Jñānābha, Vol. 50(1) (2020), 14-19

(Dedicated to Honor Professor H.M. Srivastava on His 80th Birth Anniversary Celebrations)

ENERGY OF SOME GRAPHS OF PRIME GRAPH OF A RING

By

Sandeep S. Joshi

Department of Mathematics,
D.N.C.V.P's Shirish Madhukarrao Chaudhari College,
Jalgaon - 425 001, Maharashtra, India
sandeep.s.joshi07@gmail.com

Kishor F. Pawar

Department of Mathematics, School of Mathematical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon - 425 001, Maharashtra, India kfpawar@nmu.ac.in

(Received: September 10, 2019; Revised: March 04, 2020)
DOI: https://doi.org/10.58250/jnanabha.2020.50101

Abstract

Let R be a commutative ring and PG(R) is a graph whose vertices are all the elements of ring R and two vertices are adjacent if their product is zero. In this article, we study the energy of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring \mathbb{Z}_p and also find the energy of $PG_1(\mathbb{Z}_p)$ and $PG_2(\mathbb{Z}_p)$, p prime. A General SCILAB Software code for our calculation is also presented.

2010 Mathematics Subject Classifications: 05C25, 05C15, 13E15.

Keywords and phrases: Ring, Prime graph of a Ring PG(R), Quasi-total graph, Energy.

1 Introduction

The study of graph theory for a commutative ring began when Beck in [3] introduced the notion of zero divisor of the graph. The graphs $\Gamma_1(R)$ and $\Gamma_2(R)$ are defined by R. Sen Gupta et al. in [4]. Another graph structure associated to a ring called prime graph was introduced by Satyanarayana et al. [2]. Prime graph is defined as a graph whose vertices are all elements of the ring and any two distinct vertices $x, y \in R$ are adjacent if and only if xRy = 0 or yRx = 0. This graph is denoted by PG(R). Pawar and Joshi in [10] gave a simple formulation for finding the degrees of vertices of prime graph PG(R) as well as it's complement $(PG(R))^c$. Also the number of triangles in PG(R) and $(PG(R))^c$ have been calculated using simple combinatorial approach. We have introduced the prime graphs $PG_1(R)$ in [9] and $PG_2(R)$ in [8] of a ring and discussed all the results related to degree of vertices, Eulerianity, planarity and girth.

In third section of this paper we give definition and some examples of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring \mathbb{Z}_n . In last four sections we find the energy of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring \mathbb{Z}_p and also find the energy of $PG_1(\mathbb{Z}_p)$ and $PG_2(\mathbb{Z}_p)$, where p is prime and give a general SCILAB software code for finding the energy of any Graph.

2 Preliminary Definitions

Here we are listing some preliminary definitions. For basic terminology and definitions the reader is referred to [2], [5].

Definition 2.1. [4] For a ring R, a simple undirected graph G = (V, E) is said to be a graph $\Gamma_1(R)$ if all the nonzero elements of R as vertices, and two distinct vertices a and b are adjacent if and only if either $a \cdot b = 0$ or $b \cdot a = 0$ or a + b is a unit.

Definition 2.2. [4] For a ring R, a simple undirected graph G = (V, E) is said to be a graph $\Gamma_2(R)$ if all the nonzero elements of R as vertices, and two distinct vertices a and b are adjacent if and only if either $a \cdot b = 0$ or $b \cdot a = 0$ or a + b is a zero divisor (including zero).

Definition 2.3. [9] The prime graph $PG_1(R)$ is a graph with all the elements of a ring R as vertices, and any two distinct vertices x, y are adjacent if and only if $x \cdot y = 0$ or $y \cdot x = 0$ or $x + y \in U(R)$, the set of all units of R.

Definition 2.4. [8] The prime graph $PG_2(R)$ is a graph with all the elements of a ring R as vertices, and any two distinct vertices x, y are adjacent if and only if $x \cdot y = 0$ or $y \cdot x = 0$ or $x + y \in Z(R)$, the set of all zero divisors of R.

