Jñānābha, Vol. 50(1) (2020), 65-71

(Dedicated to Honor Professor H.M. Srivastava on His 80th Birth Anniversary Celebrations)

A GENERALIZED SUBCLASS OF ALPHA CONVEX BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER

By

Gurmeet Singh¹, Gagandeep Singh² and Gurcharanjit Singh³

¹ Department of Mathematics, GSSDOS Khalsa College, Patiala-147001, Punjab, India Email:meetgur111@gmail.com

² Department of Mathematics, Khalsa College, Amritsar-143001, Punjab, India Email:kamboj.gagandeep@yahoo.in

³ Department of Mathematics, Punjabi University, Patiala-147002, Punjab, India Department of Mathematics, GNDU College, Chungh-143001, Punjab, India

Email:dhillongs82@yahoo.com (Received: January 22, 2020; Revised: May 02, 2020)

DOI: https://doi.org/10.58250/jnanabha.2020.50108

Abstract

In this present investigation a subclass of alpha convex bi-univalent functions of complex order in the open unit disc $U = \{z : |z| < 1\}$, defined by Salagean operator and quasi-subordination is discussed. The estimates on the initial coefficients $|a_2|$ and $|a_3|$ for the functions in this subclass are studied. The results obtained in this paper would generalise those already proved by various authors.

2010 Mathematics Subject Classifications: 30C45.

Keywords and phrases: Bi-univalent functions, Salagean operator, Quasi-subordination, Coefficient estimate, Univalent functions.

1 Introduction and Preliminaries

Let A be the class of functions of the form

(1.1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disc $U = \{z : |z| < 1\}$. By S, we denote the class of functions $f(z) \in A$ and univalent in U.

Let us denote by B, the class of bounded or Schwarz functions w(z) satisfying w(0) = 0 and $|w(z)| \le 1$ which are analytic in the open unit disc U and of the form

$$w(z) = \sum_{n=1}^{\infty} c_n z^n, z \in U.$$

A function $f \in S$ is said to be starlike if it satisfies the inequality

$$Re\left(\frac{zf'(z)}{f(z)}\right) > 0 (z \in U).$$

The class of starlike functions is denoted by S^* .

A function $f \in S$ is said to be convex if it satisfies the inequality

$$Re\left(\frac{(zf'(z))'}{f'(z)}\right) > 0 (z \in U).$$

The class of convex functions is denoted by K.

A function $f \in S$ is said to be α -convex if it satisfies the inequality

$$Re\left((1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\frac{(zf'(z))'}{f'(z)}\right) > 0 (0 \le \alpha \le 1, z \in U).$$

The class of α -convex functions is denoted by $M(\alpha)$ and was introduced by Mocanu [8]. In particular $M(0) \equiv S^*$ and $M(1) \equiv K$.

For $f \in A$, Salagean [14] introduced the following operator:

$$D^{0}f(z) = f(z), D^{1}f(z) = zf'(z),$$

and in general,

$$D^n f(z) = D(D^{n-1} f(z)), n \in N$$

or equivalent to

$$D^{n} f(z) = z + \sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, n \in N_{0} = N \cup (0).$$

The inverse functions of the functions in the class S may not be defined on the entire unit disc U although the functions in the class S are invertible. However using Koebe-one quarter theorem [4] it is obvious that the image of U under every function $f \in S$ contains a disc of radius $\frac{1}{4}$. Hence every univalent function f has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z(z \in U)$$

and

$$f(f^{-1}(w)) = w \left(|w| < r_0(f) : r_0(f) \ge \frac{1}{4} \right),$$

where

$$(1.2) g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U.

By Σ , we denote the class of bi-univalent functions in U defined by (1.1).

Consider two functions f and g analytic in U. We say that f is subordinate to g (symbolically f < g) if there exists a bounded function $u(z) \in B$ for which f(z) = g(u(z)). This result is known as principle of subordination.

Robertson [13] introduced the concept of quasi-subordination in 1970. If f and ϕ are analytic functions, then we say that f is quasi-subordinate to ϕ (symbolically $f \prec_q \phi$) if there exists analytic functions k and ω with $|k(z)| \le 1$, $\omega(0) = 0$ and $|\omega(z)| < 1$ such that

$$\frac{f(z)}{k(z)} < \phi(z),$$

or it is equivalent to

$$f(z) = k(z)\phi(\omega(z)).$$

In particular for k(z) = 1, $f(z) = \phi(\omega(z))$, so that $f(z) < \phi(z)$ in U. It is obvious to see that the quasi-subordination is a generalization of the usual subordination. The work on quasi-subordination is quite extensive which finds interesting dimensions in some recent investigations [1,5,7,12].

