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In the present paper, we study the affine motions in Tachibana recurrent 

spaces by taking an infinitesimal tranformation and derive some important 
theorems. 
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L Introduction. Ann(=2m) dimensional Tachibana space r; is a 

Riemannian space, which admits a tensor field F/ satisfying 

F}' Ff. = -8~, ... (1.1) 

F -=-F 7.,J j~ J 

\ 

=F/'gc_;) ... (1.2) 

and 

=0, ... (1.3) 

where the comma followed by an index denotes the operation of covariant 
differentiation >vith respect to the metric tensor gij of the Riemannian space. 

The Riemanian curvature tensor field R}F.I is defined by 
. - . - . 

R' " [' .., [' [' r:J r' a jkl = O j kl =Ok jl + ja kp = karji · ... (1.4) 

If the space r: satisfies the conditions 

R;P.f.,a = "-aRJkl' /,a * 0 · ... (1.5) 

It will be called a Tachibana recurrent space and will be denoted by * r;. For any 

tensor B}k ... in the space TT~ or *TT~, we can find the formula 
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£u(B]k..b)-(£vBJ;;_Jb = B}k.. (£ur~)+ ... -B~ .. ((£urJb)-B]~ .. (£urt,) .. , ... (1.6) 

where £v denotes the Lie-derivative with respect to the infinitesimal 

transformation 

x1 =xi+vi(x)ot, 

where 8t is an infinitesimal constant. The above infinitesimal transformation, 

considered at each point of r:, is called an affine motion, when and only when 

£vr]k = 0. 

According to Knebelman ([l], 1929), ([2], 1945) and Slebedzinski ([3], 1932), for an 
affine motion, the two operators~ and covariant operator (.) are commutative 
with each other. 

Making use of £vr]k * 0, we have 

£vR]kl =0. . .. (1.7) 

Applying £v on the both sides of (1.5) and using (1.6) and (1.7), we get 

(£vA.n)RJkl = 0, ... {1.8) 

i.e., the Recurrence vector !....a of the space must be a Lie-invariant one. The space 

*T;, admitting an infinitesimal transformation x-1=xi+i8x)5t, which satisfies 

(1.8) will be called a restricted space, or briefly an S-*T: sapce. 

We, now prove the following 

Lemma. In an S- * r: space, if the recurrence vector An is gradient one, then 

"-ava =Constant. 

Proof. Let us put a. = !....a ya, then, from the basic condition 

£v"-a = vat....a,b +A.bu.~, 

and the assumption t...a,b. =Ab.a' we see that a.b = 0. 

This completes the proof. 

In an 8-* r: space, in view of (1.5) and the defination of Lie-derivative, we 

get 

£ R i a.Ri Rr i Ri r Ri r 
v jkl = jkl - jklv,r + jklv ,k + jkrv,1 ... (1.9) 
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Calculating (Rj..,;,00: - R)kt,ah), we have the following Ricci-identity : 

R i Ri Rr Ri • Ri Rr ..!.. Ri Rr R Rr - 0 
.. 'l.- - "k] -L - "kJ rob ..,- kl i-L ' . / k-l. + "k [-L -JF.4~ J •. ,,cw J.. r. ,cw Jr U{.I Jr uu ... (1.10) 

Next, let us assume that a is not a constant, then from the above Lemma, we see 
that 

l~ah = !,,,_ a· - I" :;t: 0 
~-- a.a • 

Let us take v~j = Rjkzf kl for a suitable non-symmetric tensor f kl. 

Multiplying (1.10) by F side by side and summing over a and b, we have 

{ah Aa.&R;M = Rr _ Ri ,,r _ Ri ,,r _ Ri ,,r 
rklv~J Jrlv,k jkrvJ. 

comparing equations (1.9) and we get 

£. Ri I A {ab 
u jPJ =,a- ah 

... (1.11) 

which vanishes, if and only if, the curvature tensor has the following resolved 
form: 

__ vi A ' 
u.i.~,'" = k,v·,. 

_.,ft~, ~~4 ,.f 
... (1.12) 

We have the follov.-ing 

Definition (1.1). An S-*T~ space satisfying l.ava -:t constant, is called a special 

Tachibana space of first kind. 

Definition (1.2). An S-* Tr~ space satisfying }.ava = constant, is called a special 

Tachibana space of the second kind. 
In order that we have n.12), the condition 

' I . i R)ktv .., akv,J = ... (1.13) 

where ak =a .J./a is necessary and sufficient (Takano ( 4], 1966) 

In fact ak -:t 0, there exists a suitable vector rik, such that akrik = 1, then 

by transvection of 11 k, from the condition (1.13), we have V:~ = R~klvkriz. 

So, '!e can take concretely fk 1 = vhri'. Hence, to have the concrete form fk
1

, (1.13) 

should be taken as a basic condition. If this is done, we shall have (1.12) always. So 

£"'Rjk1 = 0 holds good. Thus we have derived the following 



116 

Theorem. If we introduce v:j by (1.13) then £vR5kl = 0 is identically satisfied 

2. Affine Motion in Tachibana Recurrent Spaces. Firstly, we shall 

show the existence of affine motion in a special S- * r: space of the first kind. 

Differentiating (1.12) covariently with respect to x°' and using (1.5) and 

Akl a = A.aAkl we have 

R5kla.,a = Aklv~ja. . .. (2.1) 

Multiplying the above equation by i-l and summing over l, we obtain 
. l i 

R)kzV a.,a = -a.,k. V >ja ... (2.2) 

where we have used 

Aabvb +a.a = 0. 

By virtue of (1.13), we obtain 

l l i Rjklv = --aku,j. . .. (2.3) 

Making use of (2.3) in (2.2), we have 

i i 
a.aa.kv,j = a.,k.V,ja ... (2.4) 

Since a ::f:. constant, we get 

i i a.a .v,j = v,ja. ... (2.5) 

Hence (2.3) and (2.5) yield 

i i l i i v .k + R ·kzV = a.kv . -a.kv . = 0, ,] J ,} • ,J 

Thus, we have £0 rjk = 0. 

Theorem 1. An * r: space, satisfying £
1
).a = 0,1.aua * O constant and having 

resolved curvature tensor R)kt of the form (1.13), admits naturally an affine motion. 

Proof. Consider space of the second kind satisfying 

a= AaVa = 0. 

From second Bianchi identity, we :have 

A.kR5lava = AzR)kava, ... (2.6) 

from where, taking care of A.1 ::f:.0, we can put 
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Ri z Ai· 
. jklv = j'-k · ... (2.7) 

Since * 0, there exists suitable vector 11
1

, such that 

'·aria= rl. 

Multiplying (2. 7) by 11·1;, we obtain 

Ri .. r."vl =Ai 
]kt' I ] ' ... (2.8) 

Now, introducing a non-symmetric tensor f1;which has been considered. earlier in 
(2.8), we get 

-Ri- rkl =-Ai 
jF..ll J' ... (2.9) 

i.e., we can put !I 

i Ai Vy·=-4 ,_ . ) 

Eonsequently, (2. 7) may be vvTitten as 
t 

' l = -1.kU,j. ... · (2.10) 

Hence, we see that 

£vr]t = v!it -Jl.kv:j ... (2.11) 

Therefor~, 

£!irjk =O, 

· if and only if v~j denote a recurrence ten....<:0r with respect to the gradient recurrence 

vector. 
Thus by the above reason, we establish 

Theorem 2~ An * r: space defined by a gradient recurrence vector "-a and 

characterized. by £
0 

A.a = 0 and !."va = O admits an affine motion, if and only if, the 

space has recurrence tensor v'.j with respect of l.k. 
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