Definition 2.5. [6] The Energy of the prime graph of a ring $PG(\mathbb{Z}_n)$ is defined as the sum of the absolute values of all the eigen values of its adjacency matrix M(PG(R)). i.e. if $\lambda_1, \lambda_2, ..., \lambda_n$ are n eigen values of M(PG(R)), then the energy of $PG(\mathbb{Z}_n)$ is -

$$E(PG(R)) = \sum_{i=1}^{n} |\lambda_i|.$$

3 1-Quasitotal and 2-Quasitotal Prime graph of a Ring

From the definitions of satyanarayana Bhavanari and his co-authors in [1], we have define here Quasitotal graphs of prime graph of a ring.

Definition 3.1. Let PG(R) be a prime graph of a ring with vertex set V(PG(R)) and edge set E(PG(R)). The 1-Quasitotal graph of prime graph of a ring, (denoted by $Q_1(PG(R))$) and is defined as follows:

The vertex set of $Q_1(PG(R))$, that is $V(Q_1(PG(R))) = V(PG(R)) \cup E(PG(R))$. Two vertices a, b in $V(Q_1(PG(R)))$ are adjacent if they satisfy one of the following conditions:

- 1. a, b are in V(PG(R)) and $ab \in E(PG(R))$
- 2. a, b are in E(PG(R)) and a, b are incident in PG(R).

Example 3.1. Consider \mathbb{Z}_n , the ring of integers modulo n.

Let $R = \mathbb{Z}_3$. The vertex set $V(PG(R)) = \{0, 1, 2\}$. Since, 0R1 = 0, 0R2 = 0 and edge set $E(PG(R)) = \{01, 02\}$. So, the vertex set $V(Q_1(PG(R))) = \{v_1, v_2, v_3, e_1, e_2\}$ and edge set $E(Q_1(PG(R))) = \{v_1v_2, v_1v_3, e_1e_2\}$ and the graph is as shown in figure below-

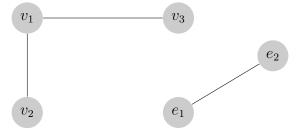


Figure 3.1: $Q_1(PG(\mathbb{Z}_3))$

- 1. $Q_1(PG(R))$ is a graph without loops and multiple edges, i.e. the graph is simple.
- 2. The graph of $Q_1(PG(\mathbb{Z}_p))$, p prime, is a disconnected graph containing two components the first component is itself $PG(\mathbb{Z}_p)$ and the other component is a complete graph K_{p-1} on p-1 vertices.

Definition 3.2. Let PG(R) be a prime graph of a ring with vertex set V(PG(R)) and edge set E(PG(R)). The 2-Quasitotal graph of prime graph of a ring, (denoted by $Q_2(PG(R))$) and is defined as follows:

The vertex set of $Q_2(PG(R))$, that is $V(Q_2(PG(R))) = V(PG(R)) \cup E(PG(R))$. Two vertices a, b in $V(Q_2(PG(R)))$ are adjacent in $Q_2(PG(R))$ in case one of the following holds:

- 1. a, b are in V(PG(R)) and $ab \in E(PG(R))$
- 2. a is in V(PG(R)); b is in E(PG(R)); and a, b are incident in PG(R).

Example 3.2. Consider \mathbb{Z}_n , the ring of integers modulo n.

Let $R = \mathbb{Z}_3$. So, the vertex set $V(Q_2(PG(R))) = \{v_1, v_2, v_3, e_1, e_2\}$ and edge set $E(Q_2(PG(R))) = \{v_1v_2, v_1v_3, v_1e_1, v_1e_2, v_2e_1, v_3e_2\}$ and the graph is as shown in figure below-

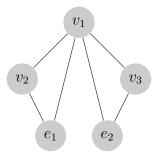


Figure 3.2: $Q_2(PG(\mathbb{Z}_3))$

- 1. $Q_2(PG(R))$ is a simple graph, i.e without multiple edges and loops.
- 2. The graph of $Q_2(PG(\mathbb{Z}_p))$, p prime, is a connected graph containing p-1 number of triangles having the vertex zero is a common vertex.

