D_{RS}-TRIANGULATION BASED ON 2^{N}-RAY ALGORITHM

By

R.S. Patel, Ankit Agarwal and Lakshmi Narayan Tripathi

Department of Mathematics, Satna Postgraduate College, Satna, M.P.

E-mail: rssumit1963@rediffmail.com, ankitagr9506@gmail.com

(Received: November 05, 2010; Revised: March 20, 2011)

ABSTRACT

In order to improve the efficiency of the 2^N-Ray algorithm; we propose a variant of the D_{RS}-Triangulation. A nice property of this triangulation is that it subdivides all the subsets, on which the 2^N-Ray algorithm works, into simplices according to the D_{RS}-Triangulation. Numerical tests shows that 2^N-Ray algorithm based on $D_{1/2}$-Triangulation is much more efficient.

2010 Mathematics Subject Classification: 55M20, 54H25; Secondary 57Q15

Keywords: Artificial algorithm, triangulation, admissible labelling, nodes, barycentre, extra layer.

1. **Introduction.** Various triangulations have been studied by Dang [1], Dang and Talman [2], Scarf [4], Todd [6,7], Vander and Talman [8], Vertgeim [9]. The 2^n-ray algorithm was proposed by Wright in [10] to compute solutions of nonlinear equations. The 2^n-ray algorithm partitions \mathbb{R}^n into 2^n cones which have the same vertex. Then a triangulation of \mathbb{R}^n subdivides each cone into simplices. The 2^n-ray algorithm starts at the vertex and leaves it along an edge of some cone. It follows a sequence of adjacent simplices with varying dimension. Under some mild conditions, the 2^n-ray algorithm terminates at an n-dimensional simplex that yields an approximate solutions to the system of non-linear equations. Since these 2^n cones have 2^n edges, each of which is a ray, the 2^n–ray algorithm has 2^n possible ray to leave the vertex.

Motivated by this work, we have tried to develop a new D_{RS}–triangulation. The D_{RS}-triangulation based on the 2^n ray algorithm is much more efficient than 2^n ray algorithm proposed by Wright [10] as well as K_1 triangulation introduced by Kuhn in [3] and J_1 triangulation given by Todd [5].

2. **Notations and Definitions.** The following notations have been used in this paper:

- \mathbb{R}: Set of real numbers,
- \mathbb{Z}: Set of all integers,
- \mathbb{N}: Set of positive integers (1,2,...,n),
- \mathbb{N}^0: Set of all non-negative integers $\mathbb{N} \cup \{0\}$,
R^n: n dimensionally space, having co-ordinates indexed 1 through n,
R^{n+1}: $n+1$ dimensional space, with coordinates indexed 0 through n,
π: Group of permutation on $(1,2,...,n)$ and $\pi + 1$ group of permutation on $(0,1,2,...,n)$,
u^i: i^{th} unit vector in R^n, $i \in N$ and $u = \sum_{i \in N} u^i$,
R^n_+: Non negative orthant of R^n i.e. $\{x \in R^n; x \geq 0\}$.

Now we consider some standard definitions and explanations which will be used in this paper.

2.1 Standard Simplex. The standard n dimensional closed simplex S^n is the convex hull of $v^0, v^1, ..., v^n$ i.e. $S^n = \{x \in R^{n+1}; x^T x = 1\}$. s^n_i denotes the face of s^n opposite v^i i.e. $S^n_i = \{x \in S^n; x_i = 0\}$ and boundary of s^n is denoted by $\partial S^n = \cup_{i \in N} s^n_i$.

Again a j-dimensional simplex or $[j$-simplex] is the relative interior of the convex hull of $j+1$ affinely independent points $y^0, y^1, y^2, ..., y^j$, called its vertices. We write $\sigma = \{y^0, y^1, y^2, ..., y^j\}$. A simplex τ is a face of σ if its vertices are a subset vertices of the σ. It is convenient to call the closure of a $(j-1)$ dimensional face of the j simplex σ as a facet of σ. Two j simplices are said to be adjacent if they share a common facet.

2.2 Triangulation. A triangulation G of S^n is a collection of n simplices and satisfies the following two conditions:
1. The simplices in G together with all their faces form a partition of S^n and
2. Each point of S^n has a neighbourhood meeting only a finite number of simplices.

