
and Panda’s generalized Kampé de Fériet function [32], in the form
(3.3)

1
2πi

∫ (0+,1+)

−∞

E1,ρ+σ(λzt−1)ewtt−β
(
1 −

1
t

)−α
dt =

wβ−1

Γ(β)Γ(ρ + σ)
F

0 : 1; 1
1 : 1; 0

[
(−) : (1); (α);

(β) : (ρ + σ); (−);λwz,w
]
.

4 Transformations of contour integrals in various fractional derivative and integral opera-
tors

In this section, we present some transformations of the contour integrals defined in the Sections 2
and 3 into Riemann - Liouville fractional derivative and integral operators and in Caputo derivative
operators. To obtain the transformation formulae, we define following fractional derivative and
integral operators:

The Riemann - Liouville fractional derivative Dµ
a+Y of order µ, µ ∈ C,<(µ) > 0, as (for instance

see [3], [11], [23])
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(4.1) (Dµ
a+Y)(x) :=

(
d
dx

)n

(In−µ
a+ Y)(x)

=
1

Γ(n − µ)

(
d
dx

)n ∫ x

a
(x − u)n−µ−1Y(u)du, (n = [<(µ)] + 1; x > a).

Here, in formula (4.1), Iαa Y is the Riemann - Liouville integral of order α, α ∈ C,<(α) > 0,
given by

(Iαa Y)(x) =
1

Γ(α)

∫ x

a
(x − ξ)α−1Y(ξ)dξ, a ≤ x ≤ b.

The Caputo derivative of the function Y(t), denoted by {t Dα
0+Y(t) where, m−1 < α ≤ m,∀m ∈ N,

is defined by

(4.2) ({t Dα
a+Y)(t) = (Im−α

a+ Y (m))(t),Y (m)(t) = Dm
t Y(t) =

dmY(t)
dtm =

d
dt

(
dm−1

dtm−1

)
Y(t).

Theorem 4.1. If for all α, β, λ, ρ, σ ∈ C, |arg(w)| < π
2 , λ , 0,<(ρ) > 0,<(σ) > 0, ν ∈ R+ then,

by the contour integral 1
2πi

∫ (0+,1+)

−∞
Eν,ρ+σ(λzνt−ν)ewtt−β

(
1 − 1

t

)−α
dt, there exists following equalities

among Riemann - Liouville fractional derivative, contour integral and Srivstava and Daoust
function as

(4.3)
Dρ

0+

 1
2πi

∫ (0+,1+)

−∞

uρ+σ−1Eν,ρ+σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)

=
zσ−1

2πi

∫ (0+,1+)

−∞

Eν,σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
wβ−1zσ−1

Γ(α)
S

0 : 1; 1
1 : 1; 0

(
[− : −,−] : [1 : 1]; [α : 1];
[β : ν, 1] : [ρ : ν]; [− : −]; λwνzν,w

)
.

Proof. By the properties of the Mittag - Leffler functions (Iα0+uβ−1Eν,β(λuν))(x) = xα+β−1Eν,α+β(λxν)
and the formula (4.1) the contour integral, given in the Theorem 4.1, is written as

(4.4)
1

2πi

∫ (0+,1+)

−∞

zρ+σ−1Eν,ρ+σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=

Iρ0+

 1
2πi

∫ (0+,1+)

−∞

uσ−1Eν,σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z).

Therefore, by the property that (Dρ
0+ Iρ0+Y)(z) = Y(z),Y(z) ∈ Lp(a, b), (1 ≤ p ≤ ∞),∀z ∈ (a, b) ⊂

R, we haveDρ
0+

 1
2πi

∫ (0+,1+)

−∞

uρ+σ−1Eν,ρ+σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)

=

Dρ
0+ Iρ0+

 1
2πi

∫ (0+,1+)

−∞

uσ−1Eν,σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)

=
zσ−1

2πi

∫ (0+,1+)

−∞

Eν,σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt.

So that by (2.1), the equalities are given by
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Dρ
0+

 1
2πi

∫ (0+,1+)

−∞

uρ+σ−1Eν,ρ+σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)

=
zσ−1

2πi

∫ (0+,1+)

−∞

Eν,σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
wβ−1zσ−1

Γ(α)
S

0 : 1; 1
1 : 1; 0

(
[− : −,−] : [1 : 1]; [α : 1];
[β : ν, 1] : [ρ : ν]; [− : −]; λwνzν,w

)
.

Hence, the Theorem 4.1 is followed.
In the similar manner, we obtain

zσ−1

2πi

∫ (0+,1+)

−∞

Eν,σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=
1

2πi

∫ (0+,1+)

−∞

z1+(σ−1)−1Eν,1+σ−1(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

=

Iσ−1
0+

 1
2πi

∫ (0+,1+)

−∞

Eν(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z).

Therefore,

(4.5)
Dσ−1

0+

 1
2πi

∫ (0+,1+)

−∞

uσ−1Eν,σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)

=
1

2πi

∫ (0+,1+)

−∞

Eν(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt.

Finally, by an appeal to (4.3) and (4.5) we get

(4.6)
Dσ−1+ρ

0+

 1
2πi

∫ (0+,1+)

−∞

uρ+σ−1Eν,ρ+σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)

=
1

2πi

∫ (0+,1+)

−∞

Eν(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt.

Again, by action of Caputo derivative (4.2) on the Mittag - Leffler functions (1.6, for ρ = 1),
we obtain

(4.7) z
CDν

0+

Dσ−1+ρ
0+

 1
2πi

∫ (0+,1+)

−∞

uρ+σ−1Eν,ρ+σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)


=
λ

2πi

∫ (0+,1+)

−∞

Eν,1(λzνt−ν)ewtt−ν−β
(
1 −

1
t

)−α
dt.

Thus,

(4.8) z
CDnν

0+

Dσ−1+ρ
0+

 1
2πi

∫ (0+,1+)

−∞

uρ+σ−1Eν,ρ+σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z)


=
λn

2πi

∫ (0+,1+)

−∞

Eν(λzνt−ν)ewtt−nν−β

(
1 −

1
t

)−α
dt,∀n ∈ N.
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5 Numerical Example
Consider the initial value diffusion and wave problem ∀ρ ∈ C,

(5.1) (Dρ
0+Y)(z) =

zσ−1

2πi

∫ (0+,1+)

−∞

Eν,σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt,

where, the initial conditions are given by
dn− j

dzn− j (I
n−ρ
0+ Y)(z)

∣∣∣∣∣
z=0+

= 0, j = 1, 2, . . . , n; <(ρ) > 0, n = [<(ρ)] + 1.

To solve the problem (5.1), we operate both sides of equation (5.1) by ρ order Riemann -
Liouville fractional integral operator Iρ0+ and apply the formula [11, Eqn. (2.1.44), p. 75]

(Iρ0+ Dρ
0+Y)(z) = Y(z) −

n∑
j=1

dn− j

dzn− j (I
n−ρ
0+ Y)(z)

∣∣∣∣∣
z=0+

Γ(ρ − j + 1)
zρ− j,<(ρ) > 0, n = [<(ρ)] + 1,

and then, use the initial conditions given in (5.1), we get

(5.2) Y(z) =

Iρ0+

uσ−1

2πi

∫ (0+,1+)

−∞

Eν,σ(λuνt−ν)ewtt−β
(
1 −

1
t

)−α
dt

 (z).

Now, making an appeal to formula (4.4) in right hand side of (5.2), we derive

(5.3) Y(z) =
zρ+σ−1

2πi

∫ (0+,1+)

−∞

Eν,ρ+σ(λzνt−ν)ewtt−β
(
1 −

1
t

)−α
dt.

6 Conclusion
In the Sections 2 and 3, we derive various relations and known functions by the contour integrals
in form of some special functions, their generating functions and bilateral generating relations
involving Bessel functions, Laguerre polynomials and Hermite polynomials. Then, in the Section
4, by the action of Riemann - Liouville fractional derivatives and integrals and by the operation
of the Caputo derivative on contour integrals, we derive some identities among other contour
integrals, and special functions. In the end of our investigation, we present a simple initial value
problem to find its solution in terms of contour integrals. The presented work is applicable in
various diffusion and wave problems occurring of Mittag - Leffler functions seen in the literature
([3], [8], [9], [11], [12], [23], [26] among others).
Acknowledgement. Authors are very much thankful to the referees for their valuable suggestions
and comments to make the paper in the present form.
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Abstract

Weather forecasting is predicting present state of weather by the help of analyzing collected
data such as temperature, humidity, wind etc. to analyze atmospheric processes and determine
how weather condition is going to change in future. Weather forecasting is important not
only for prediction but also to prepare for future coming events if any such as cyclone, heavy
rainfall, hails which can cause harm to the agricultural production of the country and hence
affect the livelihood of the farmers. Continuous change in variance of time series over time;
such a process is termed as Volatility. Heteroskecdascity refers to increasing variance in a way,
such as increase in trend, this property of series is termed as Heteroskecdascity. Objective of
the paper is to analyze, model and predict Rainfall time series of Delhi region from January 01,
2017 to December 31, 2018 using Heteroskecdascity model such as ARCH, GARCH, TARCH/

GJR-GARCH, EGARCH models to select most suited model on basis of probability value of
the model hence calculated. Further, to analyze and choose model has full filled required
conditions the model is checked for Serial Correlation, ARCH Effect, Normal distribution of
Residuals, ARCH-LM test is applied, AIC, SIC values are calculated. GJR-GARCH model
is most suited model among all models tested for modeling and analyzing rainfall. Model
selection is done based on AIC value and SIC value calculated.
2010 Mathematics Subject Classifications: 33C60, 33C45.
Keywords and phrases: Volatility, Heteroscedascity, ARCH, GARCH, TARCH, EGARCH,
Time Series, Rainfall.

1 Introduction
Climate change has adverse effect on rainfall as, monsoons are shifted, rainfall as in average has
decreased per year and agricultural sector of the economy is adversely affect in many parts of
country due to change in pattern of rainfall causing drought and forcing the farmer to find an
alternate for their living. In general, climate is highly non-linear phenomena in nature. Climate
change is a serious environmental threat to human kind nowadays. Change in weather pattern has
and is affecting livelihood of people, it can also be seen that there are longer summers and shifted
monsoon every year. Over a long period of time it has been observed that every year temperature is
raising by some degrees and overall rainfall expectancy has decreased. The objective in the paper
is to test whether volatility which is applied in the field of economics to study the nature of time
series can also be applied to weather data or not and to further see which model will give better
forecasting of rainfall.

Ardia et al. [1] studied single regime & markov switching GARCH models by comparing
forecasting efficiency in terms of risk management. Bhardwaj et al. ([2],[3],[4]) studied various
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methods for weather forecasting by using data mining techniques which included MLP, Gaussian
Process, SMO Regression, Linear Regression among which best suited tool was selected using the
statistical calculations CC, MAE, RMSE, RRSE, RAE; also studied ANFIS-SUGENO model using
subtractive clustering technique for the formation of membership function to forecast minimum
and maximum temperature; further studied behavior of temperature from 1981-2015 by calculating
hurst exponent, fractal dimension, predictability index using R/S method ([2],[3],[4]). Bentes [5]
studied GARCH, IGARCH, FIGARCH models for predicting volatility of gold returns. Bollerseley
[6] studied generalized ARCH(GARCH) model for parsimonious representation of ARCH. Dickey
[7] studied likelihood ratio test and also studied least square estimator of alpha. Engles ([8],[9])
studied ARCH and GARCH models for analysing time seriesdata for financial application and also
studied symmetry effect in exchange rate data by applying ARCH and GARCH and EGARCH
model for studying volatility. Gabriel [11] studied forecasting efficiency of GARCH model.
Herwartz et al. [12] studied GARCH model to predict stock return. Huang et al. [13] studied HAR-
GARCH model for modelling long memory volatility by the help of measures of volatility. Jordan
et al. [14] studied ARCH/GARCH model to study volatility in price of field crops. Kobayashi et
al. [15] studied EGARCH model and compared it to stochastic volatility models. Liu et al. [16]
studied GARCH model for predicting stocks. D.N. Fente et al. [10] studied different weather
parameter and used LSTM Technique for forecasting the weather parameters. N. Singh et al. [18]
studied weather parameters and forecasted the parameters using machine learning algorithm such
as random forest. K. Sushmitha et al. [19] studied weather parameters such as temperature, wind,
humidity, rainfall. The parameters were studied and forecasted using ARIMA. B. Munmun et al.
[17] studied and forecasted weather parameters using data mining technique such as Naı̈ve Bayes
and Chi Square algorithm.

GJR-GARCH, ARCH, GARCH, EGARCH models are studied step wise analyzing that whether
residuals show that ARCH family models can be applied or not and so further Residuals are
diagnosed by applying heteroscedascity test and best model is initially selected using the AIC,
SIC values and further the diagnostic test to re check if selected model is actually full filling the
conditions required.

2 Methodology
2.1 Time Series Analysis
Time series analysis is done in order to analysis sequence of observation of the time pattern.
Analysis is done to study various pattern of the data such as data has a seasonal pattern or random
pattern. This study of pattern of rainfall helps us know whether data has repetitive pattern or not.
The time series process is analysed based on the past values to study the pattern if any and if the
pattern exist then the time series is modelled and forecasting is done.
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Figure 2.1: Plot of rainfall values from January 01, 2017 till December 31, 2018

2.2 ARCH
Auto Regressive Conditional Heteroscedasticity (ARCH) model includes single or many data
values in series further variance of existing error term is a function of actual size of previous
time periods error terms. ARCH model models time series. ARCH(q) model is used to model time
series by ARCH process, εt: error term,εt are split into stochastic piece, λt: standard deviation.
Step 1: consider a time series t, for all values from 1 to n.
Step 2: estimate best fit AR(q) by calculating: gt = x0 + x1gt−1 + ..... + xqgt−q + εt

Step 3: calculate the error term εt , with the help of formula:
εt = Ztλt, Zt: white noise process.

Step 4: model time series by calculating λ2
t = x0 + x1ε

2
t−1 + .... + xqε

2
q ] , Such that is positive

or equal to 0.
Further, ARCH (q) model is analyzedby ordinary least squares.