4 Energy of $Q_1(PG(\mathbb{Z}_p))$

Example 4.1. For p = 2, the adjacency matrix of $Q_1(PG(\mathbb{Z}_2))$ is

$$M(Q_1(PG(\mathbb{Z}_2))) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The eigen values are -1, 0, 1. Therefore, $E(Q_1(PG(\mathbb{Z}_2))) = 2$.

Example 4.2. For p = 3, the adjacency matrix of $Q_1(PG(\mathbb{Z}_3))$ is

$$M(Q_1(PG(\mathbb{Z}_3))) = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Therefore, $E(Q_1(PG(\mathbb{Z}_3))) = 4.8284$.

From the SCILAB Software we found here some values of Energy of $Q_1(PG(\mathbb{Z}_p))$ given in

Table 4.1

Sr.No.	n	Graph	Energy
1	2	$Q_1(PG(\mathbb{Z}_2))$	2
2	3	$Q_1(PG(\mathbb{Z}_3))$	4.8284
3	5	$Q_1(PG(\mathbb{Z}_5))$	10
4	7	$Q_1(PG(\mathbb{Z}_7))$	14.8989
5	11	$Q_1(PG(\mathbb{Z}_{11}))$	24.3245
6	13	$Q_1(PG(\mathbb{Z}_{13}))$	28.9282

As per the above discussion we conclude the following Theorem -

Theorem 4.1. If p is a prime number then energy of $Q_1(PG(\mathbb{Z}_p))$ is $(2p-4)+2\sqrt{p-1}$.

5 Energy of $Q_2(PG(\mathbb{Z}_p))$

Example 5.1. For p = 2, the adjacency matrix of $Q_2(PG(\mathbb{Z}_2))$ is

$$M(Q_2(PG(\mathbb{Z}_2))) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

The eigen values are -1, -1, 2. Therefore, $E(Q_2(PG(\mathbb{Z}_2))) = 4$.

Example 5.2. For p = 3, the adjacency matrix of $Q_2(PG(\mathbb{Z}_3))$ is

$$M(Q_2(PG(\mathbb{Z}_3))) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Therefore, $E(Q_2(PG(\mathbb{Z}_3))) = 7.1231$.

From the SCILAB Software we found here some values of Energy of $Q_2(PG(\mathbb{Z}_p))$ given in the

Table 5.1

Sr.No.	n	Graph	Energy
1	2	$Q_2(PG(\mathbb{Z}_2))$	4
2	3	$Q_2(PG(\mathbb{Z}_3))$	7.1231
3	5	$Q_2(PG(\mathbb{Z}_5))$	12.7445
4	7	$Q_2(PG(\mathbb{Z}_7))$	18
5	11	$Q_2(PG(\mathbb{Z}_{11}))$	28
6	13	$Q_2(PG(\mathbb{Z}_{13}))$	32.8488

As per the above discussion we conclude the following Theorem -

Theorem 5.1. If p is a prime number then energy of $Q_2(PG(\mathbb{Z}_p))$ is $(2p-3)+\sqrt{7p+(p-7)}$.

6 Energy of $PG_1(\mathbb{Z}_p)$

Example 6.1. For p=2, the adjacency matrix of $PG_1(\mathbb{Z}_2)$ is

$$M(PG_1(\mathbb{Z}_2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The eigen values are -1, 1. Therefore, $E(PG_1(\mathbb{Z}_2)) = 2$.

Example 6.2. For p = 3, the adjacency matrix of $PG_1(\mathbb{Z}_3)$ is

$$M(PG_1(\mathbb{Z}_3)) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Therefore, $E(PG_1(\mathbb{Z}_3)) = 2.8284$.

From the SCILAB Software we found here some values of Energy of $PG_1(\mathbb{Z}_p)$ given in

Table 6.1

Sr.No.	n	Graph	Energy	
1	2	$PG_1(\mathbb{Z}_2)$	2	Ì
2	3	$PG_1(\mathbb{Z}_3)$	2.8284	
3	5	$PG_1(\mathbb{Z}_5)$	6.4721]
4	7	$PG_1(\mathbb{Z}_7)$	10.3245	
5	11	$PG_1(\mathbb{Z}_{11})$	18.1980	
6	13	$PG_1(\mathbb{Z}_{13})$	22.1655	

As per the above discussion we conclude the following Theorem -

Theorem 6.1. If p is an odd prime number then energy of $PG_1(\mathbb{Z}_p)$ is $(p-3) + \sqrt{(p-1)^2 + 4}$.