2(a) Pivot Rule. For a given simplices G and a vertex y of σ the rules for obtaining the simplex of G whose vertices include all vertices of σ except y, are called the pivot rules of G.

2(b) Mesh. The mesh of a triangulation G is $\sup_{\sigma \in G} diam \sigma$. We shall use the Euclidian norm though out this paper.

2.3 Definition. For each sign vector $s \in R^n$, let
$E(s) = \{x \in R^n; s_i x_i = \|x\| \text{ whenever } s_i \neq 0\} = \text{cone } \{t \in R^n; t \text{ is a sign vector, and } s_i \neq 0 \Rightarrow s_i = t_i\}$.

In case s has k non-zero components for $k>0$ than $E(s)$ is a polyhedral cone of dimension $n-k+1$. Also we have $E(0) = R^n$. Moreover, when $s \neq 0$ each $E(s) \cap B^n$.
is a polyhedral of a cubical subdivisions of B^n where B^n donote the unit ball in 1∞ norm.

Wright [10] has also defined another subdivision of R^n into closed convex cone as n-dimensional geometric form given as follows:

Let $C(s) = x \in R^n : \begin{cases} x_i = 0 & \text{if } s_i = 0 \\ s_i x_i \geq 0 & \text{if } s_i \neq 0 \end{cases}$

$= \text{cone } \{ s_i u_i : s_i \neq 0, \text{ for each sign vector } s \}$. If s has k non-zero components then $C(s)$ is an orthant of a k-dimensional coordinate subspace of R^n.

Wright [10] has proposed two type of T-triangulations of R^n with the property that $E(t)$ is a subcomplex for every sign vector $t \in R^n$ for $t \neq 0$. The first triangulation is called a K^1 triangulation. This triangulation is obtained by taking the triangulation K_1 due to Kuhn [3] in the first orthant and the reflecting through coordinate hyperplane to triangulate the other orthant. A vector v^1 of a n-simplex $<v^1, v^{n+1}>$ of K^1 specified by choosing a sign vector s with all the non-zero components, is a member of $C(s)$ when all its components are integrals and π is a permutation of $\{1, 2, ..., n\}$, then $v^1 K^1$ is defined recursively as:

$V^{i+1} = V^i + S_{\pi(i)} U^{\pi(i)}$, for $i = 1, 2, ..., n$.

For $n = 2$ triangulation K^1 can be illustrated by following diagram.

The second triangulation J_1 is defined by Todd [5] and which can be illustrated for $n = 2$ by the following figure:

2.3.1. The D_{RS}-Triangulation.

Define $W^n = \{ x \in R^n : x_1 = \max x_i, i = 2, 3, ..., n \}$

taking a vector $Y = (y_1, y_2, ..., y_n)^T$, we have
\[Y_i = \begin{cases} \left\lfloor x_i \right\rfloor & \text{if } x_i \text{ is even} \\ \left\lfloor x_i \right\rfloor + 1 & \text{otherwise}, \end{cases} \]

where \(\left\lfloor \alpha \right\rfloor \) is the greatest integer less than or equal to \(\alpha \). Let \(D \) be the set of all \(Y \in W^n \) where \(Y_i \) is defined above. If \(Y \in D \), we define
\[I(y) = \{ i \in N; y_i = y_i \} \quad \text{and} \quad J(y) = \{ j \in N: y_j \geq y_j \}^T. \]

Let \(s = (s_1, s_2, \ldots, s_n)^T \) be a sign vector such that

1. For \(i \in N \), if \(y_i = 0 \) then \(s_i = 1 \), and if \(y_i \neq 0 \) then \(s_i = -1 \).

Let \(K(y, s) = \{ i \in I(y): s_i = 1 \} \).

Let \(\ell \) denote the number of elements in \(I(y) \) and \(h \) the number of elements in \(K(y, s) \), we take integer \(p \) such that

1. when \(h = 0 \), if \(\ell = n \) then \(p = 0 \) or 2,
2. when \(h > 0 \), if \(h = n \) then \(p = 0 \) and if \(h < n \) then \(0 \leq p \leq n - 1 \).

Let \(\pi = \{ \pi(1), \pi(2), \ldots, \pi(n) \} \) be permutation of \(N \).

