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In this paper, a proof of an extension of Bailey’s theorem ([2],
sect. 1,) to two-dimensional series is given. The basis of this was
considered by Abel more than one hundred years earlier.

Theorem 1. If the values of the parameters and the variables
are such that the following series either converge or terminate, then
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where X=(— 11" U-W+E+K ypjy, and ¥=(—I)!"U-WH+E+K sz/p

and where (@), =I'(a+m)/T(a), (B)n=(aD)m @)m---(@s)m ©tC.,

Hl(ﬁ) (-51) (89 ‘x / .

and -F . o) , (the Kampe de Feriet function)
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where () n= jiilz (@) iy ELC.

The author fezls that the above notation is more suited to the

present needs than a contracted notation for the Kampe de Feriet
function.

Before proceeding to the main proof, the following lemma is
established, _
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where «, §, u, v are functions of p and g only, then
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provided that the series are convergent.
Proof. Consider a gquadruply infinite array of objects which can

be represented as points in four-dimensional space. We may form
the sum
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by summing parallel to the coordinate axes. Also, we may form the
sum
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by summing first along two pairs of diagonals_ and then ocutwardly
perpendicular to each set of diagonals, respectively.

By hypothesrs the quadruple series is assumed to be- convergent
so that it may be wrltten
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s0 that the lemma is established.

The main proof of Theorem I is as follows,
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If we write 5 for p—m and ¢ for g—=,
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80 it is found that
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Theorem I now follows by combining these results with the
lemma, it is an extension of Bailey’s Theorem as applied by L. I.
Slater ({3], p. 60). When the inner series are summable, more

straightforward, direct transformations involving Kampé de Feriet
functions are obtainable which it is hoped to discuss in further
papers,
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