7 Energy of $PG_2(\mathbb{Z}_p)$

Example 7.1. For p = 2, the adjacency matrix of $PG_2(\mathbb{Z}_2)$ is $M(PG_2(\mathbb{Z}_2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$M(PG_2(\mathbb{Z}_2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

18

The eigen values are -1, 1. Therefore, $E(PG_2(\mathbb{Z}_2)) = 2$.

Example 7.2. For p = 3, the adjacency matrix of $PG_2(\mathbb{Z}_3)$ is

$$M(PG_2(\mathbb{Z}_3)) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

From the SCILAB Software we found here some values of Energy of $PG_2(\mathbb{Z}_p)$ given in the

Table 7.1

Sr.No.	n	Graph	Energy	
1	2	$PG_2(\mathbb{Z}_2)$	2	
2	3	$PG_2(\mathbb{Z}_3)$	4	
3	5	$PG_2(\mathbb{Z}_5)$	7.1231] .
4	7	$PG_2(\mathbb{Z}_7)$	10	
5	11	$PG_2(\mathbb{Z}_{11})$	15.4031	
6	13	$PG_2(\mathbb{Z}_{13})$	18	

As per the above discussion we conclude the following *Table 7.1*.

Theorem 7.1. If p is an odd prime number then energy of $PG_2(\mathbb{Z}_p)$ is $(p-2) + \sqrt{3p + (p-3)}$.

General Scilab software code to find Energy of a Graph:

- (1) A = [...; ...; ...]: To create a matrix that has multiple rows, separate, the rows with semicolons.
- (2) poly(A, x): Gives the polynomial of matrix A in variable x.
- (3) spec(A): Gives the Eigen Values of matrix A.
- (4) abs(spec(A)): Gives absolute values of Eigen values of matrix A.
- (5) sum(abs(spec(A))): Gives the Energy of a Graph.

Acknowledgments

The authors would like to express their sincere thanks to the Editors and referee of $J\tilde{n}\bar{a}n\bar{a}bha$ for their valuable suggestions to bring the paper in its present form and also to the parents and family for their inseparable support and prayers.

References

- [1] S. Bhavanari, S. Devanaboina, S. P. Kuncham, Line Graphs and Quasi-total Graphs, *International Journal of Computer Applications*, **105**(3)(2014), 0975-8887.
- [2] S. Bhavanari, S. P. Kuncham, Nagaraju Dasari, Prime Graph of a Ring, *J. of Combinatorics, Information & System Sciences*, **35**(1-2)(2010), 27-42.
- [3] Beck I., Coloring of Commutative Rings, *Journal of Algebra*, **116**(1)(1988), 208-226.
- [4] R. Sen Gupta, The Graph $\Gamma_2(R)$ over a ring R, *International Journal of Pure and Applied Mathematics*, **86**(6)(2013), 893-904.
- [5] F. Harary, Graph Theory Third ed., *Addison-Wesley*, Reading, MA, 1972.
- [6] Sandeep S. Joshi and Kishor F. Pawar, Energy, Wiener index and Line graph of Prime graph of a Ring, *International Journal of Mathematical Combinatorics*, **3**(2018), 74-80.
- [7] S. S. Joshi and K. F. Pawar, Coloring of Prime Graph $PG_1(R)$ and $PG_2(R)$ of a Ring, *Palestine Journal of Mathematics*, **9**(1)(2020), 97-104.
- [8] S. S. Joshi and K. F. Pawar, On Prime Graph $PG_2(R)$ of a Ring, *International Journal of Mathematical Combinatorics*, **3**(2019), 11-22.
- [9] Kishor F. Pawar and Sandeep S. Joshi, The Prime Graph $PG_1(R)$ of a ring, *Palestine Journal of Mathematics*, **6**(1)(2017), 153-158.
- [10] Kishor F. Pawar and Sandeep Joshi, Study of Prime Graph of a Ring, *Thai Journal of Mathematics*, **17**(2)(2019), 369-377.