When \(h = 0 \), for \(j = 1, 2, \ldots, n \),
1. If \(j = 1 \), define
\[g_i(j) = \begin{cases} -1 & \text{if } i \in I(y) \\ 0 & \text{otherwise} \end{cases} \quad \ldots (1) \]

for \(i = 1, 2, \ldots, n \).

2. If \(j \neq 1 \), we define
\[g_i(j) = \begin{cases} S' & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases} \quad \ldots (2) \]

for \(i = 1, 2, \ldots, n \).

When \(h > 0 \), for \(j = 1, 2, \ldots, n \),
1. If \(\pi(j) \in K(y, s) \), define
\[g_i(\pi(j)) = \begin{cases} 1 & \text{if } i \in K(y, s) \text{ and } j \leq \pi^{-1}(i) \\ 0 & \text{otherwise} \end{cases} \quad \ldots (3) \]

for \(i = 1, 2, \ldots, n \),
2. If $\pi(j) \notin K(y,s)$, define

$$g_i(\pi(j)) = \begin{cases} s_n(j) & \text{if } i = \pi(j) \\ 0 & \text{otherwise} \end{cases}$$

...(4)

for $i=1,2,...,n$.

If y, π, s and p be as above, then vectors $y^0, y^1, ..., y^n$ are defined as follows:

for $p=0$, we have

$$y^0 = y$$

$$y^k = y + g(\pi(k)), k = 1,2,...,n$$

and for $p \geq 1$, we define

$$y^0 = y + s,$$

$$y^k = y^{k-1} - s_{s(k)}U^{(s(k))}, k = 1,2,...,p-1.$$

$$y^k = y + g(\pi(k)), k = p,...,n.$$

...(6)

The $y^0, y^1, ..., y^n$ vectors obtained from the above definition are affinely independent.

Thus their convex hull is a simplex. Let us denote this simplex by $D_{RS}(y,\pi,s,p)$ or $\langle y^0, y^1, ..., y^n \rangle$. Let D_{RS} be the set of all such simplices. Then D_{RS} is a triangulation of W^n. Note that simplices of the D_{RS}-triangulation can be represented in more than one way. Moreover, the triangulation of a whole cube in W^n is the same as the D_1-triangulation.

To be more expatiate let us illustrate D_{RS}-triangulation of W^n for $n=2$ and for $x \leq 4$. Obviously, we have that for $y_1 \leq 4$.

$$D = \left\{ (0,0,0)^T, (2,2,0)^T, (4,4,0)^T, (4,0,4)^T, (4,4,4)^T \right\}.$$

...(7)

1. Let $y = (0,0,0)^T$. Then, $I(y) = \{i \in N : y_i = y_i \} = (1,2,3)$ and $i = 3$.

Then s must be $(1,1,1)^T$. Thus

$$K(y,s) = \{i \in I(y) : s_i = 1 \} = (1,2,3)$$

and $h = 3$. We have $p = 0$.

(a) Let $\pi = (2,3,1)$. Then $\pi^{-1} = (3,1,2)$ and by applying (3)

$$g(\pi(1)) = g(2) = (g_1(2), g_2(2), g_3(2))$$
\((1,1,1)^T, \)
\[g(\pi(2)) = g(3) = (1,0,1)^T, \]
\[g(\pi(3)) = g(3) = (1,0,0)^T. \]

Therefore,
\[y^0 = y = (0,0,0)^T, \]
\[y^1 = y + g(\pi(1)) = (1,1,1)^T, \]
\[y^2 = y + g(\pi(2)) = (1,0,1)^T, \]
\[y^3 = y + g(\pi(3)) = (1,0,0)^T, \]
Let \(\sigma^1 = \{y^0, y^1, y^2, y^3\}. \)

(b) Let \(\pi = (3,2,1) \). Then \(\pi^{-1} = (3,2,1) \)
\[g(\pi(1)) = g(3) = (1,1,1)^T, \]
\[g(\pi(2)) = g(2) = (1,1,0)^T, \]
\[g(\pi(3)) = g(1) = (1,0,0)^T, \]

