ENERGY OF SOME GRAPHS OF PRIME GRAPH OF A RING

By
Sandeep S. Joshi
Department of Mathematics,
D.N.C.V.P’s Shirish Madhukar Rao Chaudhari College,
Jalgaon - 425 001, Maharashtra, India
sandeep.s.joshi07@gmail.com

Kishor F. Pawar
Department of Mathematics, School of Mathematical Sciences,
Kavayitri Bahinabai Chaudhari North Maharashtra University,
Jalgaon - 425 001, Maharashtra, India
kfpawar@nmu.ac.in

Abstract
Let \(R \) be a commutative ring and \(PG(R) \) is a graph whose vertices are all the elements of ring \(R \) and two vertices are adjacent if their product is zero. In this article, we study the energy of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring \(\mathbb{Z}_p \) and also find the energy of \(PG_1(\mathbb{Z}_p) \) and \(PG_2(\mathbb{Z}_p) \), \(p \) prime. A General SCILAB Software code for our calculation is also presented.

Keywords and phrases: Ring, Prime graph of a Ring \(PG(R) \), Quasi-total graph, Energy.

1 Introduction
The study of graph theory for a commutative ring began when Beck in [3] introduced the notion of zero divisor of the graph. The graphs \(\Gamma_1(R) \) and \(\Gamma_2(R) \) are defined by R. Sen Gupta et al. in [4]. Another graph structure associated to a ring called prime graph was introduced by Satyanarayana et al. [2]. Prime graph is defined as a graph whose vertices are all elements of the ring and any two distinct vertices \(x, y \in R \) are adjacent if and only if \(xRy = 0 \) or \(yRx = 0 \). This graph is denoted by \(PG(R) \). Pawar and Joshi in [10] gave a simple formulation for finding the degrees of vertices of prime graph \(PG(R) \) as well as its complement \((PG(R))^c \). Also the number of triangles in \(PG(R) \) and \((PG(R))^c \) have been calculated using simple combinatorial approach. We have introduced the prime graphs \(PG_1(R) \) in [9] and \(PG_2(R) \) in [8] of a ring and discussed all the results related to degree of vertices, Eulerianity, planarity and girth.

In third section of this paper we give definition and some examples of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring \(\mathbb{Z}_n \). In last four sections we find the energy of 1-Quasitotal and 2-Quasitotal Prime Graph of a Ring \(\mathbb{Z}_p \) and also find the energy of \(PG_1(\mathbb{Z}_p) \) and \(PG_2(\mathbb{Z}_p) \), where \(p \) is prime and give a general SCILAB software code for finding the energy of any Graph.

2 Preliminary Definitions
Here we are listing some preliminary definitions. For basic terminology and definitions the reader is referred to [2], [5].
Definition 2.1. [4] For a ring R, a simple undirected graph $G = (V, E)$ is said to be a graph $\Gamma_1(R)$ if all the nonzero elements of R as vertices, and two distinct vertices a and b are adjacent if and only if either $a \cdot b = 0$ or $b \cdot a = 0$ or $a + b$ is a unit.

Definition 2.2. [4] For a ring R, a simple undirected graph $G = (V, E)$ is said to be a graph $\Gamma_2(R)$ if all the nonzero elements of R as vertices, and two distinct vertices a and b are adjacent if and only if either $a \cdot b = 0$ or $b \cdot a = 0$ or $a + b$ is a zero divisor (including zero).

Definition 2.3. [9] The prime graph $PG_1(R)$ is a graph with all the elements of a ring R as vertices, and any two distinct vertices x, y are adjacent if and only if $x \cdot y = 0$ or $y \cdot x = 0$ or $x + y \in U(R)$, the set of all units of R.

Definition 2.4. [8] The prime graph $PG_2(R)$ is a graph with all the elements of a ring R as vertices, and any two distinct vertices x, y are adjacent if and only if $x \cdot y = 0$ or $y \cdot x = 0$ or $x + y \in Z(R)$, the set of all zero divisors of R.

Definition 2.5. [6] The Energy of the prime graph of a ring $PG(\mathbb{Z}_n)$ is defined as the sum of the absolute values of all the eigen values of its adjacency matrix $M(PG(R))$. i.e. if $\lambda_1, \lambda_2, ..., \lambda_n$ are n eigen values of $M(PG(R))$, then the energy of $PG(\mathbb{Z}_n)$ is -

$$E(PG(R)) = \sum_{i=1}^{n} |\lambda_i|.$$

3 1-Quasitotal and 2-Quasitotal Prime graph of a Ring

From the definitions of satyanarayana Bhavanari and his co-authors in [1], we have define here Quasitotal graphs of prime graph of a ring.