2.3 GARCH
ARMA model is used as error variance, Generalized Autoregressive Conditional Heteroscedasticity
model. GARCH(p, q) model, p:order of GARCH terms λ2& q:order of ARCH ε2.
Step 1: consider time series t, for all values from 1 to n.
Step 2: estimate best fit AR(q) by calculating:gt = x0 + x1gt−1 + .... + xzgt − q + εt

Step 3: calculate Yt = X
′

t b + εt, such that εt/φt N(0, λ2
t ), where εt is the error term.

Step 4: now calculate standard deviation for time series t for order q with εt as error term

λ2
t = W + α1ε

2
t−1 + ..... + β1λ

2
t−1 + ..... = W +

q∑
i=1

λiε
2
t−1 +

q∑
i=1

βiε
2
t−1

GARCH model is applied for reducing error in forecasting time series and further improve
accuracy of forecast.
2.4 EGARCH
Exponential Generalized Autoregressive Conditional Heteroskedastic model is extension of
GARCH model which studies time series values by calculating variance of present error term,
such that “p′′:degree of GARCH polynomial and “q′′ is degree of ARCH & Leverage polynomial.
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Formally, EGARCH(p, q):
Step 1: consider time series t, for all values from 1 to n.
Step 2: estimate best fit AR(q) by calculating: gt = x0 + x1gt−1 + ....... + xqgt−q + εt

Step 3: now, calculate logλ2
t = W +

∑q
i=1 βi(zi

t−i) +
∑p

i=1 αilogλ2
t−i, logλ2

t can be negative, hence no
restrictions on parameters.
Step 4: further calculate g(zt) = φzt+τ(|zt|−E(|zt|)), λ2

t , g(zt, zt) , ztsign and magnitude have separate
effect on volatility.

Above is conditional variance w, β, α, φ, τ: coefficients,zt:standard normal variable,also known
as error distribution. Positive or negative sign is not a limitation in GARCH model. Test of ARCH
and GARCH errors is important for studying time series.
2.5 T-GARCH
Threshold-GARCH model which has another name that is GJR-GARCH model. Model includes
calculation of conditional Standard Deviation instead of calculating conditional variance. T −
GARCH(p, q) model is calculated as follows:
Step 1: consider time series t, for all values from 1 to n.
Step 2: estimate best fit AR(q) by calculating:gt = x0 + x1gt−1 + .... + xqgt−q + εq

Step 3: calculate error term using ε+
t−1 = εt−1 if ε+

t−1 = 00, εt−1 > 0 and vice versa.
Step 4: calculate standard deviation using: λt = K + δλt−1 + .... + αi+ε

+
t−1

3 Resluts and Discussion
Daily data of Temperature, rainfall for Delhi with coordinates Longitude 770 09’ 27” Latitude280
38 ‘23” N Altitude:228.61m from January 01, 2017 till December 31, 2018 is taken. The time
series of daily values of rainfall have been taken and the parameters are set accordingly with respect
to the resulting probability values and values of AIC, SIC the best fit model is selected. The best
suited model is selected among ARCH, GARCH, TARCH/ GJR-GARCH, EGARCH.

Figure 3.1: Plot of rainfall values from January 01, 2017 till December 31, 2018
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In Figure 3.1, residuals have been plotted of rainfall time series to understand pattern of time
series, it shows that periods of low values is followed by high values and similarly further low
values for longer duration is followed by the period of high values thus it implies that we can apply
the ARCH family models.

Further, the residuals are diagnosed whether ARCH family models can be applied or not and so
further Residuals are diagnosed by applying Heteroskecdascity test: ARCH, in which the following
hypothesis is considered:

Null Hypothesis: Absence of ARCH effect. (If probability value < 5%)
Alternative Hypothesis: Presence of ARCH effect. (If probability value > 5%)

Table 3.1: Residual Diagnostic using Heteroskecdascity test for Rainfall

Now, it is clear from Table 3.1, that probability value comes 0.0019, that is lesser than 5%;
hence rejecting the Null Hypothesis, absence ofARCHeffect. Now, there exists ARCH effect in
time series of Rainfall therefore, ARCH family models such as GARCH, TGARCH, EGARCH
models can be applied.

Table 3.2: AIC, SIC values as per the model for Rainfall time series

The above Table 3.2, shows that GJR-GARCH or TGARCH model is best suitedon basis of
AIC, SIC values calculated for each model. Now, GJR-GARCH model will be tested whether it
full fills all the conditions required.
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Figure 3.2: Correlogram plot of GJR-GARCH Model

Now, Figure 3.2, shows probability values greater than 5% hence, we accept Null Hypothesis
which is: Absence of Serial Correlation.

Hence, there is no Serial Correlation.
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Table 3.3: Diagnostic using ARCH-LM test for Rainfall for ARCH effect

Diagnostic using ARCH-LM test for Rainfall for ARCH effect

Null Hypothesis: ARCH Effect-NOT PRESENT. (prob >5%)
Alternative Hypothesis: ARCH effect-PRESENT. (prob < 5%)
Hence, Null Hypothesis is accepted since probability value is greater than 5%; no ARCH effect.
Now, checking if residuals are distributed normally or not using Histogram plot and checking

the probability value of the thus calculated.

Figure 3.3: Histogram plot to check the normal distribution and probability value

Now, since value of probability is less than5% thus, we reject Null Hypothesis (X0)&accept
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Alternative Hypothesis (X1).
X0: Normally Distributed.
X1: Not Normally Distributed. Hence, distribution of residuals is not normal. As there is

absence of ARCH effect therefore GJR-GARCH is to be considered.

Figure 3.4: Forecast of variance and Rainfall

Figure 3.4, shows the forecast of variance of rainfall and standard error calculated. GJR-
GARCH is considered on the basis of tests and AIC, SIC values and hence the above plot is obtained
using the model.
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4 Conclusion
The above study has been done to analyze, model and predict Rainfall time series of Delhi region
using Heteroskecdascity model such as ARCH, GARCH, TARCH/ GJR-GARCH, EGARCH models
by selecting most suited model on basis of calculations. Further, the objective was to analyze
whether model has full filled required conditions by checking for Serial Correlation, ARCH Effect,
Normal distribution of Residuals, ARCH-LM test, AIC, SIC values calculated. GJR-GARCH model
is the most suited model among all models tested for modelling rainfall. Model selection is done
based on AIC value and SIC value calculated and all other tests done. It can also be concluded that
Heteroskecdascity model which is used in economics to study the volatility of time series can be
applied in area of weather forecasting by studying the time series behavior of weather parameters
and checking if the time series shows required behavior for application of such models as applied
in the study above.

Hence, GJR-GARCH/ TARCH is the suited for forecasting daily rainfall. Since, the residuals
have no ARCH effect also no Serial correlation thus its observed that GJR-GARCH model is the
suited model.
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Abstract

In this paper, we introduce a diffusion and wave equation consisting of multidimensional
space Riesz-Feller fractional operators and Caputo time fractional derivative. Imposing certain
boundary values, we obtain its solution in terms of multivariable H-function and finally making
an appeal to our results, we evaluate various multiple fractional diffusions.
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44A15, 60G18, 60J60.
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1 Introduction, formulae and definitions
Since 1976, various researchers and authors studied the multivariable H-function ([19], [20]) as
considering as an initial function to solve many physical and scientific problems, for example (see
[1], [2]). This multivariable H-function is widely used by many researchers in the derivation of
the results involving fractional derivatives and fractional integrals ([12], [15], [16], [18]). Also,
the Fourier series representations are studied for the multivariable H-function (see [3]). In 2005,
Mainardi et al. [10] employed Fox’s H-function in fractional diffusion problems, formerly this
H-function was introduced by [5] and contour integrals for H-function were appeared in [17].

To explore new ideas for enlarging to the field of fractional diffusions in multidimensional
space, in the present investigation, we obtain a solution of multidimensional in space fractional,
time fractional diffusion and wave problem in terms of the multivariable H-function involving a
multiple contour integral of Mellin - Barnes type [9], defined by ([19], [20]) as

H[z1, ..., zr] = H0,n:m1,n1;...;mr ,nr
p,q:p1,q1;...;pr ,qr


z1
...
zr

∣∣∣∣∣(a j : α(1)
j , . . . , α

(r)
j )1,p : (c(1)

j : σ(1)
j )1,p1; . . . ; (c(r)

j : σ(r)
j )1,pr

(b j : β(1)
j , . . . , β

(r)
j )1,q : (d(1)

j : ρ(1)
j )1,q1; . . . ; (d(r)

j : ρ(r)
j )1,qr

(1.1)

=
1

(2πω)r

∫
L1

. . .

∫
Lr

Ψ(%1, . . . , %r)

 r∏
i=1

Φi(%i)(zi)%i

 d%1 . . . d%r.

Here in Eqn. (1.1), ω =
√

(−1) throughout this paper, and also

(1.2) Ψ(%1, . . . , %r) =

∏n
j=1 Γ(1 − a j +

∑r
i=1 α

(i)
j %i)

[
∏p

j=n+1 Γ(a j −
∑r

i=1 α
(i)
j %i)][

∏q
j=1 Γ(1 − b j +

∑r
i=1 β

(i)
j %i)]

,

Φi(%i) =
[
∏mi

j=1 Γ(d(i)
j − ρ

(i)
j %i)][

∏ni
j=1 Γ(1 − c(i)

j + σ(i)
j %i)]

[
∏pi

j=ni+1 Γ(c(i)
j − σ

(i)
j %i)][

∏qi
j=mi+1 Γ(1 − d(i)

j + ρ(i)
j %i)]

, ∀i = 1, 2, . . . , r.
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Again, Li = Lγiω∞ represents the contours which start at the point γi − ω∞ and goes to the
point γi + ω∞ with γi ∈ R = (−∞,∞),∀i = 1, . . . , r such that all the poles of Γ(d(i)

j − ρ
(i)
j %i),∀ j =

1, . . . ,mi; i = 1, . . . , r are separated from those of Γ(1 − c(i)
j + σ(i)

j %i) ∀ j = 1, . . . , ni; i = 1, . . . , r
and Γ(1 − a j +

∑r
i=1 α

(i)
j %i)∀ j = 1, . . . , n. Here, the integers n, p, q,mi, ni, pi and qi satisfy the

inequalities 0 ≤ n ≤ p; q ≥ 0; 1 ≤ mi ≤ qi and 1 ≤ ni ≤ pi, i = 1, . . . , r. The parameters
a j,∀ j = 1, . . . , p; c(i)

j ,∀ j = 1, . . . , pi; i = 1, . . . , r; b j,∀ j = 1, . . . , q; d(i)
j ,∀ j = 1, . . . , qi; i = 1, . . . , r,

are complex numbers and the associated coefficients α(i)
j ,∀ j = 1, . . . , p; i = 1, . . . , r; σ(i)

j ,∀ j =

1, . . . , pi; i = 1, . . . , r ; β(i)
j ,∀ j = 1, . . . , q; i = 1, . . . , r; ρ(i)

j ,∀ j = 1, . . . , qi; i = 1, . . . , r, are positive
real numbers, such that, ∀i = 1, . . . , r

(1.3) ∆i =

p∑
j=1

α(i)
j +

pi∑
j=1

σ(i)
j −

q∑
j=1

β(i)
j −

qi∑
j=1

ρ(i)
j ≤ 0;

and

Ωi =

n∑
j=1

α(i)
j −

p∑
j=n+1

α(i)
j −

q∑
j=1

β(i)
j +

ni∑
j=1

σ(i)
j −

pi∑
j=ni+1

σ(i)
j(1.4)

+

mi∑
j=1

ρ(i)
j −

qi∑
j=mi+1

ρ(i)
j > 0.

In the integrand of (1.1), the poles are supposed to be simple. The integral (1.1) converges
absolutely for |arg (zi) | < π

2Ωi, i = 1, . . . , r. The points zi = 0, i = 1, 2, . . . , r and various
exceptional parameter values being tacitly excluded.

Particularly, for r = 1, the Eqns. (1.1) - (1.4) reduce to Fox’s H- function ([5], [10], [12, p.2],
[17]).

By Eqns. (1.1) - (1.4) an approximation formula is given by
(1.5) H[z1, . . . , zr] = O(|z1|

ϑ1 . . . |zr|
ϑr ),max

1≤ j≤r
‖z j‖ → 0;

where ϑi = min1≤ j≤mi

(
R(d(i)

j )

ρ(i)
j

)
, i = 1, . . . , r.

Although for n = 0, another approximation formula holds
(1.6) H [z1, . . . , zr] = O (|z1|

ς1 . . . |zr|
ςr ) , min

1≤ j≤r
‖z j‖ → ∞;

where

ςi = min
1≤ j≤ni

R(c(i)
j ) − 1

σ(i)
j

 , i = 1, . . . , r.

Again, for n = p = q = 0, the multivariable H-function (1.1) - (1.4) consists a relation with
Fox’s H-function ([5], [10], [17]) in the form (see [12, p.207])

(1.7) H0,0:m1,n1;...;mr ,nr
0,0:p1,q1;...;pr ,qr


z1
...
zr

∣∣∣∣∣− : (c(1)
j : σ(1)

j )1,p1; . . . ; (c(r)
j : σ(r)

j )1,pr

− : (d(1)
j : ρ(1)

j )1,q1; . . . ; (d(r)
j : ρ(r)

j )1,qr

 =

r∏
i=1

Hmi,ni
pi,qi

zi

∣∣∣∣∣(c(i)
j : σ(i)

j )1,pi

(d(i)
j : ρ(i)

j )1,qi

 ,
provided that ∆′i =

∑pi
j=1 σ

(i)
j −

∑qi
j=1 ρ

(i)
j ≤ 0; and

Ω′i =

ni∑
j=1

σ(i)
j −

pi∑
j=ni+1

σ(i)
j +

mi∑
j=1

ρ(i)
j −

qi∑
j=mi+1

ρ(i)
j > 0 with | arg(zi)| <

π

2
Ω′i , i = 1, . . . , r.
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Recently, series and analytic solutions of fractional in time and space - fractional anomalous
diffusion problems are obtained and studied by many authors ([6], [7], [8], [13]). In [10] the
solution of fractional diffusion is found in terms of Fox’s H-function (see also [5], [12, p.2], [17]).
Now, in the present paper, we point out a generalization of a diffusion equation introduced and
studied by various researchers ([8], [10], [12, p.199 Eqn. (6.186)]) as

(1.8) {
t Dα

0+u (x, t) = xDβ
θu (x, t) ,−∞ < x < +∞, t ≥ 0; 0 < α ≤ 2; |θ| ≤ min{β, 2 − β},

where, 0 < β ≤ 2.

