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ABSTRACT 
paper deals the of a viscous incompressible fluid of small 

electrically conductivity past an ir.Jinite porous plate started impulsively from 

a constant transverse magnetic field in fixed relation to the 

of small uniform suction or injection velocity at the 

plate. Suction or injection velocity at the plate has been calculated using the Laplace 

transform method. The MHD unidirectional flow of a viscous incompressible 

of small electrical conductivity near an infinite flat plate started impulsively 

from the rest, which was first studied by Lord Rayleigh [8], has been shown to be 

self-superposable and an irrotational flow on which it is superposable is 

determined. Some observations have been made about the vorticity and stream 

functions by using the properties of superposability and self-

superposability. profiles have been plotted and studied for different 

conditions and for 
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1. Introduction. The folw about an infinite flat plate which executes linear 

harmonic oscillation parallel to itself was studied by Stokes [ 11] and Rayleigh [8]. 

The impulsive motion of an inffinite flat plate in a viscous incompressible magnetic 

fluid in the presence of an external magnetic field was studied by. Rossow [9]. Nath 

studied the Rayleigh problem in slip flow with transverse magnetic field. In 

the present paper we have obtained the exact solution for the MHD flow of a fluid 

of equal kinematic viscosity and magnetic viscocity past a perfectly conducting 

porous plate by using the Laplace transform technique. Vorticity and self 

superposability of the above MHD Rayleigh flow have also been studied. 
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2. Formulation of the problem. Let us consider the unsteady motion of 

a semi-infinite mass of incompressible, viscous, perfectly conducting fluid past 
an infinite plate. Let x-axis be along the plate parallel to the flow direction, y-axis 

perpendicular to the plate and z-a..xis perpendicular to both the x-axis and y-axis. 

The imposed magnetic field H 0 is applied in the direction of y-a..xis. Let v. represents 

the suction velocity at the plate, then by equation of the continuity 

~/'. = 0 
c.., 

Also the condition, that at y=O, v=v
5 

leads to every \vhere. Due to motion a magnetic 

field H x is introduced in the flow direction and from the symmetry of the problem 

all physical variables will be functions of y and time t onl:y: Lee the pfate be started 

impulsively from rest with a constant velocity U, and subject to the conditions : 

at t=O u=H =0 y>O 
' r ' 

at y=O u= U. H =0 t>O 
' ' x ' 

as y--.+oo,u=O, Hr=O. . .. (2.1) 

The differential equations governing the fluid motion are given by [13] 

- - -.2 < . 1 <U1 f'Ul (' U1 
- -+v.-- =a--=u--

"'t ~ - - - 2 c ry (y ry 

"."\ - -. -2 
C'U2 CU2 CU2 C U9 
--+v --=-a--+u----s -. "."\ ...... 2 cy CY CV 

~ ·~ 
ct 

where 

U1 =u+~H x 

u2 =u-~Hx 

u is the x-component of fluid velocity. 

A.= Mag~.etic viscoc-ity of the fluid, a= .jµH0 / p 

ii= Coefficient of the viscosity of the fluid, ~ = ,jµ/p 

µ = Permeability of the medium. 

Applying Laplace Transform to equations (2.2) and (2.3) we get, 

d 2u1 (a -vs} du1 pu1 --+ =--
dy2 v dy v 

and 

... (2.3) 

... (2.4) 

... (2.5) 

... (2.6) 
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{a - vs) du2 pu2 - --==--, ... (2.7) 
v dy v 

where u1,U:2 are the Laplace transform of u 1 and u 2 respectively and p is the 

kernel of the Laplace transform. The solution of equation (2.6) and (2. 7) are given 
by 

2u 2 i: 
U1 == 

- u. )v . 
----'>'--"--•- -- _::..._ 

a-v. ___ ,_ 

or 

2 

+4p 
L' 

B exp _ (a - us )y 
2u 

I 2 l 

y f(a-u 5 J + 4 ~~ 
2\i\ u ; uj 

· · ·) {. I 2 f 1 la - v. )v • v ' (a -·L' ) - ' a - u. \ 1 
== expi - ' ·• · · . _q_ e.:;,.µ .:::... ... •. ' s · + 4 P + B exp _ l_ .!(--· I + 4 P J 

, 2L' . 2 ~ .. U V 2 V U ) U (2.8) 
J 

and 

- ( (a.-v .)v uz =exp1-. s.. C 
\ 2u 

v (a+ u ·) • _. ___ s 

2 \' v 
+ 4 ~ + Dexpt- Y /(a+ us 

l 21J\ u 

Applying Laplace Transform to initial conditions we get, 

at 

and as 

We have 

u - u 
- 0 ,, > 0 Ul == - 'Uz == p Y- ,L p 

y--+ :t:.'ii=O, H, ==0. 

A=C=O and B=D=L~ 
Equation (2.2) and (2.3) then become 

u
1 

= U exp~- (a-vJy _ Y /: (a-vJ'
2 

+ 4 p 
p i 2v 2 V\ u· v 

l 

[),,. 
1
1
(. ) lr( )12 1 _ _ a - u5 y y 1 a - U8 1 , 

4 
p :.· 

u 2 == -exp1 -- 1 I ..,.. - r 
P I 2u 2 \! v / v 1 

p l 
+ 4- ~(2.9) 

u I 
I 

... (2.10) 

... (2.11) 

Taking inverse Laplace Transform [7] of equations (2.10) and (2.11) and 
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then substituting the values of u 1 and u 2 in (2.4) and (2.5) finally ;,ve get 

U . f y +(ex - uJt' . . y-(Ci. + 1,·,)t 
u = - erfcl ~ erfc· . 