Definition 3.1. Let $PG(R)$ be a prime graph of a ring with vertex set $V(PG(R))$ and edge set $E(PG(R))$. The 1-Quasitotal graph of prime graph of a ring, (denoted by $Q_1(PG(R))$) and is defined as follows:

The vertex set of $Q_1(PG(R))$, that is $V(Q_1(PG(R))) = V(PG(R)) \cup E(PG(R))$. Two vertices a, b in $V(Q_1(PG(R)))$ are adjacent if they satisfy one of the following conditions:

1. a, b are in $V(PG(R))$ and $ab \in E(PG(R))$
2. a, b are in $E(PG(R))$ and a, b are incident in $PG(R)$.

Example 3.1. Consider \mathbb{Z}_n, the ring of integers modulo n.

Let $R = \mathbb{Z}_3$. The vertex set $V(PG(R)) = \{0, 1, 2\}$. Since, 0R1 = 0, 0R2 = 0 and edge set $E(PG(R)) = \{01, 02\}$. So, the vertex set $V(Q_1(PG(R))) = \{v_1, v_2, v_3, e_1, e_2\}$ and edge set $E(Q_1(PG(R))) = \{v_1v_2, v_1v_3, e_1e_2\}$ and the graph is as shown in figure below-

![Figure 3.1: Q_1(PG(\mathbb{Z}_3))](image-url)
1. $Q_1(PG(R))$ is a graph without loops and multiple edges, i.e. the graph is simple.

2. The graph of $Q_1(PG(\mathbb{Z}_p))$, p prime, is a disconnected graph containing two components - the first component is itself $PG(\mathbb{Z}_p)$ and the other component is a complete graph K_{p-1} on $p - 1$ vertices.

Definition 3.2. Let $PG(R)$ be a prime graph of a ring with vertex set $V(PG(R))$ and edge set $E(PG(R))$. The 2-Quasitotal graph of prime graph of a ring, (denoted by $Q_2(PG(R))$) and is defined as follows:

The vertex set of $Q_2(PG(R))$, that is $V(Q_2(PG(R))) = V(PG(R)) \cup E(PG(R))$. Two vertices a, b in $V(Q_2(PG(R)))$ are adjacent in $Q_2(PG(R))$ in case one of the following holds:

1. a, b are in $V(PG(R))$ and $ab \in E(PG(R))$
2. a is in $V(PG(R))$; b is in $E(PG(R))$; and a, b are incident in $PG(R)$.

Example 3.2. Consider \mathbb{Z}_n, the ring of integers modulo n.

Let $R = \mathbb{Z}_3$. So, the vertex set $V(Q_2(PG(\mathbb{Z}_3))) = \{v_1, v_2, v_3, e_1, e_2\}$ and edge set $E(Q_2(PG(\mathbb{Z}_3))) = \{v_1v_2, v_1v_3, v_1e_1, v_1e_2, v_2e_1, v_3e_2\}$ and the graph is as shown in figure below-

![Figure 3.2: $Q_2(PG(\mathbb{Z}_3))$](image)

1. $Q_2(PG(R))$ is a simple graph, i.e without multiple edges and loops.

2. The graph of $Q_2(PG(\mathbb{Z}_p))$, p prime, is a connected graph containing $p - 1$ number of triangles having the vertex zero is a common vertex.

4 **Energy of $Q_1(PG(\mathbb{Z}_p))$**

Example 4.1. For $p = 2$, the adjacency matrix of $Q_1(PG(\mathbb{Z}_2))$ is

$$M(Q_1(PG(\mathbb{Z}_2))) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The eigen values are $-1, 0, 1$. Therefore, $E(Q_1(PG(\mathbb{Z}_2))) = 2$.

Example 4.2. For $p = 3$, the adjacency matrix of $Q_1(PG(\mathbb{Z}_3))$ is

$$M(Q_1(PG(\mathbb{Z}_3))) = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Therefore, $E(Q_1(PG(\mathbb{Z}_3))) = 4.8284$.

16
From the SCILAB Software we found here some values of Energy of $Q_1(PG(Z_p))$ given in Table 4.1.

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>n</th>
<th>Graph</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$Q_1(PG(Z_2))$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>$Q_1(PG(Z_3))$</td>
<td>4.8284</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>$Q_1(PG(Z_5))$</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>$Q_1(PG(Z_7))$</td>
<td>14.8989</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>$Q_1(PG(Z_{11}))$</td>
<td>24.3245</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>$Q_1(PG(Z_{13}))$</td>
<td>28.9282</td>
</tr>
</tbody>
</table>

As per the above discussion we conclude the following Theorem -

Theorem 4.1. If p is a prime number then energy of $Q_1(PG(Z_p))$ is $(2p - 4) + 2\sqrt{p - 1}$.

5 Energy of $Q_2(PG(Z_p))$

Example 5.1. For $p = 2$, the adjacency matrix of $Q_2(PG(Z_2))$ is

$$M(Q_2(PG(Z_2))) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

The eigen values are $-1, -1, 2$. Therefore, $E(Q_2(PG(Z_2))) = 4$.