In Eqn. (1.8), the Caputo derivative of the function f (t), denoted by {t Dα
0+ f (t) where, m − 1 <

α ≤ m,∀m ∈ N, is defined by [4, p.49]

(1.9) ({t Dα
0+ f )(t) = (Im−α f (m))(t),

where, f (m)(t) = Dm
t f (t), {Dm

t ≡
dm

dtm = d
dt (

dm−1

dtm−1 )}, Im−α being the Riemann - Liouville fractional
integral given by

(Im−α f )(t) =

 1
Γ(m−α)

∫ t

0
(t − τ)m−α−1 f (τ)dτ, t > 0,m − 1 < α ≤ m,

f (t), α = m,∀m ∈ N.

The Laplace transformation of a sufficiently well behaved function v(t) is denoted and defined
by L{v(t); s} = V(s) =

∫ ∞
0

e−stv(t)dt, s > 0. In our researches, we use this Laplace transformation
of the Caputo time fractional derivative (1.9) in the form [4, p.134]

(1.10) L{({t Dα
0+v)(t); s} = sαV(s) −

m−1∑
k=0

sα−1−kv(k)(0+) ∀m − 1 < α ≤ m.

Further in the x- domain, we are needful of an operation by an integro - differential Riesz-Feller
operator xDβ

θ , on f (x), denoted by xDβ
θ f (x) where |θ| ≤ min{β, 2 − β}, 0 < β ≤ 2, is given as [8],

[12, p.192, Eqn. (6.150)]

(1.11) xDβ
θ f (x) =

Γ(1 + β)
π

[
sin

(β + θ)π
2

∫ ∞

0

f (x + %) − f (x)
%β+1 d% + sin

(β − θ)π
2

∫ ∞

0

f (x − %) − f (x)
%β+1 d%

]
.

The Fourier transformation of a sufficiently well behaved function f (x), denoted by f̄ (%) =

F { f (x); %} =
∫ +∞

−∞
e+ω%x f (x)dx, % ∈ R, then, the Fourier transform of the integro - differential

Riesz-Feller operator (1.11) is obtained as ([8], [12, p.191])

(1.12) F {xDβ
θ f (x); %} = −ψθβ (%) f̄ (%).

Here in (1.12), we have

(1.13) ψθβ(%) = |%|β exp[ω(sign %)
θπ

2
], where, |θ| ≤ min{β, 2 − β}, 0 < β ≤ 2.

To make extensions in the area of fractional calculus and its applications in various scientific
fields, we refer the books ([4], [12], [13], [16]). Again, for enriching in the present investigation,
we introduce a diffusion and wave equation consisting of Riesz - Feller fractional operators in
multidimensional space and Caputo time - fractional operator. We solve this diffusion and wave
equation on imposing certain boundary conditions and obtain its solution in terms of multivariable
H-function given in Eqns. (1.1) - (1.4). Its estimations are found by the Eqns. (1.5) and (1.6). The
action of Riesz - Feller operator on multiple space - variable function U(x1, . . . , xr) is given by
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(1.14) x1 Dβ1
θ1

U(x1, ..., xr) =
Γ(1 + β1)

π
[sin

(β1 + θ1)π
2

∫ ∞

0

U(x1 + ξ, . . . , xr) − U(x1, . . . , xr)
ξβ1+1 dξ

+ sin
(β1 − θ1)π

2

∫ ∞

0

U(x1 − ξ, . . . , xr) − U(x1, . . . , xr)
ξβ1+1 dξ]

...

xr D
βr
θr

U(x1, ..., xr) =
Γ(1 + βr)

π
[sin

(βr + θr)π
2

∫ ∞

0

U(x1, . . . , xr + ξ) − U(x1, . . . , xr)
ξβr+1 dξ

+ sin
(βr − θr)π

2

∫ ∞

0

U(x1, . . . , xr − ξ) − U(x1, . . . , xr)
ξβr+1 dξ].

Motivated by above work, in this paper, we introduce to a diffusion and wave equation
consisting of multidimensional in space Riesz-Feller fractional operators defined by (1.11) and
Caputo time fractional derivative by (1.9). Then, we shall dissipate to the multiple function
u (x1, . . . , xr, t) into the product of the functions involving of separate space and time variables
as given in Eqn. (2.2) and on imposing certain boundary conditions (2.3) - (2.5), obtain a solution
and some results in terms of multivariable H-function and thus on applying our results, we evaluate
various multiple fractional diffusions.

2 A multiple generalized diffusion and wave equation and its degenerations into several
equations of different variables

In this section, we make a generalization of the Eqn. (1.8) on introducing many space fractional
Riesz - Feller derivatives as defined in Eqn. (1.11) and the time fractional derivative by Eqn. (1.9)
and thus find a multiple generalized diffusion and wave equation in the form
(2.1) {

t Dα
0+u(x1, . . . , xr, t) = x1

Dβ1
θ1

u(x1, . . . , xr, t) + . . . + xr
Dβr
θr

u(x1, . . . , xr, t), t > 0, 0 < α ≤ 2;

|θi| ≤ min{βi, 2 − βi}, 0 < βi ≤ 2;−∞ < xi < +∞;∀i = 1, 2, . . . , r.
Now, we equip following initial and boundary conditions to degenerate of the equation (2.1)

into several equations consisting of fractional in time and space fractional variables

(2.2) u(x1, . . . , xr, t) =

r∏
i=1

v(xi, t) ∀xi ∈ R, t ∈ R+, i = 1, 2, . . . , r.

For all xi ∈ R, i = 1, 2, . . . , r; the initial conditions are followed by

(2.3) u(x1, . . . , xr, t) =

r∑
i=1

{∏r
j=1, j,i(t − τ j)v(x j, t)∏r

j=1, j,i(τi − τ j)

}
ϕ(xi), at t = τi, τi → 0+∀i = 1, 2, 3, . . . , r;

and
(2.4) ut(x1, . . . , xr, 0+) = lim

t→0+

∂

∂t
u(x1, . . . , xr, t) = 0.

For t > 0, the boundary conditions are given by
(2.5) lim

x1,...,xr→±∞
u(x1, . . . , xr, t) = 0.

Theorem 2.1. If the relation (2.2) is applied on both sides of Eqn. (2.1), then the equation (2.1)
degenerates into r-generalized diffusion and wave equations as
(2.6) {

t Dα
0+v(xi, t) = xi

Dβi
θi

v(xi, t), where 0 < α ≤ 2; and |θi| ≤ min{βi, 2 − βi}, 0 < βi ≤ 2;
−∞ < xi < +∞, ∀i = 1, 2, ..., r.

Along with the initial and boundary conditions
(2.7) v(xi, τi) = ϕ(xi) at τi → 0+, vt(xi, 0+) = 0 ∀i = 1, 2, . . . , r;
and

lim
xi→±∞

v(xi, t) = 0 ∀i = 1, 2, . . . , r.
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Proof. Under the conditions 0 < α ≤ 2, |θi| ≤ min{βi, 2 − βi}, 0 < βi ≤ 2;−∞ ≤ xi ≤ ∞, use the
formula (2.2) in the Eqn. (2.1), we find that

(2.8)
r∑

i=1

r∏
j=1, j,i

v(x j, t) C
t Dα

0+v(xi, t) =

r∑
i=1

r∏
j=1, j,i

v(x j, t) xi D
βi
θi

v(xi, t).

Then, equating the ith element in both sides of Eqn. (2.8), we obtain r-equations given in the
Eqn. (2.6).

Again, expand the right hand side of Eqn. (2.2) by Lagrange’s interpolation formula in regard
of t, we get the identities

(2.9) u(x1, . . . , xr, t) =

r∏
i=1

v(xi, t) =

r∑
i=1

( ∏r
j=1, j,i(t − τ j)∏r

j=1, j,i(τi − τ j)

)
v(xi, τi)

r∏
j=1, j,i

v(x j, t)

=

r∑
i=1

(∏r
j=1, j,i(t − τ j)v(x j, t)∏r

j=1, j,i(τi − τ j)

)
v(xi, τi).

Thus, use the Eqns. (2.3) and (2.9), we obtain the first condition given in Eqn. (2.7) as
v (xi, τi) = ϕ (xi) at τi → 0+. In the similar manner, other conditions of (2.7) are found as
vt (xi, 0+) = 0 ∀i = 1, 2, . . . , r; and limxi→±∞ v(xi, t) = 0 ∀i = 1, 2, . . . , r.

3 Solution of the problem (2.1)-(2.5)
Before finding out the solution of the problem (2.1)-(2.5), we first prove following Lemmas:

Lemma 3.1. If ∆′i =

pi∑
j=1

σ(i)
j −

qi∑
j=1

ρ(i)
j ≤ 0; and Ω′i =

ni∑
j=1

σ(i)
j −

pi∑
j=ni+1

σ(i)
j +

mi∑
j=1

ρ(i)
j −

qi∑
j=mi+1

ρ(i)
j > 0

with |arg(zi)| < π
2Ω′i , i = 1, . . . , r, then, there exists an equality of multivariable H-function as

(3.1) H0,0:m1,n1;...;mr ,nr
0,0:p1,q1;...;pr ,qr


z1

.

.

.
zr

|
− :

(
c(1)

j : σ(1)
j

)
1,p1

; . . . ;
(
c(r)

j : σ(r)
j

)
1,pr

− :
(
d(1)

j : ρ(1)
j

)
1,q1

; . . . ;
(
d(r)

j : ρ(r)
j

)
1,qr



= H0,0:n1,m1;...;nr ,mr
0,0:q1,p1;...;qr ,pr


(z1)−1

.

.

.

(zr)−1

|
− :

(
1 − d(1)

j : ρ(1)
j

)
1,q1

; . . . ;
(
1 − d(r)

j : ρ(r)
j

)
1,qr

− :
(
1 − c(1)

j : σ(1)
j

)
1,p1

; . . . ;
(
1 − c(r)

j : σ(r)
j

)
1,pr

 .
Proof. Consider the property of Fox’s H-function given in ([10], [12, p.11])

(3.2) Hm,n
p,q

z|
(
a j : A j

)
1,p(

b j : B j

)
1,q

 = Hn,m
q,p

1
z
|

(
1 − b j : B j

)
1,q(

1 − a j : A j

)
1,p

 .
Then, use the result (3.2) in right hand side of the result (1.7), we obtain the equality (3.1).

Lemma 3.2. If theory and conditions of the Theorem 2.1 are followed, then the fundamental
solution of the problem (2.1) - (2.5) exists as

(3.3) u(x1, . . . , xr, t) =

r∏
i=1

G(α, βi, θi; t, xi).

Here in Eqn. (3.3), ∀i = 1, 2, . . . , r, the functions G(α, βi, θi; t, xi) satisfy the integral equations
G(α, βi, θi; t, xi) =

∫ ∞
−∞

G(α, βi, θi; t, ζi)δ(ζi − xi)dζi, δ(x) is a well known Dirac - delta function.
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Proof. We make an appeal to the Theorem 2.1, to find r-generalized diffusion and wave equations
with initial and boundary values given in the Eqns. (2.6) - (2.7). Now, take Laplace and Fourier
transformation of the equations given in (2.6) - (2.7) and find the relations in following transformed
form

(3.4) V̄(%i, s) =
sα−1

sα + ψθi
βi

(%i)
ϕ̄(%i)∀i = 1, 2, . . . , r.

Again, by Eqn. (3.4) consider that a function Ḡ(α, βi, θi; s, %i) = sα−1

sα+ψ
θi
βi

(%i)
, which by taking

inverse Laplace transformation as on applying the formulae of [12, p.49, Eqns. (2.12) and (2.14)],
and by Eqn. (1.13), we obtain

(3.5) Ḡ(α, βi, θi; t, %i) = Eα(−ψθi
βi

(%i)tα) = Eα(−(%i)βi exp[ω
θiπ

2
]tα)∀i = 1, 2, . . . , r.

Now, use Eqn. (3.5) in the Eqn. (3.4) and thus apply Fourier convolution, we obtain the integral
equations

(3.6) V(xi, t) =

∫ ∞

−∞

G(α, βi, θi; t, ζi)ϕ(ζi − xi)dζi.

Further, in Eqn. (3.6) if we take ϕ(xi) = δ(xi)∀i = 1, 2, . . . , r, (δ(x) is well known Dirac delta
function), then, V(xi, t) = G(α, βi, θi; t, xi), and then, we find another integral equations

(3.7) G(α, βi, θi; t, xi) =

∫ ∞

−∞

G(α, βi, θi; t, ζi)δ(ζi − xi)dζi.

Since ∀i = 1, 2, . . . , r, the functions G(α, βi, θi; t, xi) satisfy all Eqns. and conditions given in
Theorem 2.1, hence G(α, βi, θi; t, xi) are general Green functions. Finally, by our assumption (2.2)
and Eqns. (3.6) and (3.7), we obtain the fundamental solution (3.3).

Lemma 3.3. If ∀i = 1, 2, . . . , r, |θi| ≤ min{βi, 2 − βi}, 0 < βi ≤ 2. Then, for t > 0, xi > 0, the Green
functions G(α, βi, θi; t, xi), i = 1, 2, . . . , r, defined in Lemma 3.2, are expressed by several Fox’s H
-functions as

(3.8) G(α, βi, θi; t, xi) =



1
βi xi

H1,2
3,3

(xi)−1(t)
α
βi |

(0, 1
βi

), (0, 1), (0, βi−θi
2βi

)
(0, 1

βi
), (0, α

βi
), (0, βi−θi

2βi
)
,

when βi < α, also, singular at xi = 0;

1
βi xi

H2,1
3,3

(xi)(t)
−α
βi |

(1, 1
βi

), (1, α
βi

), (1, βi−θi
2βi

)
(1, 1

βi
), (1, 1), (1, βi−θi

2βi
)
,

when, βi > α, also singular at xi → ∞.

Also, when, α = βi,G (α, βi, θi; t, xi) is singular at xi = t∀i = 1, . . . , r.