2 !, 2-Jut 2-.Jut 
. .. (2.12) 

and 

U Jp ( v -"- (a - u )t , ' v - ( o:-:- i· )t 
H = - I- er'c: - · ' -er1b - ' x ') \! I' , , I' • , 

,.,, v ~t \ 2 ..... ut , ·, 2-v· ut 
... (2.13} 

flow equation indicates the absence of ex-ponential factor which means that there 
is no Hartmann layer in the ultimate state. 

3.:Flow Superpsoabile on Rayleigh Flow. Let us suppose that a flow 

v = (v .... ,vY"uz) ... (3. 

is superposable on the flow (2.12). Here vx, 1:z are independent of x and z i.e., 
these are either functions of y alone or constant. 

Applying the conditions of superposability of t\vo fl~ws, laid do•vn by Ballabh 

[2] i.e., the two flows with velocity u1 and u2 are mutually superposable to each 

other if 

curl[u1 x curlV2 + u2 x curlv1 ] = 0 

we get, 

A 
vy=(ou!cy)' ... (3.3) 

where A is constant. 

If a= O, v 5 =0 i.e., when there is no suction or jnjection and magnetic field, 
we get 

uy = -A&t" exp&2 /4ut) ... (3.4} 

If we consider the motion in z-x plane only and u
2
= constant, then from (3.11 we 

have 

( r--: (?J 'l \ v•= O,-A-vnvtexpy-/4vt. uz} 

From (3.5), we readily have 

Curlv =0. 

This means that the motion denoted by (3.5) is irrotational. Hence we can say that 

an irrotational flow denoted by (3.5) is superposable on the flow (2.12) under the 

condition cx = 0,u" = 0. 

It was shown by Ballabh [3] that an irrotational flow is superposable on a 
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rotational one if and only if the vorticity of the latter is constant along the stream 

lines the former. 
equation of the stream lines of the motion ( 1.12) can be deduced as 

x= constant and z=Derf(v) . 13.6) 

Hence the vorticity of the Rayleigh flow is constant along the curve (3.6). 
4. Self Superposability of the Flow. from equation (2.12) we have 

curl[u x curlu] = O. . .. (4.1) 

This is in accordance with the condition of self-superposability laid down 
by Ballabh [3]. Hence the flmv of viscous incompressible fluid of equal kinematics 
viscosity and magnetic \iscosity past a perfectly conducting porous flat plate, 
started impulsiively from rest in the presence of transverse magnetic field is self
superposable. 

It was found Ballabh [3] that, if the axis of the symmetry in the axially 
symmetrical be x axis and the axis perpendicular to it be R-axis, The condition 
for self-superposability the flmv \Vill be 

... (4.2) 

'\1ihere ,.: is of flow, 

i our case reduce to 

is any function of the stream function rp. 

Condition 

... (4.3) 

Since the a.xis perpendicular to the flow in this case has been taken as the y-axis. 

Now if a= O and us=O, equation (4.3) yields for the flow as 

. u 
I= exo 

') 

y-

~y .. ,,,_ :':L't ·kt . ... (4.4) 

It is now evident that for the flow (2.12) under the condition a= O and 

us=O, the right hand side of equation is a function of y at any instant. It means 
that at any particular time the stream function of the flow can be denoted as 

'¥ = '¥ (y) . . .. (4.5) 

Thus the stream function q; of the flo\v is a function of y and is in the direction of 

z axis i.e., in the direction perpendicular to the axis of flow and the direction of the 
magnetic field both. 

5. Vorticity of flow. From equation (2.12) we get the vorticity of flow as 

u v+(a-u )t 
~ s 

,-
2.,,Jut 

( ( y+(a+vJt1
2

\llj 
+ expl -

1 2 
r:t I 

I I -ym; / J 
' ... 'j \ 

... (5.1) \._-. j~ 
2-v ;c()f 
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Let the motion is such that 
u =u and a =2u =2u s . s 

then, 

( ( u I ·(/y ,11 
~ = ~)expl - -=-,---yvt 
- 2.J nut 1 2-../ ut 2 

t \ ' 

6. For Injection or Suction. 

( 
i y 3 ,--

+exp!' - ~, +-..Jut 
2-vvt 2 

\ 

Case I. When t= 1/v we have 

r U ~ ( ( l)2 l . 9 '"" y+ i \v+3)-
-;- = -- expj +exp1 - -~ ' 
Ti 2 ,CI ' 4 ' ' 
lJ -v " i. :, ' 4 

Case II. When t=2/u, we have 

f ( «) 
~ U i v+?' 

2 - I 8Xpj - ~ ' - r ..;.. exp 

., '-, 
(y+ 6}~ 

U 2.Y2n i 8 
\_ 

Case III. When t=3/u, we have 

s u r / 
U = 

2 
13 ~ exp! _ (y + 3 )

2 

.y un L \ 12 

Case IV . When t= 4/u , we have 

8 

') ( ( v+ 9r i~ _- -
+expl - 12 

\ 

~- u ( (y+4)2 - l iy ... l2i2 

- =---;= exp1 - + exp1 - ----
U 4.Jn ~ 16 i 12 

... (5.2) 

... {6. 

... (6.2) 

... (6.4) 

7. Results and Discussion. To observe the quantitative effects on vorticity 
field numerical results have been calculated and plotted for above four cases. It is 
clear from the graph that the vorticity is maximum at the plate and it decreases as 
we move away from plate. At small times the vorticity near the plate falls abruptly 
and then it decreases and become steadier as we move far from the plate. As time 
increases the fall in vorticity becomes less sharp in comparison to that t= 
Thus as time increases the vorticity tends to become zero throughout. Thus after 
large tine we may expect an almost irrotational flow. 
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