Lewin [6] discussed the class Σ of bi-univalent functions and obtained the bound for the second coefficient. Brannan and Taha [2] investigated certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike, starlike and convex functions. They introduced bi-starlike functions and bi-convex functions and obtained estimates on the initial coefficients. Also the subclasses of bi-univalent functions defined by Salagean operator were studied by various authors [3,9,11,15].

The earlier work on bi-univalent functions defined by quasi-subordination and Salagean operator motivate us to define the following subclass:

Also we assume that $\phi(z)$ is analytic in U with $\phi(0) = 1$ and let

(1.4)
$$\phi(z) = 1 + B_1 z + B_2 z^2 + \dots (B_1 \in R^+)$$

and

$$(1.5) k(z) = A_0 + A_1 z + A_2 z^2 + \dots (|k(z)| \le 1, z \in U).$$

To avoid repetition, throughout the paper we assume that $0 \le \alpha \le 1$ and $z \in U$.

Definition 1.1. A function $f \in \Sigma$ given by (1.1) is said to be in the class $M_{\Sigma}(n, \alpha, \gamma, \phi)$ if it satisfy the following conditions:

(1.6)
$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{z(D^{n-1}f(z))'}{D^{n-1}f(z)} + \alpha \frac{z(D^n f(z))'}{D^n f(z)} - 1 \right] <_q (\phi(z) - 1)$$

and

(1.7)
$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{w(D^{n-1}g(w))'}{D^{n-1}g(w)} + \alpha \frac{w(D^n g(w))'}{D^n g(w)} - 1 \right] <_q (\phi(w) - 1),$$

where $g = f^{-1}$ and $z, w \in U$.

The following observations are obvious:

- (i) $M_{\Sigma}(n, \alpha, 1, \phi) \equiv M_{\Sigma}(n, \alpha, \phi)$.
- (ii) $M_{\Sigma}(1, \alpha, 1, \phi) \equiv M_{\Sigma}(\alpha, \phi)$.
- (iii) $M_{\Sigma}(1,0,1,\phi) \equiv S_{\Sigma}^*(\phi)$, the class of bi-starlike functions defined with quasi subordination.
- (iv) $M_{\Sigma}(1, 1, 1, \phi) \equiv K_{\Sigma}(\phi)$, the class of bi-conves functions defined with quasi subordination. For deriving our main results, we need the following lemma:

Lemma 1.1. [10] If $p \in P$ be family of all functions p analytic in U for which Re[p(z)] > 0 and have the form $p(z) = 1 + p_1 z + p_2 z^2 + ...$ for $z \in U$, then $|p_n| \le 2$ for each n.

2 Coefficient bounds for the function class $M_{\Sigma}(n, \alpha, \gamma, \phi)$

Theorem 2.1. If $f \in M_{\Sigma}(n, \alpha, \gamma, \phi)$, then

(2.1)
$$|a_2| \le \min \left[\frac{|A_0 \gamma| B_1}{(n+\alpha+1)}, \sqrt{\frac{|A_0 \gamma| (B_1 + |B_2 - B_1|)}{(n+\alpha+1)}} \right]$$

and

$$(2.2) |a_{3}| \leq \min \left[\frac{|A_{0}\gamma|(B_{1} + |B_{2} - B_{1}|)}{(n + \alpha + 1)} + \frac{|A_{1}\gamma|B_{1} + |A_{0}\gamma|B_{1}}{(n + 2)(n + 2\alpha + 1)} \right]$$

$$\frac{|\gamma|}{(n + 2)(n + 2\alpha + 1)} \left[|\gamma| \left[\frac{(n + 1)^{2} + \alpha(2n + 3)}{(n + \alpha + 1)^{2}} \right] B_{1}^{2} |A_{0}|^{2} + (B_{1} + |B_{2} - B_{1}|) |A_{0}| + |A_{1}|B_{1} \right].$$

Proof. As $f \in M_{\Sigma}(n, \alpha, \gamma, \phi)$, so by **Definition 1.1**, using the concept of quasi-subordination, there exists Schwarz functions r(z) and s(z) and analytic function k(z) such that