Proof. In Eqn. (3.5), by the relation ψθi
βi

(%i) = ψ−θi
βi

(−%i), there is a symmetric relation ψθi
βi

(−xi) =

ψ−θi
βi

(xi) ∀xi > 0, i = 1, 2, . . . , r. Thus, on taking inverse Fourier transformation of the function
G(α, βi, θi; t, %i) of (3.5), we find (see also [11])

(3.9) G(α, βi, θi; t, xi) =

 1
π

∫ ∞
0

Eα

(
− (%i)βi exp

[
ω θiπ

2

]
tα
)

cos %ixid%i,
1
π

∫ ∞
0

Eα

(
− (%i)βi exp

[
ω θiπ

2

]
tα
)

sin %ixid%i.

Now, to achieve the result of above Lemma 3.3, we have to define the Mellin transformation of
a sufficiently well behaved function f (%) (see [14]) as

(3.10) M{ f (%); s} = f ∗(s) =

∫ +∞

0
f (%)%s−1d%, γ1 < R(s) = γ < γ2,
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and the inverse Mellin transformation as

(3.11) M
−1{ f ∗(s); %} = f (%) =

1
2πω

∫ γ+ω∞

γ−ω∞

f ∗(s)%−sds, % > 0.

Also, the properties of juxtaposition
M

↔
of a function f (%) with its Mellin transform f ∗(s) are

(3.12) f (a%) M
←→

a−s f ∗(s), a > 0,

(3.13) (%p) M
←→

1
|p|

f ∗(
s
p

), p , 0.

The Parseval’s formula is given by

(3.14)
∫ +∞

0
f (%)g(%)d% =

1
2πω

∫ γ+ω∞

γ−ω∞

f ∗(s)g∗(1 − s)ds.

Then by (3.10), (3.11) and (3.12), for x > 0 there exist the formulae for trigonometric functions

(3.15) M{sin(x%); s} = x−sΓ(s) sin (
πs
2

),−1 < R(s) < 1]

and
(3.16) M{cos(x%); s} = x−sΓ(s) cos (

πs
2

), 0 < R(s) < 1.

By above formula (3.10) for %i > 0, t > 0, the Mellin transform of Eqn. (3.5) is written by

(3.17) G∗(si) =

∫ +∞

0
Eα(−(%i)βi exp[ω

θiπ

2
]tα)(%i)si−1d%i,

for γi,1 < R(si) < γi,2 ∀i = 1, 2, . . . , r.
Then, for γi,1 < R(si) < γi,2 ∀i = 1, 2, . . . , r, by the Mellin transforms of trigonometrical

functions (3.15), (3.16) in the Eqn. (3.9), and using the Eqn. (3.17) and thus on applying the above
Parseval’s formula (3.14), there exists a relation

(3.18) G(α, βi, θi; t, xi) =


1
πxi

1
2πω

∫ γi+ω∞

γi−ω∞
G∗(si)Γ(1 − si) sin(πsi

2 )(xi)sidsi,

xi > 0, 0 < γi < 1;
1
πxi

1
2πω

∫ γi+ω∞

γi−ω∞
G∗(si)Γ(1 − si) cos(πsi

2 )(xi)sidsi,

xi > 0, 0 < γi < 2.

.

Again, use above juxtaposition (3.13) in Eqn. (3.5), and apply the techniques of [11], we write

(3.19) G∗(si) =
1
βi

Γ( si
βi

)Γ(1 − si
βi

)

Γ(1 − αsi
βi

)
exp[−ω

πsiθi

2βi
](t)

−αsi
βi ,

for t > 0, |θi| ≤ {2 − α}, 0 < R(si) < βi∀i = 1, 2, . . . , r. (See also [10]).
Therefore on applying (3.19) in the Eqns. of (3.18), we find a result for xi > 0, t > 0, |θi| ≤

{2 − α}, 0 < R(si) < βi∀i = 1, . . . , r, in the form

(3.20) G (α, βi, θi; t, xi) =

1
πβixi

1
2πω

∫ γi+ω∞

γi−ω∞

Γ
(

si
βi

)
Γ
(
1 − si

βi

)
Γ
(
1 − αsi

βi

) Γ (1 − si) sin
(
πsi

2

)
cos

(
πθisi

2βi

) (
xi (t)

−α
βi

)si
dsi

−
1

πβixi

1
2πω

∫ γi+ω∞

γi−ω∞

Γ
(

si
βi

)
Γ
(
1 − si

βi

)
Γ
(
1 − αsi

βi

) Γ (1 − si) cos
(
πsi

2

)
sin

(
πθisi

2βi

) (
xi (t)

−α
βi

)si
dsi.
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The Eqn. (3.20) gives us the formula, for xi > 0, t > 0, |θi| ≤ {2−α}, 0 < R(si) < βi∀i = 1, . . . , r,
as

(3.21) G(α, βi, θi; t, xi)

=
1

πβixi

1
2πω

∫ γi+ω∞

γi−ω∞

Γ( si
βi

)Γ(1 − si
βi

)

Γ(1 − αsi
βi

)
Γ(1 − si) sin

({
(βi − θi)πsi

2βi

})
(xi(t)

−α
βi )sidsi.

Now in Eqn. (3.21), set
{

(βi−θi)
2βi

}
= λi, and then, use the property of Gamma function that

Γ(z)Γ(1 − z) = π
sin πz , we find the Green function for xi > 0, t > 0, |θi| ≤ {2 − α} , 0 < R(si) < βi, in

the Mellin - Barnes contour integrals ∀i = 1, . . . , r, as

(3.22) G (α, βi, θi; t, xi) =
1
βixi

1
2πω

∫ γi+ω∞

γi−ω∞

Γ
(

si
βi

)
Γ
(
1 − si

βi

)
Γ (1 − si)

Γ
(
1 − αsi

βi

)
Γ (λisi) Γ (1 − λisi)

(
xi (t)

−α
βi

)si
dsi.

Finally, in right hand side of Eqn. (3.22) make an application of the definitions (1.1) - (1.4)
(for r = 1), and again use the relation (3.2), we obtain all results of Eqn. (3.8).
∀i = 1, 2, . . . , r, in the complex si- planes, the right hand side of Eqn. (3.22) shows that

there is an extension of probability distribution in the ranges {0 < βi ≤ 2} ∩ {0 < α ≤ 1} and
{1 < α ≤ βi ≤ 2}, thus we present following Main Theorem:

Theorem 3.1. If |θi| ≤ min {βi, 2 − βi} , 0 < βi ≤ 2;−∞ < xi < +∞;∀i = 1, 2, . . . , r, such that the
ranges are {0 < βi ≤ 2} ∩ {0 < α ≤ 1} and {1 < α ≤ βi ≤ 2} , then the Eqn. (2.1) on imposing the
conditions (2.2)-(2.5), have following three solutions in terms of a multivariable Green function,
defined by u (x1, . . . , xr, t) = Gθ1,...,θr

α,β1,...,βr
(x1, . . . , xr, t) =

∏r
i=1 G (α, βi, θi; t, xi), as

Case 1 If βi < α and xi > 0 ∀i = 1, 2, . . . , r, then

(3.23) Gθ1,...,θr
α,β1,...,βr

(x1, . . . , xr, t) =

 r∏
i=1

1
βixi


× H0,0:1,2;...;1,2

0,0:3,3;...;3,3


(x1)−1 (t)

α
β1

.

.

.

(xr)−1 (t)
α
βr

∣∣∣∣∣ − :
(
0, 1

β1

)
, (0, 1) ,

(
0, β1−θ1

2β1

)
; . . . ;

(
0, 1

βr

)
, (0, 1) ,

(
0, βr−θr

2βr

)
− :

(
0, 1

β1

)
,
(
0, α

β1

)
,
(
0, β1−θ1

2β1

)
; . . . ;

(
0, 1

βr

)
,
(
0, α

βr

)
,
(
0, βr−θr

2βr

)

,

also, singular at xi = 0.
Case 2 If βi > α and xi > 0 ∀i = 1, 2, . . . , r, then

(3.24) Gθ1,...,θr
α,β1,...,βr

(x1, . . . , xr, t) =

 r∏
i=1

1
βixi


× H0,0:2,1;...;2,1

0,0:3,3;...;3,3


x1 (t)

−α
β1

.

.

.

xr (t)
−α
βr

∣∣∣∣∣− :
(
1, 1

β1

)
,
(
1, α

β1

)
,
(
1, β1−θ1

2β1

)
; . . . ;

(
1, 1

βr

)
,
(
1, α

βr

)
,
(
1, βr−θr

2βr

)
− :

(
1, 1

β1

)
, (1, 1) ,

(
1, β1−θ1

2β1

)
; . . . ;

(
1, 1

βr

)
, (1, 1) ,

(
1, βr−θr

2βr

)

,

also singular at xi → ∞.
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Case 3 If α = βi ∀i = 1, . . . , r,

(3.25) Gθ1,...,θr
α,β1,...,βr

(x1, . . . , xr, t) is singular at xi = t, ∀ i = 1, 2, ..., r.

Proof. Consider the Eqn. (2.2) in the Eqns. (2.1), (2.3), (2.4) and (2.5) and thus use
the theory and results obtained in the Lemmas 3.2 and 3.3, we obtain the Green functions
G(α, βi, θi; t, xi) ∀i = 1, 2, . . . , r. Then, make an application of Eqn. (1.7) and Lemma 3.1 in
the statement of the Theorem 3.1, we find the multivariable Green functions in three cases given
in the Eqns. (3.23), (3.24) and (3.25).

4 Various multiple diffusions
In Eqn. (2.1), if we set θi = 0∀i = 1, . . . , r, the integro - differential Riesz-Feller operators, xi

Dβi
θi
,

∀i = 1, . . . , r, in the domain (x1, . . . , xr) , become symmetric operators with respect to the variables
x1, . . . , xr, as

(4.1) xi
Dβi

0 = −

(
−

d2

dx2
i

) βi
2

∀i = 1, . . . , r,

and thus in Eqn. (4.1), we interpret that

−|%|βi = −(%2)
βi
2 ∀i = 1, . . . , r.

Now, on specializing the values of the parameters α, βi and θi∀i = 1, . . . , r, by above results of
the Theorem 3.1, we discuss following multiple diffusions:

(I) In Theorem 3.1, if we set α = 1, βi = 2 and θi = 0, ∀i = 1,. . . , r, then there exists, a standard
diffusion equation ∂u

∂t =
∑r

i=1
∂2u
∂x2

i
, u = u(x1, x2, ..., xr, t), for t > 0, xi > 0, ∀i = 1, . . . , r, and

thus in Case 2 of this Theorem 3.1, the multivariable Green function Gθ1,...,θr
α,β1,...,βr

(x1, . . . , xr, t)
becomes as

(4.2) G0,...,0
1,2,...,2 (x1, . . . , xr, t) =

 (t)
−1
2

2


r

H0,0:1,0;...;1,0
0,0:1,1;...;1,1


x1(t)

−1
2

.

.

.

xr (t)
−1
2

∣∣∣∣∣− :
(

1
2 ,

1
2

)
; . . . ;

(
1
2 ,

1
2

)
− : (0, 1) ; . . . ; (0, 1)


.

Again as we are familiar with the results

(4.3) H1,0
1,1

[
(x(t)

−1
2

∣∣∣∣∣
(

1
2 ,

1
2

)
(0, 1)

]
=

1
√
π

e−

x(t)
−1
2

2
4 =

1
√
π

e−
x2
4t .

Hence, use the results (1.7), (4.2) and (4.3), we find a multivariable normal distribution as

(4.4) G0,...,0
1,2,...,2(x1, . . . , xr, t) =

{
1

2
√
πt

}r

exp
[
−

{
(x1)2

4t
+ . . . +

(xr)2

4t

}]
.

(II) When, 0 < βi < 2, |θi| ≤ min {βi, 2 − βi} ∀i = 1, . . . , r; and α = 1 then this case is called space
fractional diffusion, in which two situations are arised for xi > 0,∀i = 1, . . . , r,

(a) 0 < βi < 1, |θi| ≤ βi∀i = 1, . . . , r , α = 1, so that by Theorem 3.1, Case 1, we get

(4.5) Gθ1,...,θr
1,β1,...,βr

(x1, . . . , xr, t) =

 r∏
i=1

(t)
−1
βi

βi


261



× H0,0:1,1;...;1,1
0,0:2,2;...;2,2


(x1)−1 (t)

1
β1

.

.

.

(xr)−1 (t)
1
βr

∣∣∣∣∣ − : (1, 1) ,
(
β1−θ1

2β1
, β1−θ1

2β1

)
; . . . ; (1, 1) ,

(
βr−θr
2βr

, βr−θr
2βr

)
− :

(
1
β1
, 1
β1

)
,
(
β1−θ1

2β1
, β1−θ1

2β1

)
; . . . ;

(
1
βr
, 1
βr

)
,
(
βr−θr
2βr

, βr−θr
2βr

)

.

(b) 1 < βi < 2, |θi| ≤ {2 − βi ∀i = 1, . . . , r, α = 1, so that by Theorem 3.1, Case 2), we get

(4.6) Gθ1,...,θr
1,β1,...,βr

(x1, . . . , xr, t) =

 r∏
i=1

(t)−
1
βi

βi


× H0,0:1,1;...;1,1

0,0:2,2;...;2,2


x1 (t)

−1
β1

.

.

.

xr (t)
−1
βr

∣∣∣∣∣− :
(
β1−1
β1
, 1
β1

)
,
(
β1+θ1

2β1
, β1−θ1

2β1

)
; . . . ;

(
βr−1
βr
, 1
βr

)
,
(
βr+θr
2βr

, βr−θr
2βr

)
− : (0, 1) ,

(
β1+θ1

2β1
, β1−θ1

2β1

)
; . . . ; (0, 1) ,

(
βr+θr
2βr

, βr−θr
2βr

)

.

(III) When, βi = 2, θi = 0,∀i = 1, . . . , r; and 0 < α < 2, then, this case is called time
fractional diffusion, in which for xi > 0,∀i = 1, . . . , r, Theorem 3.1, Case 2) arises and
hence, we find
(4.7)

G0,...,0
α,2,...,2 (x1, . . . , xr, t) =

{
(t)−

α
2

2

}r

H0,0:1,0;...;1,0
0,0:1,1;...;1,1


x1 (t)

−α
2

.

.

.

xr (t)
−α
2

∣∣∣∣∣− :
(

2−α
2 , α2

)
; . . . ;

(
2−α

2 , α2

)
− : (0, 1) ; . . . ; (0, 1)


.