Therefore,
\[y^0 = y = (0,0,0)^T, \]
\[y^1 = y + g(\pi(1)) = (1,1,1)^T, \]
\[y^2 = y + g(\pi(2)) = (1,1,0)^T, \]
\[y^3 = y + g(\pi(3)) = (1,0,0)^T, \]
Let \(\sigma^2 = \{y^0, y^1, y^2, y^3\}. \)

2. Let \(y = (2,2,0)^T \). Since \(I(y) = \{i \in \mathbb{N} : y_i = y_i\} = \{1,2\} \) and \(\ell = 2 \).

So \(s \) must be \((-1,-1,1)^T\). Thus \(k(y,s) = \{i \in I(y) ; s_i = 1\} = \phi \) and \(h = 0 \) while \(p \) can be any one of 0,1,2.

Now by applying (1) and (2), we have
\[g(1) = (-1,-1,0) \]
\[g(2) = (0,-1,0) \]
\[g(3) = (0,0,1). \]
Now considering different values of p and applying (6) and (7), we obtain the following simplices:

(a) For $p=0$. Let $\pi = (1,2,3)$. Therefore,
\[
y^0 = y = (2,2,0)^T,
\]
\[
y^1 = y + g(\pi(1)) = (1,1,0)^T,
\]
\[
y^2 = y + g(\pi(2)) = (2,1,0)^T,
\]
\[
y^3 = y + g(\pi(3)) = (2,2,1)^T. \text{ Let } \sigma^3 = \{y^0, y^1, y^2, y^3\}.\]

(b) For $p=1$. Let $\pi = (1,2,3)$. Therefore
\[
y^0 = y + s = (1,1,1)^T,
\]
\[
y^1 = y^0 - s_{\pi(1)}u^{(1)} = (2,1,1)^T,
\]
\[
y^2 = y + g(\pi(2)) = (2,1,0)^T,
\]
\[
y^3 = y + g(\pi(3)) = (2,2,1)^T. \text{ Let } \sigma^4 = \{y^0, y^1, y^2, y^3\}.\]

(c) For $p=2$. Let $\pi = (1,2,3)$. We have,
\[
y^0 = y + s = (1,1,1)^T,
\]
\[
y^1 = y^0 - s_{\pi(1)}u^{(1)} = (2,1,1)^T,
\]
\[
y^2 = y + g(\pi(2)) = (2,1,0)^T,
\]
\[
y^3 = y + g(\pi(3)) = (2,2,1)^T. \text{ Let } \sigma^5 = \{y^0, y^1, y^2, y^3\}.\]

3. Let $y = (4,4,0)^T$. Therefore, $I(y) = \{i\in\mathbb{N}; y_i = 1\} = \{1,2\}$ and $\ell = 2$.

We have that s must be $(-1,-1,1)^T$. Thus $K(y,s) = \{i\in I(y); s_i = 1\} = \phi$ and $h = 0$.

We have that p can be any one of 0,1,2. We also have
\[
g(1) = (-1,-1,0),
g(2) = (0,-1,0),
g(3) = (0,0,1).
\]

(a) For $p=0$, and $\pi = (1,2,3)$, we have
\[
y^0 = y = (4,4,0)^T,
\]
\[
y^1 = y + g(\pi(1)) = (3,3,0)^T,
\]
\[
y^2 = y + g(\pi(2)) = (4,3,0)^T,
\]
\[
y^3 = y + g(\pi(3)) = (4,4,1)^T. \text{ Let } \sigma^6 = \{y^0, y^1, y^2, y^3\}.\]
(b) For $p=1$, let $\pi = (1,2,3)$. Therefore
\[y^0 = y + s = (3,3,1)^T, \]
\[y^1 = y + g(\pi(1)) = (3,3,0)^T, \]
\[y^2 = y + g(\pi(2)) = (4,3,0)^T, \]
\[y^3 = y + g(\pi(3)) = (4,4,1)^T. \] Let $\sigma^7 = \langle y^0, y^1, y^2, y^3 \rangle$.

(c) For $p=2$ and $\pi = (1,2,3)$, we have
\[y^0 = y + s = (3,3,1)^T, \]
\[y^1 = y^0 - s_{\pi(1)} u_{\pi(1)} = (4,4,1)^T, \]
\[y^2 = y + g(\pi(2)) = (4,3,0)^T, \]
\[y^3 = y + g(\pi(3)) = (4,4,1)^T. \] Let $\sigma^8 = \langle y^0, y^1, y^2, y^3 \rangle$.