(2.3)
$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{z(D^{n-1}f(z))'}{D^{n-1}f(z)} + \alpha \frac{z(D^n f(z))'}{D^n f(z)} - 1 \right] = k(z)(\phi(r(z)) - 1)$$

and

(2.4)
$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{w(D^{n-1}g(w))'}{D^{n-1}g(w)} + \alpha \frac{w(D^n g(w))'}{D^n g(w)} - 1 \right] = k(w)(\phi(s(w)) - 1),$$

where $r(z) = 1 + r_1 z + r_2 z^2 + ...$ and $s(w) = 1 + s_1 w + s_2 w^2 + ...$

Define the functions p(z) and q(z) by

(2.5)
$$r(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[c_1 z + (c_2 - \frac{c_1^2}{2}) z^2 + \dots \right]$$

and

(2.6)
$$s(z) = \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left[d_1 z + (d_2 - \frac{d_1^2}{2}) z^2 + \dots \right].$$

Using (2.5) and (2.6) in (2.3) and (2.4) respectively, it yields

(2.7)
$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{z(D^{n-1}f(z))'}{D^{n-1}f(z)} + \alpha \frac{z(D^n f(z))'}{D^n f(z)} - 1 \right] = k(z) \left[\phi \left(\frac{p(z) - 1}{p(z) + 1} \right) - 1 \right]$$

and

$$(2.8) \qquad \frac{1}{\gamma} \left[(1 - \alpha) \frac{w(D^{n-1}g(w))'}{D^{n-1}g(w)} + \alpha \frac{w(D^n g(w))'}{D^n g(w)} - 1 \right] = k(w) \left[\phi \left(\frac{q(w) - 1}{q(w) + 1} \right) - 1 \right].$$

But

$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{z(D^{n-1} f(z))'}{D^{n-1} f(z)} + \alpha \frac{z(D^n f(z))'}{D^n f(z)} - 1 \right]$$

$$(2.9) \qquad = \frac{1}{\gamma} \left[(n+\alpha+1)a_2z + \left[(n+2)(n+2\alpha+1)a_3 - ((n+1)^2 + \alpha(2n+3))a_2^2 \right] z^2 + \dots \right]$$

and

(2.10)
$$\frac{1}{\gamma} \left[(1 - \alpha) \frac{w(D^{n-1}g(w))'}{D^{n-1}g(w)} + \alpha \frac{w(D^n g(w))'}{D^n g(w)} - 1 \right]$$
$$= \frac{1}{\gamma} \left[-(n + \alpha + 1)a_2 w + \left[(n + 2)(n + 2\alpha + 1)(2a_2^2 - a_3) - ((n + 1)^2 + \alpha(2n + 3))a_2^2 \right] w^2 + \dots \right].$$

Again using (1.4) and (1.5) in (2.5) and (2.6) respectively, we get

$$(2.11) k(z) \left[\phi \left(\frac{p(z) - 1}{p(z) + 1} \right) - 1 \right] = \frac{1}{2} A_0 B_1 c_1 z + \left[\frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2 c_1^2}{4} \right] z^2 + \dots$$

and

$$(2.12) \quad k(w) \left[\phi \left(\frac{q(w) - 1}{q(w) + 1} \right) - 1 \right] = \frac{1}{2} A_0 B_1 d_1 w + \left[\frac{1}{2} A_1 B_1 d_1 + \frac{1}{2} A_0 B_1 \left(d_2 - \frac{d_1^2}{2} \right) + \frac{A_0 B_2 d_1^2}{4} \right] w^2 + \dots$$

Using (2.9) and (2.11) in (2.7) and equating the coefficients of z and z^2 , we get

(2.13)
$$\frac{(n+\alpha+1)}{\gamma}a_2 = \frac{1}{2}A_0B_1c_1$$

and

$$(2.14) \frac{(n+2)(n+2\alpha+1)a_3 - ((n+1)^2 + \alpha(2n+3))a_2^2}{\gamma} = \frac{1}{2}A_1B_1c_1 + \frac{1}{2}A_0B_1\left(c_2 - \frac{c_1^2}{2}\right) + \frac{A_0B_2}{4}c_1^2.$$

Again using (2.10) and (2.12) in (2.8) and equating the coefficients of w and w^2 , we get

(2.15)
$$-\frac{(n+\alpha+1)}{\gamma}a_2 = \frac{1}{2}A_0B_1d_1$$

and

$$(2.16) \quad \frac{(n+2)(n+2\alpha+1)(2a_2^2-a_3)-((n+1)^2+\alpha(2n+3))a_2^2}{\gamma}$$

$$= \frac{1}{2}A_1B_1d_1 + \frac{1}{2}A_0B_1\left(d_2 - \frac{d_1^2}{2}\right) + \frac{A_0B_2}{4}d_1^2.$$