(IV) As the case discussed in Eqn. (4.7), where put r = 2 and 0 < α < 1, then this becomes
generalized anomalous diffusion of Kumar, Pathan and Yadav [7] of which another
solution in the form of Green function is found by

(4.8) G0,0
α,2,2 (x1, x2, t) =

{
(t)−α

4

}
H0,0:1,0;1,0

0,0:1,1;1,1

[
x1 (t)

−α
2

x2 (t)
−α
2

∣∣∣∣∣− :
(

2−α
2 , α2

)
;
(

2−α
2 , α2

)
− : (0, 1) ; (0, 1)

]
.

In the similar manner, by Theorem 3.1, we also obtain the Green function solution of the
Eqn. (2.1) of the case for r = 2 , 0 < α < 1, 0 < β1 < 1, 1 < β2 < 2; of the anomalous
diffusion problem due to Kumar, Pathan and Srivastava [6]. For further directions of the
researches in this field, we omit them.

5 Special cases.
In this section, we specialize the values of the parameters involving in the results (4.2) to (4.7) of
Section 4 (where set r = 1, then take β1 = β and θ1 = θ) and then, we obtain various diffusions as
studied and derived by many authors to them (see [4], [8], [10] and [12]) given in followings:

(i) when θ = 0, β = 2, α = 1, by (4.2) to (4.4), there exists a normal diffusion.
(ii) when θ = 0, 0 < β < 2, α = 1, by (4.5) and (4.6), there exists a space fractional diffusion.
(iii) when θ = 0, 0 < α < 2, β = 2, by (4.7), there exists a time fractional diffusion.
(iv) when θ ≤ min{β, 2 − β}, 0 < α = β < 2, there exists a neutral fractional diffusion (see [10],

Eqn. (4.3)).
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6 Conclusions
A solution of multidimensional in space fractional and time fractional diffusion and wave problem,
in terms of the multivariable H-function involving a multiple contour integral of Mellin - Barnes
type [9], defined by ([19], [20]), is obtained by imposing certain conditions and the relations
given in Eqns. (2.2) - (2.5) in the Eqn. (2.1). The obtained solution is converted into a classical
multivariable Green function by which various multiple diffusions as particular cases are discussed
in section 4 on specializing of the parameters involving in multidimensional space fractional
operators with Caputo time fractional derivative, in which Case I) represents the standard diffusion,
Case II) represents space fractional diffusion problem in which two cases are raised and in Case III)
time diffusion problem is analyzed. In Case IV), the fundamental solution of anomalous diffusion
problem is obtained. On putting r = 1, the special cases are checked by the results in one
dimensional in space-time fractional derivatives of previous work of many researchers in the
literature for example ([4], [6], [7], [8], [10], [12]).
Acknowledgement. Authors are very much grateful to the referees for their valuable suggestions
and comments to prepare the paper in the present form.
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Abstract

In this paper we prove the existence and approximation theorems for the initial value
problems of first order nonlinear impulsive differential equations under certain mixed partial
Lipschitz and partial compactness type conditions. Our results are based on the Dhage
monotone iteration principle embodied in a hybrid fixed point theorem of Dhage involving
the sum of two monotone order preserving operators in a partially ordered Banach space. The
novelty of the present approach lies the fact that we obtain an algorithm for the solution. Our
abstract main result is also illustrated by indicating a numerical example.
2010 Mathematics Subject Classifications: 47H07, 47H10, 34A12, 34A45
Keywords and phrases: Impulsive differential equation; Dhage iteration method; hybrid fixed
point principle; existence and approximate solution.

1 Introduction
It is well-known that many of the dynamical systems in the universe involve the jumps or
discontinuities due to to impulses at finite number of places in a given period of time and impulsive
differential equations are the mathematical models to describe such phenomena precisely. The
existence and uniqueness theory for nonlinear impulsive differential equations have received much
attention during the last decade, however the theory of approximation of the solutions to such
equations is relatively rare in the literature. The dynamical systems, which involve the jumps
or discontinuities at finite number of points are modeled on the nonlinear impulsive differential
equations. The sudden changes in the dynamic systems for a short period of time can betterly
be discussed with he help of impulsive differential equations. The importance of such impulsive
differential equations in the dynamic systems as well as exhaustive account of various topics related
to this problem may be found in the research monographs of Samoilenko and Perestyuk [21],
Lakshmikantam et al [20] and the references therein. The existence theorems so far discussed
in the literature for such impulsive differential equations involve either the use of usual Lipschitz
or compactness type condition on the nonlinearities and which are considered to be very strong
conditions in the subject of nonlinear analysis. Here in the present set up of new Dhage monotone
iteration method, we do not need usual Lipschitz and compactness type conditions but require only
partial Lipschitz and partial compactness type conditions of the nonlinearity and the existence as
well as approximation of the solutions is obtained under certain monotonic conditions. We claim
that the results of this paper are new to the literature on impulsive differential equations.

Let R be the real line and let J = [0,T ] be a closed and bounded interval in R. Let t0, . . . tp+1

be the points in J such that 0 = t0 < t1 < · · · , < tp < tp+1 = T and let J′ = J \ {t1, . . . , tp}. Denote
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J j = (t j, t j+1) ⊂ J for j = 1, 2, . . . , p. By X = C(J,R) and L1(J,R) we denote respectively the
spaces of continuous and Lebesgue integrable real-valued functions defined on J.

Now, given a function h ∈ L1(J,R+), consider the initial value problem (in short IVP) for the
first order impulsive differential equation (in short IDE)

(1.1)

x′(t) + h(t)x(t) = f (t, x(t)), t ∈ J \ {t1, . . . , tp},

x(t+
j ) − x(t−j ) = I j(x(t j)),

x(0) = x0 ∈ R,


where, the limits x(t+

j ) and x(t−j ) are respectively the right and left limit of x at t = t j such that
x(t j) = x(t−j ), I j ∈ C(R,R), I j(x(t j)) are the impulsive effects at the points t = t j, j = 1, . . . , p and
f : J × R→ R is such that f is continuous on J′ = J − {t1, ..., tp}, and there exist the limits

lim
t→t j−

f (t, u) = f (t j, u) and lim
t→t j+

f (t, u), u ∈ R,

for each j = 1, . . . , p.
By a impulsive solution of the IDE (1.1) we mean a function x ∈ PC1(J,R) that satisfies

the differential equation and the conditions in (1.1), where PC1(J,R) is the space of piecewise
continuously differentiable real-valued functions defined on J.

The IDE (1.1) has already been discussed in the literature under continuity and compactness
type conditions of the function f for various aspects of the solutions. The existence and unqueness
theorems for the IDE (1.1) may be proved using the classical hybrid fixed point theorems Schauder
and Banach given in Dhage [8] and references therein. Here in the present study, we discuss
the IDE (1.1) for existence and approximate impulsive solution under partial Lipschit and partial
compactness type conditions via Dhage iteration method based on a hybrid fixed point theorems
of Dhage [3, 4].

2 Auxiliary Results
Throughout this paper, unless otherwise mentioned, let (E,� |·‖) denote a partially ordered normed
linear space. Two elements x and y in E are said to be comparable if either the relation x � y or
y � x holds. A non-empty subset C of E is called a chain or totally ordered if all the elements
of C are comparable. It is known that E is regular if {xn} is a nondecreasing (resp. nonincreasing)
sequence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. The
conditions guaranteeing the regularity of E may be found in Heikkilä and Lakshmikantham [19]
and the references therein.

We need the following definitions (see Dhage [2, 3, 4] and the references therein) in what
follows.

A mapping T : E → E is called isotone or monotone nondecreasing if it preserves the order
relation �, that is, if x � y implies T x � T y for all x, y ∈ E. Similarly, T is called monotone
nonincreasing if x � y implies T x � T y for all x, y ∈ E. Finally, T is called monotonic or simply
monotone if it is either monotone nondecreasing or monotone nonincreasing on E. A mapping
T : E → E is called partially continuous at a point a ∈ E if for given ε > 0 there exists a
δ > 0 such that ‖T x − T a‖ < ε whenever x is comparable to a and ‖x − a‖ < δ. T is called
partially continuous on E if it is partially continuous at every point of it. It is clear that if T is
partially continuous on E, then it is continuous on every chain C contained in E and vice-versa. A
non-empty subset S of the partially ordered metric space E is called partially bounded if every
chain C in S is bounded. A mapping T on a partially ordered metric space E into itself is called
partially bounded if T (E) is a partially bounded subset of E. T is called uniformly partially
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bounded if all chains C in T (E) are bounded by a unique constant. A non-empty subset S of the
partially ordered metric space E is called partially compact if every chain C in S is a compact
subset of E. A mapping T : E → E is called partially compact if every chain C in T (E) is
a relatively compact subset of E. T is called uniformly partially compact if T is a uniformly
partially bounded and partially compact operator on E. T is called partially totally bounded if
for any bounded subset S of E, T (S ) is a partially totally bounded subset of E. If T is partially
continuous and partially totally bounded, then it is called partially completely continuous on E.

Remark 2.1. Suppose thatT is a monotone operator on E into itself. ThenT is a partially bounded
or partially compact on E if T (C) is a bounded or compact subset of E for each chain C in E.

Definition 2.1 (Dhage [5, 6], Dhage and Dhage [15]). The order relation � and the metric d
on a non-empty set E are said to be D-compatible if {xn} is a monotone sequence, that is,
monotone nondecreasing or monotone nonincreasing sequence in E and if a subsequence {xnk}

of {xn} converges to x∗ implies that the original sequence {xn} converges to x∗. Similarly, given
a partially ordered normed linear space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are
said to be D-compatible if � and the metric d defined through the norm ‖ · ‖ are D-compatible. A
subset S of E is called Janhavi set if the order relation � and the metric d or the norm ‖ · ‖ are
D-compatible in S . In particular, if S = E, then E is called a Janhavi metric space or Janhavi
Banach space.

Clearly, the set R of real numbers with usual order relation ≤ and the norm defined by the
absolute value function | · | has this property. Similarly, the finite dimensional Euclidean space
Rn with usual componentwise order relation and the standard norm possesses the compatibility
property and so is a Janhavi Banach space.

Definition 2.2. An upper semi-continuous and monotone nondecreasing function ψ : R+ → R+

is called a D-function provided ψ(0) = 0. A monotone operator T : E → E is called nonlinear
partialD-contraction if there exists aD-function ψT such that
(2.1) ‖T x − T y‖ ≤ ψT

(
‖x − y‖

)
for all comparable elements x, y ∈ E, where 0 < ψT (r) < r for r > 0.

In particular, if ψT (r) = k r, k > 0, T is called a partial Lipschitz operator with a Lipschitz
constant k and moreover, if 0 < k < 1, T is called a linear partial contraction on E with the
contraction constant k.

The Dhage monotone iteration principle or Dhage monotone iteration method embodied
in the following applicable hybrid fixed point theorems of Dhage [3] in a partially ordered normed
linear space is used as a key tool for our work contained in this paper. The details of the Dhage
monotone iteration principle or method are given in Dhage [5, 6, 7], Dhage et al. [13, 14], Dhage
and Otrocol [17] and the references therein.

Theorem 2.1 (Dhage [3]). Let (E,�, ‖ · ‖) be a partially ordered Banach space and let T : E → E
be a monotone nondecreasing and nonlinear partial D-contraction. Suppose that there exists an
element x0 ∈ E such that x0 � T x0 or x0 � T x0. If T is continuous or E is regular, then T has
a unique comparable fixed point x∗ and the sequence {T nx0} of successive iterations converges
monotonically to x∗. Moreover, the fixed point x∗ is unique if every pair of elements in E has a
lower bound or an upper bound.
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Theorem 2.2 (Dhage [3]). Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed linear

space and let every compact chain C in E be Janhavi set. Let A,B : E → E be two monotone
nondecreasing operators such that

(a) A is partially bounded and nonlinear partialD-contraction,
(b) B is partially continuous and partially compact, and
(c) there exists an element x0 ∈ E such that x0 � Ax0 + Bx0 or x0 � Ax0 + Bx0.

Then the hybrid operator equation Ax + Bx = x has a solution x∗ in E and the sequence {xn} of
successive iterations defined by xn+1 = Axn + Bxn, n=0,1,. . . , converges monotonically to x∗.

Remark 2.2. The condition that every compact chain of E is Janhavi set holds if every partially
compact subset of E possesses the compatibility property with respect to the order relation � and
the norm ‖ · ‖ in E.

Remark 2.3. 1 We remark that hypothesis (a) of Theorem 2.2 implies that the operator A is
partially continuous and consequently both the operators A and B in the theorem are partially
continuous on E. The regularity of E in above Theorems 2.1 and 2.2 may be replaced with a
stronger continuity condition respectively of the operators T and A and B on E which are the
results proved in Dhage [2, 3].

3 Existence and Approximation Theorem
Let X j = C(J j,R) denote the class of continuous real-valued functions on the interval J j = (t j, t j+1).
Denote by PC(J,R) the space of piecewise continuous real-valued functions on J defined by

PC(J,R) =
{
x ∈ X j | x(t−j ) and x(t+

j ) exists for j = 1, . . . , p;

and x(t−j ) = x(t j)
}
.(3.1)

Define a supremum norm ‖ · ‖ in PC(J,R) by

(3.2) ‖x‖PC = sup
t∈J
|x(t)|

and define the order cone K in PC(J,R) by

(3.3) K = {x ∈ PC(J,R) | x(t) ≥ 0 for all t ∈ J},

which is obviously a normal cone in PC(J,R). Now, define the order relation � in PC(J,R) by

(3.4) x � y ⇐⇒ y − x ∈ K

which is equivalent to
x � y ⇐⇒ x(t) ≤ y(t) for all t ∈ J.

Clearly,
(
PC(J,R),K

)
becomes a regular ordered Banach space with respect to the above norm

and order relation in PC(J,R) and every compact chain C in PC(J,R) is Janhavi set in view of the
following lemmas proved in Dhage [6, 7].

Lemma 3.1 (Dhage [6, 7]). Every ordered Banach space (E,K) is regular.

Lemma 3.2 (Dhage [6, 7]). Every partially compact subset S of an ordered Banach space (E,K)
is a Janhavi set in E.