4. Let $y = (4,0,4)^T$. Since $I(\pi) = \{ i \in N : y_i = y_i \} = \{1,3\}$ and $\ell = 2$, so that s must be $(-1,-1,1)^T$. Thus $K(y,s) = \{ i \in I(y) : s_i = 1 \} = \emptyset$ and $h=0$. we have that p can be any one of $0,1,2$. We also have
\[g(1) = (-1,0,-1), \]
\[g(2) = (0,1,0), \]
\[g(3) = (0,0,-1). \]

(a) For $p=0$, and $\pi = (1,2,3)$, we have
\[y^0 = y = (4,0,4)^T, \]
\[y^1 = y + g(\pi(1)) = (3,0,3)^T, \]
\[y^2 = y + g(\pi(2)) = (4,1,4)^T, \]
\[y^3 = y + g(\pi(3)) = (4,0,3)^T. \] Let $\sigma^9 = \langle y^0, y^1, y^2, y^3 \rangle$

(b) For $p=1$. Let $\pi = (1,2,3)$. Therefore
\[y^0 = y + s = (3,1,3)^T, \]
\[y^1 = y + g(\pi(1)) = (3,0,3)^T, \]
\[y^2 = y + g(\pi(2)) = (4,1,4)^T, \]
\[y^3 = y + g(\pi(3)) = (4,0,3)^T. \] Let $\sigma^{10} = \langle y^0, y^1, y^2, y^3 \rangle$

(c) For $p=2$ and $\pi = (1,2,3)$, we have
\[y^0 = y + s = (3,1,3)^T, \]
\[y^1 = y^0 - s_{\pi(1)}u^{\pi(1)} = (4,1,3)^T, \]
\[y^2 = y + g(\pi(2)) = (4,1,4)^T, \]
\[y^3 = y + g(\pi(3)) = (4,0,3)^T. \]

Let \(\sigma^{11} = \{y^0, y^1, y^2, y^3\} \)

5. Let \(y = (4,4,4)^T \). Since \(I(y) = \{i \in N; y_i = y \} = \{1,2,3\} \) and \(\ell = 3 \). We have that \(a \) must be \((-1,-1,-1)^T\). Thus \(K(y,s) = \phi \) and \(h = 0 \). we have that \(p \) can be any one of 0,1,2. We also have

\[g(1) = (-1,-1,-1), \]
\[g(2) = (0,-1,0), \]
\[g(3) = (0,0,-1). \]

(a) For \(p=0 \). Let \(\pi = (1,2,3) \). Therefore

\[y^0 = y = (4,4,4)^T, \]
\[y^1 = y + g(\pi(1)) = (3,3,3)^T, \]
\[y^2 = y + g(\pi(2)) = (4,3,4)^T, \]
\[y^3 = y + g(\pi(3)) = (4,4,3)^T. \]

Let \(\sigma^{12} = \{y^0, y^1, y^2, y^3\} \).

(b) For \(p=1 \). Let \(\pi = (1,2,3) \). Therefore

\[y^0 = y + s = (3,3,3)^T, \]
\[y^1 = y + g(\pi(1)) = (3,3,3)^T, \]
\[y^2 = y + g(\pi(2)) = (4,3,4)^T, \]
\[y^3 = y + g(\pi(3)) = (4,4,3)^T. \]

Let \(\sigma^{13} = \{y^0, y^1, y^2, y^3\} \).

(c) For \(p=2 \). Let \(\pi = (1,2,3) \). We have,

\[y^0 = y + s = (3,3,3)^T, \]
\[y^1 = y^0 - s_{\pi(1)}u^{\pi(1)} = (4,3,3)^T, \]
\[y^2 = y + g(\pi(2)) = (4,3,4)^T, \]
\[y^3 = y + g(\pi(3)) = (4,4,3)^T. \]

Let \(\sigma^{14} = \{y^0, y^1, y^2, y^3\} \).

It can be seen that \(\{\sigma^i : i = 1,2,\ldots,14\} \) form a triangulation of \(W^3 \) for \(x \leq 4 \) as shown by the following figure:
REFERENCES