From (2.13) and (2.15), it is clear that

$$(2.17) c_1 = -d_1$$

and

(2.18)
$$a_2 = \frac{A_0 B_1 c_1 \gamma}{2(n+\alpha+1)} = -\frac{A_0 B_1 d_1 \gamma}{2(n+\alpha+1)}.$$

Therefore on applying triangle inequality and using *Lemma* 1.1, (2.18) yields

$$(2.19) |a_2| \le \frac{|A_0 \gamma| B_1}{(n+\alpha+1)}.$$

Adding (2.14) and (2.16), it yields

$$(2.20) \ \frac{2[(n+2)(n+2\alpha+1)-(n+1)^2-\alpha(2n+3)]}{\gamma}a_2^2 = \frac{1}{2}A_0B_1(c_2+d_2) + \frac{A_0(B_2-B_1)}{4}(c_1^2+d_1^2).$$

Using *Lemma* 1.1 and on applying triangle inequality in (2.20), we obtain

$$|a_2|^2 \le \frac{|A_0\gamma|(B_1 + |B_2 - B_1|)}{(n + \alpha + 1)}.$$

So, the result (2.1) can be easily obtained from (2.19) and (2.21).

Now subtracting (2.16) from (2.14), we obtain

(2.22)
$$a_3 = a_2^2 + \frac{A_1 B_1 (c_1 - d_1) + A_0 B_1 (c_2 - d_2)}{4(n+2)(n+2\alpha+1)} \gamma.$$

Applying triangle inequality and using *Lemma* 1.1 and (2.21) in (2.22), it yields

$$|a_3| \le \frac{|A_0|(B_1 + |B_2 - B_1|)}{(n + \alpha + 1)} + \frac{|A_1\gamma|B_1 + |A_0\gamma|B_1}{(n + 2)(n + 2\alpha + 1)}.$$

From (2.13) and (2.14), we have

(2.24)

$$|a_3| \le \frac{|\gamma|}{(n+2)(n+2\alpha+1)} \left[|\gamma| \left[\frac{(n+1)^2 + \alpha(2n+3)}{(n+\alpha+1)^2} \right] B_1^2 |A_0|^2 + (B_1 + |B_2 - B_1|) |A_0| + |A_1| B_1 \right].$$

Again from (2.15) and (2.17), it gives

(2.25)

$$|a_3| \le \frac{|\gamma|}{(n+2)(n+2\alpha+1)} \left[|\gamma| \left[\frac{n^2 + 2n\alpha + 5\alpha + 3}{(n+\alpha+1)^2} \right] B_1^2 |A_0|^2 + (B_1 + |B_2 - B_1|) |A_0| + |A_1| B_1 \right].$$

Since R.H.S. of (2.25) is greater than that of (2.24), so result (2.2) is obvious.

For $\gamma = 1$, **Theorem 2.1** gives the following result:

Corollary 2.1. If $M_{\Sigma}(n, \alpha, \phi)$, then

$$|a_2| \le min. \left[\frac{|A_0|B_1}{(n+\alpha+1)}, \sqrt{\frac{|A_0|(B_1+|B_2-B_1|)}{(n+\alpha+1)}} \right]$$

and

$$\begin{split} |a_3| & \leq \min \left[\frac{|A_0|(B_1 + |B_2 - B_1|)}{(n + \alpha + 1)} + \frac{|A_1|B_1 + |A_0|B_1}{(n + 2)(n + 2\alpha + 1)}, \\ & \frac{1}{(n + 2)(n + 2\alpha + 1)} \left[\left[\frac{(n + 1)^2 + \alpha(2n + 3)}{(n + \alpha + 1)^2} \right] B_1^2 |A_0|^2 + (B_1 + |B_2 - B_1|)|A_0| + |A_1|B_1 \right] \right]. \end{split}$$

For $\gamma = 1$ and n = 1, the following result is obvious from **Theorem 2.1**:

Corollary 2.2. If $f(z) \in M_{\Sigma}(\alpha, \phi)$, then

$$|a_2| \le min. \left[\frac{|A_0|B_1}{(2+\alpha)}, \sqrt{\frac{|A_0|(B_1+|B_2-B_1|)}{(2+\alpha)}} \right]$$

and

$$|a_3| \le \min \left[\frac{|A_0|(B_1 + |B_2 - B_1|)}{(2 + \alpha)} + \frac{|A_1|B_1 + |A_0|B_1}{6(1 + \alpha)}, \frac{1}{6(1 + \alpha)} \left[\left[\frac{4 + 5\alpha}{(2 + \alpha)^2} \right] B_1^2 |A_0|^2 + (B_1 + |B_2 - B_1|)|A_0| + |A_1|B_1 \right] \right].$$