We need the following definition in what follows.
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Definition 3.1. A function u ∈ PC1(J,R) is said to be a lower impulsive solution of the IDE (1.1)
if it satisfies

u′(t) + h(t)u(t) ≤ f (t, u(t)), t ∈ J \ {t1, . . . , tp},

u(t+
j ) − u(t−j ) ≤ I j(u(t j)),

u(0) ≤ x0 ∈ R,


for j = 1, 2, ..., p. Similarly, a function v ∈ PC1(J,R) is called an upper impulsive solution of the
IDE (1.1) if the above inequality is satisfied with reverse sign.

We consider the following set of assumptions in what follows:

(H1) The impulsive functions I j ∈ C(R,R) are bounded on X with bounds MI j for each j =

1, . . . , p.,
(H2) There exists a constants LI j > 0 such that

0 ≤ I jx − I jy ≤ LI j

(
x − y

)
for all x, y ∈ R, x ≥ y, where j = 1, . . . , p.

(H3) The function f is bounded on J × R with bound M f .
(H4) f (t, x) is nondecreasing in x for each t ∈ J.
(H5) There exists a constant L f > 0 such that

0 ≤ f (t, x) − f (t, y) ≤ L f
(
x − y

)
for all t ∈ J and x, y ∈ R, x ≥ y.

(H6) The IDE (1.1) has a lower impulsive solution u ∈ PC1(J,R).

Below we prove some useful results in what follows.

Lemma 3.3. Given σ ∈ L1(J,R), a function x ∈ PC(J,R) is a impulsive solution to the IDE

(3.5)

x′(t) + h(t)x(t) = σ(t), t ∈ J \ {t1, . . . , tp},

x(t+
j ) − x(t−j ) = I j(x(t j)),

x(0) = x0,


if and only if it is an impulsive solution of the impulsive integral equation

(3.6) x(t) = x0 e−H(t) +
∑

0<t j<t

k(t, t j)I j(x(t j)) +

∫ t

0
k(t, s)σ(s) ds, t ∈ J,

where the kernel function k is given by

(3.7) k(t, s) = e−H(t)+H(s) and H(t) =

∫ t

0
h(s) ds.

Proof. First note that the integral in H(t) is a continuous and nonnegative real-valued function
on J. Therefore, we have H(t) > 0 on J provided h is not an identically zero function. Otherwise
H(t) ≡ 0 on J. Moreover, we have H(t−) = H(t) = H(t+) for all t ∈ J.

First suppose that x is an impulsive solution of the IDE (3.5) on J. Then, we have

(3.8)

(
eH(t)x(t)

)′
= eH(t)σ(t), t ∈ J \ {t1, . . . , tp},

x(t+
j ) − x(t−j ) = I j(x(t j)),

x(0) = x0 ∈ R,
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for j = 1, 2, . . . , p.
From the theory of integral calculus, it follows that

eH(t−1 )x(t−1 ) − eH(0)x(0) =

∫ t1

0

(
eH(s)x(s)

)′
ds

eH(t−2 )x(t−2 ) − eH(t+1 )x(t+
1 ) =

∫ t2

t1

(
eH(s)x(s)

)′
ds

...

eH(t)x(t) − eH(t+p )x(t+
p ) =

∫ t

tp

(
eH(s)x(s)

)′
ds.

Summing up the above equations,

eH(t)x(t) −
∑

0<t j<t

eH(t j)I j(x(t j)) = x0 +

∫ t

0
eH(s)h(s) ds,

or

x(t) = x0e−H(t) +
∑

0<t j<t

k(t, t j)I j(x(t j)) +

∫ t

0
k(t, s)σ(s) ds.

for t ∈ J.
Conversely, suppose that x is an impulsive solution of the impulsive integral equation (3.6).

Obviously x satisfies the initial and jump conditions given in (3.5). By the definition of the kernel
function k, we obtain

(3.9) eH(t)x(t) = x0 +
∑

0<t j<t

eH(t j)I j(x(t j)) +

∫ t

0
eH(s)σ(s) ds

for all t ∈ J. Since σ ∈ L1(J,R), one has
∫ t

0
eH(s)σ(s) ds ∈ AC(J,R). So, a direct differentiation of

(3.8) yields, (
eH(t)x(t)

)′
= eH(t)σ(t),

or
x′(t) + h(t)x(t) = σ(t),

for t ∈ J satisfying x(0) = x0 and (3.3). The proof of the lemma is complete.

Remark 3.1. We note that the kernel function k(t, s) is continuous and nonnegative real-valued
function on J × J. Moreover, supt>s k(t, s) ≤ 1.

Lemma 3.4. Given σ ∈ L1(J,R), if there is a function u ∈ PC(J,R) satisfying the impulsive
differential inequality

(3.10)

u′(t) + h(t)u(t) ≤ σ(t), t ∈ J \ {t1, . . . , tp},

u(t+
j ) − u(t−j ) ≤ I j(u(t j)),

u(0) ≤ x0,


then it satisfies the impulsive integral inequality

(3.11) u(t) ≤ x0e−H(t) +
∑

0<t j<t

k(t, t j)I j(u(t j)) +

∫ t

0
k(t, s)σ(s) ds, t ∈ J,

where the kernel function k is defined by the expression (3.7) on J × J.
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Proof. Proceeding as in the proof of Lemma 3.3, we obtain(
eH(t)u(t)

)′
≤ eH(t)σ(t), t ∈ J \ {t1, . . . , tp},

u(t+
j ) − u(t−j ) ≤ I j(u(t j)),

u(0) ≤ x0,


for j = 1, 2, . . . , p.

From the theory of integral calculus, it follows that

eH(t−1 )u(t−1 ) − eH(0)u(0) =

∫ t1

0

(
eH(s)u(s)

)′
ds

eH(t−2 )u(t−2 ) − eH(t+1 )u(t+
1 ) =

∫ t2

t1

(
eH(s)u(s)

)′
ds

...

eH(t)u(t) − eH(t+p )u(t+
p ) =

∫ t

tp

(
eH(s)u(s)

)′
ds.

Summing up the above equations,

eH(t)u(t) −
∑

0<t j<t

eH(t j)I j(u(t j)) ≤ u0 +

∫ t

0
eH(s)h(s) ds,

or

u(t) ≤ x0e−H(t) +
∑

0<t j<t

k(t, t j)I j(u(t j)) +

∫ t

0
k(t, s)σ(s) ds

for t ∈ J and the proof of the lemma is complete.
Similarly, we have the following useful result concerning the impulsive differential inequality

with reverse sign.

Lemma 3.5. Given σ ∈ L1(J,R), if there is a function v ∈ PC(J,R) satisfying the impulsive
differential inequality

(3.12)

v′(t) + h(t)v(t) ≥ σ(t), t ∈ J \ {t1, . . . , tp},

v(t+
j ) − v(t−j ) ≥ I j(v(t j)),

v(0) ≥ x0,


then it satisfies the impulsive integral inequality

(3.13) v(t) ≥ x0e−H(t) +
∑

0<t j<t

k(t, t j)I j(v(t j)) +

∫ t

0
k(t, s)σ(s) ds, t ∈ J,

where the kernel function k is defined by the expression (3.7) on J × J.

Theorem 3.1. Suppose that the hypotheses (H1) through (H4) and (H6) hold. Furthermore, if∑p
j=1 LI j < 1, then the IDE (1.1) has a impulsive solution x∗ defined on J and the sequence {xn} of

successive approximations defined by

(3.14)

x0(t) = u(t),

xn+1(t) = x0e−H(t) +
∑

0<t j<t

k(t, t j)I j(xn(t j))

+

∫ t

0
k(t, s) f (s, xn(s)) ds

for all t ∈ J, converges monotonically to x∗.
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Proof. Set E = PC(J,R). Then, by Lemma 3.2, every compact chain C in E possesses the
compatibility property with respect to the norm ‖·‖PC and the order relation � so that every compact
chain C is a Janhavi set in E.

Now, by Lemma 3.3, the IDE (1.1) is equivalent to the nonlinear impulsive integral equation

(3.15) x(t) = x0e−H(t) +
∑

0<t j<t

k(t, t j)I j(x(t j)) +

∫ t

0
k(t, s) f (s, x(s)) ds

for all t ∈ J.
Define two operatorsA and B on E by

(3.16) Ax(t) =
∑

0<t j<t

k(t, t j)I j(x(t j)), t ∈ J,

and

(3.17) Bx(t) = x0e−H(t) +

∫ t

0
k(t, s) f (s, x(s)) ds, t ∈ J.

From the continuity of the integral, it follows thatA and B define the operatorsA,B : E → E
and the impulsive integral equation (3.15) is transformed into the operator equation as
(3.18) Ax(t) + Bx(t) = x(t), t ∈ J.

Now, the problem of finding the impulsive solution of the IDE (1.1) is just reduced to finding
impulsive solution of the operator equation (3.18) on J. We show that the operators A and B
satisfy all the conditions of Theorem 2.2 in a series of following steps.

Step I:A and B are nondecreasing on E.
Let x, y ∈ E be such that x � y. Then, by hypothesis (H2), we get

Ax(t) =
∑

0<t j<t

k(t, t j)I j(x(t j)) ≥
∑

0<t j<t

k(t, t j)I j(y(t j)) = Ay(t),

for all t ∈ J. By definition of the order relation in E, we obtain Ax � Ay and a fortiori, A is a
nondecreasing operator on E. Similarly, using hypothesis (H4),

Bx(t) = x0e−H(t) +

∫ t

0
k(t, s) f (s, x(s)) ds

≥ x0e−H(t) +

∫ t

0
k(t, s) f (s, x(s)) ds

= By(t),
for all t ∈ J. Therefore, the operator B is also nondecreasing on E into itself.

Step II:A is partially bounded and partially contraction on E.
Let x ∈ E be arbitrary. Then by (H1) we have

|Ax(t)| ≤

∣∣∣∣∣∣∣∣
∑

0<t j<t

k(t, t j)I j(x(t j))

∣∣∣∣∣∣∣∣ ≤
∑

0<t j<t

∣∣∣k(t, t j)
∣∣∣ ∣∣∣I j(y(t j))

∣∣∣ ≤ p∑
j=1

MI j

for all t ∈ J. Taking the supremum over t, we obtain ‖Ax‖ ≤
∑p

j=1 MI j for all x ∈ E, so A is a
bounded operator on E. This further implies thatA is partially bounded on E.

Next, let x, y ∈ E be such that x � y. Then by (H2), we have

|Ax(t) −Ay(t)| ≤

∣∣∣∣∣∣∣∣
∑

0<t j<t

k(t, t j)I j(x(t j)) −
∑

0<t j<t

k(t, t j)I j(y(t j))

∣∣∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣∣
∑

0<t j<t

k(t, t j)
[
I j(x(t j)) − I j(x(t j))

]∣∣∣∣∣∣∣∣
≤

∑
0<t j<t

k(t, t j) LI j

[
x(t j) − x(t j)

]
≤ L ‖x − y‖PC ,

for all t ∈ J, where L =
∑p

j=1 LI j < 1. Taking the supremum over t, we obtain

‖Ax −Ay‖PC ≤ L ‖x − y‖PC

for all x, y ∈ E with xx � y. Hence A is a partially contraction on E which also implies that A is
partially continuous on E.

Step III: B is partially continuous on E.
Let {xn}n∈N be a sequence in a chain C such that xn → x, for all n ∈ N. Then

lim
n→∞
Bxn(t) = lim

n→∞

[
x0e−H(t) +

∫ t

0
k(t, s) f (s, xn(s)) ds

]
= x0e−H(t) +

∫ t

0
k(t, s)

[
lim
n→∞

f (s, xn(s))
]

ds

= x0e−H(t) +

∫ t

0
k(t, s) f (s, x(s)) ds

= Bx(t),

for all t ∈ J. This shows that Bxn converges to Bx pointwise on J.
Now, we show that {Bxn}n∈N is a quasi-equicontinuous sequence of functions in E. Let τ1, τ2 ∈

(t j, t j+1] ∩ J, j = 1, . . . , p. Then, we have that∣∣∣∣Bxn(τ2) − Bxn(τ1)
∣∣∣∣

=

∣∣∣∣∣x0e−H(τ1) +

∫ τ1

0
k(τ1, s) f (s, xn(s)) ds

−x0e−H(τ2) −

∫ τ2

0
k(τ2, s) f (s, xn(s)) ds

∣∣∣∣∣
≤

∣∣∣∣∣∫ τ1

0
k(τ1, s) f (s, xn(s)) ds −

∫ τ2

0
k(τ2, s) f (s, xn(s)) ds

∣∣∣∣∣
+

∣∣∣x0e−H(τ1) − x0e−H(τ2)
∣∣∣

≤

∣∣∣∣∣∫ τ1

0
k(τ1, s) f (s, xn(s)) ds −

∫ τ1

0
k(τ2, s) f (s, xn(s)) ds

∣∣∣∣∣
+

∣∣∣∣∣∫ τ1

0
k(τ2, s) f (s, xn(s)) ds −

∫ τ2

0
k(τ2, s) f (s, xn(s)) ds

∣∣∣∣∣
+

∣∣∣x0e−H(τ1) − x0e−H(τ2)
∣∣∣

≤ |x0|
∣∣∣e−H(τ1) − e−H(τ2)

∣∣∣
+

∫ T

0

∣∣∣k(τ1, s) − k(τ2, s)
∣∣∣ ∣∣∣ f (s, xn(s))

∣∣∣ ds
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+

∣∣∣∣∣∣
∫ τ1

τ2

|k(τ2, s)| | f (s, xn(s))| ds

∣∣∣∣∣∣
≤ |x0|

∣∣∣e−H(τ1) − e−H(τ2)
∣∣∣

+ M f

∫ T

0

∣∣∣k(τ1, s) − k(τ2, s)
∣∣∣ ds

+ M f |τ1 − τ2|

→ 0 as τ2 → τ1,

uniformly for all n ∈ N. This shows that the sequence {Bxn} of functions is quasi- equicontinuous
and so convergence Bxn → Bx is uniform in view of the arguments given in Samoilenko and
Perestyuk [21], Lakshmikantam et.al [20]. Hence B is partially continuous operator on E into
itself.