Example 5.2. For $p = 3$, the adjacency matrix of $Q_2(PG(Z_3))$ is

$$M(Q_2(PG(Z_3))) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Therefore, $E(Q_2(PG(Z_3))) = 7.1231$.

From the SCILAB Software we found here some values of Energy of $Q_2(PG(Z_p))$ given in the Table 5.1.

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>n</th>
<th>Graph</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$Q_2(PG(Z_2))$</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>$Q_2(PG(Z_3))$</td>
<td>7.1231</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>$Q_2(PG(Z_5))$</td>
<td>12.7445</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>$Q_2(PG(Z_7))$</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>$Q_2(PG(Z_{11}))$</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>$Q_2(PG(Z_{13}))$</td>
<td>32.8488</td>
</tr>
</tbody>
</table>

As per the above discussion we conclude the following Theorem -

Theorem 5.1. If p is a prime number then energy of $Q_2(PG(Z_p))$ is $(2p - 3) + \sqrt{7p + (p - 7)}$.

17
6 Energy of $PG_1(\mathbb{Z}_p)$

Example 6.1. For $p = 2$, the adjacency matrix of $PG_1(\mathbb{Z}_2)$ is

$$M(PG_1(\mathbb{Z}_2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The eigen values are $-1, 1$. Therefore, $E(PG_1(\mathbb{Z}_2)) = 2$.

Example 6.2. For $p = 3$, the adjacency matrix of $PG_1(\mathbb{Z}_3)$ is

$$M(PG_1(\mathbb{Z}_3)) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Therefore, $E(PG_1(\mathbb{Z}_3)) = 2.8284$.

From the SCILAB Software we found here some values of Energy of $PG_1(\mathbb{Z}_p)$ given in the

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>n</th>
<th>Graph</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$PG_1(\mathbb{Z}_2)$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>$PG_1(\mathbb{Z}_3)$</td>
<td>2.8284</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>$PG_1(\mathbb{Z}_5)$</td>
<td>6.4721</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>$PG_1(\mathbb{Z}_7)$</td>
<td>10.3245</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>$PG_1(\mathbb{Z}_{11})$</td>
<td>18.1980</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>$PG_1(\mathbb{Z}_{13})$</td>
<td>22.1655</td>
</tr>
</tbody>
</table>

As per the above discussion we conclude the following Theorem -

Theorem 6.1. If p is an odd prime number then energy of $PG_1(\mathbb{Z}_p)$ is $(p - 3) + \sqrt{(p - 1)^2 + 4}$.

7 Energy of $PG_2(\mathbb{Z}_p)$

Example 7.1. For $p = 2$, the adjacency matrix of $PG_2(\mathbb{Z}_2)$ is

$$M(PG_2(\mathbb{Z}_2)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The eigen values are $-1, 1$. Therefore, $E(PG_2(\mathbb{Z}_2)) = 2$.

Example 7.2. For $p = 3$, the adjacency matrix of $PG_2(\mathbb{Z}_3)$ is

$$M(PG_2(\mathbb{Z}_3)) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Therefore, $E(PG_2(\mathbb{Z}_3)) = 4$.

From the SCILAB Software we found here some values of Energy of $PG_2(\mathbb{Z}_p)$ given in the
Table 7.1

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>(n)</th>
<th>Graph</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>(PG_2(\mathbb{Z}_2))</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(PG_2(\mathbb{Z}_3))</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(PG_2(\mathbb{Z}_5))</td>
<td>7.1231</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>(PG_2(\mathbb{Z}_7))</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>(PG_2(\mathbb{Z}_{11}))</td>
<td>15.4031</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>(PG_2(\mathbb{Z}_{13}))</td>
<td>18</td>
</tr>
</tbody>
</table>

As per the above discussion we conclude the following Table 7.1.

Theorem 7.1. If \(p \) is an odd prime number then energy of \(PG_2(\mathbb{Z}_p) \) is \((p - 2) + \sqrt{3p} + (p - 3)\).

General Scilab software code to find Energy of a Graph:

(1) \(A = [...;...;...] \): To create a matrix that has multiple rows, separate, the rows with semicolons.

(2) \(\text{poly}(A,x) \): Gives the polynomial of matrix \(A \) in variable \(x \).

(3) \(\text{spec}(A) \): Gives the Eigen Values of matrix \(A \).

(4) \(\text{abs(spec(A))} \): Gives absolute values of Eigen values of matrix \(A \).

(5) \(\text{sum(abs(spec(A)))} \): Gives the Energy of a Graph.

Acknowledgments

The authors would like to express their sincere thanks to the Editors and referee of Jñānābha for their valuable suggestions to bring the paper in its present form and also to the parents and family for their inseparable support and prayers.

References