For $\gamma = 1, \alpha = 0$ and n = 1, **Theorem 2.1** gives the following result:

Corollary 2.3. If $f(z) \in S_{\Sigma}^*(\phi)$, then

$$|a_2| \le min. \left[\frac{|A_0|B_1}{2}, \sqrt{\frac{|A_0|(B_1 + |B_2 - B_1|)}{2}} \right]$$

and

$$|a_3| \le \min \left[\frac{|A_0|(B_1 + |B_2 - B_1|)}{2} + \frac{|A_1|B_1 + |A_0|B_1}{6}, \frac{1}{6} \left[B_1^2 |A_0|^2 + (B_1 + |B_2 - B_1|)|A_0| + |A_1|B_1 \right] \right].$$

For $\gamma = 1, \alpha = 1$ and n = 1, the following result is obvious from *Theorem* 2.1:

Corollary 2.4. If $f(z) \in K_{\Sigma}(\phi)$, then

$$|a_2| \le min. \left[\frac{|A_0|B_1}{3}, \sqrt{\frac{|A_0|(B_1 + |B_2 - B_1|)}{3}} \right]$$

and

$$|a_3| \le \min \left[\frac{|A_0|(B_1 + |B_2 - B_1|)}{3} + \frac{|A_1|B_1 + |A_0|B_1}{12}, \right.$$
$$\left. \frac{1}{12} \left[B_1^2 |A_0|^2 + (B_1 + |B_2 - B_1|)|A_0| + |A_1|B_1 \right] \right].$$

3. Conclusion

This paper is concerened with a very generalized subclass of alpha convex bi-univalent functions of complex order in the open unit disc. The class is associated with Salagean operator and is defined by means of quasi-subordination. We have studied the estimates of the initial coefficients $|a_2|$ and $|a_3|$ for the functions in this class. By giving the particular values to the various paprameters like α , γ , n and q, the results already proved by earlier researchers can be easily obtained. So this paper will work as a milestone to the future researchers in this field.

Acknowledgement. The authors are very much grateful to the Editor and referee for their suggestions to bring the paper in its present form.

References

- [1] O. Altintas and S. Owa, Mazorizations and quasi-subordinations for certain analytic functions, *Proc. Japan Acad. Ser.A.* **68**(7) (1992),181-185.
- [2] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoni, N. S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: *KFAS Proceedings Series*, **3**, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also *Studia Univ. Babes-Bolyai Math.*, **31(2)**, (1986), 70-77.
- [3] Murat Caglar and Erhan Deniz, Initial Coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, *Commun. Fac. Sci. Univ. Auk. Ser. Al Math. Stat.* **66(1)**(2017), 85-91.
- [4] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
- [5] S. Y. Lee, Quasi-subordinate functions and coefficient conjectures, *J. Korean Math. Soc.* **12(1)**(1975), 43-50.
- [6] M. Lewin, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.*, **18**(1967),63-68.
- [7] N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bi-starlike and bi-convex functions based on quasi-subordination, *Abstract and applied analysis*, Art. ID 3102960, 6 pages, 2016.
- [8] P.T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, *Mathematica* (*Cluj*), **11(34)**(1969), 127-133.
- [9] G. Murugusundaramoorthy, C. Selvaraj and O. S. Babu, Coefficient estimates for Pascu-type subclasses of bi-univalent functions based on subordination, *Int. J. of Non-linear Science*, **19(1)**(2015), 47-52.
- [10] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
- [11] C. Ramachandran and D. Kavitha, Coefficient estimates for a subclass of bi-univalent functions defined by Salagean operator using quasi subordination, *Applied Mathematical Sciences*, **11**(35)(2017), 1725-1732.
- [12] F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subordinate functions, *Bull. Austral. Math. Soc.*, **43**(2)(1991), 317-324.
- [13] M. S. Robertson, Quasi-subordination and coefficient conjecture, *Bull. Amer. Math. Soc.*, **76**(1970), 1-9.
- [14] G. S. Salagean, Subclasses of Univalent Functions, *Chapter in Lecture Notes in Mathematics*, *Springer-Verlag*, Vol. **1013**, 1983, 362-372.
- [15] Bilal Seker and Veysi Mehmetoglu, Coefficient bounds for new subclasses of bi-univalent functions, *New Trends in Mathematical Sciences*, **4(3)**(2016), 197-203.