Step IV: B is partially compact operator on E.
Let C be an arbitrary chain in E. We show that B(C) is uniformly bounded and quasi-

equicontinuous set in E. First we show that B(C) is uniformly bounded. Let y ∈ B(C) be any
element. Then there is an element x ∈ C such that y = Bx. By hypothesis (H3)

|y(t)| = |Bx(t)|

=

∣∣∣∣∣∣x0e−H(t) +

∫ t

0
k(t, s) f (s, x(s)) ds

∣∣∣∣∣∣
≤

∣∣∣x0e−H(t)
∣∣∣ +

∫ T

0
|k(t, s)| | f (s, x(s))| ds

≤
∣∣∣x0e−H(t)

∣∣∣ + M f

∫ T

0
k(t, s) ds

≤ |x0| + M f T
= r,

for all t ∈ J. Taking the supremum over t we obtain ‖y‖PC ≤ ‖Bx‖PC ≤ r, for all y ∈ B(C).
Hence B(C) is uniformly bounded subset of functions E. Next we show that B(C) is an quasi-
equicontinuous set in E. Let τ1, τ2 ∈ (t j, t j+1]∩J, j = 1, . . . , p. Then proceeding with the arguments
as in Step II, it can be shown thatB(C) is an quasi-equicontinuous subset of functions in E. SoB(C)
is a uniformly bounded and quasi-equicontinuous set of functions in E and hence it is compact in
view of Arzelá-Ascoli theorem (see Samoilenko and Perestyuk [21], Lakshmikantam et al. [20]).
Consequently B : E → E is a partially compact operator of E into itself.

Step V: u is a lower impulsive solution of the operator equation x = Ax + Bx.
By hypothesis (H4), the IDE (1.1) has a lower impulsive solution u defined on J. Then, we

have

(3.19)

u′(t) + h(t)u(t) ≤ f (t, u(t)), t ∈ J \ {t1, . . . , tp},

u(t+
j ) − u(t−j ) ≤ I j(u(t j)),

u(0) ≤ x0.

 .
Now, by a direct application of the impulsive differential inequality established in Lemma 3.4

yields that

(3.20) u(t) ≤ u0 e−H(t) +
∑

0<t j<t

k(t, t j)I j(u(t j)) +

∫ t

0
k(t, s) f (s, u(s)) ds
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for t ∈ J. Furthermore, from definitions of the operators A and B it follows that u(t) ≤
Au(t) + Bu(t) for all t ∈ J. Hence u � Au + Bu. Thus the operators A and B satisfy all the
conditions of Theorem 2.2 and so the operator equation Ax + Bx = x has a impulsive solution.
Consequently the integral equation and a fortiori, the IDE (1.1) has a impulsive solution x∗ defined
on J. Furthermore, the sequence {xn}

∞
n=0 of successive approximations defined by (3.14) converges

monotonically to x∗. This completes the proof.
Next, we prove the uniqueness theorem for the IDE on the interval J.

Theorem 3.2. Suppose that the hypotheses (H1)-(H2) and (H5)-(H6) hold. Furthermore, if∑p
j=1 LI j + L f < 1, then the IDE (1.1) has a unique impulsive solution solution x∗ defined on J

and the sequence {xn} of successive approximations defined by (3.14) converges monotonically to
x∗.

Proof. Set E = PC(J,R). Then, every pair of elements in PC(J,R) has a lower bound as well as
an upper bound so it is a lattice with respect to the order relation � in E.

Now, by Lemma 3.3, the IDE (1.1) is equivalent to the nonlinear impulsive integral equation
(3.15). Define two operators A and B on E by (3.16) and (3.17). Now, consider the mapping
T : E → E defined by
(3.21) T x(t) = Ax(t) + Bx(t), t ∈ J.

Then the impulsive integral equation (3.6) is reduced to the operator equation as
(3.22) T x(t) = x(t), t ∈ J.

Now, proceeding with the arguments as in the proof of Theorem 3.1 it can shown that the
operator A is a partial Lipschitzian with Lipschitz constant LA =

∑p
j=1 LI j . Similarly, we show

that B is also a Lipschitzian on E into itself. Let x, y ∈ E be such that x � y. Then, by hypothesis
(H5), one has ∣∣∣Bx(t) − By(t)

∣∣∣ =

∣∣∣∣∣∣
∫ t

0
k(t, s) f (s, x(s)) ds −

∫ t

0
k(t, s) f (s, y(s)) ds

∣∣∣∣∣∣
≤

∫ t

0
|k(t, s)|

∣∣∣ f (s, x(s)) − f (s, y(s))
∣∣∣ ds

≤ L f

∫ t

0

∣∣∣x(t) − y(t)
∣∣∣ ds

≤ L f T ‖x − y‖PC

for all t ∈ J and x, y ∈ E. Taking the supremum over t in the above inequality, we obtain
‖Bx − By‖PC ≤ LB ‖x − y‖PC

for all x, y ∈ E, x � y, where LB = L f T . This shows that B is again a partial Lipschitzian operator
on E into itself with a Lipschitz constant LB. Next, by definition of the operator T , one has

‖T x − T y‖PC ≤ ‖Ax −Ay‖PC + ‖Bx − By‖PC ≤ (LA + LB) ‖x − y‖PC

for all x, y ∈ E, x � y, where LA + LB =
∑p

j=1 LI j + L f T < 1. Hence T is a partial contraction
operator on E into itself. Since the hypothesis (H6) holds, it is proved as in the step V of the proof of
Theorem 3.1 that the operator equation (3.22) has a lower solution u in E. Then, by an application
of Theorem 2.1, we obtain that the operator equation (3.22) and consequently the IDE (1.1) has a
unique impulsive solution x∗ and the sequence {xn} of successive approximations defined by (3.15)
converges monotonically to x∗. This competes the proof.
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Remark 3.2. The conclusion of Theorems 3.1 and 3.2 also remains true if we replace the hypothesis
(H6) with the following one.

(H7) The IDE (1.1) has an upper impulsive solution v ∈ PC(J,R).

The proofs of the existence theorems under this new hypothesis are obtained using the similar
arguments with appropriate modifications.In this case we invoke the use of Lemma 3.5 in the proofs.

Example 3.1. Given the interval J = [0, 1] of the real line R and given the points t1 = 1
5 , t2 = 2

5 ,
t3 = 3

5 and t4 = 4
5 in [0, 1], consider the initial value problem (in short IVP) for the first order

impulsive differential equations (in short IDE)

(3.23)

x′(t) + x(t) = tanh x(t), t ∈ [0, 1] \ {t1, t2, t3, t4},

x(t+
j ) − x(t−j ) = I j(x(t j)),

x(0) = 1,


for t j ∈ {

1
5 ,

2
5 ,

3
5 ,

4
5 }; where x(t−j ) and x(t−j ) are respectively, the right and left limit of x at t = t j such

that x(t j) = x(t−j ) and I j(x(t j)) are the impulsive effects at the points t = t j, j = 1, . . . , 4 given by

I j(x) =


1
2 j ·

x
1 + x

+ 2, if x > 0,

2, if x ≤ 0,

for all t ∈ [0, 1]. Here f (t, x) = tanh x, so it is continuous and bounded on [0, 1] × R with bound
M f = 2. Again, the map x 7→ f (t, x) is nondecreasing for each t ∈ [0, 1]. Next, the impulsive
function I j are continuous and bounded on R with bound MI j = 3 for each j = 1, . . . , 4. It is
easy to verify that the impulsive operators I j satisfy the hypothesis (H2) with Lipschitz constants

LI j =
1
2 j for j = 1, . . . , 4. Moreover,

∑4
j=1 LI j =

∑4
j=1

1
2 j < 1. Finally, the functions u(t) = e−t − 1

and v(t) = 15e−t + 1 are respectively the lower and upper impulsive solutions of the IDE (1.1)
defined on [0, 1]. Thus, all the conditions of Theorem 3.1 are satisfied and so the IDE (3.23) has a
impulsive solution ξ∗ and the sequence {xn} of successive approximations defined by

x0(t) = e−t − 1,

xn+1(t) = e−t +
∑

0<t j<t

k(t, t j)I j(xn(t j))

+

∫ t

0
k(t, s) tanh xn(s)) ds

for all t ∈ J, converges monotonically to x∗. Similarly, the sequence {yn} of successive
approximations defined by

y0(t) = 15e−t + 1,

yn+1(t) = e−t +
∑

0<t j<t

k(t, t j)I j(yn(t j))

+

∫ t

0
k(t, s) tanh yn(s)) ds

for all t ∈ J, also converges monotonically to the impulsive solution y∗ of the IDE (3.23) in view of
Remark 3.2.
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Remark 3.3. We note that if the IDE (1.1) has a lower impulsive solution u as well as an upper
impulsive solution v such that u � v, then under the given conditions of Theorem 3.1 it has
corresponding impulsive solutions x∗ and y∗ and these impulsive solutions satisfy the inequality

u = x0 � x1 � · · · � xn � x∗ � y∗ � yn � · · · � y1 � y0 = v.

Hence x∗ and y∗ are respectively the minimal and maximal impulsive solutions of the IDE (1.1) in
the vector segment [u, v] of the Banach space E = PC(J,R), where the vector segment [u, v] is a
set of elements in PC(J,R) defined by

[u, v] = {x ∈ PC(J,R) | u � x � v}.

This is because of the order cone K defined by (3.3) is a closed set in PC(J,R). A few details
concerning the order relation by the order cones and the Janhavi sets in an ordered Banach space
are given in Dhage [9, 10].

Remark 3.4. In this paper we considered a very simple nonlinear first order impulsive differential
equation for the existence and approximation theorem via monotone iteration principle or method,
however the same method may be extended to other complex nonlinear impulsive differential
equations of different orders with appropriate modifications for obtaining the algorithms for
approximate solution (see Dhage [1] and references therein).
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Abstract
An approximate numerical solution for the two dimensional laminar MHD radiative

boundary layer flow along a wall of wedge with appropriate suction and injection in the
presence of viscous dissipation and porous medium is considered in the present article. The
fluid is considered to be viscous and incompressible. By applying appropriate similarity
transformation, the governing flow equations have been transformed into corresponding higher
order ordinary differential equations. The flow model is shown to be controlled by a number of
flow parameters, viz. the radiation parameter, magnetic parameter, the permeability parameter,
Prandtl number, Eckert number, the Hartree pressure gradient parameter and suction-injection
parameter. The system of governing differential equations is solved numerically by shooting
method and numerical calculations are carried out for different values of above mentioned
dimensionless parameters. An analysis of the drawn results predicts that the velocity boundary
layer and thermal boundary layer are influenced appreciably by the suction-injection, radiation
and viscous dissipation at the wall of wedge.
2010 Mathematics Subject Classifications: 76D10, 76E25, 76S05, 76W05, 80A20.
Keywords and phrases: MHD, Boundary layer, Heat transfer, Suction-Injection, radiation,
porous media.

1 Introduction
The flow problems combined with heat transfer over a wedge shaped configuration is encountered
in numerous thermal engineering applications such as geothermal systems, heat exchangers, crude
oil extraction, the flow in the desert cooler, nuclear waste management and thermal insulation.
Historically in such types of flow problems, the popular Falkner-Skan transformation is obeyed
to convert the boundary layer partial differential equations into the ordinary differential equations.
In fact, a model of such fluid flow over a wedge shaped bodies was first formulated by Falkner
and Skan[12] to illustrate the applications of Prandtls boundary layer phenomena. In the later
years Hartree [13] studied the similar problem and gave the numerical results for shear stress with
different wedge angles. The other pioneer was Eckert[10], who investigated Falkner-Skan flow past
an isothermal wedge and gave initial heat transfer values. In MHD, we consider the electrically
conducting fluid flow with magnetic characteristics. MHD plays significant role in plasma studies,
MHD power generators, construction of heat exchangers etc. There is plenty of literature available
in which fluid flows have been studied with or without MHD under different fluid properties using
the prominent Falkner-Skan transformations. The following studies give the clear insight of the
fundamental problem of the wedge flow and associated applications with different fluid properties.
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Thermal characteristics in boundary layer wedge flow under different fluid parameters were
extensively investigated by Chen [9] and Watanabe [27]. Kafoussias and Nanousis [15] studied the
laminar boundary layer wedge flow with MHD and suction injection effects. Yih [28] reported
the uniform blowing effect on forced convection flow along a wedge with heat flux. Further
Anjalidevi et al. [3] and Kandasamy et al. [16] investigated the thermal stratification and chemical
reaction effects with heat source and concentration in the presence of suction/injection. Martin
and Boyd [18] reported the Falkner-Skan flow with slip conditions and derived the significant
effects on flow. On the similar lines Sattar [24] used unsteady fluid flow past a wedge and
draw important conclusions. Ashwani et al. [4], Abbasbandy et al. [2] and Khan et al. [17]
also provided the significant contribution to the MHD wedge flow with different governing fluid
parameters. Arthur et al. [5] studied the stagnation point flow over a porous surface with heat
transfer effects and viscous dissipation. El-Dabe et al. [11] and Srinivasharya et al. [23] considered
non-Newtonian fluid including Casson fluid and nanofluid in their respective studies and gave
substantial contribution to the wedge flow literature. Stretching wedge and convective heat transfer
on the boundaries have been studied by Nagendramma et al. [20]. Increasing technical importance
and variety of applications of wedge flow leads many young minds of globe such as Majety et
al. [19], Ullah et al. [26], Alam et al. [1] and Ramesh et al. [22]. Recently Ibrahim and Tulu
[14] reported the MHD boundary layer flow and heat transfer considering nanofluid and viscous
dissipation, in porous media.

In the present analysis we consider the numerical study of MHD boundary layer flow along a
wedge with radiation and suction-injection effects. Suction and injection of a fluid through surfaces
can give the desired heat transfer rates. Injection or blowing through porous bounding heated or
cooled surfaces is widely used in boundary layer control. The effect of various flow parameters
on velocity and temperature fields are derived and analyzed with tabular and graphical mode of
representation.

2 Mathematical formulation
In the present analysis, we propose two dimensional MHD boundary layer flow along a wedge
with radiation and suction-injection effects. As proposed in Fig. 2.1[9], x-coordinate is considered
parallel to the wedge and y-coordinate is taken along the free stream. Tw is temperature at wall of
the wedge and T∞ is ambient temperature. The fluid regime is considered to have constant fluid
properties. A constant magnetic field of strength B0 is assumed in the normal direction to the wall
of wedge. The induced magnetic field is not taken into consideration as it is too small to compare
with the applied magnetic field as suggested by Ullah et al. [26].

Figure 2.1: Flow analysis along the wall of wedge
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Following the above assumptions together with boundary layer approximation, the governing
flow equations i.e. continuity, momentum and energy equations can be expressed as (Srini-
vasacharya et al. [22] and Alam et al. [26]) following:

(2.1)
∂u
∂x

+
∂v
∂y

= 0,

(2.2) u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ f

∂p
∂x

+ υ f
∂2u
∂y2 −

(
σB2

o

ρ f
+
υ f

Ko

)
u,

(2.3) u
∂T
∂x

+ v
∂T
∂y

= α f
∂2T
∂y2 +

υ f

Cp

(
∂u
∂y

)2

−
∂qr

∂y
.

The appropriate boundary conditions as per formulation are prescribed as:
(2.4) u = 0 v = −vw(x) T = Tw at y = 0

u = U(x) = U∞xm T → T∞ as y→ ∞.

Here vw(x) > 0 is the velocity of suction and vw(x) < 0 is the velocity of injection. vw(x) =

v0x
m−1

2 is a prescribed velocity considered at the wall of the wedge and v0 is the initial strength of
suction. Again u and v are velocities in x and y directions respectively and ρ f is fluid density, υ f is
kinematic viscosity, α f is thermal diffusivity and Cp is specific heat of the fluid.

Equation (2.2) shows that pressure p in the boundary layer must be equal to that of free stream
for any prescribed value of x . As velocity does not change in free stream, so there is no vorticity
involved. In such a case simple Bernoullis equation can be used as suggested by Falkner and Skan
[1]. Fluid velocity outside the boundary layer is taken as U(x) = U∞xm. For a uniform stream, the
equation (2.2) can be expressed as (Falkner and Skan [12])

(2.5) −
1
ρ f

∂p
∂x

= U
dU
dx

+

(
σB2

o

ρ f
+
υ f

Ko

)
U.

On using equation (2.5) into equation (2.2), the momentum equation becomes

(2.6)
∂u
∂x

+
∂v
∂y

= U
dU
dx

+ υ f
∂2u
∂y2 +

(
σB2

o

ρ f
+
υ f

Ko

)
(U − u).

In the above equations, x is measured from tip of the wedge, x is the Falkner-Skan power law
parameter, β = 2m

1+m is the Hartree pressure gradient parameter corresponding to β = Ω
π

for the
total angle Ω of the wedge as mentioned in Fig. 2.1. Positive Falkner-Skan power law parameter
m represents favorable pressure gradient while negative value of m represents adverse pressure
gradient. (Nagendramma et al. [20]).

The radiative heat flux qr mentioned in equation (2.3) is modelled as per Rosseland approxi-
mation [21] by the following

(2.7) qr = −
4α
3β

∂T 4

∂y
,

In the above equation, α represents Stefan-Boltzmann constant and β represents the mean
absorption constant. The above approximation holds good at points optically far from the boundary
surface and fair for intensive absorption. Now we assume that the temperature difference with in
the fluid flow varies as a linear function of temperature so that expanding the term T 4 by the well
known Taylor series about T∞ and omitting the higher-order terms
(2.8) T 4 � 4T 3

∞T − 3T 4
∞.

Using (2.8) into the equation (2.7), we get

(2.9) qr = −
16αT 3

∞

3β
δT
δy
.

Now substituting the value of qr from (2.9) in (2.3), we get

(2.10) u
∂T
∂x

+ v
∂T
∂y

=

(
α f +

16αT 3
∞

3β

)
∂2T
∂y2 +

υ f

Cp

(
∂u
∂y

)2

.
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3 Similarity Analysis
In order to solve above system of equations, we apply suitable similarity transformation to convert
above partial differential equations into higher order ordinary differential equations. We choose
stream function ψ in such a manner that continuity equation (2.1) is identically satisfied, for this

(3.1) u =
∂ψ

∂y
and v = −

∂ψ

∂x
.

Following the transformation suggested by Bansal [6], the corresponding momentum equation
(2.6) and energy equation (2.10) can be converted into ordinary differential equation as:

ψ(x, η) =

√
2

1 + m
υ f U∞x

m−1
2 f (η),(3.2)

η = y

√
1 + m

2
U∞
υ f

x
m−1

2 ,

θ(η) =
T − T∞
Tw − T∞

.

In the above transformation equations, η is dimensionless similarity variable, f (η)nondimensional
stream function, f ′(η)is nondimensional velocity and θ(η) is nondimensional temperature. Now
using the above transformations and approximation suggested by Kafoussias et al. [15], we get the
following transformed equations together with boundary conditions,

d3 f
dη3 + f

d2 f
dη2 + β

1 − (
d f
dη

)2 +
1

1 + m
(M + K)

(
1 −

d f
dη

)
= 0,(3.3) [

1 +
4N
3

]
d2θ

dη2 + Pr

 f
dθ
dη

+ Ec
(

d2θ

dη2

)2 = 0,(3.4)

with associated boundary conditions:

f =
2

1 + m
S , f ′ = 0 and θ = 1 at η = 0,(3.5)

f ′ → 1 and θ → 0 as η→ ∞.

The non-dimensional parameters involved in the present study can be summarized as follows:
Radiation parameter N =

4αT 3
∞

βκ
, Magnetic parameter M =

2σB2
o x1−m

ρ f U∞
,

Eckert number Ec = U2

Cp(Tw−T∞) , Prandtl number Pr =
υ f

α f
,

Permeability parameter K =
2υ f x1−m

KoU∞
, Suction parameter S = vo

√
2

υ f U∞(m+1) > 0,
and S > 0 for injection parameter.
In the present problem, the physical quantities of technical importance are the skin- friction
coefficient C f and local Nusselt number Nux, which may be described as follows:
C f = 2τw

ρU2(x) , where τw is the surface shear stress which may be expressed as:

τw = µ f

(
∂u
∂y

)
y=0

.
So the nondimensional skin friction coefficient C f is

(3.6) C f

√
Rex = 2

√
2

m + 1
f ′′(0), where Rex is reynold number.

Similarly local Nusselt number can be expressed as:
Nux =

xqw
k(Tw−T∞) , where qw is surface heat flux that can be defined as

qw = −k f

(
δT
δy

)
y=0

.
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Hence the nondimensional local Nusselt number is

(3.7)
Nux
√

Rex
= −

√
m + 1

2
θ′(0).

4 Numerical solution
The system of differential equations (3.3) and (3.4) with boundary conditions (3.5) are solved
by shooting method. For this, the above equations are converted into the system of first order
differential equations as mentioned below:

(4.1) f1 = f , f2 = f ′, f3 = f ′′, f4 = θ, f5 = θ′.

Using above notations the first order differential equations are as follows

f ′3 = f1 f3 − β
(
1 − f 2

2

)
−

1
1 + m

(M + K)(1 − f2),(4.2)

f ′5 = −
3Pr

3 + 4N

(
f1 f5 + Ec f 2

3

)
,(4.3)

with boundary conditions

f1(0) =
2

1 + m
S , f2(0) = 1, f4(0) = 1,(4.4)

f2(∞) = 0 and f4(∞) = 0.

For the solution of above equations, we require f3(0) and f5(0) , but no such values are available
at the boundary. So according to shooting technique, we apply initial guess for f3(0) and f5(0).
Then we compare the numerical values for f2 and f4 at η∞ with the boundary conditions and adjust
the values of f3 and f5. Secant method is applied for better approximation. The above procedure
is carried out until the proper accuracy is achieved.

5 Result and Discussion
Numerical solutions for the velocity and temperature profiles across the boundary layer for
different values of flow parameters have been obtained.

Table 5.1 describes the influence of various governing flow parameters on skin friction
coefficient and local Nusselt number. It is observed that the skin friction coefficient enhances
with increasing Falkner-Skan power law parameter, Magnetic parameter, Permeability parameter
and suction parameter while reduces with increasing injection parameter. Also the local Nusselt
number enhances with increasing Prandtl number and suction parameter and shows opposite
behavior while increasing Falkner-Skan power law parameter, Magnetic parameter, Permeability
parameter, Eckert number, Radiation parameter and injection parameter.
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Table 5.1: Numerical computation of skin friction coefficient − f ′′(0) and local Nusselt number −θ′(0) for different physical parameters

m M K Pr Ec N S − f ′′(0) −θ′(0)
0.0 0.4 .05 0.7 0.5 0.2 0.2 1.066156 0.458095
.14 1.177544 0.432976
.33 1.273992 0.408410
.50 1.332252 0.392289
.14 0.0 0.995269 0.444004

0.5 1.218687 0.430197
1.0 1.405526 0.416433
0.5 0.0 1.198301 0.431582

0.2 1.277789 0.426039
0.4 1.352354 0.420533
0.6 1.422781 0.415079
0.1 0.2 1.238719 0.358333

0.7 1.238719 0.433060
2.0 1.238719 0.586770
0.7 0.1 1.238719 0.569115

0.5 1.238719 0.433060
1.0 1.238719 0.262997
0.5 0.0 1.238719 0.460142

0.5 1.238719 0.408067
2.0 1.238719 0.365363
0.2 0.5 1.602576 0.602457

1.0 2.293073 0.919708
1.5 3.049663 1.261584
0.0 1.025276 0.333150
-0.1 0.928828 0.287969
-0.2 0.839800 0.246321

Table 5.2: Numerical computation of skin friction coefficient f ′′(0) for various values of Falkner-Skan power law parameter m for the values
M = K = Ec = N = S = 0 and Pr=0.73.

f ′′(0)
m Present Value Ashwani[16] Ullah[25] Wubshet[28]
1429 0.7322 0.7320 0.7320 0.73200
.2000 0.8022 0.8021 0.8021 0.80213
.3333 0.9278 0.9277 0.9277 0.92765
1.000 1.2327 1.2326 1.2326 1.23258

Table 5.2 reveals that value of for various different values of Falkner-Skan power law parameter
finds excellent agreement with the previous published results such as Ashwani et al.[4], Ullah et
al.[26] and Wubshet et al.[14]. The above confirmation shows that present results are also accurate.

Figure 5.1 shows the effect of Falkner-Skan power law parameter on velocity profile. It is
observed that while increasing the Falkner-Skan power law parameter velocity boundary layer
accelerates. The similar behavior is seen in the case of Hartree pressure gradient parameter β.
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Figure 5.1: Effect of m on velocity profile for M = 0.4 and K = 0.5

Increment in wedge angle β results into lesser space for fluid flow. Hence velocity boundary layer
thickness affects accordingly. Figure 5.2 reports the significant effect of Magnetic parameterM
on the velocity field which shows that increasing the value of magnetic parameter results into
enhancement on fluid velocity. The effect of permeability parameter on velocity field is described
in Figure 5.3. According to this while increasing the permeability parameter velocity is slightly
increased on the porous surface and reduces the boundary layer thickness. The similar effects of
m,M,K on velocity have been reported by Wubshet et al. [14].

The effect of Prandtl number on temperature profile is reported in Figure 5.4. It clearly
describes that increasing the value of Prandtl number results into decrease in temperature field.
This is because of increasing the Prandtl number tends to reduce the thermal diffusivity of the fluid
and causes the weak penetration of heat inside the fluid. The influence of viscous dissipation i.e.
Eckert number on the temperature field is shown in Figure 5.5. The Eckert number describes the
conversion the kinetic number into internal energy by work done against the viscous fluid stress.
It is observed that increasing the value of Eckert number causes the rise in the temperature. The
effect of radiation parameter on temperature field is reported in Figure 5.6. It is observed from
figure that on increasing the value of results into the significant increment of temperature.

The effect of suction and injection parameters on velocity as well as in temperature fields are
reported in Figures 5.7-5.10. Suction and injection are effective tools to control the flow field.
Fluid flow can be made laminar using the suction injection. The effect of suction S on velocity
field is reported in Figure 5.7 which describes that increasing the amount of suction tends into
significant increment in fluid velocity. This is due to creation of more space for fluid particles
in which they can move with greater velocity. Similarly the effect of suction parameter S on
temperature field is shown in Figure 5.8. It is observed that increasing the value of S results
into decrease in the temperature which can be used to cool the fluid flow. Similarly the effect of
injection parameter S on velocity field is reported in Figure 5.9. It is shown that increasing the
value of injection parameter tends to lower the velocity. Also injection causes significant rise in
temperature field which is described in Figure 5.10

6 Conclusion
Numerical solution for the two dimensional laminar MHD boundary layer flow along a wall of
wedge with uniform suction and injection in the presence of radiation and porous medium has been
discussed. Using the suitable similarity transformation, the governing partial differential equations
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Figure 5.2: Effect of M on velocity profile for m = .14 and K = .05

Figure 5.3: Effect of K on velocity profile for M = 0.4 and K = .14

Figure 5.4: Effect of Pr on temperature profile for Ec = 0.5 and N = 0.2
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Figure 5.5: Effect of Ec on temperature profile for Pr = 0.73 and N = 0.2

Figure 5.6: Effect of N on temperature profile for Pr = 0.73 and Ec = 0.5

Figure 5.7: Effect of S on velocity profile for M = 0.4 and K = 0.5
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Figure 5.8: Effect of S on temperature profile for Pr = 0.73 and N = 0.2

Figure 5.9: Effect of S on velocity profile for M = 0.4 and K = 0.5

Figure 5.10: Effect of S on temperature profile for Pr = 0.73 and N = 0.2
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are converted into the higher order ordinary differential equations and then solved numerically
applying shooting technique. From the aforesaid discussion following conclusions are made:

1. The velocity of fluid enhances with increase in suction parameter, permeability parameter,
magnetic parameter and Falkner-Skan power law parameter while reduces with increase in
injection parameter.

2. The temperature of fluid enhances with increase in injection parameter, radiation and Eckert
number while reduces with increase in Prandtl number and suction parameter.

3. The skin friction coefficient enhances with increasing magnetic parameter, permeability
parameter, Falkner-Skan power law parameter and suction parameter.

4. The Nusselt number is a decreasing function for the permeability parameter , Falkner-Skan
power law parameter, magnetic parameter, radiation parameter, Eckert number and injection
parameter.

Acknowledgement. Authors are very much thankful to the Editor and the referees for their
valuable and helpful suggestions which improve the quality of paper.
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